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ABSTRACT

Ž .The new transferable atom equivalent TAE method for rapid molecular electron
density reconstruction was used to compute a set of molecular surface property
descriptors. These descriptors were then used to construct HPLC column capacity
factor PLS models for a series of high-energy materials. The new TAE-derived
surface property indices are also available from ab initio or semiempirical wave
functions, but the speed and accuracy of TAE reconstruction make it the method
of choice for obtaining these indices. The new QSPR indices are based upon the
extrema, distributions, and surface integrals of the electronic kinetic energy

Ž .density, the Politzer average local ionization potential pip , and the electrostatic
potential, as well as the rates at which these properties change normal to the
0.002-erau3 molecular surface. The distribution of the properties were recorded
as surface histograms. While property extrema and surface integral averages
proved to be descriptive, the most useful new indices were found to correspond
to histogram bin data computed for K and G surface kinetic energy densities.
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ANALYSIS OF HPLC COLUMN CAPACITY FACTORS

All-subsets-regression modeling showed that when mixtures of traditional
Ž .connectivity indices, theoretical linear solvation energy relations TLSERs , and

Ž .generalized interaction properties functions GIPFs were included with the new
indices in the variable sets, the new indices were consistently involved in the
best 2% of the capacity factor models. Peak retention time data from two

Ždifferent columns were examined a Hypersil ‘‘CPS’’ cyanoalkylated column
.and a standard reverse-phase Hypersil ‘‘ODS’’ column using a phosphate

buffer mobile phase at pH 3.0. The result were compared to an earlier TLSER
correlation analysis of the same data by Lowrey and Famini. The TAE-generated
surface property descriptors were shown to provide superior PLS models for
both sets of columns and conditions. Q 1997 by John Wiley & Sons, Inc.

Introduction

lthough a diverse set of molecular descrip-A tors may be found in the QSAR and QSPR
literature1, new descriptors which correlate well
with important intermolecular interaction modes
are worthy of investigation.2 While descriptors
which are directly related to well-known types of
intermolecular interactions are more intuitive,
property indices which correlate with less clearly
defined nonbonded interaction modes can often
lead to models with excellent predictive power.
Separate descriptions of electrostatic interactions,
van der Waals forces, charge transfer interactions,
polarizability, and hydrophobic effects are desir-
able, but such clear dimensions are not often possi-
ble given the kind of molecular information avail-
able in a typical QSAR or QSPR study. One ap-
proach to this problem has been to use property
indices computed from atomic connectivity pat-
terns of molecules, or from spectral3 and experi-
mental4 data taken from a training set of molecules,
but clean separation of each type of interaction
into a set of additive linear models can be elusive
in the real world. A well-utilized alternative ap-
proach uses molecular connectivity information to
construct topological property indices and sub-
structure keys. Connectivity-based two-dimen-

Ž .sional 2D approaches such as these have been
heavily used in ‘‘traditional’’ QSAR.5 Hansch and
others were able to demonstrate that the use of
such indirect property indices was a valid, if not
perfect approach to structureractivity analysis.6

Implicit in such 2D QSAR work is the assumption
that characteristic connectivity patterns of atoms
result in specific chemical behavior. Some of the
early pattern descriptors are simple sums of hy-
drogen bond donor or acceptor atoms, or the num-
ber of rings present in a particular compound. The
donorracceptor atom count is an example of an

index type which can be directly related to a
specific kind of intermolecular interaction. This
approach works to some extent because each sub-
structure is presumed to add an energy increment
to the binding. Verloop indices and Balaban in-
dices7 represent extensions of connectivity indices
on which some kind of shape information is en-
coded. The middle ground between direct and
indirect relationships with known modes of inter-
action is occupied by indices derived from shadow
areas or moments of inertia about principle molec-
ular axes. Aside from a tally of each kind of
substructure, none of these descriptors include any
magnitude or directionality information concern-
ing the implied chemical effects of the substruc-
ture on binding.8 A significant advance in the
graph theoretical approach to QSAR was made
with the introduction of electrotopological indices,
which can be used to designate ‘‘E-states’’ of
molecules and were designed to describe elec-
tronic alterations which accompany changes in
connectivity.9 Keir and Hall pioneered this area of
research,10 and contributed to a significant im-
provement in 2D descriptors. Keir also described
some early efforts to use semiempirical informa-
tion in 2D QSAR descriptor generation.11

Many modern efforts have concentrated on
Ž . 12three-dimensional 3D techniques such as the

CoMFA-style field comparison approaches. These
field-based methods concentrate on both steric and
electrostatic similarities between molecules. The
power of 3D QSAR rests in its ability to identify
regions of space which are sensitive to changes in
shape or electrostatic fields. As with all such ap-
proaches, the 3D methods suffer from molecular
alignment problems. The hybrid molecular surface
methods used in the present work seek to identify
intrinsic electronic properties of molecules by eval-
uating these properties on and near the molecular
van der Waals surfaces. This approach combines
some of the benefits of 2D methods, in that molec-
ular alignment is not important, while still utiliz-
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ing high-quality electron-density-based values of
surface properties as molecular descriptors. The
concept of using surface property distributions as
indicators of molecular behavior is not a new one.
Politzer and coworkers have explored the relation-
ships between the distribution of molecular sur-
face properties and a diverse set of spectral13 and
reactivity data.14 In each of these cases, however,
the electrostatic potential was the primary prop-
erty to be statistically analyzed. Because the elec-
trostatic potential field surrounding a molecule is
a good indicator of long range interactions as well
as a descriptor of the electron density distribution,
this approach has proven to be quite useful. A
number of years ago, Hehre pointed out that the
pK values of carboxylic acids correlated stronglya
with the most positive electrostatic potential found
on their electronically defined van der Waals sur-
faces.15 Politzer has taken this approach further,
and defined a set of surface property indices known

Žas generalized interaction properties function or
.GIPFs which contain information about the distri-

butions of the STO-nG-generated positive and neg-
ative electrostatic potential distributions on molec-
ular surfaces. The GIPF descriptors also include a
volume-normalized polarizability term and the ex-
trema of the local average ionization potential of
the surface electron density.16 Politzer’s group has
successfully used these descriptors to generate cor-
relations of structure with supercritical fluid solu-
bility and boiling point, as well as other physical
properties related to intermolecular interactions.16

Other significant work in the area of theoretically
generated descriptors has been pioneered by
Famini and coworkers. Their efforts resulted in a
set of theoretical linear solvation energy relation-

Ž .ships TLSERs and associated descriptors which
are also based upon MOPAC results.17 As with
Politzer’s GIPFs, these descriptors were designed
to represent various specific types of intermolecu-
lar interactions. TLSERs differ from GIPFs in that
they are not determined on the basis of surface
electrostatic potentials, but they do contain two
‘‘ionic hydrogen bond’’ charge terms to account
for the electrostatic components of bonding as well
as separate covalent donor and acceptor terms.
Among many other successes, TLSERs have been
used to create solvation models18 as well as to
predict HPLC column capacity factors.19

Theoretically defined QSARrQSPR descriptors
such as those discussed above have a number of
advantages over empirically derived indices: They
are related to the actual molecular electron den-
sity, they are applicable to a wide variety of

molecules, and are fairly accessible through
semiempirical or small ab initio calculations.20 For
those reasons, TLSERs and GIPFs are also favored
over many graph theoretical descriptors and sub-
structure keys. One logical improvement for such
theoretical descriptors would be the inclusion of
electronic properties other than the electrostatic
potential and local average ionization potential.
Electronic kinetic energy density is one such type
of potential descriptor. There are reasons to believe
that some of these properties might be available
from MOPAC or other semiempirical methods, but
since these methods are not calibrated for such
output, the usefulness of that approach would be
questionable. To obtain accurate molecular elec-
tron density distributions which include good val-
ues of first and second derivatives, high-quality ab
initio calculations are required. For even the most
modestly sized molecules, however, the time and
computer resources required to complete a large
number of ab initio calculations is prohibitive. Al-
though computational facilities have become much
faster, most QSARrQSPR studies involve dozens
or hundreds of sample molecules, rendering large
ab initio studies impractical. Nevertheless, quan-
tum mechanical molecular descriptors remain at-
tractive.21 To facilitate the use of density-based
descriptors, an alternative approach is required
which can generate property-encoded high-quality
electron density reconstructions of any molecule.22

Our approach to this problem has been to use
Ž .assemblies of transferable atom equivalents TAEs

as representations of molecular electron densities.23

Through the use of these TAE reconstructions, we
have been able to derive new sets of atomic and
molecular descriptors which are based upon prop-
erties of the ab initio-quality molecular electron
density. In addition to some of the new descriptors
mentioned in this work, TAE assemblies are also
capable of providing all of the traditional 2D and
3D descriptors as well as HFr6-31qG* ab initio-
equivalent GIPF and TLSER indices.

Transferable Atom Equivalent Method

Ž .Transferable atom equivalents TAEs are essen-
tially atom-centered electron density fragments
with discrete boundaries, each containing a
charged nucleus. Additionally, TAEs are equipped
to change their shape and their properties slightly
in response to new molecular environments. In the
terminology of Bader’s Theory of Atoms in
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Molecules,24 atomic nuclei are attractors which are
surrounded by basins of electron density bounded

Ž .by zero-flux interatomic surfaces =r ? N s 0 .
Within this approach, the boundaries between one
atom and the rest of the molecule may be deter-
mined by first locating all of the bond critical points
which involve the atom of interest, and then devel-
oping a set of steepest-descent paths in electron
density radiating outward from those points. Bond
critical points are defined as those points along
bond paths where the electron density reaches its
minimum. Bond paths are the paths of maximum
electron density connecting two atoms. The points
found along the steepest descent pathways from
each bond critical point define the zero flux surface
separating two atoms. In the PROAIM and
FASTINT programs, positions of these surfaces are
stored as an ordered set of distances from the
nuclei, with the spherical polar abscissas chosen on
the basis of the Gauss quadrature formula. For
mathematical reasons, this set of uneven abscissas
and compensating weights are very desirable when
undertaking 3D integrations of the property densi-
ties contained within the basin. In this manner, the
Atoms-in-Molecules approach has been used suc-
cessfully by many groups to explain a diverse set
of molecular phenomena.25

The evolution of electron density partitioning
methodology continued over the past few years
during which time Bader pointed out that it was
not only very desirable but also theoretically possi-
ble to recombine subsets of AIM electron density
distributions to produce whole molecules.26 The
transferable atom equivalent technology and the
RECON program are therefore a logical and philo-
sophical extension of the Theory of Atoms in
Molecules.

To accomplish actual molecular electron den-
sity reconstruction, two conditions must be met:
Ž .1 there must be a supply of appropriate atom
types in a form which can carry electron density

Ž .properties; and 2 the atomic fragments must be
able to make small, self-consistent adjustments to
the properties of their base atom types to fit new
bonding environments. The goal set forth in point
Ž .1 has also been stated by Pichon-Pesme and
Lecomte,27 Bader,28 and Walker and Mezey,29

while the even more crucial goal outlined in point
Ž .2 has been elusive until now. This is where the
greatest point of difference exists between the TAE
approach and the methods developed by the afore-
mentioned investigators. Mezey’s MEDLA pro-
gram generates molecular electron densities as
mathematical superpositions of local density ma-

trices and is designed to support shape similarity
calculations of large molecules. With the exception
of an approximation of the molecular electrostatic
potential, no other atomic or molecular properties
of the density are currently available from that
method.30 Electron densities produced by the
MEDLA method are not meant to be queried for
energetics or be cognizant of any local polarization
effects. Similarly, Pechon-Pesme and Lecomte use
sets of atom-centered multipolar functions to re-
produce experimental X-ray electron density dis-
tributions. While this is not uncommon among the
high-resolution X-ray community, Lecomte has
also stated that it should be possible to create and
use a library of generally transferable atomic mul-
tipole models to construct the electron density of
any molecule. This type of reconstruction yields
results broadly similar to those from Mezey’s
MEDLA approach, in that there is no attempt to
reproduce density-based molecular properties in
addition to the density. In contrast to these meth-
ods, TAE electron density reconstructions provide
not only molecular electron densities, but also
electronic kinetic energy information, local ioniza-

Ž . 31tion potential pip distributions, and electro-
static potential data as well as other first- and
second-derivative properties of the final, polarized
molecular density. The TAE method also keeps
track of the additive atomic contributions to all
molecular properties. Consequently, the TAE ap-
proach is an attractive alternative to other methods
of fast molecular electron density reconstruction
for any application which would benefit from more

Ž .information than r r .
Ž .As mentioned inpoint 1 , an appropriate TAE

library must be maintained which contains enough
atom types to be representative of many bonding
environments. Second, appropriate atom types
must be selectable from the library using only
molecular connectivity and conformation informa-
tion. On the basis of these guidelines, a TAE data
structure has been defined which makes use of the
relationship between atomic shape, atomic proper-
ties, and molecular connectivity. Within this defi-
nition, the data for each TAE atom type consists of
a spherical polar coordinate model of its shape,
surface properties, and property derivatives in a
predefined ‘‘standard’’ orientation. The orientation
chosen for the current TAE modeling paradigm is
one in which the shortest distance from the nu-
cleus to an interatomic surface is aligned with the
qZ axis, with the next shortest distance placed in
the XZ plane. This procedure allows each position
on the external and interatomic surfaces of an
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atom to be uniquely defined.32 This data structure
format also includes a set of property derivatives
for each surface point which describes the re-

Žsponse of all atomic properties such as inter-
atomic surface electron densities and total atomic

.energies to radial variations of each unique sur-
face position. These derivatives are initially deter-
mined analytically from the wave functions of the
sample molecules used to produce the TAEs. To-
gether with the RECON pairwise bonding algo-
rithm, this results in a flexible atomic density
representation which is capable of slightly altering
its properties in order to fit a new environment.

TAE Library

To appreciate our choice of TAE library data
structure, one must first become familiar with the
kind of information which is available from a
FASTINT or PROAIM electron density partitioning
calculations. After the molecular connectivity has
been determined, the bond critical points are lo-
cated and the interatomic surfaces are generated.
The limits of each atomic basin are determined as
an order list of distances from each atomic nu-
cleus. This list contains distance information at
each point in a spherical polar coordinate system
using Gauss quadrature abscissas in both theta
and phi. In a typical FASTINT integration, 64th

Žorder quadrature is used in the theta longitudi-
.nal dimension, and 48th order quadrature is used

Ž .in the phi latitude dimension. This means that
the contents of the ordered data list contains 3072
distances beginning near the qZ pole in the XZ
plane, proceeding in 48 disks of common phi until
almost reaching the yZ pole. IN the FASTINT and
PROAIM programs, multiple intersection dis-
tances of rays with folded interatomic surfaces are
also stored, but this information is not presently
utilized in the TAE library. During numerical inte-
gration, electron density is sampled at 64-Gauss
quadrature abscissas along the length of each ray
from its nuclear origin to its endpoint on an inter-
atomic surface. If no interatomic surfaces are en-
countered in a given direction, integration is nor-
mally continued out to 10 au from each nucleus. If
the rays are truncated when the electron density
has fallen to the 0.002-erau3 level, their endpoints
define the molecular VDW surface.33 Within our
electronic modeling paradigm, atomic surface
properties are determined on this 0.002-erau3

isosurface.

The gradient vector field of the electron density
of any molecule consists of a set of noncrossing
gradient paths which lead away from each nucleus
and go asymptotic with each of the interatomic
surfaces. In fact, if a gradient pathway is initiated
at a bond critical point, it will follow a steepest
descent pathway from that critical point and gen-
erate part of a zero-flux interatomic surface. Within
this paradigm, a hypothetical terminal hydrogen
atom basic can be used to exemplify how the
spherical polar coordinate system of each AIM
atom can be used to define the shape of a TAE. For
each Gauss quadrature abscissa, three types of
rays must be considered: rays which hit the zero-
flux interatomic surface of the atom in question;
rays which do not hit any interatomic surfaces but
which are truncated at the 0.002-erau3 electron
density level; and rays which continue on until a
distance of 10 au is reached. The first set of rays is
the one which describes the interatomic surface
shape, whereas the second set of truncated rays
serves to describe the electronic van der Waals
surface. The third set of rays is used to determine
if any new zero-flux surfaces have come into being
as a result of the proximity of other atoms.

Examination of the shapes and integrated atomic
properties of over 7000 atoms of all types led to
the hypothesis that there is a fundamental relation-
ship between interatomic surface shape, atomic
volume, and bonding environment. To further ex-
amine this postulate, a surface matching program
was written to quantitatively compare atomic
shapes and molecular positions for several hun-
dred atoms in molecules.34 The encouraging re-
sults from that investigation reinforced our belief
that chemically similar atoms ought to have simi-
lar shapes and electronic properties}including
surface properties.35 While this does not preclude
atoms of different shapes having similar proper-
ties, it simply reinforces the chemical intuition that
atoms with similar connectivity patterns will be-
have similarly and will have similar shapes}at
least in regions of high electron density near the
bonding axes.

TAE Definition and Identification

To determine whether the integrated properties
of atoms could be divided into a reasonable num-
ber of statistically valid groups, a set of 7250
property-encoded integrated atoms were subjected
to cluster analysis methods. Cluster analysis at-
tempts to define ‘‘natural’’ groupings of objects by
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measuring the similarity between them. The algo-
rithms used in defining TAEs were taken from the
agglomerative hierarchical clustering methods

Ž .available in the Statistical Analysis Software SAS
package from SAS Institute Inc. Within this
method, an initial set of single element cluster
groups is defined and the algorithm works toward
reducing the number of groups by combining those
which have the smallest Euclidean distance be-
tween them. To assist the assignment of atoms to
elongated or odd-shaped clusters, cluster centers
were assigned to unique atomic connectivity pat-
terns. In this manner, members of irregular clus-
ters could be unambiguously assigned to specific
TAE atom types which all have the same nearest
and next-to-nearest neighbors. It should be noted
that the TAE library is a dynamic entity which is
subject to continuous upgrades.

The variables used in the TAE cluster analysis
were taken from integrated atomic properties as
well as scalar and vector van der Waals surface
properties and integrated 3D basin properties. The
integrated atomic basin properties included elec-
tron population, atomic dipole magnitude, total
electronic kinetic energy, volume, and the three
principal quadrupole components. Surface proper-
ties included external surface area, valence region
surface area, valence critical point electron den-
Nsities. The following integrated van der Waals

Ž .surface properties were also used: Ý =r ? N D ,i i
Ž . Ž . Ž .Ý =K ? N D , Ý =G ? N D , Ý K D , andi i i i i i
Ž .Ý G D , where D is the ith surface element andi i i

N is the molecular surface normal vector. These
terms are further defined in Table I.

Thus, for an sp3 carbon atom with four bonds,
there exist 18 clustering variables for each element.
The variables were standardized prior to cluster
analysis, and the 7250 atoms were subdivided into
12 subsets: hydrogens, sp3 carbons, sp2 carbons, sp
carbons, sp3 nitrogens, sp2 nitrogens, sp nitrogens,
sp3 oxygens, sp2 oxygens, sulfurs, fluorines, and
chlorines. Several clustering methods were used
on each data set to ascertain the most useful
method for the given data. The reliability of each
method is based on the connectivity pattern of
the clusters produced and the standard devia-
tions from the mean for each property used in
clustering.

Within the limitations of our initial atomic
property database, we have identified 90 unique
TAEs for carbon, hydrogen, nitrogen, oxygen, sili-
con, sulfur, chlorine, and fluorine atom types. A
table of these types and their associated connectiv-
ities is available as part of the Supplementary
Material.36 TAEs covering phosphorus and hyper-
valent sulfur are under development, as are spe-
cial nitrogen atom types designed for use in photo-
graphic dyes and dye couplers.

RECON Algorithm

The RECON program module is employed when
TAE atoms are to be combined to generate prop-

TABLE I.
Key to Atomic Properties Used in Current TAE Definition and Reconstruction.

3W, X,Y, Z valence critical point r values in erau
A valence region surface area

2( )B external surface area au
( )N electron population electrons

( )E electronic energy Hartrees
( )EP electrostatic potential surface integral au

( )D dipole magnitude au ? e
3 3( )V atomic volume within the 0.002-erau isosurface au

2( )QAA, QBB, QCC diagonalized quadrupole components au ? e
( )=r ? N Ý =r ? N D , The rate of change of electron density perpendicular to the atomic surfacei i
( )=K ? N Ý =G ? N D , the rate of change of K kinetic energy density normal to the atomic surfacei i
( )=G ? N Ý =G ? N D , the rate of change of G kinetic energy density normal to the atomic surfacei i

? 2 2 ?( ) { }K electronic kinetic energy density = y " / 4m NH dt 9 C = C q C= C
?( )G electronic kinetic energy density s y "r2m NH dt 9 =C ? =C

a( ) ( )K Ý K D , the surface integral of the kinetic energy density derived from K au ? Bohri i
( ) ( )aG Ý G D , the surface integral of the kinetic energy density derived from G au ? Bohri i

D surface area elementi

a Kinetic energy densities K and G are related by K s G + L, where L is the Laplacian of charge density. The integral of L vanishes
for topologically defined atoms.

JOURNAL OF COMPUTATIONAL CHEMISTRY 187



BRENEMAN AND RHEM

erty-encoded molecular electron density distribu-
tions. Input to the RECON program currently re-
quires either a Gaussian-style .COM file or a stan-
dard MOPAC.MOP file with Z-matrix geometry
definitions. In a typical RECON run, atom type
selection is first completed on the basis of atomic
connectivity, at which point the program positions
the first atom at the origin and the second along
the qz axis. The third atom is placed in the xz
plane, and the fourth and subsequent atoms are
situated according to the rotational angles read
from the molecular Z-matrix. During each atom
addition, the local best-fit surface rotation angle is
located on the basis of surface shape, after which
this atomic pair is considered to be in a combined
but ‘‘unmelded’’ state. A trial geometry of the
entire molecule may be generated in this fashion,
or the first two atomic surfaces can be ‘‘melded’’
prior to the addition of another atom. Color-coded
pre- and postmelding electron density and surface
property figures are available in the Supplemen-
tary Material to this article. It is interesting to note
that, in most cases, only minor changes are seen in
the overall shape or color-encoded surface proper-
ties before and after the melding process. In some
cases, the ‘‘unmelded’’ data is sufficient if the
present atomic environments are similar to those
from which the TAE atoms were derived, but in
most cases, interatomic surface melding is desir-
able. In an earlier version of the melding algo-
rithm, a total energy criterion was used to find the
best new interatomic surface for a given atom pair.
Within this model, the new surface position was
also constrained to satisfy the zero flux condition
=r ? N s 0, where N is the normal vector of the
new interatomic surface. That version of the sur-
face adjustment algorithm relied on the principle
that, within limits, each atom type has a unique
‘‘electronic electronegativity’’ which is defined as
the ratio of atomic electronic kinetic energy to the
integrated atomic population. A simple way to
envision that relationship is to note that a more
electronegative atom will receive more energetic
benefit from an increment of electron density than
a less electronegative one. This relationship is
highly linear over small perturbations of each sur-
face position within a given atom type, and can be
used to generate a set of ‘‘property derivatives’’
which describe the sensitivity of each integrated or
scalar atomic property to surface point motion.
These property derivatives are then used to com-
pute changes in the electronic kinetic energy,
atomic electron population, and the surface elec-
tron density during the recombination melding

process. Surface electronic properties used for gen-
erating QSARrQSPR descriptors are also adjusted
in this step. Each original TAE description in-
cludes default ab initio values for all integrated
and surface properties of the atom, but once the
ray lengths are changed during recombination,
these values are adjusted accordingly.

This original method of atomic surface melding
was found to be satisfactory for many molecules
and bonding situations, but a more general method
related to the atomic virial theorem was sought.
The most recent version of the RECON melding
algorithm makes use of a conceptual analogy be-
tween two unmelded electron density fragments
and a pair of nonhomogeneous fluid volumes sep-
arated by a membrane. In the case of the separated
atomic fragments, each atom assumes its shape as
a result of the virial of forces acting upon it.37

Atomic shape is described by the position of each
element of the original set of zero-flux interatomic
surfaces. Unless the two atoms to be melded were
originally bound to each other, there will be por-
tions of the two interatomic surfaces which will be
mismatched when they are brought together by
RECON. As pointed out by Mezey, such surface
mismatches can initially lead to both undershoot
and overshoot of each atomic volume.38 Rotational
optimization about the bond axis locates the local
minimum of the surface mismatch. Once the atom
pair is positioned, it is first necessary to determine
if the bond length needs adjustment. This can be
determined by examining the electron density and
local electronic ‘‘pressure’’ of the two bond-path
endpoints: If they are unequal, the surface position
Ž .and bond length must be changed to equalize
these values. This can be done as a two-
equationrtwo-unknown problem by using the
aforementioned surface property derivatives to ex-
trapolate changes in both properties with respect
to ray length. This is where the fluid analogy is
helpful. The first equation shown below asserts
that the total electronic energy of an atomic basin
is equal to the one half the surface virial plus one
half the basin virial. The surface virial is in turn
related to the surface integral shown in the second
equation, where one can use the electronic stress
tensor to determine the surface ‘‘pressure.’’ The
third equation shows the TAE interatomic surface
encoding with electronic ‘‘pressure’’ property
derivatives:

1 1
Ž . Ž . Ž .E V s V V q V V ,a B S2 2
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where V is the basin virial and V is the surfaceB S
virial.

ª ª l ªŽ < . Ž < .V V V9 s dS V V9, r r ? s ? n ,HS

l l ªwhere s is the stress tensor and s ? n is the pres-
sure.

l ª rate of change of pressure normalŽ .d s ? n
to the interatomic surfaces

dR with respect to ray length.

Once the proper bondlength is determined, the
rest of the surface positions are tested for ‘‘pres-
sure’’ and electron density equality in a radial
pattern and optimized accordingly. Once this pro-
cedure has gone through one complete pass, the
two original surfaces should not be one. The bond
angle is held fixed in the prototype version of the
RECON program, but methods of optimizing this
parameter are being investigated. One possibility
for bond angle optimization arises by examining
and optimizing 1,3 zero-flux surface contacts be-
tween the geminal atoms.

The entire procedure may be repeated to allow
propagation of polarization, because the property
derivatives on each interatomic surface are depen-
dent upon the positions of all other atomic surface
elements. This is done using a set of interdepen-
dency matrices which alter the property values and
derivative of each ray when any other ray length is
changed during a melding operation. The property
changes associated with the interatomic surface
position changes are encoded into these matrices
by comparing large sets of unmelded TAE assem-
blies with corresponding sets of FASTINT inte-
grated atoms for the same molecules. Approxi-
mately 900 such comparisons have been made,
and the results have been included in the existing
TAE library. As the TAE library continues to ex-
pand, more of these comparisons will be per-
formed to calibrate the new interdependency
matrices.

QSAR and QSPR Descriptors from TAE
Assemblies

The results of TAE calculations on the molecules
in Figure 1 are presented in Table II. Within that
table, the energies of each TAE assembly are com-
pared to HFr6-31G* and HFr6-31qG* ab initio

models. As in earlier examples of the TAE ap-
proach, errors in total energy for this data set are
less than 2 kcalrmol. If one treats the new RE-
CON-generated TAE electron density representa-
tion as a surface property-encoded ab initio elec-
tron density distribution, it becomes apparent that
such molecular descriptors as molecular volume
and surface area are readily accessible. Due to the
structure of the TAE data, surface area and related
surface integrals may be easily evaluated by col-
lecting surface points into triads, and then using
vector cross-products within the triads to calculate
surface area increments and surface normals. These
kinds of data can then be condensed into atomic
and molecular contributions. Examples of these
integrations and sums are illustrated in Table I. An
alternative way to work with surface property
data is to generate surface histograms of the various
surface property distributions. These histograms
may be generated with respect to each atom in the
TAE assembly, or for the molecule as a whole. A
standard set of 10 or 20 surface histogram bin sizes
and limits have been defined for each surface
property, which spans the range of each property
that has been observed to date. To check the RE-
CON results, TAE assembly property values were
tested against ab initio standards using the new
MARCH94 program.39 This program uses GAUSS-
IAN94.CHK and AIM.WFN file data as input, and
is able to compute all of the surface and 3D prop-
erties normally associated with TAE electron den-
sity assemblies. As a result of its actual use of ab
initio theory, however, calculations using the
MARCH94 method can be quite time consuming,
but are practical for molecules of the size used in
this study. The MARCH94 program takes its name
from the Marching cube algorithm which is used to
generate the molecular electron density isosurface
for use in property encoding. This very rapid rou-
tine is followed by an algorithm which treats points
on the 0.002-erau3 isodensity surface as if they
were part of a TAE assembly. The descriptors
calculated by RECON were compared to those
obtained at the HFr6-31qG*rrHFr6-31G* level
of theory by Gaussian94rMARCH94 program for
all 22 compounds. In every case, the RECON val-
ues were found to be within 1% of the MARCH94
results.40 The molecular descriptor information

Ž .from RECON are stored in QMF QSAR Meta File
and EXCEL spraedsheet format. The EXCEL data
are available as Supplementary Material. The QMF
file format is common to all application programs
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FIGURE 1. The compounds used in the capacity factor data set.
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( )FIGURE 1. continued

used in our research group and within the Kodak
Scientific Computing Team as a means of rapid
data exchange. This standardization allows the sta-
tistical analysis programs to use data in the same
form as they were generated by the diverse array
of QSAR tools in our group. As with any molecu-
lar structure file format, the QMF file is capable of
carrying geometric data and bond connectivity in-
formation. The QMF format is also able to store
virtually unlimited amounts of atomic, regional,
bond, and molecular level QSAR descriptor
information.

Variable Selection and PLS Modeling
with TAE Surface Indices

Whenever a large number of descriptors must
be evaluated in order to find the best ones to
include in a concise QSPR model, it is often useful
to employ an automated variable selection tech-

Ž .nique such as all-possible-subsets APS regres-
sion. This approach is even more useful when a
large number of unfamiliar descriptors make up
the variable pool. In the case of TAE-generated
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TABLE II.
( )High-Energy Materials HF ///// 6-31+G*rrrrr rrrrr HFrrrrr6-31G* Hartrees vs. TAE RECON Energies.

Compound HFr6-31G* HFr6-31qG* TAErRECON

( )1,3-Dihydroxy-2,4,6-trinitrobenzene Styphnic acid, STYP y990.80128 I990.82907 I990.82823
( )1,2-Dinitroglycerol DN12GLC y749.66684 I749.68918 I749.68612
( )1,3-Dinitroglycerol DN13GLC y749.67753 y749.69919 I749.70021

( )meta-Dinitrobenzene DNB13 y637.64032 I637.65829 I637.65913
( )2,4-Dinitrotoluene DNT24 y676.67425 y676.69226 I676.69436
( )2,6-Dinitrotoluene DNT26 y676.66474 y676.68287 I676.68945

( )Diglycol dinitrate DGDN y788.70256 y788.72572 I788.72623
( )Ethylene glycol dinitrate EDN y635.78875 y635.80723 I635.80814

( )Hexahydro-1,3,5-trinitro-1,3,5-triazine Hexagen, RDX y892.50534 y892.52926 I892.52883
( )Isosorbide dinitrate ISDN y939.28887 y939.31363 I939.31411

( )N-methyl-N,2,4,6-tetranitroaniline Tetryl, TETRA y1138.57806 y1138.6100 I1138.6110
( )Nitrobenzene NTBNZ y434.17523 y434.18795 I434.18801
( )Nitroglycerine NTGLCN y953.10190 y953.12845 I953.12747
( )Nitroguanidine Picrite, GNDNO2 y407.56437 y407.57840 I407.57935

( )meta-Nitrotoluene NT3 y473.21259 y473.22522 I473.22499
( )ortho-Nitrotoluene NT2 y473.20772 y473.22036 I473.22011

( )para-Nitrotoluene NT4 y473.21363 y473.22634 I473.22535
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

( )Octagen, HMX y1190.0020 y1190.04389 I1190.0423
( )Pentaerythretol tetranitrate PETN y1309.43453 y1309.47221 I1309.47115

( )Picric acid PICRIC y915.94982 y915.97563 I915.97487
( )Trinitrotoluene TNT y880.12508 y880.14886 I880.14835

QSPR indices, there were 122 different atomic and
molecular descriptors to choose from. To make the
selection easier, the APS regression technique was
used to find the best five parameter CPS capacity
factor models for 21 of the sample compounds
excluding DGDN, for which there was no experi-
mental CPS column retention data. All 22
molecules were included in the APS regression
calculations for the ODS column data. Five-param-
eter models were chosen to be comparable to
Lowrey’s earlier five-parameter TLSER work on
this data set. The Microsoft WindowsTM program
‘‘PLSPC4’’ was utilized for the APS regression and
PLS calculations.41 The results of APS calcula-
tions on the CPS and ODS data are presented in
Table III. It is interesting to note that the two
HPLC columns have quite different primary modes
of interaction with substrate molecules in the mo-
bile phase, and are best modeled by different sets
of five molecular descriptors. This change in de-
scriptor basis is not surprising: Although it is very
unlikely that the value of any single new surface
index alone would be directly proportional to only
one kind of binding model, it is our expectation
that, when taken together, combinations of elec-
tron density-based surface descriptors will be able
to represent each of the common modes of nonco-

valent interaction. In Lowrey’s earlier TLSER work,
the following molecular descriptors were used:
volume, volume normalized polarizability, cova-
lent H-bond donor capability, ionic H-bond donor
capability, covalent H-bond acceptor capability,
and an intercept term. After the two or three
outliers were removed, the two most important
terms for both columns were found to be the
molecular volume and the ionic H-bond acceptor
capability, as represented by the highest positive
charge on any hydrogen at the MOPAC level of
theory. Of lesser importance in both cases was the
covalent H-bond donor capability descriptor which
was derived from the MOPAC energy difference
between the molecular HOMO and water LUMO.
The volume normalized polarizability was also
included in each model at a lower significance
level. For comparison, the TAE regression data
for both CPS and ODS columns can be found in
Table IV. It should be noted that models based on
TAE-derived surface property indices gave supe-
rior models for the full data sets: there were no
outliers to be removed from the data. The crossval-

2 Ž .idated R for the worst case CPS with no data
removed was found to be 0.989 for TAEs and 0.804
for TLSERs. The cross-validated R2 for the TAE
model of the ODS column capacity factor data was
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TABLE III.
All-Possible Subsets Regression Results for CPS
and ODS Columns

Appearance
frequency

CPS column regression in best 260
variable subsets

( )DELRHONA3: Del RHO ? N
( )area 3 260

SIGA9: surface integral of G
( )area 9 260

SIGA6: surface integral of G
( )area 6 180

SIK: surface integral of K
( )molecular 130

PIPMAX: PIP maximum 100
( )PIP15: PIP area 14 90

SIGA4: surface integral of G
( )area 4 90

PIV: GIPF electrostatic balance
parameter 80

SIGA5: surface integral of G
( )area 5 60

Appearance
frequency

ODS column regression in best 264
variable subsets

PIV: GIPF electrostatic balance
parameter 226

SIGA8: surface integral of G
( )area 8 129

( )PIP14: PIP area 14 110
( )PIP16: PIP area 16 88

SIGA10: surface integral of G
( )area 10 82

( )DELRHONA3: Del RHO ? N
( )area 3 79

( )PIP17: PIP area 17 79
SIKA9: surface integral of K

( )area 9 74
Volume: molecular volume

3in au 52

found to be 0.997. It is important to distinguish
that these crossvalidated correlation coefficients
represent much higher values of R and R2 as
commonly used in least-square regression. In all of
the regression models used in this work, standard
crossvalidation techniques were used to evaluate
the quality of the models. Figures 2 and 3 illustrate
the best TAE and TLSER models for the ODS
column data. The TLSER ODS data are shown
with the outliers plotted on the figure, but not

included as variables in the regression procedure.
Table V contains all of the experimental and pre-
dicted values for the ODS column. TLSER data are
also included in those tables both with and with-
out outliers for each model.

Ž .All-possible-subsets APS regression using the
TAE indices and CPS column data indicated that
the best model utilized the DelRhoNA3, SIGA9,
SIK, SIGA6, and PIPmax descriptors. For the ODS
case, the most important variables were found to
be PIV, SIGA8, PIP14, PIP16, and SIGA10. It is
interesting to note that when the TLSER indices
were combined with the TAE indices for APS
regression analysis, the top eight variables and top
ten models for both CPS and ODS data contained
only TAE surface property indices. In the examina-
tion of ODS column data by APS, the ninth most
important descriptor was found to be molecular
volume. Figures 4 and 5 show the best-fit models
for TAE CPS and TLSER CPS models. The pre-
dicted and experimental CPS column data is shown
in Table VI. As in the ODS column case, the TLSER
outliers were not included in the model.

Comparison of the TLSER coefficients with those
of the TAE indices provide useful information
about which physical interaction modes are repre-
sented by each of the TAE descriptors. First, be-
cause the TAE descriptors are not orthogonal, it is
necessary to accept a less clear distinction about
how much of each index describes the energy of
each mode of noncovalent interaction. More data
and analysis will be required before the informa-
tion content of the new indices can be fully under-
stood. For now, the definition of each index type
allows some speculation: DelRhoNA3 represents
the height of the third histogram bin in the Del
RHO ? N data category. The DelRho ? N descriptor
class tells us how fast the electron density falls off
with respect to distance from the surface, where
the lower five bins represent the slow fall-off rates
consistent with surfaces over p-systems and het-
eroatoms. Because the value of the histogram bin
also signifies the amount of surface area of the
molecule which has a certain range of the prop-
erty, it gives some measure of molecular size. The
SIK index is also related to size, but it is actually
the whole surface integral of the ‘‘K ’’ formulation
of the electronic kinetic energy density. Because
electronic kinetic energy values are believed to be

Žrepresentative of hydrogen bonding activity both
.donor and acceptor, depending upon the values ,

it may serve as a combination variable describing
surface area and potential acceptorrdonor activity.
The SIGA6 and SIGA9 bins are near the high end
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TABLE IV.
Regression Coefficients for Five-Parameter CPS and ODS Capacity Factor TAE PLS Models.

Normalized Coefficient in Normalized Coefficient in
a bCPS descriptor coefficient original units ODS descriptor coefficient original units

DELRHONA3 0.6346 0.02 PIV y1.063 y0.06264
SIGA9 y0.4553 y0.03639 SIGA8 y0.8981 y0.0264
SIK y0.3769 y0.9843 PIP14 0.7976 0.004382
SIGA6 0.3437 0.000833 PIP16 0.366 0.002387
PIPMAX y0.2856 y0.8452 SIGA10 0.285 0.06707

a Intercept = 0.4341; CPS crossvalidated R 2 = 0.989.
b Intercept = 1.465; ODS crossvalidated R 2 = 0.997.

of the surface areas with large ‘‘G’’ kinetic energy
densities, K and G electronic kinetic energy densi-
ties are often correlated to some degree, so it can
be said that this region of the energy spectrum
may describe hydrogen bond donor capability. The
PIPmax descriptor is actually a GIPF index calcu-
lated using TAE methodology. PIPmax is associ-
ated with the highest value of the Politzer local

Ž .ionization potential PIP found on the molecular
surface. This is believed to describe the hydropho-
bicity and charge transfer capabilities of the
molecule. The ODS column results can be ana-
lyzed in a similar fashion: PIV is a GIPF42 consist-
ing of the average deviation of the surface electro-
static potential. This parameter is usually inter-
preted as a measure of charge separation within
the molecule. The high negative importance of this

Ž .parameter in the ODS model Table IV suggests

( )FIGURE 2. Experimental vs. TAE ODS Log k 9 capacity
factor data set.

that molecules with large internal charge separa-
tions will not interact favorably with the nonpolar
ODS stationary phase. The importance of the SIGA8
descriptor for the hydrophobic ODS column model
can be interpreted to mean that hydrogen bond
donor capability is detrimental to retention on this
column. The high weight placed on PIP14, and to a
lesser extent PIP16, appears to show that the
molecules with the most affinity for this column
would be difficult to ionize}an observation con-
sistent with hydrophobicity. The SIGA10 descrip-
tor involvement appears to be a correction factor
for some of the molecules for which the SIGA8
coefficient might be too large. As additional exam-
ples of TAE surface descriptor modeling are per-
formed, our understanding of the relationships
between these electronic indices and more tradi-
tional interaction modes should be enhanced.

( )FIGURE 3. Experimental vs. TLSER ODS Log k 9
capacity factor data.
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TABLE V.
Predicted and Experimental Capacity Factor Data for ODS Column.

ODS ODS
TLSER ODS TLSER ODS

Molecule ODS Log k 9 ODS k 9 ODS TAE ODS TAE Log k 9 TLSER k 9 Log k 9, no TLSER k 9,
ID experimental experimental Log k 9 k 9 with outliers with outliers outliers no outliers

DGDN 3.64E y 01 1.31E + 00 3.60E y 01 1.29E + 00 4.79E y 01 2.01E + 00 5.47E y 01 2.52E + 00
DN12GLC 2.46E y 01 7.60E y 01 2.43E y 01 7.50E y 01 1.49E y 01 4.09E y 01 1.37E y 01 3.71E y 01
DN13GLC 2.23E y 01 6.70E y 01 2.24E y 01 6.75E y 01 1.37E y 01 3.71E y 01 1.24E y 01 3.30E y 01
DNB13 4.25E y 01 1.66E + 00 4.27E y 01 1.67E + 00 3.94E y 01 1.48E + 00 4.10E y 01 1.57E + 00
DNT24 5.72E y 01 2.73E + 00 5.83E y 01 2.83E + 00 5.16E y 01 2.28E + 00 5.49E y 01 2.54E + 00
DNT26 5.61E y 01 2.64E + 00 5.64E y 01 2.66E + 00 5.45E y 01 2.51E + 00 5.84E y 01 2.84E + 00
EDN 3.03E y 01 1.01E + 00 3.12E y 01 1.05E + 00 3.52E y 01 1.25E + 00 3.62E y 01 1.30E + 00
GNDNO2 5.31E y 02 1.30E y 01 5.21E y 02 1.27E y 01 1.76E y 01 5.00E y 01 1.17E y 01 3.09E y 01
HMX 1.34E y 01 3.60E y 01 1.32E y 01 3.55E y 01 3.58E y 01 1.28E + 00 5.16E y 01 2.28E + 00
ISDN 3.75E y 01 1.37E + 00 3.70E y 01 1.34E + 00 5.24E y 01 2.34E + 00 5.97E y 01 2.95E + 00
NT2 6.28E y 01 3.25E + 00 6.35E y 01 3.32E + 00 5.76E y 01 2.77E + 00 6.13E y 01 3.10E + 00
NT3 6.79E y 01 3.78E + 00 6.75E y 01 3.73E + 00 5.50E y 01 2.55E + 00 5.92E y 01 2.91E + 00
NT4 6.54E y 01 3.51E + 00 6.35E y 01 3.32E + 00 5.63E y 01 2.66E + 00 6.00E y 01 2.98E + 00
NTBNZ 4.68E y 01 1.94E + 00 4.63E y 01 1.90E + 00 5.17E y 01 2.29E + 00 5.37E y 01 2.44E + 00
NTGLCN 4.94E y 01 2.12E + 00 4.93E y 01 2.11E + 00 4.12E y 01 1.58E + 00 4.58E y 01 1.87E + 00
PETN 7.00E y 01 4.01E + 00 6.96E y 01 3.97E + 00 5.94E y 01 2.93E + 00 7.03E y 01 4.05E + 00
PICRIC 2.07E y 01 6.10E y 01 2.01E y 01 5.89E y 01 2.46E y 01 7.62E y 01 2.33E y 01 7.10E y 01
RDX 2.60E y 01 8.20E y 01 2.55E y 01 7.99E y 01 2.12E y 01 6.29E y 01 3.12E y 01 1.05E + 00
STYP 1.70E y 01 4.80E y 01 1.65E y 01 4.62E y 01 2.70E y 01 8.62E y 01 2.70E y 01 8.62E y 01
TETRA 4.43E y 01 1.77E + 00 4.49E y 01 1.81E + 00 3.40E y 01 1.19E + 00 4.56E y 01 1.86E + 00
TNT 5.16E y 01 2.28E + 00 5.23E y 01 2.33E + 00 4.97E y 01 2.14E + 00 5.37E y 01 2.44E + 00
TOLUENE 9.52E y 01 7.95E + 00 9.65E y 01 8.23E + 00 1.02E + 00 9.35E + 00 9.61E y 01 8.14E + 00

( )FIGURE 4. Experimental vs. TAE CPS Log k 9 capacity
factor data.

( )FIGURE 5. Experimental vs. TLSER CPS Log k 9
capacity factor data.
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TABLE VI.
Predicted and Experimental Capacity Factor Data for CPS Column.

CPS CPS
CPS TLSER TLSER k 9

CPS TAE CPS TAE TLSER CPS Log k 9, with with no
ID CPS log k 9 CPS k 9 Log k 9 k 9 Log k 9 TLSER k 9 no outliers outliers

DGDN Not Not 4.52E y 01 1.83E + 00 Not Not Not Not
observed observed reported reported reported reported

DN12GLC 2.38E y 01 7.30E y 01 2.19E y 01 6.54E y 01 1.99E y 01 5.81E y 01 2.43E y 01 7.50E y 01
DN13GLC 2.18E y 01 6.50E y 01 2.26E y 01 6.84E y 01 1.85E y 01 5.31E y 01 2.20E y 01 6.60E y 01
DNB13 2.83E y 01 9.20E y 01 2.90E y 01 9.49E y 01 2.53E y 01 7.91E y 01 2.33E y 01 7.10E y 01
DNT24 3.37E y 01 1.17E + 00 3.28E y 01 1.13E + 00 3.24E y 01 1.11E + 00 3.14E y 01 1.06E + 00
DNT26 3.12E y 01 1.05E + 00 3.24E y 01 1.11E + 00 3.40E y 01 1.19E + 00 3.36E y 01 1.17E + 00
EDN 2.79E y 01 9.00E y 01 2.25E y 01 6.80E y 01 3.46E y 01 1.22E + 00 3.24E y 01 1.11E + 00
GNDNO2 6.45E y 02 1.60E y 01 6.42E y 02 1.59E y 01 2.90E y 02 6.91E y 02 2.50E y 02 5.93E y 02
HMX 6.36E y 01 3.32E + 00 6.40E y 01 3.37E + 00 5.82E y 01 2.82E + 00 6.17E y 01 3.14E + 00
ISDN 3.08E y 01 1.03E + 00 3.10E y 01 1.04E + 00 4.73E y 01 1.97E + 00 5.38E y 01 2.45E + 00
NT2 2.67E y 01 8.50E y 01 2.47E y 01 7.66E y 01 2.65E y 01 8.41E y 01 2.72E y 01 8.71E y 01
NT3 2.74E y 01 8.80E y 01 2.80E y 01 9.07E y 01 2.65E y 01 8.41E y 01 2.90E y 01 9.50E y 01
NT4 2.72E y 01 8.70E y 01 2.83E y 01 9.17E y 01 2.70E y 01 8.62E y 01 2.76E y 01 8.88E y 01
NTBNZ 2.30E y 01 7.00E y 01 2.23E y 01 6.73E y 01 2.20E y 01 6.60E y 01 2.12E y 01 6.29E y 01
NTGLCN 4.59E y 01 1.88E + 00 4.77E y 01 2.00E + 00 4.49E y 01 1.81E + 00 4.70E y 01 1.95E + 00
PETN 6.91E y 01 3.91E + 00 6.89E y 01 3.88E + 00 6.31E y 01 3.28E + 00 6.95E y 01 3.95E + 00
PICRIC 1.34E y 01 3.60E y 01 1.91E y 01 5.51E y 01 1.61E y 01 4.49E y 01 1.34E y 01 3.61E y 01
RDX 4.56E y 01 1.86E + 00 4.59E y 01 1.88E + 00 4.25E y 01 1.66E + 00 4.31E y 01 1.70E + 00
STYP 1.21E y 01 3.20E y 01 1.18E y 01 3.12E-01 1.79E y 01 5.10E y 01 1.67E y 01 4.69E y 01
TETRA 5.43E y 01 2.49E + 00 5.14E y 01 2.27E + 00 5.11E y 01 2.24E + 00 5.19E y 01 2.30E + 00
TNT 3.71E y 01 1.35E + 00 3.83E y 01 1.41E + 00 4.05E y 01 1.54E + 00 3.94E y 01 1.48E + 00
TOLUENE 2.33E y 01 7.10E y 01 2.40E y 01 7.37E y 01 2.10E y 01 6.22E y 01 2.41E y 01 7.42E y 01

Conclusions

The results presented here have shown that, in
addition to being able to match ab initio property
data to within 1%, the TAErRECON method is
capable of rapidly producing valuable new
QSARrQSPR descriptors which are derived from
the electronic properties of molecular van der
Waals surfaces. Although these same descriptors
can be obtained directly through ab initio calcula-
tions, the TAErRECON program is capable of
generating them at least 300 times faster than
double-zeta ab initio for medium-sized molecules.
Because the TAErRECON program has been
shown to be practical with molecules up to the
size of small proteins, such as FKBP,43 TAEr
RECON QSAR, and QSPR, work is now being
undertaken in the areas of DNA, RNA, and
carbohydrates.
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