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Extensive use of pharmaceuticals as human and veterinary medication raises
concerns for their adverse effects on non-target organisms. The purpose of this
study was to employ multiple linear regression (MLR) to predict the toxicities of a
diverse set of pharmaceuticals to fish. The descriptor pool consisted of about 1500
descriptors calculated using Dragon 5.4, Spartan 06 and Codessa 2.2 software.
Descriptor selection was made by the heuristic method available in Codessa 2.2.
The data set was divided into training and test sets using Kohonen networks. The
training set contained approximately 65% of the compounds of the full data set
(99 compounds). The training set model contained eight descriptors from all
dimensions, all of which were obtained from Dragon 5.4. The statistical
parameters of the model for the training set are R2

¼ 0.664, F¼ 13.588, and R2
cv

(LOO)¼ 0.542 while it achieves R2
¼ 0.605 for the test set. The training, test and

external sets have no response outliers considering the standardized residual
greater than three. The external validation of the model was made with a set of
pharmaceuticals obtained from several databases. The R2

pred is 0.777, reflecting a
relatively good predictive power for the external set.

Keywords: pharmaceuticals; QSAR; QSTR; toxicity; fish; MLR

1. Introduction

Concerns have been raised about pharmaceuticals and their metabolites because of their
extensive and increasing usage [1] and ubiquitous presence in the aquatic environment
[2,3]. Although the current concentrations in both surface waters and effluents are low,
their possible adverse effects on aquatic life and ultimately on human health are not well
understood [4].

Determination of the toxic effects of the pharmaceuticals on aquatic life can be
elicited by either ecotoxicity testing or by applicable models. The experimental studies on
pharmaceuticals summarized by Lange and Dietrich [5] are in general very limited relative
to the studies on industrial chemicals [6]. Qualitative structure–activity relationships
(QSARs) have been used successfully for many years for modelling purposes [7,8]. In terms
of pharmaceutical toxicity, the models in the literature mainly focus on ranking and
categorization of these compounds [9,10].
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In the literature, there are studies on the general risk assessment, mode of action
(MOA) estimation, and importance of chronic toxicity estimations of pharmaceuticals.
Crane et al. [11] reviewed the chronic aquatic toxicity of pharmaceuticals. They stated that
there are QSAR models for prioritization purposes using acute toxicity data, but there are
not sufficient studies for chronic toxicity of pharmaceuticals. The authors suggested that
the solution is in testing the acute and chronic toxicity of a representative range of model
substances on a representative range of aquatic organisms. In an extensive survey by
Khetan and Collins [12], the background of problems related to the release of pharmaceu-
ticals to the environment and uncertainties were discussed. Calculation of risk quotient,
which is used in environmental risk assessments, was depicted as a ratio of predicted
environmental concentration to predicted no-effect concentration. They summarized the
benefits of the risk assessments approaches. Sanderson and Thomsen [2] examined modes
of action of active pharmaceutical ingredients (APIs). They found that majority of the
acute MOA of the studied APIs were non-specific narcosis. They additionally stated that
the size and the conformation of the toxicants are crucial for the expression of the
compound’s potential excess toxicity. However, Fent et al. [1] reported that particular
pharmaceuticals may have additional MOAs. Escher et al. [13] focused on hospital
wastewater as a primary pharmaceutical source. They evaluated the risk potential of the
mixtures of 100 pharmaceuticals with the toxicity data. A QSAR model to predict baseline
toxicity was generated and the risk analysis was performed by calculating the risk quotient.

In a recent quantitative structure–toxicity relationship (QSTR) study by Kar and
Roy [6], two interspecies correlation models were developed for diverse pharmaceuticals.
The authors presented linear models for toxicity prediction of fish and Daphnia, which can
be used for ecotoxicological hazard assessment for pharmaceuticals where data gaps exist
for both species.

There are ecological structure–activity relationship (ECOSAR) based models in the
literature for prioritization purposes. Madden et al. [9] studied the toxicity classification of
pharmaceuticals with the use of ECOSAR. They concluded that toxicity estimation of
these chemicals with ECOSAR should be used with caution in terms of applicability
domain. In another QSAR study of pharmaceuticals [10], Sanderson and Thomsen
explored whether ECOSAR could predict the toxicity class of pharmaceuticals accurately.
They emphasized that the majority of the pharmaceuticals have the narcosis MOA and
that logKow is an important parameter in the expression of acute toxicity of these
chemicals. However, Fent et al. [1] could not find any correlation between the logKow of
pharmaceuticals and the acute toxicity of a certain species.

The present studies in the literature on QSAR models target pharmaceutical
categorization, hazard assessment, and MOA estimation mainly depending on hydro-
phobicity. Although structurally diverse pharmaceuticals are assumed to cover a broad
range of toxic mechanisms (e.g. non-specific narcosis, electrophilic and specific
mechanisms), there is no distinct classification of these chemicals in terms of their mode
of actions, therapeutic uses and chemical classes. These compounds are nonetheless
important from environmental point of view like other industrial chemicals. They are
designed to be biologically active compounds. Therefore, their potential effects on non-
target aquatic species should be considered. Developing a QSAR model for diverse
pharmaceuticals will be beneficial given the lack of knowledge of the potential harmful
effects of potent, continually and increasing amounts of pharmaceuticals released into the
aquatic environment. This study aims to develop a QSAR model to estimate acute
pharmaceutical toxicity using multiple descriptors to make point estimations for fish.

2 G. Tugcu et al.
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2. Materials and methods

2.1 Data set

Sanderson and Thomsen [10] compiled a set of 147 pharmaceuticals with toxicity (LC50)
values for various freshwater fish species (rainbow trout, fathead minnow, guppy, bluegill,
etc.). Their pre-processing of data included choosing the lowest measured acute effect
concentration obtained from different test systems (static, flow-through, etc.) by screening
seven publicly available databases. Different test systems and fish species as well as other
factors (hardness, age and gender of the fish, physical and chemical parameters of the
environment, etc.) may affect the acute toxicity of chemicals to fish. However, Mayer and
Ellersieck [14] stated that there is no difference between static and flow-through test pairs
for the acute toxicities of 37% of chemicals they studied. Additionally, they stated that the
acute fish toxicities of organic chemicals for many fish species are highly correlated. On the
other hand, the pharmaceutical data for acute fish toxicity is very limited [1]. Therefore, we
used the data set compiled by Sanderson and Thomsen [10], although it has some
drawbacks.

For the model development, LC50 values were converted to molar basis (mM) and then
the negative logarithm of the concentrations (pT) was used as observed toxicity values. In
this study, some of the compounds were excluded from the data set because of their
atypical nature (metal-containing compounds, salts, disconnected compounds, water-
containing compounds and ionized compounds) and some were excluded due to the
inconsistency between their names and CAS numbers. Therefore, a diverse set of 99
pharmaceuticals spanning a wide range of pharmacological classes (analgesics, anti-
inflammatories, depressants, anti-depressants, diuretics, hormones, hormone antagonists,
anti-neoplastics, b-blockers, antibiotics, lipid regulating agents, gastrointestinal agents,
cardiovascular agents, respiratory system agents, anti-coagulants and fatty acid synthesis
inhibitors) participated in the modelling exercise. The data set used is presented in
Appendix 1 in the supplementary material which is available via the multimedia link on the
online article webpage.

The external set of 14 compounds was compiled from the TerraTox database [15],
Roche database [16], US Environmental Protection Agency (USEPA) ECOTOX
database [17] and Nassef et al. [18].

2.2 Molecular descriptors and subset selection

A large number of molecular descriptors were calculated for each chemical using three
software packages, namely, Dragon v.5.4 [19], Spartan 06 [20] and Codessa 2.2 [21]. Before
the calculation step, the structures of the compounds were sketched using Spartan 06
software package and geometrically optimized employing the semi-empirical PM3 method.
The molecular geometries corresponding to the lowest energy conformer were selected for
calculations of the molecular descriptors. The total pool of 1393 Dragon, 161 Codessa and
10 Spartan descriptors were computed. The Dragon descriptors belong to the following
classes: charge and geometrical descriptors, connectivity indices, 3D-MoRSE,
GETAWAY, RDF and WHIM descriptors, etc. The Codessa descriptor set including
constitutional, topological, geometrical and electrostatic descriptors. The Spartan
descriptors set is constructed of dipole moment (�), the energy of the lowest
unoccupied molecular orbital (ELUMO), the energy of the highest occupied molecular
orbital (EHOMO) and the gas phase energy (E). The rest of the calculated descriptors

SAR and QSAR in Environmental Research 3
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such as ELUMO – EHOMO gap, hardness, electronegativity, softness and electrophilicity (!)
were calculated from the energies obtained from Spartan 06 and using the formula
reported for each by LoPachin et al. [22].

The significant descriptors for MLR models were selected by the heuristic method
(HM) running in Codessa 2.2. The HM algorithm selects the descriptors according to the
following criteria [23]. The program calculates all correlations between individual
descriptors and property (toxicity) and eliminates descriptors considering the following
criteria: F-test’s value is less than one; correlation coefficient is less than the set value (0.1);
and the t-value is less than the set value (0.1). This method also takes into account
correlations between molecular descriptors. The criterion is set at 0.99, i.e. if the
descriptors are highly correlated, then the descriptor with the lower squared correlation
coefficient in the one-parameter equations is removed from the descriptor list.
Additionally, descriptors with variance inflation factor (VIF) values greater than
five [24] were tested after heuristic analysis. The best descriptor groups having high
correlations to toxicity are chosen for the model development.

2.3 Model development and validation

According to Organisation for Economic Co-operation and Development (OECD)
principles, a QSAR model should have appropriate measures of goodness-of-fit,
robustness and predictivity. While the internal performance of a model is determined
using a training set, the predictivity is determined by using an appropriate test set [25].
Composition of the training and the test sets should guarantee that these sets are scattered
over similar descriptor spaces and that the training set is a representative set of the whole
data set. Therefore, the data set was divided into training and test sets using Kohonen
Neural Network alias Self-Organizing Maps (SOM). SOM are able to select a
representative training set and a test set similar to it [26,27].

Kohonen networks project multi-dimensional space onto a two-dimensional (2D)
array of neurons. The projection, which is called network learning, runs in two steps. In
the first step, an object (represented by a vector) is presented to all neurons and the
algorithm selects the most similar neuron, called the ‘winning neuron’. In the second step,
the weights of the winning neuron are modified to the vector values and at the same time
the neighbouring neurons are modified to become similar to it [28]. Since this division
method is based on similarity analysis, the test set of the compounds is structurally similar
to the training set of the chemicals in order to maintain the same chemical domain.
However, the developed models could be predictive for chemicals only in the test set [29].
In order to eliminate this biased situation, we preferred to have an additional external set
of compounds, which was not used in the model development [8], to confirm the
predictivity of our model. The division of the data set is performed by the program
developed by Zupan et al. [30].

An additional external set of 14 pharmaceuticals (antibiotics, anticonvulsant, hormone
and analgesics), which were not utilized during the model development, were used for
external validation of the model [15–18]. This set of compounds was representative of the
chemical space of the training set, i.e. considering the applicability domain of the model.

The MLR model for the training set was obtained using the SPSS 17.0 statistical
software package [31]. Models with varying numbers of descriptors were examined. The
model was checked for overfitting due to high number of descriptors (Topliss ratio) [25]

4 G. Tugcu et al.
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and variable multicollinearity. Large VIF values (over five) were not allowed to avoid

multicollinearity [24]. For robustness of the model, the number of compounds (n), squared
correlation coefficient (R2), adjusted (for degrees of freedom) squared correlation

coefficient (R2
adj) and Fischer statistics (F) were reported. For training and test sets of

the model, root mean square error (RMSE) and average absolute error (AAE) were

calculated. Internal validation of the model was tested with the leave-one-out (LOO)
procedure and cross-validation correlation coefficient (R2

cv) was calculated using MDM

2011.2.6.0 software [32].
The reliability and robustness of the MLR model were also tested using a response

randomization (Y-scrambling) procedure. The significantly low correlation coefficients of
the new models indicate that there is no correlation by chance [33]. For model

randomization, the dependent variables of the training set were shuffled and new
correlation coefficients were calculated. The process was repeated several times using

MDM software [32].
The predictive power of the regression model developed on the training set was

estimated on the predicted values of the external set chemicals by the predictive

R2
pred or ðQ2

extÞ as stated by Gramatica et al. [34]. Additionally, we also applied the
conditions described by Golbraikh and Tropsha [35] to the external set results for further

external validation, which controls the fit of the regression line to y¼ x:

i:e: : I R2
0 or R020 close to R2

að Þ ðR2 � R2
0Þ=R

2 50:1 and 0:85 � k � 1:15 or

bð Þ ðR2 � R020 Þ=R
2 50:1 and 0:85 � k0 � 1:15

II R2
0�

�
� R020

�
�50:3,

where R2 is predicted vs. observed, R02 is observed vs. predicted, k and k0 are slopes,
R2

0 and R020 are squared correlation coefficients (without intercept).
The applicability domain (AD) of the model was verified by using the ranges of

descriptors and toxicity values, and then applying the leverage approach. We identified a

compound as a response outlier if its standardized residual was higher than three.
Chemicals structurally very influential in determining model parameters (i.e. creating

leverage effect) were determined using a Williams plot. In general, critical hat value is set at
3p0/n, where p0 is the number of descriptors plus one and n is the number of compounds in

the model [33]. If a compound’s leverage value is greater than the critical hat value, than
this compound is structurally distant from the compounds whose leverage values are

smaller than the critical hat value.

3. Results and discussion

The data set of 99 compounds was divided into training and test sets for validation of the

model. Kohonen networks were used for data set splitting. We used different networks for
the developed model and approximately 65% of the data set was allocated to the training

set. Selection of a 10� 10 network and 400 epochs resulted in 64/35 division for the
training/test sets. The combination of descriptors, which are highly correlated with the fish

toxicity, was selected by the heuristic method. The descriptors from other software did not
appear to be representative for this data set.

SAR and QSAR in Environmental Research 5
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The model obtained for the prediction of acute toxicity of pharmaceuticals to fish,

using the training set of 64 compounds, is the following linear model (Equation (1)) with

the reported statistical parameters:

pT ¼ 3:621 �1:279ð Þ þ 0:986 �0:218ð ÞGATS3pþ 0:481 �0:136ð ÞEEig05d

� 1:104 �0:362ð ÞBEHe3þ 1:259 �0:488ð ÞMor32u� 1:794 �0:663ð ÞHATS2u

� 0:684 �0:122ð ÞC-040þ 0:334 �0:115ð ÞO-060þ 0:105 �0:018ð ÞMLOGP2

ntraining ¼ 64, R2 ¼ 0:664, R2
adj ¼ 0:615, R2

0 ¼ 0:583

R2
cv, ¼ 0:542, F8, 55 ¼ 13:588, RMSE ¼ 0:602, AAE ¼ 0:491

ð1Þ

Generally, QSAR models are functions of a molecule’s structure, electronic properties

and hydrophobicity [36]. In this model, Mor32u, HATS2u, C-040, and O-060 stand for

structure; GATS3p, EEig05d, and BEHe3 stand for electronic properties; and MLOGP2

stands for hydrophobicity. The descriptions of the independent variables in the model

equation were given in Table 1, together with their VIF and t-values.
GATS3p, EEig05d, O-060, Mor32u and MLOGP2 showed direct correlation with the

acute fish toxicity. MLOGP2 and C-040 are descriptors that made the most contribution

to the model considering the t-values (Table 1).
3D-MoRSE (3D-Molecular Representation of Structure based on Electron diffraction)

descriptors describe the distribution of the atoms in three-dimension geometrical

molecules. When atomic properties act as weighting factor; these descriptors encode the

distribution of the atomic properties in molecules.

Table 1. Definitions, VIF and t-values, and classification of the descriptors in the model.

Descriptor VIF t-value Description Category

GATS3p 1.264 4.5 2D descriptor; Geary autocorrelation
– lag 3 (weighted by atomic
polarizabilities)

2D autocorrelations

EEig05d 4.152 3.5 2D descriptor; Eigenvalue 05 from
edge adjacency matrix (weighted
by dipole moments)

Adjacency indices

BEHe3 3.869 �3.0 2D descriptor; highest eigenvalue
number 3 of Burden matrix
(weighted by atomic Sanderson
electronegativities)

Burden eigenvalues

Mor32u 1.568 2.6 3D descriptor; 3D-MoRSE signal 32
(unweighted)

3D-MoRSE descriptors

HATS2u 2.524 �2.7 3D descriptor; leverage-weighted
autocorrelation of lag 2
(unweighted)

GETAWAY descriptors

C-040 1.580 �5.6 1D descriptor; R–C(¼X)–X/R–
C#X/X¼C¼X

Atom-centred fragments

O-060 1.388 2.9 1D descriptor; Al–O–Ar/Ar–O–
Ar/R��O��R/R–O–C¼X

Atom-centred fragments

MLOGP2 1.534 5.7 Other descriptors; squared
Moriguchi octanol–water partition
coefficient

Molecular properties

6 G. Tugcu et al.
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Computation of GATS3p, EEig05d, and BEHe3 involves the structure of the molecule,
but weighting components have been embedded in these descriptors in terms of
polarizability, dipole moment and electronegativity, respectively. These descriptors
address the topology of the structure in association with electronic property. BEHe3
can include connectivity information and atomic properties (e.g. atomic charge,
polarizability, hydrogen-bonding) that are relevant to intermolecular interactions.
BEHe3, in particular, demonstrates for the electronegativity of atoms that are separated
by three bonds.

Autocorrelation descriptors calculated for 3D-spatial molecular geometry are based on
interatomic distances collected in the geometry matrix G. In GATS3p, for instance, ‘3’
indicates the autocorrelation vector of lag 3 corresponding to the number of edges in the
fragment unit considered in the computation and the character ‘p’ refers to the atomic
polarizabilities. HATS indices of GETAWAY (GEometry, Topology and Atom-Weights
AssemblY) group are based on the diagonal elements of the molecular influence matrix
(MIM). HATS2u is a 3D GETAWAY descriptor and it accounts for the effective position
of substituents and fragments in the 3D molecular space [37].

Atom-centred fragments (ACF) are simple molecular descriptors defined as the
number of specific atom types in a molecule. The fragment, C-040, a descriptor from ACF
class, represents the number of carbon atoms attached to the heteroatom by single or
multiple bonding and one valence is satisfied by an alkyl group. Another ACF class
descriptor O-060, for example, represents a presence of the Al–O–Ar, Ar–O–Ar, R��O��R
or R–O–C¼X fragment in a molecular structure (Al: aliphatic group, Ar: aromatic group,
X: any heteroatom, and R: any group linked through carbon). In our case, a
electronegative O atom is located in different positions in the molecules of the diverse
set of pharmaceuticals. The groups connecting to O atom with –O– fragment and
heteroatom-attached carbon atoms influence the toxicity because these points are primary
reaction centres in the molecules.

The descriptors used in the present model have been utilized in previous QSAR models
in the literature. In a study by Bozorgi et al. [38], GATS3p was used for IC50 estimation of
telomerase inhibition for cancer cells in a linear model. The blood–brain–barrier (BBB)
penetration coefficient (logBB) was modelled with EEig05d by Soto and co-workers [39] in
a MLR model. Gonzales et al. [40] assessed the acute toxicity of 69 benzene derivatives
using the BEHe3 descriptor. A QSTR model for predicting the guppy toxicity was
developed by Duchowicz et al. [41] with Mor32u for a set of benzene derivatives. A QSAR
model on mouse oral LD50 data of 58 chemicals developed by Bhhatarai and Gramatica
[42] employed HATS2u. In a study by Duchowicz et al. [43], C-040 and O-060 were used to
model Tetrahymena pyriformis growth inhibition by phenol derivatives. Shao et al. [44]
utilized MLOGP2 in their models to explain Tetrahymena pyriformis toxicity.

MLOGP2 represents hydrophobicity, whereas the descriptors appearing in the
developed model represent topological information and electronic properties. The
participating descriptors of the model therein suggest that atomic properties in 3D
molecular space (Mor32u), effective position of substituents and fragments (HATS2u),
atom-centred fragments (C-040 and O-060) and molecule’s weighting components in terms
of electronegativity (BEHe3), polarizability (GATS3p) and dipole moment (EEig05d)
revealed an influence on the toxicity of diverse pharmaceuticals to fish.

Figure 1 shows the calculated/predicted and observed values for the training, test and
external set compounds highlighted by different markers. Test set compounds achieve a
squared correlation coefficient of 0.605, R0

2 of 0.594, RMSE of 0.671, and AAE of 0.512

SAR and QSAR in Environmental Research 7
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while external set scores squared correlation coefficient of 0.788, AAE of 0.348, and R2
pred

of 0.777, which implies a predictive model. The presented model was subjected to the test
for the criteria of external validation as recommended by Golbraikh and Tropsha [35]. The
calculations resulted in jR2

0 � R020 j ¼ 0:031, ðR2 � R2
0Þ=R

2 ¼ 0 and k ¼ 1:1082 revealing a
high predictive power of the model.

The reliability of the model was checked using a response randomization test. Random
shuffling of response was repeated 25 times for the equation. R2 values ranged between
0.012 and 0.151 with a mean value of 0.055. The results reveal that the proposed model is
well founded and not just the result of a correlation by chance.

We define the applicability domain of the model as the descriptor space of the 64
chemicals of the training set (Table 2). The applicability domain of the model was also
analysed using a Williams plot (Figure 2), where the vertical reference line is the critical
leverage value (h*), and the horizontal reference lines are �3�, the cut-off value for
response outliers. As seen in Figure 2, there is no response outlier of training, test and
external sets with a three standard deviation unit. Acroleine, amidosulfonic acid and
epichlorohydrine are the high leverage compounds of the training set and influential
for model development. In fact, these compounds influence the regression line and
their residuals are small. Ethyl bromide is the high leverage compound of the test set.

Figure 1. Calculated/predicted pT vs. experimental pT for the training, test and external set
compounds.

8 G. Tugcu et al.
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Figure 2. Projection of the standardized residuals vs. leverage values of the training, test and
external set compounds. Critical hat value (h*) is set at 0.422. Response outlier limits are set at� 3�.

Table 2. Descriptor and toxicity space of the model.

Variable Minimum value Maximum value

Toxicity �1.708 3.671
GATS3p 0.000 2.056
EEig05d �1.446 3.628
BEHe3 1.093 3.749
Mor32u �0.735 0.185
HATS2u 0.173 1.576
C-040 0.000 4.000
O-060 0.000 5.000
MLOGP2 0.002 22.665

SAR and QSAR in Environmental Research 9
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This compound has a unique structure as the only bromoalkane in the data set. Ethyl
bromide shows an extreme trend, e.g. it has the minimum values for GATS3p, BEHe3, C-
040 and O-060, and a maximum value for HATS2u among the test set compounds. Visual
inspection of the four high leverage pharmaceuticals reveals that these compounds have
the simplest structures with relatively low number of atoms within the data set. It is also
important to note that the external set has no leverage value higher than the critical
hat value.

Sanderson and Thomsen [10] compiled a very large database that contains a diverse set
of pharmaceuticals. This database is a result of selective study of collecting seven publicly
available databases. However, each database elicits toxicity information from a different
and vast number of laboratories. For each of the chemicals in a single database, the LC50

value for a specific organism may yield thousands of entries and variability of results can
exceed several orders of magnitude. Potential causes of the data variability include
influence of biological and physical factors [45]. The performance of our model should be
considered together with the lack of consistency in the literature data in experimental
conditions, duration, endpoints measured, and species used as stated by Madden et al. [9].
Despite these disadvantages, our model performs very well in terms of its predictive power.

Kar and Roy [6] developed a linear model with the same pharmaceutical and fish data
taken from Sanderson and Thomsen [10]. Their model includedDaphnia magna toxicity and
two additional descriptors as independent variables. In the present work, we developed a
model with only theoretical descriptors. We have 71 out of 77 pharmaceuticals in common.
Six compounds were not included in our data set either because of inconsistency between the
names and their CAS numbers (e.g. carbacystine, chlorolactam, verapamil) or the presence
of replicates (e.g. aspirin and acetyl salycilic acid). The average absolute error of the
predicted 71 compounds for our and their models is 0.462 and 0.526, respectively.

It is of our interest to compare the predictions of the external set compounds with those
of ECOSAR [46] models in which log P based toxicity models were developed. ECOSAR
classes and corresponding predictions for each chemical in the external set are given in
Table 3. The average absolute error of their predictions obtained by our model and
ECOSAR is 0.348 and 0.872, respectively. Although we used the closest ECOSAR
predictions to the reported literature values among the available predictions to calculate
AAE, our model had better predictions than that of ECOSAR for the external set
compounds.

Although ECOSAR is a publicly available program that can be easily applied for the
prediction of ecotoxicity of chemicals, there are wide variations in the predicted values of a
pharmaceutical from log P depending on the ECOSAR classes in which the chemical
belongs to. Variations in performances of the ECOSAR classes are discussed by
Reuschenbach et al. [47]. Additional drawbacks of the ECOSAR program are discussed by
Fent et al. [1]. Therefore, ECOSAR could fill a gap where a better QSAR model is not
present. The level of accuracy of the developed model is good enough considering the
many sources of error (e.g. variations in test conditions) that may impact the model. Our
model seems to be more complex compared to ECOSAR, but the descriptors used in this
MLR are attractive because they can be calculated easily and rapidly.

4. Conclusions

This QSTR study involved 99 pharmaceuticals with an additional external set of 14
pharmaceuticals modelled for their toxicity to fish based on MLR with descriptors
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calculated by Dragon software and selected by a heuristic method. The proposed model
was validated internally and externally with proper statistical tools. The results indicate
that the model we built is robust and satisfactory, and that the selected descriptors are able
to explain the toxicity of a diverse set of pharmaceuticals to fish. Given the model’s
descriptors and given the t-values, we can conclude that the toxicity of these compounds
mainly depends on their hydrophobicity and heteroatom-bonded carbon atom.
Descriptors weighted by polarizability, dipole moment and electronegativity are also
involved in pharmaceutical toxicity modelling. It is likely that different factors affect
the toxicity of heterogeneous pharmaceuticals. Therefore, more complex descriptors (i.e.
3D-MoRSE and GETAWAY) seem to be useful in their modelling of fish toxicity. The
QSTR model developed in this study can provide a useful tool for point toxicity

Table 3. ECOSAR predictions for the external set.

Pharmaceuticals
ECOSAR
class(es)

ECOSAR
prediction(s)

from
log P (mM)

Reported
literature
pT (mM) References

Amobarbital Baseline toxicity (2010)* 0.089 0.420 [14]
Carbonyl ureas (11) 3.404

Ampicillin Baseline toxicity (2010) �0.405 �0.120 [14]
Aliphatic amines (acid) (90) �0.642
Amides (acid) (28) �0.866

Carbamazepine Baseline toxicity (2010) 0.300 1.590 [14]
Substituted ureas (21) 0.757

Chloramphenicol Baseline toxicity (2010) �0.888 0.450 [14]
Benzyl alcohols (11) �0.437
Haloacetamides (10) 0.920

Cotinine Baseline toxicity (2010) �1.406 0.230 [14]
Amides (28) �0.663

Diclofenac Neutral organics (acid) (296) 0.896 1.467 [17]
Estradiol Baseline toxicity (2010) 1.830 2.205 [16]

Phenols (203) 2.237
Flutamide Baseline toxicity (2010) 1.439 2.158 [16]

Amides (28) 1.603
Gentisic acid Baseline toxicity (2010) �0.126 0.440 [14]

Poly�acid phenols (24) 0.131
Hydroquinones (acid) (6) 1.986

Isotretinoin Neutral organics (acid) (296) 4.332 2.762 [15]
Metronidazole Baseline toxicity (2010) �1.713 �0.792 [16]

Imidazoles (12) 2.237
Norfloxacin Baseline toxicity (2010) �1.986 1.060 [14]

Aliphatic amines (90) �1.799
Vinyl/allyl ketones (acid) (7) �2.765

Pyrimethamine Baseline toxicity (2010) 0.453 1.648 [15]
Anilines (unhindered) (49) 1.131
Anilines (hindered) (13) 0.649
Anilines (amino-meta) (2) 0.902

Sulfamethoxazole Baseline toxicity (2010) �1.276 1.440 [14]
Anilines (unhindered) (49) �0.210
Amides (28) �0.559

*Numbers in parantheses display the number of compounds used in ECOSAR modelling.

SAR and QSAR in Environmental Research 11
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estimations of pharmaceuticals within the applicability domain relying on the high
predictive squared correlation coefficient.
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