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Abstract: The development of metamaterial absorbers has become attractive for various fields of
application, such as sensing, detectors, wireless communication, antenna design, emitters, spatial light
modulators, etc. Multiband absorbers with polarization insensitivity have drawn significant attention
in microwave absorption and sensing research. In this paper, we propose a quad-band polarization-
insensitive metamaterial absorber (MMA) for Ku- and K-band applications. The proposed patch
comprises two square split-ring resonators (SSRR), four microstrip lines, and an inner Jerusalem
cross to generate four corresponding resonances at 12.62 GHz,14.12 GHz, 17.53 GHz, and 19.91 GHz
with 97%, 99.51%, 99%, and 99.5% absorption, respectively. The complex values of permittivity,
permeability, refractive index, and impedance of MMA were extracted and discussed. The absorption
mechanism of the designed MMA was explored by impedance matching, equivalent circuit model,
as well as magnetic field and electric field analysis. The overall patch has a rotational-symmetrical
structure, which plays a crucial role in acquiring the polarization-insensitive property. The design
also shows stable absorption for both transverse electric (TE) and transverse magnetic (TM) modes.
Its near-unity absorption and excellent sensing performance make it a potential candidate for sensing
applications.

Keywords: metamaterial absorber; polarization-insensitive; quad-band; Ku- and K-band applications;
sensing application

1. Introduction

A metamaterial is a non-natural material structure that possesses rare material prop-
erties, such as negative permittivity, negative permeability, reverse doppler effect, and
negative refractive index, known as metamaterial (MTM) properties [1]. MTM properties
depend on the geometry of the unit cell structure with a stable structural composition. These
extraordinary physical properties make MTMs appropriate for numerous applications, such
as sensing [2,3], imaging [4], metamaterial coding [5], lensing [6], reflect arrays [7], terahertz
applications [8], invisible clocks [9], antennae [10–12], absorbers [13], programable analog
differentiators [14], etc. The perfect or near-perfect metamaterial absorber has the ability to
absorb a specific frequency by preventing reflection and transmission of electromagnetic
(EM) waves at a given frequency [15–19]. MTMs have attracted significant attention due
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to their extensive potential application areas, such as imaging, optical switching, energy
harvesting, bolometry, radar cross-sectioning, antenna side-lobe reduction, SAR reduction,
solar cells, sensing, etc. [20–23].

Therefore, MMAs can replace traditional absorbers, such as wedge-shaped, Salis-
bury screen, Jauman layer, and ferrite absorbers due to their bulkiness and thickness,
although limited to a few applications [24]. The main benefit of MMAs over traditional
absorbers is their ease of fabrication, low cost, lightweight, ultra-thin thickness, and near-
unity absorption [25]. Most MMAs consists of a three-layer sandwich model (metal lossy
substrate-metal) [26]. In MMAs, near-unity absorption peaks are achieved by controlling
the imaginary and real part of complex dielectric, magnetic permeability and electrical
permittivity. The input impedance of MMAs matches with free space impedance, which is
achieved through specific geometrical design of the top metal (resonator) [27]. Impedance
matching between air and the MMA reduces the reflected power at a particular frequency,
and the bottom metal blocks EM wave transmission through the MMA [28]. The major
limitations of the resonator base of MMAs are the narrow low values of the absorption band,
which reduce the operating range and accuracy of the MMA. This limitation can be overcome
by multi-band MMAs, which have an increased operating range and efficiency [14,29–31].
Multiband perfect absorption with full programmability of the absorbed bands was demon-
strated in [14] by in situ tuning of an overmoded scattering system equipped with a
programmable metasurface to the desired functionality. Moreover, polarization-insensitive
behavior is also an important feature of MMAs, resulting in stable absorption properties
at different polarization angles, which improves the usability of MMAs at different polar-
ization values [29,32,33]. MMAs have the potential used for sensing applications in the
microwave range. Various devices have been proposed for different sensing applications,
such as permittivity sensors, refractive index sensors, grin sensors, density sensors, temper-
ature sensor, and glucose sensors [29,30,32–37]. Moreover, K- and Ku-band frequencies can
be applied for short-range microwave sensing [32,38,39].

Various metamaterial absorber is designed in the microwave (C, X, Ku, K) to the tera-
hertz frequency band [40–42]. Ku and K band frequency has wide application in the radar,
telecommunications, and sensor fields. A magnetic plasmon based metamaterial sensor has
been designed in [43] for infrared wavelength, where the metamaterial was designed by Ag
nanowire on Ag substrate. In [44], a splits ring resonator-based refractive index sensor is
presented for protein sensing. A circular split-ring resonator (CSRR) metamaterial absorber
was presented in [13] for K-band absorption and sensing applications, showing two 99.9%
absorption peaks at 21.6 GHz and 24.04 GHz. The complete dimensions of the CSRR
is 10 × 10 × 1.6 mm3. A quad-band wrenched-square-shaped resonator was proposed
in [24], and a triple-band square split-ring resonator (SSRR) with an inner Jerusalem cross
was presented in [45]. Both designs ([45] and [24]) achieved absorption peaks above 95%
and exhibited polarization-insensitive behavior at S, X, and Ku frequency bands. In [46], a
combination of eight identical 7-shapes and SSRR achieved three absorption peaks at 8.5,
13.5, and 17 GHz with 99.9%, 99.5%, and 99.9% absorption, respectively. In [47], A V-shaped
polarization-insensitive MMA was designed for Ku- and K-band frequency applications,
achieving absorption peaks at 15.52 and 27.24 GHz with 98.38% and 90.7% absorption,
respectively. A T-shaped polyimide substrate-based polarization-insensitive MMA was
presented in [48], and polarization-insensitive behavior was achieved because of the ro-
tational symmetry of the MMA, with two absorption peaks at 16.77 GHz and 30.92 GHz
with 98.7% and 99.3% absorption, respectively. In [49], a diagonally slotted patch MMA
was designed for Ku-band applications, producing two absorption peaks at 12.45 and
14.18 GHz with 99.73% and 99.87% absorption, respectively. The orientation of the diagonal
slot was 45◦; due to this design, the MMA exhibited polarization-sensitive behavior. Most
MMAs achieve single or dual absorption peaks at Ku- or K-band frequencies; some are
polarization-sensitive and show lower absorption peaks or larger unit-cell sizes.

In this paper, we present an MMA for Ku- and K-band sensing applications. The
geometry of the proposed MMA was chosen to provide quad-band polarization-insensitive
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absorption behavior. The designed MMA simulated for TM and TE modes, and all simula-
tion setups resulted in similar absorption curves due to the symmetrical rotational design.
We evaluated the proposed MMA in order to understand the effect of structural design
on absorption behavior. In the following sections, we discuss the metamaterial properties,
normalized input impedance, polarization conversion ratio (PCR), and H-field and E-fields
with respect to absorption behavior. The advantages of the designed MMA include its
quad-band absorption peaks with near-unity and polarization insensitivity.

2. Metamaterial Absorber Design
2.1. Unit Cell Design and Absorption Calculation

In his section, we discuss the design of an MMA unit cell with an absorption mecha-
nism. The square split-ring resonator (SSRR) achieves quad-band near-unity absorption
peaks. FR4 substrate materials with 1.6 mm thickness were selected for the absorber design
due to their low cost, zero water absorption, and versatility, making them commercially
attractive. The dielectric constant, thermal conductivity, and loss tangent of the substrate
are 4.3, 0.3 W/K/m, and 0.025, respectively. Copper was used for the patch and ground
design, with an electrical conductivity (ρ) of 5.96 × 107 S/m.

Figure 1 shows a front view of the MMA unit cell with a sketch of all required
dimensions. The MMA patch design consists of a Jerusalem cross, two square split rings,
and four microstrip lines. The unit cell dimensions are 10× 10× 1.6 mm3, and all the design
parameters are recorded in Table 1. The proposed MMA was designed and simulated using
the CST microwave studio [50], where the unit cell boundary conditions were applied
along the Y- and X-axes, and electromagnetic waves were applied along the negative Z-axis.
The absorption behavior A(ω) was determined according to Equation (1) [27].

A(ω) = 1− S2
11 − S2

21 (1)

where S11 and S21 are reflection and transmission coefficients, respectively, as shown in
Figure 2, and four near-zero reflection coefficient (S11) resonance peaks are achieved at
12.62 GHz, 14.12 GHz, 17.53 GHz, and 19.91 GHz. A copper ground of 0.035 mm thickness
results in a zero transmission coefficient (S21), which can be obtained by calculation of the
skin depth [27].

Skin depth, δ =

√
ρ

π f µ
(2)

where permeability (µ) is 1, resistivity (ρ) is 1.72Ω − m, with lower frequency defined
as f = 12.62GHz. The skin depth becomes δ = 0.0065 mm, which completely blocks
the electromagnetic (EM) wave transmission through the MMA. Therefore, Equation (1)
becomes:

A(ω) = 1− S2
11 (3)

The peak 97% absorption at 12.62 GHz and 99% absorption at 14.12 GHz, 17.53 GHz,
and 19.91 GHz were attained for the proposed MMA presented in Figure 2. The high-quality
(Q) factor represents high sensitivity, where the Q factor is calculated by Q = fc/FWHM,
where fC is the center frequency, and FWHM is the full wave of half maximum [51]. The
Q factors of the proposed MMA at 12.62 GHz, 14.12 GHz, 17.53 GHz, and 19.91 GHz are
39.43, 34.43, 37.29, and 34.32, respectively.

2.2. Evaluation of MMA and Metamaterial Property Analysis

The evaluation of the proposed MMA towards SSRR for achieving quad-band absorp-
tion is shown in Figure 3. In order to understand the absorption mechanism of the MMA
impedance, analysis is vital. The reflection coefficient (S11) depends considerably on the
effective impedance (Ze), as shown in Equation (4).

S11 =
Ze − Z0

Ze + Z0
(4)
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where Ze =
√

µ0µr(ω)/ε0εr(ω) Z0 = 377Ω =
√

µ0/ε0 is the free space impedance; and
µ0, ε0, µr(ω), and εr(ω) are the free space permeability, free space permittivity, frequency-
dependent permeability, and permittivity, respectively. The normalized impedance can be
calculated by Z = Ze f f /Zo =

√
µr/εr. Near-unity absorption is achieved by impedance

matching with free space. The near-unity value of the real part and the near-zero value of
the imaginary part represent the normalized impedance matched with free space [52,53].
The relation between the absorption and metamaterial properties can be understood by
calculating Equations (3) and (4) [54].

A(ω) = 1− S2
11 = 1−

∣∣∣∣Ze − Z0

Ze + Z0

∣∣∣∣2 = 1−
∣∣∣∣∣
√

µr −
√

εr√
µr +

√
εr

∣∣∣∣∣ (5)
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Figure 1. Patch design of the proposed MMA. (a) Perspective view, (b) simulation setup and (c) 
front view. 

 
Figure 2. Absorption and s-parameter plot. 

  

10 12 14 16 18 20 22

0.0

0.2

0.4

0.6

0.8

1.0

 S11 
 S21
 Absorption %

Frequency (GHz)

S-
pa

ra
m

et
er

s 
(L

in
ea

r)

0

20

40

60

80

100

 A
bs

or
pt

io
n 

%

Figure 1. Patch design of the proposed MMA. (a) Perspective view, (b) simulation setup and (c)
front view.

Table 1. Parameters list.

Parameter Value (mm)

l 10
a1 4
a2 7.07
a3 4.95
b1 2.0
b2 1.23
g1 0.35
g2 0.35
w 0.35
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The metamaterial attributes of the absorber are determined by the Nicolson–Ross–Weir
(NRW) formula [55], where ω = 2π f , and c is the velocity of light.

εr =
2√

ω
c × d

× 1− (S21 + S11)

1 + (S21 + S11)
(6)

µr =
2√

ω
c × d

× 1− (S21 − S11)

1 + (S21 − S11)
(7)

Initially (design 1), a square ring resonator (SRR) is placed on top of the substrate
materials, achieving only 14% absorption at a 12.25 GHz resonance frequency with (single
negative) SNG metamaterial properties. The absorption percentage slightly increases to 30%
at a 12.30 GHz resonance frequency using two square ring resonators because of coupling
capacitance between the two SRRs, where SNG metamaterial properties are achieved. In
design 3, four splits are made in the middle of each SRR, which significantly increases
the capacitance in the splits, resulting in 96.37% and 98.64% absorption peaks appearing
at 13.01 GHz and 17.46 GHz resonance frequency, respectively, with DNG metamaterial
properties. Three absorption peaks are achieved by inserting four microstrip lines in the
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outer side of the SSRR. This microstrip line generates another coupling capacitance, and
therefore, another absorption peak is generated. However, at 12.62 GHz, 17.42 GHz, and
19.85 GHz, SNG metamaterial properties are achieved with 97.97%, 98.23%, and 97.90%
absorption peaks, respectively. Finally, a Jerusalem cross was designed at the absorber’s
center to increase absorption. The absorption peaks are 97%, 99.51%, 99%, and 99.5% at
12.62 GHz, 14.12 GHz, 17.53 GHz, and 19.91 GHz, respectively. The DNG metamaterial
properties appears at 12.62 GHz, 17.53 GHz, and 19.91 GHz. However, the metamaterial
property is SNG at 14.12 GHz frequency. The simulated absorption plot for different
designs is shown in Figure 4. Table 2 lists the metamaterial properties for various design
evaluations. Metamaterial properties such as permittivity, permeability, refractive index,
and normalized impedance of different designs are presented in Figure 5.
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Table 2. Metamaterial properties of different designs.

Evaluation Peak Absorption
Frequency

Permittivity
(Real)

Permeability
(Real)

Refrective
Index

Peak Ab-
sorption

Design 1 12.25 3.62 −46.64 −0.25 14%
Design 2 12.30 2.54 −56.32 −2.57 37.84%

Design 3 13.01
17.46

−1.29
−4.44

−4.64
−2.37

−3.76
−4.71

96.37%
98.64%

Design 4
12.62
17.42
19.85

−0.39
−0.07
0.85

5.07
8.54
−2.44

1.88
3.82
−0.68

97.97%
98.23%
97.90%

Final
Design

12.62
14.12
17.53
19.91

−4.51
2.88
−2.67
−2.54

−4.05
−0.93
−7.77
−6.18

−4.63
1.43
−4.63
−4.09

97%
99.51%

99%
99.5%
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Figure 5. (a) Imaginary permittivity, (b) real permittivity, (c) imaginary permeability, (d) real per-
meability, (e) imaginary normalized impedance, and (f) real normalized impedance for different 
MMA designs. 
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Figure 5. (a) Imaginary permittivity, (b) real permittivity, (c) imaginary permeability, (d) real perme-
ability, (e) imaginary normalized impedance, and (f) real normalized impedance for different MMA
designs.

2.3. Equivalent Circuit Model

The proposed MMA equivalent circuit model was designed and simulated via ADS
(advanced design system) [56], as shown in Figure 6 [27,57–59]. Each resonant peak is
constituted by the inductance and capacitance of separate elements, such as the inner
Jerusalem cross, the two splits ring, and the external microstrip line, indicated different
colors in Figure 6a. An RLC circuit is considered for each resonant frequency in the
equivalent circuit design shown in Figure 6b. The series capacitances, C1, C2, C3, and C4,



Sensors 2022, 22, 4489 8 of 20

are calculated by Equation (8), where the resonant frequency is f, and the associated series
inductance is L (L1, L2, L3, and L4).

C =
1

4π2 f 2L
(8)Sensors 2022, 22, x FOR PEER REVIEW 9 of 20 
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The inductance (L1, L2, L3, and L4) is generated by different elements, which are
calculated by Equation (9), where the substrate length is l; and w and t are the width of the
strapline and the substrate thickness, respectively, in inches.

L(nH) = 0.00508l
[

ln
(

2l
w + t

)
+ 0.5 + 0.2235

(
w + t

l

)]
(9)
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The coupling capacitance (C5, C6, C7, and C8) between the elements and ground is
estimated by Equation (10), where d is the gap between the strip, and A represents the
area of the strip. Associated series resistance is estimated by tuning for the increment and
reduction in the S11 value. Figure 6c is an S11 plot of both CST and ADS simulations.

C = ε0k
A
d

(10)

3. Results and Discussion
3.1. TE and TM Mode Analysis

The designed MMA was simulated in both TE and TM modes. Unit cell boundary
conditions were applied for TM and TE simulation. Figure 7a–d presents the absorption,
permittivity, permeability, and refractive index plot for all three modes, which show a
feature of uniform absorption behavior. Both modes obtain the near-uniform metamaterial
properties. Table 3 shows the metamaterial properties of the proposed absorber at the
resonant frequency. The DNG metamaterial property appears at 14.12 GHz, 17.53 GHz,
and 19.91 GHz in TM propagation mode. However, at 12.62 GHz, SNG behavior is
exhibited. The dispersion diagram also validates the metamaterial properties plotted
by Equation (11) [24], where d is the MMA unit cell thickness and the propagation phase
constant. Figure 8 presents the dispersion curve of the designed MMA during TM mode
simulation. The positive slope of the curve represents the right-hand (R) region or SNG
metamaterial. The phase and group velocity are parallel in the R region. The DNG
metamaterial behavior is represented by the negative slope in the left-hand (L) region,
where group velocity and phase are antiparallel. In TM mode, the upper three frequencies,
14.12 GHz, 17.53 GHz, and 19.91 GHz, are located in the L region, which represents double-
negative metamaterial behavior. The SNG behavior of the lower 12.62 GHz frequency is
understood from the right-hand R region. The similarity of these two methods validates
the metamaterial behavior of the MMA.

βd = cos−1
(

1− S11S22 + S21S12

2S21

)
(11)
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(a) (b) 

  
(c) (d) 

 
Figure 7. (a) Absorption, (b) permittivity (real), (c) permeability (real), and (d) refractive index (real)
of the proposed MMA.
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Table 3. Metamaterial properties in TM and TE mode.

Frequency
(GHz)

Permittivity
(Real)

Permeability
(Real)

Refractive Index
(Real)

Absorption
%

TM TE TM TE TM TE

12.62 −0.11 −4.51 5.68 −4.05 2.14 −4.63 97%
14.12 −3.81 2.88 −3.76 −0.93 −3.81 1.43 99.51%
17.53 −0.13 −2.67 −2.22 −7.77 −1.04 −4.63 99%
19.91 −0.85 −2.54 −1.59 −6.18 −0.29 −4.09 99.5%
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Figure 8. Dispersion diagram in TM mode.

3.2. Polarization Insensitivity

The H field (
→
H) and E field (

→
E) vector direction of the incident EM wave is presented in

Figure 9a,b of the regular incident angle (θ = 0◦) for TE and TM mode. The k vector towards
the z-axis represents the propagation direction of the EM wave. In TE mode, there is no
H vector in the z-axis, whereas no E vector exists in TM-mode propagation. Polarization-
insensitive behavior of the proposed MMA for normal incident angle is plotted in Figure 10
for both TM and TE modes. The constant absorption plot for different polarization incident
angles (0◦ to 90◦) increases MMA eligibility for various applications. The reason behind
the polarization-insensitive behavior is the symmetrical structural design of the proposed
MMA. The designed SSRR is rotationally symmetrical, which indicates no effects on
absorption at the rotation of incident EM wave vector on the XY-axis with respect to the
Z-axis for circular or any other polarization of the incident wave, as shown in Figure 10a,b.
Figure 10c,d shows the oblique incident angle impact TE and TM mode, respectively. In TE
mode for the increment of the oblique incident angle, the absorption at 14.12 GHz shows
stability up to 45◦, but other resonances are either slightly shifted or reduced. On the other
side, in TM mode, the absorption at both middle frequencies shows stability, whereas the
upper and lower absorption peaks are shifted with the increment of oblique incident angle.



Sensors 2022, 22, 4489 11 of 20

Sensors 2022, 22, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Dispersion diagram in TM mode. 

3.2. Polarization Insensitivity 

The H field ( H


) and E field ( E


) vector direction of the incident EM wave is pre-
sented in Figure 9a,b of the regular incident angle (θ = 0°) for TE and TM mode. The k 
vector towards the z-axis represents the propagation direction of the EM wave. In TE 
mode, there is no H vector in the z-axis, whereas no E vector exists in TM-mode propaga-
tion. Polarization-insensitive behavior of the proposed MMA for normal incident angle is 
plotted in Figure 10 for both TM and TE modes. The constant absorption plot for different 
polarization incident angles (0° to 90°) increases MMA eligibility for various applications. 
The reason behind the polarization-insensitive behavior is the symmetrical structural de-
sign of the proposed MMA. The designed SSRR is rotationally symmetrical, which indi-
cates no effects on absorption at the rotation of incident EM wave vector on the XY-axis 
with respect to the Z-axis for circular or any other polarization of the incident wave, as 
shown in Figure 10a,b. Figure 10c,d shows the oblique incident angle impact TE and TM 
mode, respectively. In TE mode for the increment of the oblique incident angle, the ab-
sorption at 14.12 GHz shows stability up to 45°, but other resonances are either slightly 
shifted or reduced. On the other side, in TM mode, the absorption at both middle frequen-
cies shows stability, whereas the upper and lower absorption peaks are shifted with the 
increment of oblique incident angle. 

 
(a)  (b)  

Figure 9. Wave vector direction in (a) TE and (b) TM mode. 

0 20 40 60 80 100 120 140 160 180
11

12

13

14

15

16

17

18

19

20

Fr
eq

ue
nc

y 
(G

H
z)

βd(degree)

 LH Region
 RH Region

19.95 GHz

17.65 GHz

14.88 GHz

12.47 GHz

19.26 GHz

16.0 GHz

13.88 GHz

12.86 GHz

Figure 9. Wave vector direction in (a) TE and (b) TM mode.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 20 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 10. Absorption plot of different polarization angles in (a) TE and (b) TM mode and absorp-
tion plot of different oblique angles in (c) TE and (d) TM mode. 

3.3. E-Field and H-Field Distributions 
The absorption mechanism can also be understood through (Magnetic field) H-field 

and (Electric field) E-field analysis [60]. The inter-relationship of these features can be as-
sumed through the Maxwell equation [61–63]. The E-field is resonantly confined at a par-
ticular portion of the symmetrical structure. Figure 11 shows the E-field and H-field at in 
TE mode, where at 12.62 GHz frequency E-field is highly confined at the upper side of the 
external ring, and the strong H-field appears at the four corners of the outer ring. The 
intense magnetic field achieves absorption peaks at 14.12 GHz contributed by the vertical 
bar of the inner Jerusalem cross. On the other side, the E-field is strong in the left and right 
portions of the outer ring. The near-unity absorption at 17.53 GHz is contributed by the 
strong H-field of the right and left sides of the inner and outer ring, where less intensity 
appears in the E-field. The microstrip line on the outer ring’s external side influence the 
absorption peaks at 19.91 GHz. The two opposite sides of the microstrip line have an in-
tense E-field, and the center shows high H-field intensity. Figure 12 shows the H-field and 
E-filed allocations in TM mode, where field intensity is similar to that in TM mode but 
rotated at 90 degrees. 

  

11 12 13 14 15 16 17 18 19 20 21
0

20

40

60

80

100

A
bs

or
pt

io
n 

%

Frequency (GHz)

 TE 0o

 TE 30o

 TE 60o

 TE 90o

11 12 13 14 15 16 17 18 19 20 21
0

20

40

60

80

100

A
bs

or
pt

io
n 

%

Frequency (GHz)

 TM 0o

 TM 30o

 TM 60o

 TM 90o

12 14 16 18 20 22
0

20

40

60

80

100

A
bs

or
pt

io
n 

%

Frequency (GHz)

 θ=0ο

 θ=15ο

 θ=30ο

 θ=45ο

12 14 16 18 20 22
0

20

40

60

80

100

A
bs

or
pt

io
n 

%

Frequency (GHz)

 θ=0ο

 θ=15ο

 θ=30ο

 θ=45ο

Figure 10. Absorption plot of different polarization angles in (a) TE and (b) TM mode and absorption
plot of different oblique angles in (c) TE and (d) TM mode.

3.3. E-Field and H-Field Distributions

The absorption mechanism can also be understood through (Magnetic field) H-field
and (Electric field) E-field analysis [60]. The inter-relationship of these features can be
assumed through the Maxwell equation [61–63]. The E-field is resonantly confined at a
particular portion of the symmetrical structure. Figure 11 shows the E-field and H-field at
in TE mode, where at 12.62 GHz frequency E-field is highly confined at the upper side of
the external ring, and the strong H-field appears at the four corners of the outer ring. The
intense magnetic field achieves absorption peaks at 14.12 GHz contributed by the vertical
bar of the inner Jerusalem cross. On the other side, the E-field is strong in the left and right
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portions of the outer ring. The near-unity absorption at 17.53 GHz is contributed by the
strong H-field of the right and left sides of the inner and outer ring, where less intensity
appears in the E-field. The microstrip line on the outer ring’s external side influence the
absorption peaks at 19.91 GHz. The two opposite sides of the microstrip line have an
intense E-field, and the center shows high H-field intensity. Figure 12 shows the H-field
and E-filed allocations in TM mode, where field intensity is similar to that in TM mode but
rotated at 90 degrees.
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3.4. Sensing Applications

The absorption attributes of the designed MMA depend on impedance matching,
which relies on the complex value of relative permittivity and permeability. The metamate-
rial property can be handled by variation of the substrate thickness and dielectric property.
Hence, the absorption of MMA varies with substrate thickness and dielectric constant.
MMAs can be used for sensing applications in two ways: by placing a sensor layer on top
of the MMA patch [34] or by placing the sensing layer between the patch substrate and
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substrate ground [13,30,35]. Different mechanisms of absorption-based sensor applications
have been proposed from microwave to THz frequency, such as permittivity sensors [32,33],
refractive index sensors [34], grin sensors [35], density sensors, temperature sensors [30],
glucose sensor [64], etc. A permittivity sensing model using the proposed MMA is pre-
sented in Figure 13a. The relation between the dielectric constant and permittivity can
be understood according to the equation k = ε/ε0, where k is the dielectric constant, ε is
permittivity, and ε0 is the permittivity of the vacuum. The dielectric constant is the ratio
of how fast an electric field travels through a material compared to a vacuum medium.
For the investigation of permittivity sensing, an air gap of 1 mm is maintained between
two FR-4 substrate materials as a sensing layer. The patch was designed on the upper
surface of FR4 substrate 1, and no copper layer was used on the lower side. On the other
hand, no copper was used on the upper side of substrate material 2, and full copper was
used on the bottom side. Different hydrocarbons with individual dielectric constants were
inserted in the air gap in the range of 1.8 to 2.2. The absorption curve of the MMA changes
due to the overall thickness and variation of different dielectric constants of hydrocarbon
that used in the sensing layer. As a result, the absorption of the lower two bands and
the one upper band out of the quad band decreases. Only one absorption band shows
near-unity absorption. The absorption plots for different hydrocarbon materials are shown
in Figure 13b. Figure 13 shows a zoomed-in version of the absorption peaks zooming in
to facilitate understanding of the resonant frequency shift with respect to the dielectric
constant. The resonant frequency shifts towards a lower-frequency region with the incre-
ment of the dielectric constant by a measurable frequency interval, as shown in Figure 13d.
Another permittivity sensor model for solid material sensing is shown in Figure 14a, where
the sensing layer is placed on the MMA patch. Various Arlon substrate materials were
chosen, with dielectric constants between 2.2 and 3.5. The integration of the sensing layer
with the MMA results in a change in peak absorption due to the overall thickness and
dielectric constant variation of the MMA. These changes shift the resonance frequency of
the MMA, as shown in Figure 14c. The Arlon solid material sensing sensitivity is presented
in Figure 14d.

3.5. Measurement

Figure 15 shows the measurement setup of the proposed MMA. The first three fre-
quency bands were measured with the setup shown in Figure 15a. A vector network
analyzer (VNA), coaxial cable, and waveguide to the coaxial adapter (P/N: 75WCAS, P/N:
51WCAS_Cu) and 1 × 2-unit cell prototype were used in this setup. The upper resonance
frequency was measured by a horn antenna with 10 × 10-unit cells in the prototype design,
as shown in Figure 15b. The agreement of the measurement and simulated values of the
S11 (dB) phase in degree and absorption % are shown in Figure 16a,b, respectively. The
measured absorption values are indicated in Figure 16b. The measured Q-factor is 28.83,
40.31, 13.91 and 25.76, at 12.4 GHz, 14.11 GHz, 17.56 GHz, and 20.1 GHz, respectively.
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Figure 13. (a) MMA base liquid hydrocarbon sensor model; (b) absorption plot of different hydro-
carbons; (c) frequency shift of different hydrocarbons; (d) upper-band sensitivity for liquid hydro-
carbon sensor model. 
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Figure 13. (a) MMA base liquid hydrocarbon sensor model; (b) absorption plot of different hydrocar-
bons; (c) frequency shift of different hydrocarbons; (d) upper-band sensitivity for liquid hydrocarbon
sensor model.
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Figure 14. (a) MMA base solid material sensor model; (b) absorption plot of different Arlon substrates;
(c) frequency shift of different Arlon substrates; (d) upper-band sensitivity for solid material sensor
model.
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Figure 16. (a) Simulated and measured S11 (dB) with 0◦ and 90◦ polarization and simulated phase
value in degree. (b) Simulated and measured absorption % with 0◦ and 90◦ polarization.

4. Comparison

A detailed comparative study was performed of the proposed MMA vs. existing
MMAs, as shown in Table 4. Different parameters of MPA were considered, such as MPA
design, size, substrate, frequency, absorption, polarization insensitivity, and applications.
As discussed in previous works, an MMA that exhibits multiple absorption bands is
preferable. Different MMAs were designed previously for C-, Ku-, and K-band applications.
Some MMAs show absorption in other frequency spectra, such as the S and X bands. On
the other side, some show polarization sensitivity, which may degrade the absorption
performance at various polarization incident angles. This article represents a low-cost FR-4
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substrate-based, polarization-insensitive quad-band MMA, which shows four near-unity
absorption peaks in the Ku- and K-band frequencies. The proposed MMA exhibits good
sensing performance for different values of permittivity.

Table 4. Comparison table.

Ref. MPA Size Substrate Frequency
Band

Resonant
Frequency Absorption % Polarization

Insensitivity Application
Simulated Measured Simulated Measured

[13] CSRR 10 × 10 × 1.6 FR-4 K 21.6
24.04

21.55
N/A

99.9%
99.9%

99.68%
N/A Yes Absorber and

sensor

[14]
Metaprogrammable
analog differ-

entiation
– – C 5.05-5.4 5.05-5.4 ≈100% ≈100% N/A

Absorber and
analog

differentiator

[24] Wrenched
square shape

10.4 × 10.4 ×
1 FR-4 S, X, Ku

3.2
5.32

11.15
16.73

3.43
5.18
11.1

16.69

95.75%
95.93%
97.69%
95.64%

94.56%
96.41%
97.98%
96.67%

Yes Absorber

[45] SSRR 10 × 10 × 1 FR-4 S, X, Ku
3.4,
9.6,
13

≈3.3
9.6
≈12.9

99.6,
99.1,
99.1

99.5%
≈95%
99%

Yes Absorber

[46]
Eight

identical
7-shapes

8 × 8 × 0.4 polyimide X, Ku
8.5,

13.5,
17

8.7
14.1
17.6

99.9%
99.5%
99.9%

96%
97%
94%

Absorber

[47] V-shaped 8 × 8 × 1.6 FR-4 Ku, K 15.52,
27.24

15.6
N/A

98.38%
90.7%

≈96%
N/A No Absorber

[48] T-shaped 8.5 × 8.5 ×
0.2403 polyimide Ku, K 16.77

30.92
16.85
30.79

98.7%
99.3%

98.6%
96.2% No Absorber

[49] Diagonal slot
patch 16 × 16 × 1.6 FR-4 Ku 12.45

14.18
12.31
13.97

99.73%
99.87%

99%
99% No Absorber

[27] Fourfold
resonator 9 × 9 × 1.6 FR-4 Ku 13.62

16.30
13.6
16.5

99.99%
99.99%

99.9%
99% Yes Absorber and

sensor

Proposed SSRR 10 × 10 × 1.6 FR-4 Ku, K

12.62
14.12,
17.53,
19.91

12.4
14.11
17.56
20.1

97%
99.51%

99%
99.5%

98.4%
97.6%
93%
96.6

Yes Absorber and
sensor

5. Conclusions

In this article, we proposed a quad-band SSRR metamaterial absorber for Ku- and
K-band applications. The evaluation of the MMA unit cell, impedance matching of MMA,
and equivalent circuit design were discussed to understand the absorption behavior. The
metamaterial property of the designed unit cell was verified by the NRW method and the
dispersion calculation formula. Due to its symmetrical rotational structure, uniform absorp-
tion and polarization insensitivity has been achieved. So, the absorption performance was
not verified in TE and TM simulation modes. The proposed MMA shows four absorption
peaks at 12.62 GHz, 14.12 GHz, 17.53 GHz, and 19.91 GHz with absorption rates of 97 %,
99.51%, 99% and 99.5 %, respectively. The sensing performance was investigated in two
modes, verifying the sensing performance of the developed MMA. Therefore, the proposed
MMA is potentially appropriate for Ku- and K-band absorption and sensing applications.
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