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Abstract: A quad-band circularly-polarized antenna, for applications of a global navigation satellite
system (GNSS), 5G, and WIFI-6E, is designed, fabricated, and measured. The proposed antenna is
formed by an L-shaped radiator, a rectangular frame ground with an L-shaped stub, and a rectangular
strip at the opposite corner. The microstrip antenna can generate four frequency bands, covering
WIFI-6E (5925–7125 MHz), 5G n77 (3300–4200 MHz), n78 (3300–3800 MHz), and the GNSS bands.
This antenna generates right hand circular polarization (RHCP) waves in the low frequency band
(0.95–2.11 GHz), covering GPS, BDS, GLONASS, and GALILEO applications. Moreover, an L-shaped
aperture and three rectangular slits are cut on the ground to broaden the axial-ratio bandwidth at
the upper band. A prototype is fabricated and measured to verify the performance of this design. It
is shown that the agreement between the simulation and measurement is satisfactorily good. The
measured −10 dB bandwidths for each band are 75.8% (0.95–2.11 GHz), 55.8% (3.05–5.39 GHz),
39.9% (5.84–8.19 GHz) and 10.3% (9.14–10.68 GHz), respectively. While the measured 3 dB axial-ratio
bandwidths are 59.4% (1.16–2.14 GHz), 35.8% (3.23–4.64 GHz), 8.4% (5.70–6.20 GHz), and 2.6%
(7.51–7.71 GHz), the measured gains are 4.56, 2.28, 4.26, and 4.30 dBi at 1.5 GHz, 3.8 GHz, 6 GHz, and
7.6 GHz, respectively.

Keywords: quad-band; circularly polarized; global navigation satellite system; 5G

1. Introduction

The circular polarization (CP) antenna is an important component in many commu-
nication systems. The investigation into this component has been a hot topic for many
years [1,2]. Electromagnetic waves usually encounter reflection and refraction during
propagation, which often leads to a change in polarization direction or state [3]. In addition,
when travelling through the ionic and rain layers, depolarization effects may occur, which
is very harmful to communication links. It is well recognized that a circularly polarized
wave is less affected by the Faraday rotation [4,5] in comparison to a linearly polarized
one. Moreover, it is superior in countering the depolarization effect. Therefore, circularly
polarized antennas are usually used in global navigation satellite systems (GNSS). They
also have important applications in various wireless systems, such as radar and mobile
communication systems [6].

With the swift development of wireless communication, many functions are integrated
into a single terminal device, and multi-band antennas are in active demand. Antennas
working over several frequency bands with circularly polarized properties are, therefore,
highly preferred. The first requirement may be the coverage of several navigation systems
simultaneously; the second requirement is that other wireless communications, such as
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5G and WIFE, can be integrated in a single terminal device. In this connection, further
investigation into multi-band circularly polarized antennas is required.

For an arbitrary electromagnetic wave, its electric field
⇀
E can be divided into two

components, i.e.,
⇀
E = Exejϕx êx + Eyejϕy êy. If the amplitudes of the two components are

equal (Ex = Ey) and the phase difference meets ϕy − ϕx = ±90◦, the resultant field appears
as a circularly polarized wave [7]. There are many techniques to realize CP antennas, such as
cutting slots [8–10], adding branches [11,12], using a feed network with a phase difference of
90◦ [13,14], etc. In Ref. [14], a polarization reconfigurable antenna was developed for GNSS.
The variation in operation frequency is tuned by PIN-diode switches, which are not multi-
band operation antennas. A compact antenna was proposed in Ref. [15], through using two
T-coupling lines with different lengths as feeds, to achieve circular polarization. It can fully
cover the GPS L1 band. Stacking radiating patches is another common method to generate
multi-band circular polarization [16–19]. The main drawbacks of the stacking technique are
the difficulty in fabrication and relatively larger thickness, which is not preferred in many
mobile terminals. Multi-band circular polarization can also be achieved by etching slots
on the ground layer [20–23]. Most of these designs can provide dual-band operation. In
Ref. [24], a circularly polarized antenna is developed based on a dielectric resonator. This
antenna can excite six different mixed radiation modes and generate four frequency bands
for BDS, GPS, WLAN, and WiMAX. However, the axial-ratio (AR) bandwidth is narrow,
while the antenna size is relatively large. In Ref. [25], a three-band circularly polarized
antenna was proposed. By using a linear-to-circular polarization converter on the bottom
layer, circular polarization waves can be radiated. The antenna provides three AR bandwidths
of 3.53%, 1.73%, and 13.62%, which are very suitable for satellite applications. However, it
does not have extra bands for other wireless communications. In Ref. [26], a tri-band, wearable
circularly polarized antenna was proposed, which can be used in WLAN, C band, and X/Ku
band. The AR bandwidths of each band are 10.10% (4.7–5.2 GHz), 4.95% (5.9–6.2 GHz), and
10.44% (11.8–13.1 GHz), respectively.

At present, the navigation systems include GPS, BDS, GALILEO, and GLONASS [27,28].
These systems operate at different frequency bands, GPS: L1 (1227.60 ± 10.23 MHz) and L2
(1575.42 ± 10.23 MHz); GALILEO: E1 (1227.60 ± 1.023 MHz) and E5b (1575.42 ± 1.023 MHz);
BDS: B1(1561.098 ± 2.046 MHz) and B2 (1207.14 ± 2.046 MHz); GLONASS: L1 (1602.5625 ±
4 MHz) and L2 (1246.4735 ± 4 MHz). These frequency bands are so close to each other that
it is best to create one single band where all four of the navigation systems are covered. In
addition, to cover other wireless communications, extra frequency bands have to be created.
It is, therefore, necessary to develop multiple frequency bands with circularly polarized
radiation. Since the development of 5G and WIFI-6E, technology has brought about a
substantial increase in data transmission rates as well as shorter network delays [29,30].
An antenna that can match multiple frequency bands of GNSS, 5G, and WIFI 6E will see
wide application in a terminal device.

In this communication, a quad-band circularly polarized antenna that can cover almost
all global navigation frequency bands is proposed. The antenna is formed by an L-shaped
radiator, a rectangular frame ground with an L-shaped stub, and a rectangular strip at
the corner. An L-shaped aperture and three rectangular slits were cut on the ground to
improve current distribution, which can broaden AR bandwidth at the 5G frequency band.
The detailed geometry for the proposed antenna is shown in Section 2. By optimizing
parameters, impedance bandwidth and AR bandwidth are further improved. The measured
results are shown in Section 5.

2. Structure and Analysis

The geometry of the proposed antenna is schematically shown in Figure 1. The antenna
is fed through a 50 Ω microstrip feedline. The feedline is connected to an L-shaped patch,
acting as field excitation and radiator. The L-shaped patch is printed on an FR4 substrate with
εr = 4.4 and tan δ = 0.02, and the frame ground is fabricated on the bottom of the substrate.
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Figure 1. Geometry and parameters of the proposed antenna.

The side length of the substrate is G, and the thickness is H. To assess the performance
of this antenna, a commercial solver, ANSYS HFSS, is used for simulation. The resultant
values for each parameter are listed in Table 1.

Table 1. Dimension of the proposed antenna.

Parameter Value/mm Parameter Value/mm

G 80 Lf 11
B 60 W1 9.5
H 1.6 W2 11.5
L1 36.5 Wf 3
L2 8 S 18
L3 20 S1 30
L4 11.5 K1 8
L5 5 K2 15.5

The evolution process is illustrated in Figure 2. A square slot with side lengths of B is
introduced in the ground plane, shown as Ant. 1, in Figure 2. An L-shaped stub is then
protruded from the left side of the ground plane toward the center, and it is marked as Ant.
2. Following on, a rectangular patch is placed on the bottom right corner of the ground and
seen as Ant. 3. At last, four slots are etched on the ground frame and shown as Ant. 4. In
order to demonstrate the evolution of the antenna, the AR and impedance bandwidth of
each antenna are simulated and plotted in Figure 3.
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Figure 3. Simulated results for Ant. 1–Ant. 4: (a) S11, (b) AR.

The basic structure is Ant. 1, which has a frame ground and an L-shaped radiator,
as used in Ref. [30]. It is seen, from the simulated results, that Ant. 1 provides a wide
impedance bandwidth in the range of 3.8–8.2 GHz. However, it is linearly polarized in
this operation range. Even worse, the impedance matching is not good enough in the
navigation bands. To improve the quality of circular polarization, an L-shaped branch is
added to the upper left corner, as shown with Ant. 2 in Figure 2. Although the impedance
bandwidth becomes worse in the low frequency around 1.5 GHz, the axial ratio is greatly
improved. To create resonance in the navigation bands, a rectangular patch is placed at the
lower right corner of the ground plane, as seen with Ant. 3. Apparently, the impedance
bandwidth and axial ratio have been greatly improved. Therefore, the rectangular patch can
improve impedance matching at lower and upper bands. By adding slots on the ground plane,
the AR may be further improved, as seen with Ant. 4. The bandwidth does not see significant
change, while the AR is greatly improved—particularly at 1–2 GHz and around 6 GHz.

3. Parametric Study

To examine the sensitivity of each parameter, a systematic study has been conducted.
The purpose of doing this is to find the fabrication tolerance and, more importantly, to
pinpoint the effects of these parameters on AR and bandwidth. We have chosen four
parameters, i.e., the length of the L-shaped radiator L1, the L-shaped branch length L4, the
width of the rectangular patch S, and the width of the narrow feeding line connecting to
the coaxial cable. The first three parameters correspond to the evolution process, and the
last parameter is chosen because it determines the input impedance, and therefore, in most
cases, it is the most sensitive parameter.

The L-shaped patch acts as field excitation and a radiator. Letting L1 = 35.5, 36.5, and
37.5 mm, it is found that the reflection coefficients for these cases do not see significant
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variation, as shown in Figure 4. Only a slight change takes place in the 10 GHz band. For
the axial ratio, the change occurs in the 7.6 GHz band. The criterium of −3 dB is not met
for L1 = 37.5 mm. For the L-shaped branch, when changing the length, it is also found that
the reflection coefficients do not change significantly, as shown in Figure 5. In addition,
the axial ratio sees apparent change in the 4 GHz and 7.6 GHz bands. It is seen from
Figure 6 that the width of the patch S does produce some effect on the reflection coefficients.
However, the −10 dB bandwidths for each band do not change significantly. Its effect on
the axial ratio happens in all four of the bands—particularly for the 4 GHz, 6 GHz, and
7.6 GHz bands.
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The last parameter, wf, is the width of the feed. It is clearly seen from Figure 7 that
the change in the width affects the reflection coefficients considerably. In other words, the
impedance matching varies significantly with the change in wf. For the axial ratio, the
change is much greater for the higher frequency bands than the lower frequency bands. It
appears that the 4 GHz and 7.6 GHz bands are more sensitive to changes in the parameters.
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It is seen, from the parametric study, that the most sensitive parameter on the impedance
bandwidth is the width of the feedline wf. The width of the patch S also produces some
effect on the impedance bandwidth. Other parameters have very limited effects on the
impedance bandwidth. In comparison, the width of the patch S produces a considerable
effect on the AR bandwidth. While the width of the feedline wf produces some effect on
the AR bandwidth, other parameters have fewer effects on the AR bandwidth.

4. Currents Distribution

In order to shed more light on the process of generating circular polarization and
determining the direction of the circular polarization, the surface current distributions are
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shown in Figure 8, where Figure 8a shows the current distributions of 0◦, 90◦, 180◦, and
270◦ at 1.5 GHz. From the plot, it is seen that currents rotate, in the counterclockwise sense,
as the phase increases, which means that the antenna radiates right-handed circularly
polarized (RHCP) waves at low frequency bands. In addition, the current is distributed
over the frame ground, indicating that the frame also functions as a radiator at 1.5 GHz. It
has to be mentioned that most navigation satellite transmitting antennas are right-handed
circularly polarized antennas.
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The current distributions from 0◦ to 270◦, at 4 GHz, are shown in Figure 8b. The
current rotates clockwise with the increasing time phase, and the fields radiated LHCP in
the +Z direction. For this frequency, however, most of the currents are located in the area of
the L-shaped radiator and the patch on the left bottom corner. There are also some currents
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on the top part of the frame. Therefore, there are multi-resonance frequencies in this band,
which is consistent with Figure 3.

Figure 8c shows the current distributions from 0◦ to 270◦ at 6 GHz. The current rotates
counterclockwise with the increasing time phase, and the fields radiated RHCP in +Z
direction. However, it has to be mentioned that the 6 GHz band also contains several
resonances, and the bandwidth is relatively wide. Several areas contribute to the resultant
polarization state. In this sense, this band is affected by several parameters, as discussed in
the previous section.

The same observation can be made on the 7.6 GHz band, as seen in Figure 8d. However,
the rotational sense is LHCP in the +Z direction. It is interesting to find that the rotational
sense changes, alternatingly, with the frequency bands.

5. Measurement and Discussion

The antenna is fabricated using etching technology on an FR4 substrate. The prototype
is shown in Figure 9a. The S-parameter is measured by an AV3672D vector network
analyzer. The far field and gain are measured in a microwave anechoic chamber, as shown
in Figure 9b. The axial ratio is retrieved from the radiation patterns.
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The simulated and measured S parameters, as well as AR, are plotted in Figure 10a,b,
respectively. For reflection measurement, the antenna is placed in the anechoic chamber,
and the cable is connected to the VNA. Before measurement, the cable is calibrated. As can
be seen from the results, four frequency bands have been successfully realized. The −10 dB
bandwidths for the four bands are 75.8% (0.95–2.11 GHz), 55.8% (3.05–5.39 GHz), 39.9%
(5.84–8.19 GHz), and 10.3% (9.14–10.68 GHz), respectively. The first band covers all four of
the navigation systems (1.20 GHz–1.61 GHz). The second band covers several 5G bands.
The third and fourth bands are for WIFI-6E and the satellite communication band.
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The measured 3 dB bandwidths for AR are 59.4% (1.16–2.14 GHz), 35.8% (3.23–4.64 GHz),
8.4% (5.70–6.20 GHz), and 2.6% (7.51–7.71 GHz). The measured gains are 4.56, 2.28, 4.26,
and 4.30 dBi at 1.5 GHz, 3.8 GHz, 6 GHz, and 7.6GHz, respectively. It can be observed that
there is a good agreement between simulated and measured results. The slight difference is
mainly due to the soldering error between the SMA connector and the feeder line. At the
same time, when performing a far field test, the angle error between the turntables may
also affect the test results. The measured results show that the proposed antenna can cover
almost all navigation frequency bands, and it can cover 5G, N77, and N78 frequency bands
at the same time.

The measured and simulated far-field radiation patterns, in E-plane and H-plane, at
1.5 GHz, 4 GHz, 6 GHz, and 7.6 GHz are plotted in Figure 11. From the radiation patterns,
it is clear that the antenna can radiate RHCP at 1.5 GHz, LHCP at 4 GHz, RHCP at 6 GHz,
and LHCP at 7.6 GHz in the +z direction. It can also be seen that the antenna radiates a
bidirectional wave with the opposite circular polarization. The RHCP is realized in the +z
direction, while LHCP is in the −z direction.
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Gain measurement is conducted, by comparison, to standard-gain horn antenna. The
measured gain versus the simulated gain is plotted in Figure 12. In the measurement, only
the interested bands are measured. It can be seen that the measurement is in satisfactory
agreement with the simulation. There are slight differences near 1.5 GHz and 6 GHz.
However, the discrepancy is acceptable.
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A comparison between this work and the designs in the literature is presented in
Table 2. Looking at the size of the antenna, this design is moderately large. In terms of
operation bands, this work provides four working bands. Particularly, the first three bands
have more than 39% relative bandwidths. The first bandwidth is even greater than 75%.
Regarding the axial ratio bandwidth, the first band provides a bandwidth of 59.4%, making
it the widest design in Table 2. In addition, this design covers all the four navigation
systems. Moreover, extra bands can be applied for 5G and WIFI-6E applications. Therefore,
this design provides more communication bands with larger bandwidth over an area of
moderately large.

Table 2. Comparison of the GNSS CP antennas.

References Size (mm3) Number of Bands S11 < 10 dB AR < 3 dB Applications

[8] 150 × 150 × 18 2 12.7%, 10.1% 3.3%,3.1% GPS

[9] 101 × 64 × 1.52 1 86.9% 74.3% 5G, WIFI-6E

[15] 50 × 50 × 5 1 3.2% 1.8% GPS, GLONASS

[19] 47.7 × 47.7 × 5.8 1 19.7% 13.9% Telemetry tracking
and command system

[22] 93.6 × 96 × 1 2 14.75%,9.44% around
2.84GHz,5.24GHz WLAN

[23] 130 × 130 × 31.52 2 40.57% 6.56%, 7.74% GPS

[24] 120 × 120 × 29.6 4 21.1%, 12.8%, 27.1%,
7.5%

11.6%, 7.6%, 7.0%,
7.1%

GPS, BDS, WLAN,
Wi-MAX

[25] 35 × 35 × 13.8 3 13.0%, 18.2%, 14.7% 3.53%, 1.73%, 13.62% Satellite application

[26] 25 × 25 × 1 3 23.4%,56.5%, 31.14% 10.1%, 4.95%, 10.44% WLAN/C band
X/Ku band

[31] 60 × 60 × 1.0 3 44.0%, 70.9% 35.9%, 44%, 6.3% WLAN, 5G

This work 80 × 80 × 1.6 4 75.8%, 55.8%, 39.9%,
10.3%

59.4%, 35.8%, 8.4%,
2.6% GNSS, 5G, WIFI-6E

6. Conclusions

A circularly polarized antenna with simple structure, multiple frequency bands, and
a wide axial ratio bandwidth has been presented. The proposed antenna adds an L-shaped
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stub and a rectangular patch, on the basis of the L-shaped radiator and rectangular frame,
which changes the current distribution by cutting grooves to achieve the superior performance
of multiple frequency bands and the wide axial ratio bandwidth. The measured −10 dB
bandwidth is 75.8% (0.95–2.11 GHz), 55.8% (3.05–5.39 GHz), 39.9% (5.84–8.19 GHz), and 10.3%
(9.14–10.68 GHz), and 3-dB ARBWs are 59.4% (1.16–2.14 GHz), 35.8% (3.23–4.64 GHz), 8.4%
(5.70–6.20 GHz), and 2.6% (7.51–7.71 GHz). Results show that the antenna can operate in
the frequency bands from 1.16 to 2.14 GHz in RHCP for GNSS, from 3.23 to 4.64 GHz in
LHCP for 5G, and from 5.925 to 7.125 GHz for WIFI-6E.
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