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Abstract

Classical simulation of quantum computation is necessary for studying the numerical

behavior of quantum algorithms, as there does not yet exist a large viable quantum com-

puter on which to perform numerical tests. Tensor network (TN) contraction is an algorith-

mic method that can efficiently simulate some quantum circuits, often greatly reducing

the computational cost over methods that simulate the full Hilbert space. In this study we

implement a tensor network contraction program for simulating quantum circuits using

multi-core compute nodes. We show simulation results for the Max-Cut problem on 3-

through 7-regular graphs using the quantum approximate optimization algorithm (QAOA),

successfully simulating up to 100 qubits. We test two different methods for generating the

ordering of tensor index contractions: one is based on the tree decomposition of the line

graph, while the other generates ordering using a straight-forward stochastic scheme.

Through studying instances of QAOA circuits, we show the expected result that as the

treewidth of the quantum circuit’s line graph decreases, TN contraction becomes signifi-

cantly more efficient than simulating the whole Hilbert space. The results in this work sug-

gest that tensor contraction methods are superior only when simulating Max-Cut/QAOA

with graphs of regularities approximately five and below. Insight into this point of equal

computational cost helps one determine which simulation method will be more efficient for

a given quantum circuit. The stochastic contraction method outperforms the line graph

based method only when the time to calculate a reasonable tree decomposition is prohibi-

tively expensive. Finally, we release our software package, qTorch (Quantum TensOR

Contraction Handler), intended for general quantum circuit simulation. For a nontrivial

subset of these quantum circuits, 50 to 100 qubits can easily be simulated on a single

compute node.
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1 Introduction

Experimental hardware for quantum computing has been steadily improving in the past

twenty years, indicating that a useful quantum computer that outperforms a classical computer

may eventually be built. However, until a large-scale and viable quantum computer has been

realized, numerically simulating quantum circuits on a classical computer will be necessary for

predicting the behavior of quantum computers.

Such simulations can play an important role in the development of quantum computing

by (1) numerically verifying the correctness and characterizing the performance of quantum

algorithms [1–5], (2) simulating error and decoherence due to the interaction between the

quantum computer and its environment [6–9], and (3) improving our understanding of the

boundary between classical and quantum computing in terms of computational power, for

which recent efforts for characterizing the advantage of quantum computers over classical

computers [10–17] serve as an example of this direction.

In this work, we consider the problem of quantum circuit simulation as one where we are

given a quantum circuit and an initial state, with the goal of determining the probability of a

given output state. Several approaches are possible for such simulation tasks. The most general

method is to represent the state vector of an N-qubit state by a complex unit vector of dimen-

sion 2N and apply the quantum gates by performing matrix-vector multiplications. This is

essentially the approach adopted in, for example, [1–3, 18, 19]. This method has the advantage

that full information of the quantum state is represented at any point during the circuit propa-

gation. However, the exponential cost of storing and updating the state vector renders it pro-

hibitive for simulating circuits larger than*45 qubits. On the other hand, for a wide class of

circuits with restricted gate sets and input states [20–24], efficient classical simulation algo-

rithms are available. For example, the numerical package Quipu [25, 26] has been developed

for taking advantage of prior results [20, 21, 24] on the stabilizer formalism to speed up general

quantum circuit simulation. Finally, path integral-based methods [27] have also been pro-

posed—though they do not improve the simulation cost, they lead to reduced memory storage

requirements.

Other than considering the gate sets involved, an alternative perspective of viewing a quan-

tum circuit is through its geometry or topology [28, 29]. Under this view, a quantum circuit is

simulated via tensor network contractions. An advantage of viewing quantum circuits as ten-

sor networks is that one can afford to ignore the particular kinds of quantum gates used in

a circuit, and instead only focus on the graph theoretic properties. While general quantum

circuits involving universal sets of elementary gates are likely hard to simulate on a classical

computer [30], this geometric perspective sometimes allows for the efficient simulation of a

quantum circuit with a universal gate set, provided that it satisfies certain graph theoretic prop-

erties. We note that at least one open source implementation of tensor network simulation for

quantum circuits already exists, called TNQVM [31], which can simulate tensor networks but

also focuses on integrating algorithms with real quantum hardware. Aside from the field of

quantum computation, tensor networks and related methods are an important and active area

of research in the simulation of quantum mechanical problems in theoretical physics [32–34].

Among others, treewidth is an important graph theoretic parameter that determines the

efficiency of contracting a tensor network of quantum gates. A property of graphs that is

actively studied in the graph theory literature [35–38], the treewidth provides important struc-

tural information about a quantum circuit. Namely, if the circuit’s underlying tensor network

has treewidth T, it is shown in [29] that the cost of simulating the circuit is O(exp(T)). In [10]

treewidth is also used for estimating the classical resource needed for simulating certain quan-

tum circuits.
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Motivated by the importance of tensor networks in quantum circuit simulation in general

(and for example quantum computational supremacy tests in particular), it is useful to have

a circuit simulation platform singularly dedicated to tensor network contraction. One immedi-

ate challenge in contracting tensor networks is to find an efficient contraction ordering, which

relies on explicitly or implicitly finding a reasonable tree decomposition of the underlying

graph (definitions are further discussed in Section 2). However, finding the optimal contrac-

tion ordering (or equivalently finding the minimum-size tree decomposition, or finding the

treewidth of a graph) is NP-complete [39]. Therefore one must typically resort to heuristic

methods when finding this decomposition [40].

For this study, we implemented a plug-and-play tensor network (TN) contraction code

with two contraction schemes. Other schemes were attempted, but were significantly inferior

to those that became part of the software package. However, there are likely other heuristic

schemes that outperform our stochastic algorithm, and this is an avenue worth pursuing. For a

large set of quantum circuits, our tensor network based methods are shown to be less costly

than simulation of the full Hilbert space, by comparing to simulations using the LIQUi|> soft-

ware package [1]. We emphasize again that the tests in this report give timing data for finding

the expectation value of a measurement performed after implementing a quantum circuit, not

for fully characterizing a circuit’s final state.

The remainder of the paper is organized as the follows. Section 2 sets up the definitions and

notations used in the paper. Section 3 describes the heuristic methods used for contracting the

quantum circuit tensor networks, along with other relevant details of the code implementa-

tion. Section 4 presents the example quantum circuits used as benchmarks for demonstrating

the performance of our contraction algorithms. Section 5 gives results of comparisons between

the qTorch contraction methods, and between qTorch simulations and LIQUi|>’s Hilbert

space simulations.

2 Preliminaries

In this section, we provide an overview of relevant concepts and definitions. All graphs that we

consider in this paper are undirected. We denote a graph as G(V, E), consisting of the set of

nodes V = {v1, v2, � � �, vn} and edges E� V × V.

Two relevant concepts are a graph’s tree decomposition and treewidth [35, 40]. A tree

decomposition of a graph G(V, E) is a pair (S, T(I, F)), where S = {Xi|i 2 I} is a collection of sub-

sets Xi� V and T is a tree (with edge set F and node set I), such that [i2IXi = V. Two nodes

Xi and Xj are connected by an edge only if the intersection between Xi and Xj is not null. The

width of a tree decomposition (S, T) is maxi2I|Xi| − 1. The treewidth of a graph G is the mini-

mum width among all tree decompositions of G.

Another important concept in tensor network methods is the linegraph of graph G, denoted

by L(G). L(G) is itself an undirected graph, with each edge in G corresponding to a node in

L(G). Two nodes in L(G) are connected if and only if these two nodes’ corresponding edges in

G are connected to the same node in G. There exists an optimal tree decomposition of L(G)

that provides the optimal contraction ordering of G [29].

In the context of this work, a tensor is defined as a data structure with rank k and dimension

m. More specifically, each tensor is a multidimensional array withmk complex entries. Each

index may have a different dimension, though in this work each index has the same dimension

m = 4. A tensor Ai1 ;i2 ;i3 ;:::ik has k indices, which take values from 0 tom − 1.

A tensor contraction is a generalized tensor-tensor multiplication. Here a rank (x + y)

dimensionm tensor A and a rank (y + z) dimensionm tensor B are contracted into C, a rank
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(x + z) dimensionm tensor.

Ci1 ;i2 :::;ix ;k1 ;k2 :::;kz ¼
X

j1 ;j2 :::;jy2f0;::;m�1g

Ai1 ;i2 :::;ix ;j1 ;:::;jyBj1 ;j2 :::;jy ;k1 ;:::;kz ð1Þ

Note that the number of floating point operations performed ismx+y+z, exponential in the

number of indices contracted on y and the rank of the resulting tensor (x + z). It is important

to point out that pairwise contractions are always optimal [41]. In other words, a function that

contracts three or more nodes at a time will not achieve an improvement in scaling.

A tensor network is a graph G = (V, E) with tensors as vertices, and edges labeled by a set of

indices. The rank of each tensor is given by the number of edges connected to it. An edge from

one tensor to another indicates a contraction between the two tensors, and multiple connected

edges indicate a contraction on multiple indices. Fig 1 shows an example of a tensor network.

Note that a tensor may have open edges, i.e. edges that do not connect to any other tensor,

though this possibility is not allowed in the current version of qTorch.

Fig 1. An example of a tensor network. The number of edges (or wires) connecting to a tensor is equal to that tensor’s rank. When an index (edge) is
contracted by combining two tensors according to Eq 1, the two tensor are replaced by a new one. The number of scalar entries in the tensor scales
exponentially in the number of edges to which it connects. In general it is not trivial to choose an efficient contraction ordering that minimizes the total
number of floating point operations.

https://doi.org/10.1371/journal.pone.0208510.g001
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A contraction ordering or contraction scheme determines the order in which the tensor

network is contracted. The ordering chosen for the contraction will greatly affect the computa-

tion and memory requirements, because some contraction orderings can result in much larger

intermediate tensors than others. Although in this work we focus on contracting the tensor

network to a scalar that equals the expectation value of the quantum circuit’s measurement,

the goal of a tensor network algorithm is often not to contract it to a scalar [32, 34]. An exam-

ple of this is the infinite tensor networks used to study periodic systems in condensed matter

physics.

An important goal is to avoid tensors of large intermediate rank when contracting the net-

work, as floating point operations grow exponentially with tensor rank. However, it is often

the case that increasing the tensor rank is unavoidable. A simple example of this issue is a tetra-

hedral graph of rank 3 tensors (Fig 2), which cannot be contracted without forming intermedi-

ate tensors of rank greater than 3. The larger the treewidth of L(G) is, the more one will be

forced to create new tensors of higher rank as the network is contracted, greatly increasing the

computational cost [29].

We note that tensor network methods are commonly used to efficiently find approximate

solutions—indeed this is often the main source of a TN’s utility. In approximate TN methods,

the space of the smaller values of the eigenspectrum are removed, after e.g. performing a singu-

lar value decomposition on the tensor [32, 34]. This allows one to contract to form a larger ten-

sor, then renormalize its size before continuing to contract the network. Though this strategy

is useful in the context of quantum circuits as well, the current version of qTorch is limited to

numerically exact contractions of the tensor network.

Before contracting, the tensor network graph must first be created from a quantum circuit,

a procedure that has been summarized in previous work [29]. Each node on the graph repre-

sents one of the following: An initial state of the qubit (usually |0ih0|), a gate operation, or a

measurement. The initial density matrix is represented as a rank 1 dimension 4 tensor (i.e. a

vector), [ρ|0ih0|;ρ|0ih1|;ρ|1ih0|;ρ|1ih1|]. Measurement nodes are rank 1 as well. All indices in the

graph are dimension 4, regardless of rank. Nodes corresponding to quantum gates are repre-

sented in superoperator form. Hence a gate U which acts on the quantum state as ρ! UρU† is

represented by the superoperator ~U . The same operation can be expressed as ~r ! ~U ~r, where

~r is the Lindblad representation of the density operator. Single qubit gates correspond to rank

2 tensors and two-qubit gates correspond to rank 4 tensors. The graph’s connectivity is identi-

cal to the connectivity of the original quantum circuit.

We end this section with explicit examples of tensors for standard quantum circuit compo-

nents. Tensors for other circuit components can be viewed in the source code for qTorch.

The initial state |0ih0| corresponds to the tensor

~r0 ¼ ½1; 0; 0; 0�: ð2Þ

Superoperator tensors for the Pauli matrices are

~X ¼

0 0 0 1

0 0 1 0

0 1 0 0
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0 0 0 1
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: ð3Þ
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The CNOT gate is represented as a sparse rank 4 tensor for which only the following entries

are nonzero:

~U CNOT :
~U 0000 ¼ ~U 0101 ¼ ~U 0202 ¼ ~U 0303 ¼ ~U 1011 ¼ ~U 1110 ¼ ~U 1213 ¼ ~U 1312 ¼

~U 2022 ¼ ~U 2123 ¼ ~U 2220 ¼ ~U 2321 ¼ ~U 3033 ¼ ~U 3132 ¼ ~U 3231 ¼ ~U 3330 ¼ 1
ð4Þ

Fig 2. A tetrahedral graph illustrates why it is often unavoidable to form tensors of higher rank while contracting a tensor network. In this
example, contracting any of the six edges produces a tensor of rank 4, even though all of the original tensors were of rank 3.

https://doi.org/10.1371/journal.pone.0208510.g002
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Finally, the nodes for measurement are rank 1 tensors. ~MX, ~MY , and ~MZ correspond respec-

tively to determining expectation values for measurements in the X, Y, and Z bases. Note that

using ~MX , ~MY , or ~MZ is equivalent to inserting a Pauli gate at the end of the circuit before

implementing ~MTrace.

~MTrace ¼

1

0

0
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ð5Þ

3 Contraction schemes and implementation details

For many problems in quantum physics to which matrix product states (MPS) or other tensor

network methods have been applied, an efficient contraction scheme is often obvious from the

underlying structure of the Hamiltonian [33]. However, efficient contraction schemes are not

available for arbitrary tensor networks. A general heuristic contraction scheme is important

for the simulation of general quantum circuits, when one does not know a priori the topologi-

cal properties of the underlying tensor network problem.

3.1 Contraction schemes

qTorch implements two algorithms for determining the contraction ordering. For what we

call the line graph (LG) method, outlined in Algorithm 1, we first create the line graph of the

quantum circuit’s graph. Then, the software package QuickBB [38] is used to determine an

approximately optimal tree decomposition of this linegraph. The resulting tree decomposition

is used to define the order of contraction. This linegraph-based approach was first described

by Markov and Shi [29].

QuickBB uses a so-called anytime algorithm, meaning that it can be run for an arbitrary

amount of time, such that when the program is stopped it provides the best solution found

thus far. The algorithm is based on the branch and bound (B&B) method, though the authors

use several techniques based on modern graph theory to improve efficiency in the pruning

and propagation steps, making QuickBB faster at finding low-width tree decompositions than

vanilla B&B.

The second contraction scheme is a simple stochastic procedure we refer to as Stoch (Algo-

rithm 2). First, a wire is randomly chosen. If the rank of the contracted tensor is higher than

the highest rank of the two nodes, plus a given threshold, the contraction is rejected. After a

fixed number of rejected contraction attempts, the threshold is relaxed.

Algorithm 1 Contraction via TD of L(G)
1: Create line graph L(G) of graph G
2: π  (Calculate approx. optimal elimination ordering of L(G))
3: Eliminate wires of G in order π

Algorithm 2 Simple stochastic contraction
1: Define G  The tensor network Graph
2: Threshold  −1
3: Define MaxRejections  Maximum Number of Rejections
4: repeat

qTorch: The quantum tensor contraction handler
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5: Choose a random wire w
6: (A, B)  (Nodes of w)
7: Cost  rank(C) − max(rank(A), rank(B))
8: if Cost � Threshold then
9: Contract w to form node C
10: Rejections  0
11: Threshold  -1
12: Update G
13: else
14: Rejections  Rejections + 1
15: if Rejections > MaxRejections then
16: Threshold  Threshold + 1
17: Rejections  0
18: Continue
19: until Graph completely contracted

3.2 Threading

The tensor contractions are parallelized using the C++ standard library’s std::thread
class. A particular tensor-tensor contraction is parallelized if the cost of contracting a pair is

higher than a provided threshold. We implement other parallelization schemes at the network

level, i.e. splitting up the nodes into separate groups to compute on different threads, but the

vast majority of the parallelization speedup comes from threading the tensor–tensor contrac-

tions. Currently, qTorch does not support parallelization across multiple compute nodes

within a cluster, but it allows the user to specify the number of threads (default of 8).

3.3 Estimating the answer string

qTorch computes expectation values of the form hψ|M|ψi, whereM is a measurement operator

such as a Pauli string, and |ψi is the quantum state produced by the circuit. If instead one

wishes to capture all the information of this final state of n qubits, it generally requires O(2n)

repetitions of the algorithm. However, many quantities of interest may be calculated effi-

ciently. For instance, the probability that one measurement operator (e.g. a Pauli string) will

provide a particular outcome can be estimated in just one contraction of the tensor network, a

result essential to simulating the variational quantum eigensolver (VQE) [42–45].

qTorch provides a heuristic scheme to output a high-probability answer string from the cir-

cuit, which we summarize here. Though this scheme is not used for the results presented in

Section 5, it may be useful in the future for simulating algorithms (like QAOA) where the goal

is to estimate a most likely bit string.

The scheme is implemented as follows. First we run one simulation, and measure in the

computational basis to project the first qubit into 0 or 1. Based on the resulting expectation

value from the simulation, we choose the value for the first qubit that has the greater probabil-

ity. If the 0 and 1 are equally likely, one is chosen randomly. In the next full contraction, we set

the resulting binary value as the measurement outcome for the first qubit in the next simula-

tion, and repeat with a projective measurement on the second qubit. We continue this process

for the rest of the qubits. As we show below, this method often gives a good approximation of

the most likely final computational basis state. In original tests on 3-regular graphs of 30 verti-

ces, the scheme (used on Quantum Approximate Optimization Algorithm [QAOA] circuits)

gave bit strings that provided good estimates to the solution of the Max-Cut problem (average

approximation ratio of 94% compared to the exact brute force solution).

As a way to test the general applicability of this scheme, we performed some tests on more

general circuits than the QAOA problem. These tests are meant to provide some early insight
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into how useful this heuristic would be for estimating the most likely bit string of a quantum

algorithm, for the users who are interested in running this string estimation subroutine. We

note that it is abundantly clear that in many cases this scheme does not produce a string closest

to the most likely string—indeed, if it was a generally accurate scheme then we would have no

need for a quantum computer.

In the remainder of this section, we consider the most likely bit string of the final state

|ψi = ∑i ψi|ii, which we define as argmaxi|ψi|
2, where the vectors {|ii} are in the computational

basis. We apply a unitary of the form

Upðβ; γÞ ¼
Y

p

j¼1

exp ibj
X

n

i¼1

Xi

 !

exp ðigjDjÞ ð6Þ

where the matrix Dj is a diagonal matrix with entries chosen randomly from the integers

{1, � � �, nm}. Herem is a parameter that could be interpreted as the number of clauses, if this

were a QAOA problem. The elements of the p-dimensional vectors β and γ are drawn uni-

formly from [0, π] and [0, 2π] respectively. We use the construction of Up(β, γ) to emulate

the form of parametrized unitary operations used in QAOA with the same p. Starting from

the uniform superposition over all 2n bit strings |si, we apply Up to compute the final state

jCi ¼ Upjsi ¼
P2n�1

i¼0 cijii. Let pi = |ψi|
2 denote the probability distribution associated to the

QAOA-like output state |Ci. We ran 10,000 trials (with n = 6, m = 10, and p = 2) using Eq 6,

and ranked the result by how many bit strings in the true state were more likely than our out-

putted bit string.

Conceptually, our likely string estimation algorithm can be thought of as falsely assuming

that the output state is a product state. Suppose we apply our algorithm to the state |Ci. The

product state then reads

jC0i ¼ ða1j0i þ b1j1iÞ � ða2j0i þ b2j1iÞ � � � � ðanj0i þ bnj1iÞ ð7Þ

where |αk|
2 is the probability of |0i that the algorithm obtains at the kth step, with an analogous

definition for βk. With this conceptual framing, we also numerically study the 1-norm distance

kp0 − pk1 between the approximate distribution p0 which the algorithm effectively assumes

and the actual distribution p.

The results are shown in Fig 3. Here we use the number of qubits n = 6, with parameters

m = 10 and p = 2. Fig 3(a) shows that most of the time our algorithm produces a high ranking

bit string—roughly 90% of the time the output of the algorithm is among the top 10% most

likely bit strings. Fig 3(b) shows that the 1-norm distance between the approximate and exact

distributions is less than 0.1 for nearly all of the data points. These results suggest that our heu-

ristic for estimating an output bit string will produce acceptable estimates for some circum-

stances—in QAOA for instance, where one might be interested in a good approximate (as

opposed to exact) solution to the constraint satisfaction problem.

3.4 A note on noise

It is possible to simulate noise within the quantum circuit model, by mapping a noise model

onto a set of one-qubit or multi-qubit operators [30, 46].

Note that any quantum operation can be expressed in terms of Kraus operators {Ej}

r!
X

j

EjrE
y
j ð8Þ

where {Ej} are called Kraus operators [46], and
P

jEjE
y
j ¼ 1 because for our purposes the noise
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process is assumed to be trace-preserving. A noise model can be expressed in terms of such

Kraus operators, which can in turn be expressed as superoperators for insertion into the quan-

tum circuit’s tensor network.

The most commonly used approximations assume that noise on different qubits is uncorre-

lated, which allows for single-qubit “noise gates” to be used. In this case, because rank 2 tensors

can always be contracted without increasing the rank of the resulting tensors, the cost of simu-

lating the resulting “noisy” quantum circuit would not substantially increase. One common

and easily implementable approximation is the Pauli twirl approximation, which approximates

a noise process purely in terms of Pauli rotations [6–9], and therefore can be implemented

with the built-in quantum gates of qTorch.

A more physically realistic noise model would assume correlated noise [47, 48], which

necessitates the insertion of noise gates that operate on at least two qubits. In this case, the tree

width of the circuit’s underlying line graph, and hence the complexity of the problem, would

increase in all but the most trivial cases.

qTorch does not incorporate built-in noise gates. Instead, we include functionality that

allows for user-defined gates.

4 Circuit simulations

Here we describe the classes of quantum circuits that were simulated for this work.

4.1 QAOA / Max-Cut

The quantum approximate optimization algorithm (QAOA) was recently developed [49], for

the purpose of demonstrating quantum speedup for combinatorial problems on low-depth

quantum circuits. Given a constraint satisfaction problem (CSP), a QAOA quantum circuit

produces an output that provides approximate solutions. Several aspects of QAOA have been

studied since its introduction, including its application to different classes of CSP, implemen-

tations of different classical optimization routines, and numerical and analytical comparisons

to classical algorithms [11, 49–53].

Fig 3. Results from implementing 10,000 trials of Eq 6.We use n = 6 qubits,m = 10, and p = 2. (a) The histogram plots how close the method’s
output string is to the actual most likely string. qTorch’s procedure for the “estimate” is given in the text. The horizontal axis Ranking is the number of
computational basis states in |Ci with higher probability than the estimated string—a lower number ranking indicates a better estimate. (b)
Distribution of the 1-norm distance between the approximate distribution p0 arising from the product state approximation |C0i in and the distribution
p arising from the exact state |Ci.

https://doi.org/10.1371/journal.pone.0208510.g003
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We use qTorch to simulate QAOA for the Max-Cut problem, a combinatorial problem that

has been a focus of QAOA [49]. Given an arbitrary undirected graph, the goal of Max-Cut is to

assign one of two colors to each node, so as to maximize the number of cuts. A cut is any edge

that connects two nodes of different color. A more detailed explanation of QAOA is given in

the Appendix, though we summarize important aspects of the algorithm here.

In QAOA, a set of constraints is mapped to a an objective function represented by a set of

operators. Specifically for the Max-Cut problem, the object function is

C ¼
X

hiji

Chiji; ð9Þ

with

Chiji ¼
1

2
ð1� szis

z
j Þ; ð10Þ

where hiji represents the edge between nodes i and j, szk is the Pauli-Z operator on qubit k, and

each node in the underlying Max-Cut graph (which is related to but not the same as the quan-

tum circuit’s graph) corresponds to one qubit in the quantum circuit.

Define two operators U(C, γ) and U(B, β) as

UðC; gÞ ¼ e�igC ¼
Y

n

m¼1

e�igCm ð11Þ

and

UðB; bÞ ¼ e�ibB ¼
Y

q

k¼1

e�ibs
x
k : ð12Þ

where B ¼
Pq

k¼1 s
x
k, σx is the Pauli-X operator, q is the number of qubits, and n is the number

of clauses (for Max-Cut this is the number of edges). These two operators are applied p times

(with different γ and β allowed for each step), with a larger p providing a better approximation.

The γ and β parameters are modified with a classical optimization routine to maximize the

cost function. The cost function is evaluated after each measurement, with the bit string that

resulted from the measurement.

To generate the graphs for the underlying Max-Cut problem, we made random k-regular

graphs by placing edges randomly throughout a given vertex set to satisfy a given regularity,

before ensuring that disconnected graphs are rejected. QAOA/Max-Cut Quantum circuits

based on these graphs are then constructed.

In the numerical results of this paper, we report only the timing for a single contraction of

each quantum circuit. A full analysis of QAOA is beyond the scope of this work. However, we

note that once the graphs have been created, qTorch currently has the functionality to optimize

the QAOA angles using the classical optimization library NLopt [54]. Finally, one can use

qTorch to estimate a Max-Cut for the randomly-generated graph, using the most-likely bit

string estimation method described above.

4.2 Hubbard model

Quantum simulation of fermionic systems is one of the most relevant applications of quantum

computers, with direct impact on chemistry and materials science, including for the design of

new drugs and materials. Among all the algorithms proposed for quantum simulation of fer-

mions, the quantum variational algorithm (VQE) and related approaches [42–45] are arguably
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the most promising for near-term hardware because they have lower circuit depth require-

ments [55, 56]. We note that many types of chemistry-related circuits can be prepared with the

software package OpenFermion [57].

In the VQE algorithm, a quantum computer is employed to prepare and measure the

energy of quantum states associated with a parameterized quantum circuit. The approximate

ground state of a Hamiltonian is obtained by variationally minimizing the cost function (cor-

responding to e.g. the molecular energy) with respect to the circuit parameters using a classical

optimization routine. This hybrid quantum-classical approach offers a good compromise

between classical and quantum resources. Classical simulations of the VQE algorithm for tens

of qubits could provide insights into the complexity of the circuits used for state preparation

and help design better ansatzes for the quantum simulation of fermions.

As an example of a VQE simulation, we used qTorch to classically simulate variational cir-

cuits employed for the quantum simulation of 1D Hubbard lattices. We consider half-filled

Hubbard models on N sites, with periodic boundary conditions.

To construct variational circuits for these systems, we considered the variational ansatz

introduced byWecker et al [43]. In this case, the Hubbard Hamiltonian is divided asH = hh +

hU, where hh is the sum of hopping terms in the horizontal dimension and hU is the repulsion

term. The variational circuit is constructed as a sequence of unitary rotations by terms in the

Hamiltonian with different variational parameters, with the sequence being repeated S times.

In each step, there are two variational parameters, ybU and y
b

h, where b = 1, � � �, N such that

U ¼
Y

S

b¼1

UU

sbU
2

� �

Uhðy
b

hÞUU

y
b

U

2

� �� �

ð13Þ

where UX(θX) denotes a Trotter approximation to exp(iθX hX), and X can be U or h. For our

numerical simulations, we employed the variational circuit of Eq 13 with S = 1 using a 1-step

Trotter formula for all the UX(θX) terms. Notice that this is approximate for the hh term, which

comprises a sum of non-commuting terms. We also assigned the value of 1 to all variational

amplitudes. The corresponding unitary was mapped to a quantum circuit using the Jordan-

Wigner transformation and the circuit was generated using a decomposition into CNOT gates

and single-qubit rotations [30, 58].

5 Results

Simulations were performed on the NERSC Cori supercomputer, using one “Knights Land-

ing” (KNL) node per simulation, each of which contains 68 cores and 96 GB of memory. Each

LIQUi|> simulation was run on a full node as well, using Docker [59] (computational details

in the Appendix). The free version of LIQUi|> allows for the simulation of 24 qubits. Because

full Hilbert space simulation scales exponentially regardless of the quantum algorithm’s com-

plexity, we would not have been able to simulate more than*31 qubits on one of these com-

pute nodes. For each set of parameters (regularity and number of vertices/qubits) 50 instances

of Max-Cut/QAOA circuit were created. For higher qubit counts and higher regularities, only

a subset of these circuits were completed, since many simulations exceeded memory capacity.

In this section, LG or qTorch-LG refer to the use of qTorch with the linegraph-based contrac-

tion, Stoch or qTorch-Stoch refer to qTorch with stochastic contraction. To determine a

qTorch-LG contraction ordering, QuickBB simulations were run for an arbitrary time of 3000

seconds for each quantum circuit. The plotted qTorch results do not include the QuickBB run

time.

We note that LIQUi|> implements a thorough set of important optimizations, which

makes it a fair benchmark against which to compare qTorch. For example, LIQUi|> fuses
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many gates together before acting on the state vector, and uses sparse operations. qTorch, on

the other hand, does not yet use sparsity at all (even when the circuit consists primarily of

sparse CNOT gates), which is one of several optimizations that we expect would further

improve performance.

LIQUi|> is the fastest simulation method to use for the Hubbard simulations, as shown in

Fig 4. This is because the treewidth of the circuit’s graph increases substantially with the num-

ber of qubits, even for these short-depth circuits. The result is not surprising—if the algorithm

were easy to simulate with a tensor network on a classical computer, then it would not have

been worth proposing as a candidate for a quantum computer.

Simulation timing results for 3-, 4-, and 5-regular Max-Cut/QAOA circuits are shown

using Tukey boxplots in Figs 5 and 6. Stoch and LG simulation times are of similar order of

magnitude for these circuits, though LG is generally faster. The exception is the 3-regular

graph problems, where Stoch often appears to find a more efficient contraction than the

3000-second run of QuickBB does. We note that if the QuickBB algorithm were run for infi-

nite time before beginning the contraction, then qTorch-LG should always (except in very

simple graphs) contract the circuit faster than qTorch-Stoch. This is because, while the Stoch

search is purely local (considering only individual wires), the tree decomposition approach

of QuickBB implicitly considers the effects of multiple contraction steps. Note that actual

search time of Stoch is negligible compared to the tensor contraction time. Note that

LIQUi|> begins to outperform tensor contraction methods once the algorithm is run on

5-regular graphs, because the increased circuit complexity leads to larger intermediate ten-

sors in qTorch.

Note that in principle, Hilbert space simulation can be considered a subset of TN contrac-

tion, where the state vector is simply a large tensor. Hence one might expect that there would

not be a crossover point at all, i.e. that in the worst case TN contraction would not ever be

slower than Hilbert space simulation. However, because our implementation considers density

matrices instead of state vectors, one would in fact expect this crossover point to exist. The

largest tensor in qTorch would have 4N entries, while the state vector has just 2N entries. The

various choices made in software implementations for qTorch and LIQUi|> would also affect

the position of this crossover point.

Fig 4. Time results for simulating quantum circuits of the Hubbard model. LG, Stoch, and LIQUi|> denote linegraph-based tensor contraction,
stochastic tensor contraction, and LIQUi|>, respectively. LIQUi|>’s full Hilbert simulation method is substantially faster than either tensor contraction
method. Missing data points resulted from exceeding memory capacity.

https://doi.org/10.1371/journal.pone.0208510.g004
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Using a single Cori NERSC node, we were able to contract quantum circuits of 90 qubits

for a very small subset of the simulated graphs, though not on enough graphs to report statis-

tics. Full Hilbert space methods would be limited to*30 qubits on these nodes, and indeed

previous simulation packages have not yet surpassed 46 qubits [2, 19], using thousands of

nodes.

Interesting trends appear when the simulation time is plotted against regularity of the Max-

Cut problem’s graph (Fig 7). It is notable that the LG method runs out of memory before the

Fig 5. Simulation time plotted against number of qubits for Max-Cut/QAOA circuits. LG, Stoch, and LIQUi|>
denote linegraph-based tensor contraction, stochastic tensor contraction, and the LIQUi|> software package,
respectively. Tree decompositions for the LGmethod were determined by running the QuickBB simulation for 3000
seconds. For lower regularities, the tensor contraction methods outperform LIQUi|>, since LIQUi|> simulates the full
Hilbert space. However, as the regularity of the Max-Cut graphs (and hence the treewidth of the quantum circuits’ line
graphs) increase, full Hilbert space simulation using LIQUi|> becomes more efficient.

https://doi.org/10.1371/journal.pone.0208510.g005
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Stoch method does. As previously mentioned, the LG method contracts more efficiently the

longer QuickBB has been run, and we chose 3000 seconds as an arbitrary QuickBB limit for all

circuits. There is a trade-off between running a longer QuickBB simulation and instead imme-

diately using the Stoch method. Even with few qubits, at higher regularities the full Hilbert

space simulation (using LIQUi|>) performs better. This is expected, since as the complexity of

the quantum circuit increases, higher-rank intermediate tensors appear.

Fig 8 shows simulation time as the estimated upper bound for the treewidth increases, for

Max-Cut/QAOA circuits of 18 qubits. These include 3- through 7-regular graphs. This tree-

width upper bound is simply the treewidth of the tree decomposition that defines the contrac-

tion ordering. The plot shows the expected general trend of an increase simulation time with

increased treewidth, regardless of contraction scheme.

Finally, we note that we were easily able to perform simulations of 100 qubits for less com-

plex graphs. To report one such example, we produced a random 3-regular graph with a

slightly different procedure from that given in of Section 4.1. Beginning with a 2-regular graph

(i.e. a ring) of 100 vertices, we added edges between random pairs of vertices until all vertices

were of 3 degrees. Contracting this graph’s Max-Cut/QAOA circuit took*150 seconds.

6 Conclusions

We have implemented a tensor contraction code for the efficient simulation of quantum cir-

cuits. We compared a stochastic contraction scheme to one based on the line graph of the

quantum circuit’s graph, showing that the latter is more efficient in most circuits simulated

herein. However, there is a subset of cases for which calculating an efficient approximate opti-

mal tree decomposition of the line graph takes longer than contracting the circuit stochasti-

cally, in which case the stochastic scheme is superior. For the circuits studied in this work, our

Fig 6. Simulation time plotted against number of qubits for 3-regular Max-Cut/QAOA circuits. LG and Stoch denote linegraph-based tensor
contraction and stochastic tensor contraction respectively. For 3-regular Max-Cut/QAOA circuits, we were able to simulate a small subset of the
100-qubit circuits we created, not shown here.

https://doi.org/10.1371/journal.pone.0208510.g006
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simulations suggest that the point at which qTorch is no longer faster than LIQUi|> occurs

in QAOA/Max-Cut approximately when the Max-Cut graph has a regularity of five. In the

future, qTorch may be used to estimate these points of equivalent computational cost in

other classes of circuits, which may help to determine which simulation method to use in

simulations.

Fig 7. Simulation time plotted against the regularity of the underlying Max-Cut graph, for Max-Cut/QAOA
circuits. LG, Stoch, and LIQUi|> denote linegraph-based tensor contraction, stochastic tensor contraction, and
LIQUi|>, respectively. As regularity increases, full Hilbert space simulation (using LIQUi|>) becomes a more
competitive simulation method. Missing data points resulted from running out of memory.

https://doi.org/10.1371/journal.pone.0208510.g007
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Several immediate algorithmic improvements are possible for this software. The use of

sparse tensors would reduce the number of floating point operations for some relevant circuits.

Tensor decompositions (such as the singular value decomposition) along with trimming can

be added as intermediate steps, as has been done in tensor network based simulations of physi-

cal systems [32, 34]. Additionally, more advanced parallelization methods would allow for

faster calculation of a tree decomposition as well as faster contractions.

Supporting information

S1 Appendix. The appendix contains a more complete introduction to QAOA and Max-

Cut, and gives implementation details of the LIQUi|>simulations.

(PDF)
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4. Tabakin F, Juliá-Dı́az B. {QCWAVE}—AMathematica quantum computer simulation update. Computer
Physics Communications. 2011; 182(8):1693–1707. https://doi.org/10.1016/j.cpc.2011.04.010

5. Miszczak JA. Models of quantum computation and quantum programming languages. Bull Pol Acad
Sci-Tech Sci. 2010; 59(3):305.

6. Sawaya NPD, Smelyanskiy M, McClean JR, Aspuru-Guzik A. Error Sensitivity to Environmental Noise
in QuantumCircuits for Chemical State Preparation. Journal of Chemical Theory and Computation.
2016; 12(7):3097–3108. https://doi.org/10.1021/acs.jctc.6b00220 PMID: 27254482

7. Silva M, Magesan E, Kribs DW, Emerson J. Scalable protocol for identification of correctable codes.
Phys Rev A. 2008; 78:012347. https://doi.org/10.1103/PhysRevA.78.012347

8. Geller MR, Zhou Z. Efficient error models for fault-tolerant architectures and the Pauli twirling approxi-
mation. Phys Rev A. 2013; 88:012314. https://doi.org/10.1103/PhysRevA.88.012314

9. Tomita Y, Svore KM. Low-distance surface codes under realistic quantum noise. Phys Rev A. 2014;
90:062320. https://doi.org/10.1103/PhysRevA.90.062320

10. Boixo S, Isakov SV, Smelyanskiy VN, Babbush R, Ding N, Jiang Z, et al. Characterizing quantum
supremacy in near-term devices. Nature Physics. 2018; 14(6):595–600. https://doi.org/10.1038/
s41567-018-0124-x

11. Farhi E, Harrow AW. Quantum Supremacy through the Quantum Approximate Optimization Algorithm;
2016. arXiv:1602.07674.

12. Boixo S, Isakov SV, Smelyanskiy VN, Neven H. Simulation of low-depth quantum circuits as complex
undirected graphical models; 2017. arXiv:1712.05384.

13. Chen J, Zhang F, Huang C, NewmanM, Shi Y. Classical Simulation of Intermediate-Size Quantum Cir-
cuits; 2018. arXiv:1805.01450.

qTorch: The quantum tensor contraction handler

PLOSONE | https://doi.org/10.1371/journal.pone.0208510 December 10, 2018 18 / 20

https://doi.org/10.1016/j.cpc.2008.11.021
https://doi.org/10.1016/j.cpc.2011.04.010
https://doi.org/10.1021/acs.jctc.6b00220
http://www.ncbi.nlm.nih.gov/pubmed/27254482
https://doi.org/10.1103/PhysRevA.78.012347
https://doi.org/10.1103/PhysRevA.88.012314
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1371/journal.pone.0208510


14. Childs AM, Maslov D, Nam Y, Ross NJ, Su Y. Toward the first quantum simulation with quantum
speedup; 2017. arXiv:1711.10980.

15. Bouland A, Fefferman B, Nirkhe C, Vazirani U. Quantum Supremacy and the Complexity of Random
Circuit Sampling; 2018. arXiv:1803.04402.

16. Pednault E, Gunnels JA, Nannicini G, Horesh L, Magerlein T, Solomonik E, et al. Breaking the 49-Qubit
Barrier in the Simulation of QuantumCircuits; 2017. arXiv:1710.05867.

17. Chen ZY, Zhou Q, Xue C, Yang X, Guo GC, Guo GP. 64-Qubit Quantum Circuit Simulation; 2018.
arXiv:1802.06952.
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33. Orús R. Advances on tensor network theory: Symmetries, fermions, entanglement, and holography.
European Physical Journal B. 2014; 87(11).

34. Ran SJ, Tirrito E, Peng C, Chen X, Su G, Lewenstein M. Review of Tensor Network Contraction
Approaches; 2017. arXiv:1708.09213.

35. Robertson N, Seymour PD. Graphminors. X. Obstructions to tree-decomposition. Journal of Combina-
torial Theory, Series B. 1991; 52(2):153–190. https://doi.org/10.1016/0095-8956(91)90061-N

36. Bodlaender HL, Koster AMCA. Treewidth computations I. Upper bounds. Information and Computation.
2010; 208(3):259–275. https://doi.org/10.1016/j.ic.2009.03.008

37. Bodlaender HL, Koster AMCA. Treewidth computations II. Lower bounds. Information and Computa-
tion. 2011; 209(7):1103–1119. https://doi.org/10.1016/j.ic.2011.04.003

38. Gogate V, Dechter R. A Complete Anytime Algorithm for Treewidth. In: Proceedings of the 20th Confer-
ence on Uncertainty in Artificial Intelligence. UAI’04. Arlington, Virginia, United States: AUAI Press;
2004. p. 201–208. Available from: http://dl.acm.org/citation.cfm?id=1036843.1036868.

39. Arnborg S, Corneil DG, Proskurowski A. Complexity of Finding Embeddings in a K-tree. SIAM J Alge-
braic Discrete Methods. 1987; 8(2):277–284. https://doi.org/10.1137/0608024

40. Amir E. Approximation Algorithms for Treewidth. Algorithmica. 2010; 56(4):448–479. https://doi.org/10.
1007/s00453-008-9180-4

qTorch: The quantum tensor contraction handler

PLOSONE | https://doi.org/10.1371/journal.pone.0208510 December 10, 2018 19 / 20

https://doi.org/10.1103/PhysRevA.70.052328
http://doi.acm.org/10.1145/380752.380785
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1103/PhysRevLett.116.250501
http://www.ncbi.nlm.nih.gov/pubmed/27391708
https://doi.org/10.1137/050644756
http://www.osti.gov/scitech/servlets/purl/1340180
http://www.osti.gov/scitech/servlets/purl/1340180
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/j.ic.2009.03.008
https://doi.org/10.1016/j.ic.2011.04.003
http://dl.acm.org/citation.cfm?id=1036843.1036868
https://doi.org/10.1137/0608024
https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1007/s00453-008-9180-4
https://doi.org/10.1371/journal.pone.0208510


41. Pfeifer RNC, Haegeman J, Verstraete F. Faster identification of optimal contraction sequences for ten-
sor networks. Physical Review E. 2014; 90(3). https://doi.org/10.1103/PhysRevE.90.033315

42. Peruzzo A, McClean J, Shadbolt P, Yung MH, Zhou XQ, Love PJ, et al. A variational eigenvalue solver
on a photonic quantum processor. Nat Commun. 2014; 5:4213. https://doi.org/10.1038/ncomms5213
PMID: 25055053

43. Wecker D, Hastings MB, Troyer M. Progress towards practical quantum variational algorithms. Phys
Rev A. 2015; 92:042303. https://doi.org/10.1103/PhysRevA.92.042303

44. YungMH, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A, et al. From transistor to
trapped-ion computers for quantum chemistry. Sci Rep. 2014; 4:3589. https://doi.org/10.1038/
srep03589 PMID: 24395054

45. McClean JR, Romero J, Babbush R, Aspuru-Guzik A. The theory of variational hybrid quantum-classi-
cal algorithms. New J Phys. 2016; 18(2):023023. https://doi.org/10.1088/1367-2630/18/2/023023
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