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ABSTRACT 
The bioconcentration  factor (BCF), a key parameter required by the 
REACH  regulation, estimates the tendency for a xenobiotic to 
concentrate inside living  organisms. In silico methods can be 
valid alternatives to costly data measurements. However, in the 
industrial context, these theoretical approaches may fail to predict 
BCF with reasonable accuracy. We analyzed whether models built 
on  public data only have adequate performances when chal- 
lenged to predict industrial compounds. A new set of 1129 com- 
pounds has been collected by merging publicly available datasets. 
Generative Topographic Mapping was employed to compare this 
chemical space with a set of new compounds issued from the 
industry. Some new chemotypes absent in the training set (such as 
siloxanes) have been detected. A new BCF model has been built 
using ISIDA (In SIlico design and Data Analysis) fragment descrip- 
tors, support  vector  regression and  random  forest  machine- 
learning methods. It has been externally validated on: (i) collected 
data from the literature and (ii) industrial data. The latter also 
served as benchmark  for the freely available tools VEGA, EPISuite, 
TEST, OPERA.  New model performs (RMSE of 0.58 log BCF units) 
comparably to existing ones but benefits of an extended applic- 
ability, covering the  industrial set chemical space (78% data 
coverage). 

ARTICLE HISTORY 
Received 9 April 2019 
Accepted 29 May 2019 
 
KEYWORDS 
QSAR/QSPR; generative 
topographic mapping 
(GTM); bioconcentration 
factor;  REACH; 
benchmarking 

 
 
 
Introduction 

 

In environmental risk assessment, the bioconcentration factor (BCF) is a key parameter 
to be considered. It estimates the tendency for a xenobiotic to concentrate inside living 
organisms and it is defined as the process of concentration of the chemical from the 
water phase through non-dietary routes, such as absorption from respiratory surfaces 
(e.g. lungs/gills) or skin. Xenobiotics’ concentration inside organisms can thus reach 
hazardous levels, with  long-term deleterious effects, such as  modified behaviours, 
impacts on reproduction, which in the end may lead to endanger some species [1]. 
Organisms at the upper of the food-chain (e.g. fishes) are particularly in danger and, as 
a direct consequence  of their consumption, man might  be the ultimate impacted 
species.  BCF is defined as the ratio of the steady state concentration of the chemical 
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in aquatic organisms (such as fish, mussels, algae, etc.) and the corresponding freely 
dissolved chemical concentration in the surrounding water media (Equation (1)) [2]. 

 

Cf
 

BCF ¼ 
w 

(1) 

 

Where  Cf  and Cw  are the concentrations at steady state of the chemical inside the fish 
and the water media, expressed in mg/Kg and mg/L, respectively. The duration of the 
uptake phase is usually 28 days, however it can be lengthened if necessary, or shortened 
if the steady-state has been reached earlier [3]. BCF is expressed in L/Kg. Typically the 
fish is used as test model due to its importance in the food web and the availability of 
standardized guidelines. 

The determination of BCF is a key requirement for regulatory  frameworks such as the 
European Union Registration,  Evaluation,  Authorisation and Restriction of Chemical 
Substances Regulation (REACH,   EC   No  1907/2006) for  the  PBT/vPvB  (Persistent 
Bioaccumulative and Toxic/very Persistent very Bioaccumulative) substances assessment. 
In Europe, there are two relevant bioconcentration thresholds which will usually deter- 
mine if a substance fulfills the ‘bioaccumulative’ criterion or the ‘very bioaccumulative’ 
criterion. The former is set at a BCF value  of 2000 L/Kg (or 3.3 log unit), while the latter is 
set at 5000 L/Kg (or 3.7 log unit). Below 2000 L/Kg, a substance is not considered to 
possess a significant bioaccumulation potential [4]. Due to the expensive nature of BCF 
experiments and the high number of required animals, the use of in silico methods is 
encouraged [5]. 

During the past decades, empirical predictors have been proposed to estimate the 
BCF,  which are mainly based on the octanol-water partition coefficient (log P)  alone 
[6–9], as it is a key-determining factor linked to this property. More recently, other types 
of molecular descriptors have been employed [8,10,11],  and many QSAR models are 
nowadays implemented in commercial or freely-available software, such as VEGA (Virtual 
models for property Evaluation of chemicals within a Global Architecture) [12], Toxicity 
Estimation Software Tool (TEST) [13], Estimation  Program  Interface  (EPISuite) [14], OPERA 
(OPEn  (q)saR App) [11], Chemical Properties Estimation Software System (ChemProp) 
[15], CORAL [16], ACD/log D Suite [17] and OASIS-Catalogic [18]. Table 1 summarizes 
other authors’ evaluations of the models considered in the present study. The number of 
publications is quite high, and performances can be very different, with RMSE (Root 
Mean Square Error) values reaching  almost one unit of difference for the same model. 
This depends on the type of chemical families, but also on the user choices about the 
Applicability Domain (AD) thresholds  (since for some of the tools the AD is not clearly 
defined), and the exclusion of compounds already present in the model’s training set. 
The work of Petoumenou et al. [19], is the only one to evaluate data coming from the 
industrial context, i.e. extracted from the European Chemical Agency (ECHA) database 
[20]. These results are of particular interest because: (i) during the REACH registration, 
the available data was reviewed by the industries before submission and, eventually, 
new data was generated to comply with endpoint requirements; (ii) this database could 
potentially be more representative of the chemical families of industrial interest. To our 
knowledge, this study is unique of its kind. Yet, only a small subset of ECHA was used 
and there is no consideration of overlaps between the test set and the training sets of 
the benchmarked tools. In addition, most of the abovementioned tools queried the 
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Table 1. Overview of the existing tools considered for benchmarking. 
 

 
Model performance 

 

Model General information Compounds r2      RMSE  Reference 
VEGA Caesar Tr. set = 473 95 0.78 0.62 [12]MD 

 Descriptors = 2D phys-chem descriptors 30 0.85 0.58 [21] 
 Algorithm = Radial basis function  neural nerwork 538 - 0.91 [22] 
 (RBFNN) 45 - 1.57 [22] 
  78 0.8 0.46 [19] 
  162 - 1.33 [23] 

VEGA KNN Tr. set = 832 152 - 0.81 [12]MD 
 Descriptors = 2D phys-chem descriptors 45 - 0.91 [23] 
 Algorithm = k-Nearest neighbours  (kNN) 95 0.78 0.47 [19] 
  98 - 0.66 [23] 

VEGA Meylan Tr. set = 662 146 0.79 0.66 [12]MD 
 Descriptors = 2D phys-chem descriptors 32 0.64 0.87 [21] 
 Algorithm = Linear regression 349 - 0.99 [22] 
  45 - 0.99 [22] 
  76 0.78 0.43 [19] 
  97 - 0.64 [23] 

TEST Tr. set = 589 - 0.76 0.66 [13]MD 
 Descriptors = CDK descriptorsa 291 0.5 0.88 [21] 
 

EPISuite 
Algorithm = consensus between algorithms 

Tr. set = 527 
 

527 
 
0.83 

 
0.50a 

 
[14]MD 

 Descriptors = lop P, functional  groups 158 0.82 0.59a [14]MD 
 Algorithm = Linear regression (log P-based with 432 0.59 0.87 [21] 
 functional  groups as correction factors) 349 - 0.94 [22] 
  45 - 1.33 [22] 
  145 0.45 0.89 [19] 

OPERA Tr. set = 685 157 0.83 0.64 [11] 
Descriptors = PaDEL Descriptorsb

 

Algorithm = k-Nearest neighbours  (kNN) 
MD information  has been taken from the model’s documentation manual. aChemistry Development Kit (CDK) descriptors 

[24]. bPaDEL-Descriptors software [25]. 
 
 

same sources of data for training set collection [11–14]. This may limit their applicability 
when confronted to chemotypes of industrial interest which are new or under-sampled 
in the public data. 

In this study, we analyzed whether models built on public data only show satisfactory 
performances when challenged to predict a set of compounds extracted from Solvay’s 
portfolio (‘industrial set’). We aimed at getting a more precise picture of the perfor- 
mances of publicly available models. We observed that the performances in this indus- 
trial context could decrease, and we hypothesized that the applicability domain of these 
tools did not match sufficiently our industrial set. As a consequence, we tried to collect 
the most comprehensive BCF training set by merging several publicly available datasets, 
used to generate a new BCF-model  (‘ISIDA  Consensus’).  ISIDA Consensus  was then 
externally validated on the industrial set’s compounds and benchmarked against the 
already existing tools (Table 1). 

The Office of Economic Cooperation and Development (OECD)  principles [26] for 
building robust QSAR models  were followed. The five OECD principles  are: (i) a defined 
endpoint; (ii) an unambiguous algorithm; (iii) a defined applicability domain; (iv) appro- 
priate measures for goodness-of-fit, robustness, and predictivity; (v) and a mechanistic 
interpretation, if possible. In this study, the endpoint (BCF) is well defined, Goodness-of- 
fit, robustness and predictivity were evaluated using internal 3-fold Cross-Validation  (CV) 
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and against two  external test sets. The AD of the models was defined using two 
complementary methodologies. 

Our developed model is available  as a web-application, called ‘ISIDA Predictor’  [27], 
available at the Laboratory of Chemoinformatics webpage: http://infochim.u-strasbg.fr. 

 
 
Methods 

 

The general workflow is shown in Figure 1. Its main steps will be detailed in the present 
study. 

 

 
 

Data collection and curation 
 

Bioconcentration experimental data was collected from multiple sources, including several 
public-available databases  and  literature research. Mined databases  comprised: the 
Japanese  National Institute of  Technology and Evaluation  (NITE) [28], the  European 
Chemical Industry Council Long Range Initiative (CEFIC LRI) [29], the Canadian Domestic 
Substance List (DSL) [30] and the ECOTOXicology knowledgebase  of the US Environmental 
Protection Agency (ECOTOX EPA) [31] (accessed through the OECD Toolbox  [32]), and the 
database  of ECHA (accessed  through the eChem portal [33]).  Additional values were 
retrieved from literature from the works of Arnot and Gobas [6], Dimitrov et al. [34] and 
Fu et al. [35]. Finally, a BCF dataset was provided by Solvay. Table 2 reports statistics for 
the given database.  Detailed analysis  of the populating chemotypes  is given in the 
dedicated Generative Topographic Maps (GTM)   paragraph in  the  results  section. 
Training and test set public data are available in the SI;  the industrial set compounds 
cannot be provided due to confidential data. 

 
 

 
 

Figure 1. General workflow. 
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Table 2. Sources of BCF data. The upper portion of the table is referring 
to the curated dataset before their merging, while the bottom part 
reports the number of compounds that constituted to the training and 
the external test sets. 

 
Database 

Nb of compounds log  BCF range  (min/max) 

NITE 268 −1.0/4.4 
CEFIC LRI  521 −0.8/5.3 
Canadian 470 −0.7/5.8 
ECOTOX 470 −2.1/5.5 
ECHA chem 145 −1.0/4.3 
Literature 993 −1.7/6.0 
Industrial set 72a −1.1/4.9 
Curated dataset 
Training set 1129 −1.0/6.0 
External set 204 −1.7/5.9 
Industrial set 31a −0.1/3.1 

a the number  is reduced since a portion  of the industrial set was already comprised 
in the training  set. 

 

 
The following entries were excluded: inorganic, polymer, Unknown or Variable com- 

position, Complex reaction products or Biological materials (UVCBs)  compounds. 
Furthermore, when the BCF  value was not  reported in  L/Kg of  body weight, not 
calculated on a whole-body measurement-basis or the test was performed on a non- 
recommended OECD species, the value was excluded. Since these are important study 
conditions that have to be explicitly stated [3], entries which were missing such details 
were exclude  as considered  of lower reliability. Chemical structures were standardized 
(Supplementary information, section 1.1) and duplicates were removed. When multiple 
data points were available, the median was taken as representative  value. The median 
was computed according to the recommendation of the norm ISO16269-7. The median 
is the value at middle rank of the ordered set of observations if the set size is odd. If the 
set size is even, it is the arithmetic average of the two middle ranked values of the 
ordered set. Notice that for some substances the range of BCF values  could reach two 
log units (Supplementary information, section 1) 

 

 
 

Generative topographic mapping 
 

Data visualization approaches  are powerful  tools  that  allow us  to  reduce a high- 
dimensional  space to two or three dimensions which can be then more easily analyzed. 
For previously published BCF models, visualization techniques (e.g. Principal  Component 
Analysis,  PCA) were mainly employed as  methods  for defining the AD of the model 
[36–38], but were less often used to characterize in greater details the model’s training 
set composition. Herein, we employed Generative Topographic Mapping, a non-linear 
mapping method [39]. As advantage, it introduces a probability density function for data 
distribution, which allows to assess the robustness of the information contained in the 
generated maps [39,40].  The outcome of GTM  is a 2D map on which the analyzed 

chemical space is projected. A data property can be added as a 3rd  axis forming such 
called activity (property) landscape. Each landscape  position is coloured according to the 
property value (either continuous or categorical); this value is the average property of the 
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data subset concerned by that position on the landscape. A more detailed description of 
GTM underlying algorithms  can be found elsewhere [39–42].  The 2D generative topo- 
graphic maps were generated with ISIDA/GTM tool [27] using ISIDA descriptors  selected 
for the best SVM model. 

 
 

Encoding of chemical structures 
 

ISIDA Property-Labelled   Fragment [43] descriptors were employed. There are several 
types of ISIDA descriptors:  (i) sequences of connected atoms and bonds, or atoms only 
or bonds only, (ii) ‘augmented’ atoms representing either a given atom with its close 
environment or selected groups of atoms and bonds, and (iii) atom triplets [44]. This led 
to the generation of several dozens of different descriptor spaces corresponding to 
different fragment sizes and topologies [45]. 

 
 

Model generation and validation 
 

Support vector machine (SVM) with linear and radial basis function (RBF) kernels  and 
random forest (RF) machine learning approaches were implemented. SVM models were 
generated with libSVM (v. 3.22) [46]; instead,  WEKA (v. 3.9.1) [47] was used for RF models. 
The SVM parameters (Cost and Gamma) corresponding to minimal RMSE in 3-fold cross- 
validation were found in genetic algorithm driven optimization. The RMSE  was esti- 
mated using a dedicated 3-fold CV, isolated  from the cross-validation procedure used to 
evaluate the final models, mentioned below. Concerning RF,  default parameters of 
WEKA were selected, with the number of generated trees equal to 150. 

Figure 2 depicts the modelling workflow: (1) dozens of ISIDA Descriptor  Spaces (DS) 
were generated (different fragment sizes and topologies); (2) for each  DS, SVM and RF 
models were generated (individual models); (3) individual models were ranked accord- 
ing to their RMSE in 3-fold CV; (4) the best performing individual model for the given DS 
was retained; (5) SVM models (linear kernel) were analyzed in consensus to detect the 
outliers; and (6) ‘final models’ were re-built. 

Each  individual model was  evaluated in 3-fold CV  by random splitting. This 
procedure was repeated 5 times after reshuffling.  Thus,  BCF for each molecule was 
predicted 5 times. The r2 and RMSE values  were assessed for each repetition followed 

 
 

 
 

Figure 2. Modeming workflow. 
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by their averaging (see Table  4). During CV, no optimization of method parameters 
was  performed.   The  absence of  chance correlation  was  checked through  the 
Y-scrambling procedure [48].  In this procedure, the log BCF values   are randomly 
assigned  to  molecular structures  followed by the model building.  This  procedure 
was repeated 150 times. 

For the outliers, compounds consensually characterized by very high fitting errors (i.e. 
difference between experimental and fitted value) were ranked by the Errorscorei  ¼ Q 

εi;k ; where εi;k is an absolute value of prediction error of k-th model for compound i. 
k 

Compounds with the highest scores were poorly predicted by most of the individual 
models. For some of poorly predicted molecules we discovered that their experimental 
BCF values  were very different from those of their closest analogues in the training set. 
Unfortunately, due to missing references in databases used, we were not able to retrieve 
detailed information about BCF measurements  for these molecules. Therefore, by pre- 
caution, we excluded the 34 compounds from the training set, which corresponded to 
some 3% of the initial training set (see the list of excluded compounds in SI). Thus, the 
final training set consisted of 1095 molecules. 

The analysis of model performance relies on the r2 determination coefficient and the 
RMSE parameters (Equations (2) and (3) respectively). 

Pn ðy     ŷ Þ2 

r2  ¼ 1   i ¼ 1 i  i (2) Pn 
   2 

i ¼ 1   yi    yavg 
 
 

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Pn ðy     ŷ Þ2 

RMSE ¼ i ¼ 1 i  i 

n 
(3) 

 

Where yi is the experimental value of the i-th chemical; ŷi is the predicted value of the 
i-th chemical; yavg is the mean of the experimental values of the compounds in the 
dataset and n is the number of compounds in the dataset. 

 

 
 

Ensemble modelling and applicability domain 
 

Individual models served to generate the global ISIDA consensus, and the final result is 
given by the calculation of the median across all the models, excluding out of AD 
predictions. The AD was evaluated based on a fragment control assessment: if a test 
molecule is found to have one fragment (i.e. a determined sequence of atoms and/or 
bonds) which is not present in the individual model, that molecule is marked to be 
outside the AD. The number of fragments involved in given individual model depends 
on selected fragmentation scheme. It varies from 300 (atom centred fragments with 
radius 1) to 5917 (sequences of atoms and bonds up to 8 atoms length), with an average 
of 2157. In the consensus calculation, those compounds that are predicted by less than 
25% of the total generated models, are considered out of AD. Furthermore, a second 
assessment based on the Median Absolute Deviation (MAD) was implemented.  This can 
be interpreted as a convergence degree: the lower the MAD, the more the models are in 
agreement, increasing the overall confidence of the predicted value. It was decided to 
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set a cut-off value for the MAD equals to 0.5: predictions above this threshold was 
considered of lower quality and marked  as out of AD. 

 

 
 

Predictions graphical interpretation:  ColorAtom 
 

A related utility of the ISIDA Predictor  online platform [27] is the ‘ColorAtom’ [49]: this 
tool assigns a colour to each atom of the predicted molecule depending on how much, 
from a mathematical point  of view, it  contributed to the property value, either by 
increasing or decreasing it. The assigned colours are not meant to reflect how the 
given structural features are correlated to the modelled property in reality; more pre- 
cisely, it is a graphical representation of how the model interpreted the molecule for 
calculating the predicted value. To make a comparison, this approach could be com- 
pared to the fragment constant (or group contributions) models [7], which associate 
numerical quantities to a specific substructure of the molecule (single atoms, functional 
groups, etc.) that are subsequently arithmetically added. Here, two examples of this 
application are reported: (i) comparison of excluded outliers to structurally analogue 
compounds in order to  highlight  the specific groups at the root  of the observed 
differences; (ii) identification of putative chemotypes that may be associated to specific 
BCF value ranges. 

 

 
 

Benchmarking on industrial data 
 

Predictive performance of  the ISIDA Consensus  model on the industrial set of 72 
compounds was compared with that of publicly available tools VEGA (Caesar, Knn and 
Meylan), TEST, EPISuite  and OPERA tools [11–14]. Since industrial set and related training 
sets were partially overlapped, only non-overlapping compounds from the industrial set 

were considered for assessing the models’ performance (r2 and RMSE). Moreover, the 
molecules outside of applicability domain of a given model were discarded 
(Supplementary information, Section 4). 

We also made several pairwise comparisons of ISIDA Consensus with other tools. Each 
pairwise benchmarking was performed on the part of the industrial set which didn’t 
overlap with the two related training sets. Unfortunately,  a common subset for all tools 
satisfying the above condition was too small for obtaining meaningful statistics. 

 
 
Results 

 

Overview of the curated dataset 
 

At the end of the data cleaning procedure the number of compounds with unique BCF 
value was reduced to 1333. Of them, 1129 unique compounds were identified as coming 
from verified sources and constituted the training set; while, 204 compounds were 
considered as  of lower reliability since there was not enough information to assess 
their quality (e.g. only CAS and experimental value was provided with no other stated 
information) and were excluded from the training set. These compounds were used in 
external validation (i.e. the ‘External  set’). The Industrial set followed the same data 
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curation procedure, and a total of 72 compounds were retained. Statistics of the curated 
datasets are reported in Table 2. 

 
 

GTM: industrial set visualization and description 
 

Figure 3 shows the GTM log BCF property landscape of the training set onto which the 
molecules from the Industrial dataset have been projected (represented by black dots); 
some examples are provided in Table 4 and Supplementary information, section 2. Here, 
all the 72 compounds were projected. In addition, the associated property-landscape 
helps characterizing the molecules’  BCF profile. 

Relevant  areas populated by the industrial compounds are marked by numbered 
boxes. Examples of are showed in Table 3. 

 
●  Region 1 is very heterogeneous, including as diverse species  as biphenyl deriva- 

tives, fluorinated compounds and aliphatic hydrocarbons. Some examples of herein 
residing unique industrial set chemotypes are: (i) long chain N-alkyl acetamides 
(CAS 111-57-9, 149879-98-1);  (ii) aliphatic aliphatic polyphosphonic acid (CAS 2235- 
43-0, 29329-71-3);  (iii)  substituted phosphine (CAS  603–35-0); (iv) fluorinated 

 
 

 
 

Figure 3. Log BCF property landscape of the training  set. GTM is representing the density-modulated 
log BCF-landscape derived  from  training  set compounds,  onto which the industrial set compounds 
have been  projected  (black dots). White  areas are empty regions of the map. Numbered  boxes 
identify map regions of interest, subject to discussion. 
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Table 3. Example of compounds  populating   a given  region,  as represented  by the GTM map 
(Figure 3). For each region, some molecules are given as examples. Below the molecule, its CAS 
no. and its experimental  value are reported, respectively. 

Region                                                                                                 Molecular structure 

1 
 
 
 
 
 
 

2 
 

 
 
 
 
 

Molecules on white area 

2235-43-0 | 1.34 603-35-0 | 1.47 1190931-27-1 | 0.44 

 
 

540-97-6 | 4.01 556-67-2 | 4.09 155633-54-8 | 0.93 

 
163702-06-5 | 2.96 163702-05-4 | 2.96 

 

 
Table 4. Summary of model statistics in cross-validation and for the external set. For the external set, 
performances were evaluated with and without out-of-AD compounds. Results are reported  for each 
machine-learning method separately and for the consensus model. In brackets, the standard devia- 
tion computed in the 3-fold  CV is reported  for the r2 and  RMSE values  averaged  over  the number of 
repetitions. 

External set 

3-fold  CV All compounds Inside AD-only 

Model algorithm r2 RMSE Y-scrb highest  r2 r2 RMSE r2 RMSE 
 

SVM (Linear) 0.72 (0.068) 0.78 (0.044) 0.043 0.66 0.92 0.64 0.86 
SVM (RBF) 0.75 (0.039) 0.68 (0.029) 0.042 0.77 0.76 0.75 0.71 
RF 0.74 (0.038) 0.68 (0.041) 0.170 0.73 0.82 0.74 0.72 
ISIDA consensus 0.75 (0.043) 0.71 (0.051) - 0.76 0.77 0.75 0.72 

 
 

sulfonamides  (CAS 90076-65-6); (v) branched halogenated compounds with esters 
and ethers groups (CAS 642461-49-2,  1190931-27-1). 

●  Regions 2 include mainly silicon-containing compounds (e.g. CAS 540-97-6,  556-67- 
2 and 155633-54-8).  Since average BCF  values in  these areas are high, these 
compounds can be potentially considered of concern. 

 
Notice that the abovementioned compounds are absent from the training set of all 
studied models and contain new chemotypes which are under-sampled in the public 
data. 

Finally, the two labelled molecules falling into the white area should be considered. 
These compounds (CAS 163702-06-5,   163702-05-4   respectively) have a multimodal 
responsibility pattern,  partially  residing  into  several disparate nodes  which  are 
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populated by analogous training set compounds. Their (X,Y) position on the map marks 
the barycenter of their responsibility pattern (Supplementary information, section 2). 

 

 
 

Descriptor selection and model fitting 
 

Table 4 summarizes the performances on training, cross-validation and on the external 
set for each employed algorithm and the ISIDA consensus model. 

Multiple BCF values reported for some compounds were used to estimate experi- 
mental errors of BCF measurement.   For each compound with at least 2 data points, 
a BCF  range (maximum – minimum over reported values) was calculated, and the 
average of these range widths over concerned compounds was interpreted as experi- 
mental error. Estimated in such a way experimental variability was ± 0.61 log units, 
which is not too far from the value of ± 0.75 log unit reported by the work of Dimitrov et 
al. [34] for another BCF  dataset. This experimental error is in line with  the RMSE 
calculated in cross-validation in this work (0.71). 

After the Y-scrambling procedure, shuffled models were characterized by very low 
determination coefficient values in cross-validation. The only exception could be ran- 
dom forest, since it exhibits a significantly higher r2  compared to the other methodol- 
ogies. Nevertheless, it is still much lower than the lowest r2 of all random forest models 
(0.170 vs 0.697). A decrease of performances (r2 and RMSE) in cross-validation versus the 
external set can be noticed, however the statistics remain comparable. 

 

 
 

Performances on the industrial set 
 

Table 5 reports the results on the industrial set for all the evaluated tools. Two ‘scenarios’ 
can be identified: (i) all the three VEGA  models perform slightly better than ISIDA 
Consensus but, at the same time, their applicability domain is very narrow; (ii) OPERA 
and EPISuite have comparable  or even higher coverage than ISIDA, but their accuracy is 
much worse. ISIDA Consensus may not be the best model in terms of precision (higher 
RMSE of 0.58, compared to the best VEGA model of 0.44) but, at the same time, has 
a much larger data coverage  (ISIDA 78% vs VEGA 19%). Thus, ISIDA Consensus  has an 
extended AD, comparable to TEST, OPERA and EPISuite, while preserving a much lower 
RMSE. 

 
 

Table 5. Performances of the models on the industrial  set. 
 

Model % ofAD Coveragea r2det. RMSE 
ISIDA Consensus 78 (25/31) 0.55 0.58 
VEGA Caesar 16 (8/49) 0.70 0.58 
VEGA Knn 37 (16/43) 0.74 0.50 
VEGA Meylan 19 (9/47) 0.47 0.44 
TEST 79 (37/47) 0.49 0.86 
EPISuite 98 (45/46) 0.34 0.98 
OPERA 75 (37/49) 0.40 0.91 

athe first number is the data coverage in %; the number between the parentheses is 
the ratio of the number of compounds  inside AD  and the total number of 
compounds. 
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Concerning performances on the mentioned unique chemotypes  (Table 3): (i) silox- 
anes fell outside the AD of all the models except for VEGA Knn and TEST. However, even 
for the latter their prediction is error-fraught because the VEGA training set contains 
only one siloxane and the AD definition of TEST is very permissive; (ii) all the models 
failed to predict phosphonate compounds due to AD limitations; (iii) ISIDA Consensus 
was the only model that scored good performances on the chemotypes exemplified in 
Table 3. 

Figure 4 shows the ‘ISIDA Consensus-predicted  vs experimental’ scatter plot for the 
31 ‘Industrial’ compounds not used for training. Overall, predictions are well correlated 
to experimental values with the exception of one outlier, out of the AD (red point). 
Based on the % of accepted according to AD individual models, a ‘traffic-light’ prediction 
confidence  score has been assigned. Three levels were defined: <25%, between 25 and 
70% and >70%. They correspond to ‘low (out-AD)’,  ‘moderate’ and ‘high confidence’, 
respectively. 

Table 6 reports the results of the pairwise comparison between ISIDA Consensus 
versus all the other tools individually. With this evaluation, only predictions for com- 
pounds not  in  the training set, inside the AD and predicted by both  tools were 
compared. In this case, ISIDA Consensus always shows a better accuracy except when 
compared with VEGA KNN (0.55 vs 0.45 of RMSE, respectively). 

In the case of VEGA Caesar and VEGA Meylan,  the number of compounds in common 
was too limited to provide a meaningful statistical evaluation and the comparison was 
not performed. 

 
 

 
 

Figure 4. ISIDA consensus predicted  vs industrial  set experimental  values. The data points  labels 
correspond to the CAS numbers  of chemicals. Red, orange and green dots = prediction confidence 
score based on the % in-AD models (<25%; 25–70% and >70%, respectively); Blue lines indicate ± 
2*RMSE value given  by 3-fold cross-validation. 
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Table 6. Pairwise comparison for overlapping  compounds  between  ISIDA consensus vs 
the given tool. Comparisons  against  VEGA Caesar and  VEGA Meylan  were  not consid- 
ered due to the very limited number of overlapping compounds (4 and 3 respectively), 
which led to unmeaningful statistics. 

 

Pairwise comparison between: Compounds in common r2det. RMSE 
ISIDA Consensus vs 9 0.77 0.55 

VEGA KNN  0.84 0.45 
ISIDA Consensus vs 19 0.73 0.63 

TEST  0.57 0.80 
ISIDA Consensus vs 23 0.78 0.59 

EPISuite  0.45 0.92 
ISIDA Consensus vs 18 0.72 0.63 

OPERA  0.68 0.67 
 
 

ColorAtom: Graphical representations 
 

Table 7 reports one example of BCF atom contribution-coloured outlier (CAS 2528-38-3; 
with an absolute error of 1.0 log BCF) by contrast to similar but not mispredicted com- 
pounds. Molecules showed the same colouration pattern, with the phosphate group and 
the aliphatic residue being correlated to a decrease and increase of the BCF, respectively. 
Same colouration scheme means that the molecule was predicted using the same learned 
rules.  However,  albeit the compared species  appear to  be similar  according to  the 
employed ISIDA atom fragmentation scheme, the chemist will observe that the outlier, 
an ester, is a neutral species whilst the counterexamples have one ionizable -OH left and 
will be anionic species  at neutral pH.  Note that ISIDA  fragmentation schemes  using 
pharmacophore typing [45] are able to make this difference, but were not employed in 
this study. Additional examples are provided in Supplementary information, section 3. 

Figure 5 shows the ColorAtom graph for phosmet (CAS 732–11-6). In this example, all 
the carbons of this molecule (also S and P, but to a lesser extent) positively contribute to 
BCF, oxygens  and nitrogen are strongly correlated to a decrease of BCF values.  Such 
a colouration pattern can also be found in other training set molecules, where these 

 
 

Table 7. ColorAtom output. Example of excluded outlier with its most structurally  similar com- 
pounds  (based  on Tanimoto  score) with the respective  experimental  and predicted   BCF. The 
colouration  is directly  referred  to the modelled  property  (i.e. the log BCF value):  blue and red 
atoms played a role in increasing and decreasing it, respectively. 

Top part – Outliers colouration 
 
 
 
 

Excluded outlier 

2528-38-3 | 2.48 × 1.48 107-66-4 | 0.59 × 0.17 298-07-7 | 0.62 × 0.18 

 
 

78-42-2 | 1.04 × 0.28 126-72-7 | 0.38 × 0.14 
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Figure 5. ColorAtom graph of phosmet. The colour scale is reported  in Table 7. Numbered  ellipses 
mark some recurring chemotypes subjected to discussion. 

 
 

chemotypes (in particular, substructures no. 1, 2 and 3, as marked  by black ellipses) are 
systematically following the same trend. Section 3 of Supplementary information reports 
several examples of compounds containing the mentioned structural features. Molecules 
in which chemotypes no. 1 and 2 are representing significant substructures are asso- 
ciated to lower BCF  values (e.g. CAS  no. 60-51-5, 2497-06-5  and 85-41-6); while the 
opposite happens for chemotype no. 3 (e.g. CAS no. 84-65-1, 829-26-5 and 40766-31-2). 
This is consistent with the more general trend between increasing hydrophobicity and 
bioaccumulation: the former is generally increased by aromatic rings [7]. 

 
 
Discussion 

 

Applied models showed mixed performances on the industrial set. As a general trend, 
most accurate models have narrow data coverage  (VEGA), while models with a more 
permissive AD had higher RMSE values  (EPISuite and TEST). ISIDA Consensus  was the 
only model that managed to  obtain a good balanced between accuracy  and data 
coverage, especially on unique chemotypes  (Table 3), suggesting  that its training set is 
more heterogeneous and diversified compared to the other tools. As a common flaw, all 
models failed to predict siloxanes  and phosphonate compounds, either due to AD 
limitations or prediction accuracy. The presence in our collected training set of some 
silicon-containing molecules was not enough to support extension the AD to other 
siloxanes. Furthermore, current methods have some difficulties in measuring and inter- 
preting the bioaccumulation property for siloxanes [50]. The compound drometrizole 
trisiloxane (CAS  155633-54-8;   Figure 4)  can be  taken as  example, as  it  showed 
a prediction error of almost 2 log units. This molecule is structurally similar to drome- 
trizole (CAS 2440-22-4)   and octamethyltrisiloxane  (CAS 107-51-7), both of which are 
substructures of the former. These two compounds are present in the training set with 
experimental BCF  values of 2.47 and 3.73 log units, respectively. Thus, the models 
learned to correlate these specific sequences of fragments to the respective experimen- 
tal values, and drometrizole trisiloxane prediction is in the range of these two chemicals 
(2.86 log units). On the other hand, the experimental value reported in the REACH 
dossier  (EC no. 422-940-4) is much lower (0.93 log units). 
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ColorAtom can be used as a supporting tool to interpret the model output (OECD 
principle #5): it  was employed here to  identify key structural features which were 
recursively correlated to the same alteration trend the property BCF. 

As a novelty, (i) molecules were encoded with ISIDA Fragments, a type of descriptors 
never used to  model this property; (ii) different machine learning algorithms were 
employed (i.e. support vector machine and random forest), in contrast with most of 
the already existing tools (Table 1). With the benchmarking,  ISIDA Consensus proved to 
possess several strong-points,  such as a bigger training set, a wider AD coverage and 
good accuracy (Table 6) when compared to the other models. As several structural 
features were identified as unique to the industrial set; model performances will benefit 
from the addition of such compounds, thanks to an extended AD. 

 
 
Conclusions 

 

In the this work we developed a new ISIDA Consensus  QSAR model for the bioconcentra- 
tion factor property (BCF). The  model follows  the OECD principles  [26] and has been 
internally and externally validated on two independent test sets, one of which contains 
relevant chemical families of the industrial context. Models showed mixed performances 
on the industrial compounds. Tools with the highest accuracy are associated to a very 
narrow AD; while models with more permissive AD had much worse RMSE. Our model 
scored the same accuracy (RMSE of 0.58 log BCF unit) of the most acute tool and preserved 
a much larger AD (78% data coverage). However, as a general limitation all models failed to 
predict some chemical families, such as siloxanes  and highly phosphonate compounds: 
these are unique industrial set chemotypes which are under-sampled in the public data. In 
order to compensate the individual-model limitations, the use of all the available tools in 
consensus is encouraged to reduce uncertainty and improve the accuracy. 

Comparing the performances of ISIDA Consensus  with the ones from Table 1, it is 
possible to conclude that our findings corroborate those of other authors. 

 
●  Our results (Table 6) agree with  Petoumenou et  al. [19], who  examined the 

performance of VEGA and EPISuite on data provided by the industry. 
●  The RMSE values  of TEST and EPISuite we found are similar with those reported in 

Table 1. 
●  Finally,  OPERA has never been evaluated by other authors, being a newly published 

model. The RMSE we obtained was higher than the one provided in the model’s 
documentation. 

 
In conclusion, our model can be a valid alternative tool for predicting the bioconcentra- 
tion factor property within an industrial context, which is characterized by a much more 
heterogeneous chemical space than compounds coming from past studies, involving 
most of the time classical pollutants. 
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