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Abstract

Quad layouting, i.e. the partitioning of a surface into a coarse network of quadrilateral patches, is a fundamental

step in application scenarios ranging from animation and simulation to reverse engineering and meshing. This pro-

cess involves determining the layout’s combinatorial structure as well as its geometric embedding in the surface.

We present a novel quad layout algorithm that focuses on the embedding optimization, thereby complementing

recent methods focusing on the structure optimization aspect. It takes as input a description of the target layout

structure and computes a complete embedding in form of a parameterization globally optimized for isometry and,

in particular, principal direction alignment. Besides being suited for fully automatic workflows, our method can

also incorporate user constraints and support the tedious but common procedure of manual layouting.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

In diverse scenarios in domains like animation, simulation,
design, reverse engineering, or meshing, surfaces need to be
partitioned into a coarse base mesh of conforming quadrilat-
eral patches. From a technical point of view this process of
quad layouting involves determining the layout’s combina-
torial structure as well as its geometric embedding in the sur-
face. The embedding describes the locations of the layout’s
nodes and arcs as well as parameterizations of its patches.

Traditionally, quad layouting is often performed manually
by skilled professionals through the construction of nets of
surface curves. The typical goal is to convert digitized work-
pieces or virtually sculpted models to structured, higher-
order representations, e.g. on the basis of NURBS patches
or subdivision surfaces, for which a quad partition serves as
domain. Another use case is the generation of semi-regular
quad meshes (also known as multiblock grids), which “rep-
resent the most important class [of quad meshes] in terms of
applications” [BLP∗13], providing advantages like enabling
the use of adaptive solvers for simulation. Recently, promis-
ing approaches to automatic quad layouting have been pro-
posed [TPP∗11, BLK11, CBK12]. These methods’ main fo-
cus is on the structural or topological aspect of the problem.

We present a novel quad layout parameterization algo-
rithm that focuses on the geometric aspect, i.e. the em-
bedding optimization, and thus ideally complements these

structure optimization methods. It takes as input a descrip-
tion of the desired layout structure together with a (possibly
very rough) initial embedding of the layout’s nodes and arcs
(cf. Figure 1) and outputs an embedding in form of a global
parameterization optimized in a shape-aware manner, possi-
bly with respect to additional user guidance or constraints.

With this generic setup, our method cannot only be used
in automatic scenarios, it can likewise support the process
of manual layouting, which is still often inevitable in the in-
dustry, as outlined by Li et al. [LRL06]. Starting from an

Figure 1: Given a rough layout graph partitioning a surface

into quadrilateral regions (top), our method creates a quad

layout embedding and patch parameterization optimized for

low distortion and alignment to principal directions.
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(a) (b) (c) (d) (e) (f)

Figure 2: Given a rough (manually or automatically generated) sketch of a layout with quadrilateral patches (a), the space

of topologically compatible cross fields with suitable singularities is determined (b). Based on reliable principal curvature

directions (and possibly feature information) a smooth, interpolating cross field is then created (c). Guided by this field, an

aligned global parameterization is generated (d). After optimization of the layout node positions by a non-linear gradient

descent strategy (e), the optimized embedding for the layout can be extracted, together with smooth patch parameterizations (f).

initial embedding roughly sketched by the user our method
takes on the process of meticulously positioning the lay-
out’s nodes and routing its arcs across the surface so as to
achieve low overall patch distortion. This is in contrast to
simpler aids which operate in an isolated manner, like au-
tomatically straightening jaggy arcs to geodesics [LRL06],
neglecting the complex consequences for patch distortion.
The potential problems
are illustrated here on
the layout from Figure 1
with geodesic arcs. Hence,
our method takes an inte-
grated, global approach.

The motivation for taking a two-step approach (1. struc-
ture determination, 2. embedding optimization) – where we
provide a novel solution for step 2 – thus is two-fold: it al-
lows to adhere to a user desired layout structure in semi-
automatic workflows, and it allows to efficiently tackle the
problem of automatic layout creation – whose hardness due
to the complex interrelations between structure and geome-
try so far proves an ideal, simultaneous optimization elusive.

1.1. Principal Direction Alignment

The most important, essential difference of our method com-
pared to previous approaches to embedding optimization
is the fact that our formulation takes alignment (of iso-
parametric curves) to principal curvature directions into ac-
count (cf. Figures 1 and 7). This property’s importance, be-
yond æsthetics, for prominent use cases of quad layouts,
like semi-regular quad meshing (cf. Section 8), fitting of
NURBS or other splines [EH96, LRL06], or subdivision fit-
ting [LLS01] (which all build on parameterized quad lay-
outs as starting point for optimization, refinement, etc.), is
well known [LRL06, ACSD∗03, CSAD04]. Depending on
the application, it serves maximizing surface approximation
quality [D’A00], minimizing normal noise and aliasing arti-
facts [BK01], optimizing planarity [LXW∗11], or achieving
smooth curvature distribution (due to their tensor-product
nature common spline surface representations are prone to

ripples if aligned badly). Quad layouts and meshes have the
natural ability to align to the orthogonal principal directions.
In fact, this is one of the main reasons for preferring them
over simplicial layouts [BLP∗13]. Hence, it is desirable to
consider this alignment in the optimization.

1.2. Overview

Our method takes as input a quad layout graph with an initial
embedding on a surface. Potential sources range from man-
ual construction processes, like drawing a sketch on the sur-
face, over assisted systems, to fully automatic layout struc-
ture generators (cf. Section 2). The requirements on the ini-
tial embedding’s quality are very weak: from the arcs’ em-
bedding we only derive topological properties of the layout,
i.e. their routes over the surface are not crucial. The input
layout is, however, assumed to be intended for a principal di-
rection aligned embedding. While this is the case for modern
automatic layout methods [CBK12, TPP∗11, BLK11], a de-
signer might arbitrarily (depending on the application inten-
tionally) deviate from that. In such cases our method might
not be the ideal choice as shown in Section 9.2.

Guiding Field (Section 4) In order to achieve alignment
to principal curvature directions (where reliable), we build
upon field-guided parameterization. We examine the struc-
ture of the input layout graph and build a topologically com-
patible space of cross fields on the surface. In this space we
find a smooth cross field which aligns to specified directions.

Aligned Parameterization (Section 5) Based on this we
globally parameterize the surface subject to connectivity
constraints that enforce the given layout structure, such that
an optimized embedding for the layout’s arcs and patch in-
teriors can be extracted from the parameterization.

Node Optimization (Section 6) At the heart of our method,
a meta-optimization strategy then optimizes the layout’s
nodes: these are relocated based on the gradient of the pa-
rameterization’s objective functional with respect to their
positions, so as to arrive at a local optimum of global em-
bedding quality. We describe how this repositioning can be
performed continuously, not restricting node positions by the
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underlying triangulation. It is demonstrated that this concept
is beneficial for general quad meshing applications, too.

Gradient Computation (Section 7) Compelled by the com-
plexity of the objective functional’s true gradient, we de-
scribe a fast, easy-to-implement estimator and demonstrate
its effectiveness.

In Figure 2 these stages of our algorithm are illustrated.
Our key contributions are:

• a description of how to, for the specific case of layouts,
add structural constraints to established optimization sys-
tems for principal direction fields and parameterizations,
such that they can be used to optimize alignment-aware
layout embeddings (Sections 4 and 5).

• a novel concept to continuously optimize layout node po-
sitions, directly driven by embedding quality, based on an
efficient meta-optimization strategy (Sections 6 and 7).

2. Related Work

So far, the specific problem of optimizing and parameteriz-
ing a given layout while considering alignment to principal
directions has not been addressed in the literature. There are,
however, several related works which address either layout
parameterization without alignment or aligned parameteri-
zation without underlying layout structure.

Aligned Parameterization Numerous methods for global
surface parameterization have been presented [FH05]. Most
related to our work are more recent methods that aim for
alignment (of iso-parametric curves) to specified directions
on the surface. Ray et al. [RLL∗06] introduced a method
from this class, which minimizes the deviation between the
parameterization functions’ gradients and a cross field repre-
senting principal directions. The same goal can be achieved
based on a Hodge-type decomposition of the field [KNP07].

Furthermore, there are concepts for parameterization-
based quad meshing; we refer to a recent survey [BLP∗13].
They are related in that they obtain an (aligned) parameter-
ization with conforming quadrilateral patches, but are best
suited for the generation of fine quad meshes (except for the
recent [BCE∗13]) and, even more important, the structure is
a product of the algorithm itself. We strive for parameteriza-
tion with a prescribed, potentially coarse layout structure.

Layout Parameterization While already some time ago
approaches to automatic quad layout generation have been
made [EH96,BMRJ04,DSC09], quad layouting is still often
performed manually by skilled professionals in order to in-
ject the subtle domain-specific requirements [LRL06]. This
process involves positioning nodes and connecting them
using paths across the surface, thus specifying the layout
graph’s structure and embedding through delineation of its
patch boundaries [AAB∗88, MBVW95, KL96, TPSHSH13].

To at least alleviate the burden of having to tediously spec-
ify nice arcs which form patches that can be parameterized
with low distortion, several methods for layout parameteri-
zation [TACSD06,DBG∗06,BVK08] allow for the optimiza-
tion of the layout’s arcs’ embedding during their parameter-
ization process. More problematic are the nodes: suboptimal
placement not only causes unnecessarily high mapping dis-
tortion, it can also give rise to local non-injectivity.

For improvement, node relocation based on iterated re-
laxation of local neighborhoods can be used – for simpli-
cial [GVSS00, PSS01, KLS03, SAPH04, KS04, PTC10] as
well as quad layouts [DBG∗06,THCM04,TPP∗11,CBK12].
While this approach is sufficient on very smooth sur-
faces, anisotropically curved regions certainly call for ex-
plicit alignment of the parameterization with principal di-
rections as already detailed in Section 1.1. A comparison of
alignment-oblivious and alignment-aware layout optimiza-
tion is provided in Section 9.1. Note that it is not straight-
forward to exchange the functionals used by these local re-
laxation strategies for alignment-aware ones. For reasons
of computational tractability, auxiliary constructs like guid-
ing fields are necessary to allow for the efficient formula-
tion of functionals for aligned parameterization [BLP∗13],
which the abovementioned frameworks are unprovided for.
Recent works in the area [CBK12, MZ12] state the lack of
alignment-awareness as ”fundamental limitation” whose ad-
dressing would require “substantial changes”. Hence, the
quest for alignment-aware quad layout embeddings calls for
a novel strategy.

In addition to explicitly addressing this, our method fur-
ther handles (aligned and unaligned) surface boundaries and
can deal with certain partially specified layouts. This is not
immediately possible with most of the above methods.

3. Preliminaries

Let G be a multigraph, called layout graph, which may con-
tain dangling arcs which are incident to only one node. Con-
sider an embedding of G in an oriented manifold surface
S (with or without boundary ∂S) such that arcs only inter-
sect at their endpoints and dangling arcs end on ∂S. This
partitions the surface into regions (called patches) bounded
by embedded arcs, nodes, and possibly ∂S – such patches
bounded partially by ∂S are called trimmed, all others full.
If all patches are homeomorphic to disks, the embedding is
a 2-cell embedding (with boundary).

A quad layout L is a layout graph G with a 2-cell em-
bedding in surface S where each full patch is of valence
4, i.e. there are 4 (not necessarily distinct) nodes along the
patch border, and each trimmed patch is of valence < 4. Fig-
ure 2 (a) shows a simple example of such layouts. Let g de-
note the genus and b the number of boundaries of S. Further,
s is the number of irregular (valence 6= 4) nodes in G.
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Discrete Representation We consider a triangulation M of
S, assumed to be free of degeneracies and noise since this
is required by the basic techniques we build upon (guiding
field and parameterization optimization). The embedding of
G in M is such that nodes are mapped to vertices. Let ν(h)
denote the vertex which node h is mapped to. For an ori-
ented embedded arc a let γ′(a) denote the sequence of edges
crossed when traveling along a from start to end, γ(a) the
sequence of faces crossed. γ(a)⊢ denotes the first face in the
sequence, γ(a)⊣ the last one. Details on how to obtain this
representation from a given layout are given in Appendix A.

Rotation System A compact representation of the topology
of the quad layout L is its rotation system: a pair (σ,θ) of
permutations acting on the set of half-arcs (for each arc there
exist two half-arcs, one attached to each incident node). σ

is an involution that maps one half-arc to the other one of
the same arc, and θ maps an half-arc to the next one in the
clockwise (with respect to the orientation of S) cyclic order
of half-arcs incident to the same node.

4. Guiding Field

In order to obtain a guiding field for the subsequent param-
eterization step, we construct a smooth tangent 4-symmetry
direction field (cross field) C on S that topologically con-
forms with L (Section 4.1) and geometrically follows prin-
cipal directions and sharp features of S (Section 4.2).

4.1. Guiding Field Topology

For each irregular node of L we need one irregular point
(singularity) in C at the position of the node. The space of
cross fields with these singularities has 2g + b + s− 1 topo-
logical degrees of freedom [RVLL08] which we need to fix
in order to restrict to cross fields topologically compatible
with L, otherwise no non-degenerate parameterization will
be possible. The degrees of freedom are the turning numbers

of C along 2g homology generator cycles, b boundary cy-
cles, and around s singularities – minus one, which depends
on the others via the Poincaré-Hopf theorem.

For an irregular node its (clockwise) turning number t is
determined from its valence v as t = − 1

4 v. For a homology
generator or boundary cycle c the turning number needs to
be fixed to t = ± 1

4 (nn −na), where na is the number of arcs
crossed by c and nn the number of nodes in the closest ho-
motopic arc cycle c′. The sign is determined by the relative
orientation of c and c′ – for details we refer to Appendix B.

In the discrete setting C’s topology can be expressed using
period jumps on M’s edges. Ray et al. [RVLL08] present
a zipping algorithm (Crane et al. [CDS10] an alternative
formulation) that, given the above turning numbers, deter-
mines all period jumps accordingly. Exactly the requested
cross field topology (in particular no additional singulari-
ties) arises from this algorithm. Setting period jumps along

the initial arcs according to their continuity type [TACSD06]
is an equivalent alternative (which, however, only works for
complete layouts, not partial ones, cf. Section 10).

4.2. Guiding Field Smoothness

Within this topologically fixed space we now strive to find
a smooth C that interpolates sparse directional constraints,
corresponding to reliable principal directions, feature curve
directions, or user-specified design intents. We use the strat-
egy described by Bommes et al. [BZK09] for determining
regions with reliable principal directions.

It is not inherently clear by which of C’s four directions
a directional constraint is to be interpolated. If this informa-
tion is available, as could be for user-specified constraints,
the smoothest interpolating cross field (i.e. the one with min-
imal discrete field curvature energy [RVLL08]) is obtained
by solving a simple linear system as described by [RVLL08]
(which we modify to use soft constraints [RVAL09], with
a high penalty factor of 100 which, while mostly achieving
accurate alignment to constraint directions, provides some
freedom around singularities). Otherwise, we have to do the
assignment of the field to the constraints “modulo rotation
by multiples of π

2 ”, which is easily expressed using addi-
tional integer variables in the system. A mixed-integer solver
is then initially used to obtain a suitable assignment.

5. Aligned Parameterization

Now we formulate a global parameterization problem to si-
multaneously optimize the embedding of arcs and patch in-
teriors guided by C. The parameterization P = (u,v) is rep-
resented piecewise linearly using three (u,v) parameter tu-
ples per triangle – one for each corner. Let ut and vt denote
the orthogonal unit tangent vectors in triangle t which corre-
spond to the first and second direction of the cross field C in
t. The objective functional [BZK09] we use to obtain P is

E = ∑
t∈T

(

||∇tu−ut ||
2 + ||∇tv−vt ||

2
)

At → min (1)

where T are M’s triangles, At the area of t, and (∇tu,∇tv)
the (per-triangle) gradients of the sought parameterization.
The per-triangle parameterizations are interlinked via transi-
tions, which we require to be rigid transformations. Across
an edge between triangles s and t we thus have a constraint

(u,v)t = R(rst)(u,v)s +( jst ,kst) (2)

with a rotation R by angle rst and a translation ( jst ,kst). The
rotation angles r are deduced a priori directly from the period
jumps [KNP07], naturally as multiples of π

2 . The transitions
(2) with fixed r and variables ( j,k) are then incorporated as
linear constraints into (1) using elimination of variables.

Note that in contrast to related quad meshing methods it
is unnecessary to impose integer constraints, which require
mixed integer optimization strategies, neither on ( j,k) nor
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on the singularity parameters. Hence the parameterization P
can be obtained using a single linear system solve.

A parameterization of this kind induces a base complex,
which can be extracted by tracing iso-parametric curves
(separatrices) from the nodes (cf. Figure 3). With iso-

parametric we mean that either the u or v parameter is con-
stant along the curve when taking transitions into account.
We now further constrain the parameterization problem (1)
using node connection constraints, derived from the struc-
ture of the layout, to accomplish that this induced base com-
plex is structurally equivalent to L (cf. Figure 3 right). This
ultimately allows us to derive an embedding for L from P .

5.1. Node Connection Constraints

We have to ensure for each arc that the two incident nodes
lie on a common iso-parametric curve of P . Let τ(a) be the
concatenation of transition functions of the edges in γ′(a),
i.e. τ(a) maps from the patch s = γ(a)⊢ to the patch t = γ(a)⊣
along arc a. Then we need to require

[

τ(a)(u,v)s

]

λ(a)
=

[

(u,v)t

]

λ(a)
(3)

for either λ(a) = u or λ(a) = v, where this subscript extracts
the u- or v-component of the tuple. This can be incorporated
into (1) as linear constraint [MPKZ10]; we only need to de-
termine the arc labeling λ, i.e. whether an iso-u or an iso-v
constraint should be used for an arc.

We could make this decision by rating an arc’s align-
ment to the u- and v-directions in an unconstrained param-
eterization [MPKZ10] or based on local angle considera-
tions [TACSD06]. While this can be sufficient locally for
single arcs, we need to setup constraints for all arcs. If even
just a single decision is inconsistent with the others, the con-
strained problem would admit only degenerate solutions.

5.1.1. Consistent Arc Labeling

In order to ensure global consistency, we do not consider
each arc individually, but first construct a complete, consis-
tent prototypic {ū, v̄} labeling λ̄ of the arcs based solely on

Figure 3: Left: input layout. Middle: intermediate state of

tracing iso-parameter curves from the singularities in an un-

constrained parameterization to obtain the base complex.

Right: base complex of a parameterization with node con-

nection constraints; now structurally equivalent to the input.

the combinatorial structure of L. Then only one global geo-
metric decision is necessary: check whether the total align-
ment of all ū-arcs to the u-direction and v̄-arcs to the v-
direction of C is better than the opposite choice, and ex-
change the prototypic labels for {u,v} labels λ accordingly.

The prototypic arc labeling is a map λ̄ : H→{ū, v̄} which
assigns symbols ū and v̄ to the set H of half-arcs. The idea is
to basically assign the same label to both half-arcs of an arc
(each representing one end of the arc) and alternating labels
to half-arcs incident to the same node in cyclic order. Here
the notions of “same” and “alternating” are again meant to
take transitions into account. This is formalized as follows
for a half-arc a using the rotation system (σ,θ) of L:

λ̄(σ(a)) = τσ(a) λ̄(a) (4)

λ̄(θ(a)) = Rot(π/2)τθ(a) λ̄(a). (5)

where τσ and τθ are the respective transitions: let a+ and
a− be the two half-arcs of an arc a, a+ attached to the
node at a’s beginning, a− attached to the end node. a× de-
notes an arbitrary half-arc. Let τσ(a+) = τ(a), i.e. the con-
catenation of transition functions of the edges in γ′(a), and
τσ(a−) = τ(−a). Let τθ(a

×) be the concatenation of the
transition functions of the edges between faces γ(a×)⊢ and
γ(θ(a×))⊢ in clockwise order around the incident vertex. We
let these transitions act on the symbols ū and v̄ in the intu-
itive manner: the symbols are mapped to themselves if the
rotational part is an even multiple of π

2 , and to each other if
it is an odd multiple. The translational part is ignored.

When we now assign λ̄(a) = ū to one half-arc a (or one
half-arc per component if G is not connected), the labeling
can be extended to all half-arcs by recursive application of
equations (4) and (5). It is due to the intimate connection
between the turning numbers of L, the period jumps of C,
the transition functions, and τσ / τθ (which are all built upon
each other) that the resulting labeling is independent of the
label propagation order, thus globally consistent with respect
to (4) and (5).

With constraints (3) in effect, we then compute P (1)
whose base complex is now structurally equivalent to L
(cf. Figure 3 right). Notice that using this particular setup
(global parameterization with layout structure constraints)
optimal parametric extents of the individual patches emerge
freely. This is in contrast to all previous layout parameteri-
zation approaches (cf. Section 2), which rely on fixed (unit)
patch extents or initial estimates, followed by an iterative ad-
justment procedure. In particular, we thus do not depend on
the quality of the arcs’ initial embedding; it is only the arcs’
path homotopy classes (with respect to the surface punctured
at the singularities) that matters [MPKZ10].

5.2. Embedding Extraction

A global parameterization P with a base complex struc-
turally equivalent to L naturally induces an embedding for
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L together with coherent patch parameterizations (cf. Fig-
ure 3 right). The arcs’ embedding is found as iso-parametric
curves starting from the nodes until another node is reached.

An individual parameterization for each patch over a rect-
angular domain [0,w]× [0,h] can be derived easily: if no
non-trivial transitions lie in the patch region it can directly be
read from P as the surface between the four bounding curves
emanating from the corner nodes is parameterized over some
rectangle [a,b]× [c,d] by P . If transitions are involved, we
need to express all parameter values with respect to a com-
mon chart (cf. Appendix D for implementation details). As
each patch is disc-homeomorphic and contains no singulari-
ties in its interior, this is possible without ambiguity.

5.3. Optional Extensions

We would like to point out that the functional (1) can be
extended in several ways. For instance, an anisotropic norm
can be used for improved field alignment [BZK09] – we gen-
erally use an anisotropy ratio of 10. Furthermore, a sizing
field, computed so as to reduce the curl of the sized cross
field to allow for better alignment [RLL∗06], can be taken
into account – we used this option for all examples.

6. Node Optimization

While the described constrained parameterization procedure
optimizes the embedding of arcs and patches, the nodes re-
main fixed due to the very nature of the setup. This not only
restrains the achievable quality, it further gives rise to large
distortions or even local non-injectivities due to fold-overs
(cf. Figures 4 and 5). This is because fixed nodes in our
setup behave much like isolated point constraints in, e.g.,
harmonic parameterizations – which are well known for their
problematic effects on distortion and injectivity.

A popular approach to this problem is the use of stiffen-

ing [BZK09, MPKZ10]. It tries to iteratively remove non-
injectivities by increasing a penalty factor for the affected
regions in the objective functional. While this reduces the
problematic effects, it does this at the cost of actually in-
creasing the residual, i.e. the parameterization is pushed
away from the least-squares solution deemed optimal by (1)
– higher overall distortion is traded for local improvements
(cf. Section 6.3). We advocate a strategy that instead moves
the nodes so as to arrive at a solution with lower residual.
Thus, while taking care of the distortion problems, this strat-
egy simultaneously optimizes the nodes’ embedding, basi-
cally by exploiting the information the distortion provides.
Figure 4 demonstrates this proposition’s reasonability. This
basic idea of node relocation has been made use of in previ-
ous methods – however, these are not suited for our setting
using an aligned parameterization as detailed in Section 2.

Technically speaking, we are going to optimize (1) not
only w.r.t. the parameters u and v (thus the patches’ and

Figure 4: Visualization of the trajectory (red) of a node

(blue) as it moves in negative gradient direction d. In the be-

ginning severe distortions and inversions are present which

successively vanish in the course of the movement.

arcs’ embedding) but also w.r.t. the geometric positions of
nodes on M. We tackle this non-linear problem using a strat-
egy which optimizes A) with respect to u and v (with fixed
nodes) and B) with respect to the node positions (with fixed
u,v) in an alternating manner. In this way the large problem
A (O(|M|) variables) can still be solved as a simple linear
problem as described in the previous sections. The smaller
non-linear problem B (O(|L|) variables) we address using a
gradient descent strategy, as detailed in the following.

6.1. Gradient Descent

In order to locally move a node h in such a way that the resid-
ual of (1) (which we now just call E for brevity) decreases,
we need to move this node in direction

d(h) = −
(

∂
∂x

E(hx,hy),
∂
∂y

E(hx,hy)
)

(6)

i.e. in a gradient descent manner. Here (x,y) are 2D coor-
dinates in some local coordinate chart of S around h and
(hx,hy) expresses the current position of node h accordingly.
Note that E depends on x and y because nodes are embedded
in vertices, i.e. node positions are vertex positions. In Sec-
tion 7 we address the computation of d(h) as well as of a
suitable corresponding descent step length l(h) in detail.

6.1.1. Node Movement

Assume node h is currently at position p. To determine the
new position p′ on M we trace a straightest geodesic g of
length l(h) starting at p in direction d(h) [PS98] (stopping if
a boundary is reached). If h lies on a feature curve, we first
project d(h) onto it and restrict the tracing to this curve.

Remember that nodes need to be mapped to vertices, but
p′ does in general not lie on a vertex. Snapping the node to
the closest vertex is not a good solution as it provokes dis-
continuous behavior and hampers convergence. Instead we
enable a virtually continuous movement by (temporarily) re-
locating one of the vertices incident to the face on which p′

lies, so as to provide a suitable support for h. In contrast to
the insertion of a new vertex this does not introduce low va-
lence vertices and leaves the mesh structure unchanged. The
choice among the incident vertices is made such that geo-
metric alteration of M caused by the relocation is minimal.
Vertices that have another node embedded in them and ver-
tices on sharp features are excluded from the choice.
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Let v be the vertex at position p onto which h is mapped
before the move and v′ be the vertex chosen
to be relocated to p′. If v = v′, we simply
relocate it to p′. If v 6= v′, the original posi-
tion of v is restored and v′ moved to p′. In
this case further adjustment is necessary: the
cross field singularity corresponding to the
node needs to be moved to v′. In detail, we
determine an edge chain c connecting v with
v′ along the geodesic g. We then adjust the chain’s edges’
period jumps so as to reflect the new singularity location.

Furthermore, the connection constraints (3), i.e. the com-
posite transitions τ and labels λ, have to be updated so as to
reflect the new situation. For simplicity we assume all arcs

γ⊢

γ⊢

v′

v c
incident to a node start in the same face,
i.e. γ⊢ of all incident arcs (oriented in outgo-
ing direction) is the same. To now update the
current τ and λ we select an arbitrary face in-
cident to v′ as new γ⊢, accumulate the transi-
tions of the edges (dashed in the inset figure)
crossed when going from the old to the new face along the
edge chain c, and apply them to τ and λ.

6.1.2. Iteration Strategy

We solve problem A (optimizing cross field and parameter-
ization), determine gradient and step length for each node,
and move them one step as described in the previous section.
This is iterated. We stop when the next step would increase
the residual, i.e. we execute the step, and output the previous
solution in case the residual increased. Further fine-tuning
of the node positions can be achieved by repeating this with
decreased step size. We used this option for the shown ex-
amples, halving the step size each time and stopping after
max. 5 halvings or 25 total steps.

6.2. Selective Optimization

At the user’s discretion (or based on additional information)
we can selectively exclude nodes as well as arcs from the au-
tomatic optimization process to keep them in their intended
original state. For a node this is as easy as disregarding it in
the gradient descent. For an arc we need to ensure that the
corresponding iso-parametric curve coincides. We achieve
this using constraints similar to the node connection con-
straints: we do not just require the arc’s end points to lie on a
common iso-parametric curve, but also all the points where
the arc crosses mesh edges. The parameters of these crossing
points are easily expressed as linear (convex) combinations
of the parameters of the edges’ incident vertices. In a com-
pletely analogous manner the parameterization can also be
forced to align to given feature curves, surface boundaries,
or other user-specified curves on the mesh.

6.3. Discussion

The key features of our node relocation approach are the
largely triangulation-invariant movement and continuous
positioning of nodes. This is in contrast to the discrete sin-
gularity relocation mentioned by Bommes et al. [BZK09]
which has the “obvious drawback of heavy computational
cost” and can get stuck in situations where all possible
moves to neighbor vertices lead to a higher residual al-
though a continuous path of decreasing residual exists in-
between. Both aspects can be seen in the following table
comparing runtime t and final residual Efinal (after max 1h)

Ours Bommes et al.
Model t (s) Efinal t (s) Efinal

TRIHOLE 24 430 742 457
ROCKERARM 75 842 >3600 1099
ELK 18 751 >3600 762
FERTILITY 40 522 >3600 648
BLOCK 42 140 >3600 182

of both
relocation
methods
applied to
examples
from
Figure 6.

Nieser [Nie12] proposes a variant that efficiently esti-
mates parameterization improvement based on the cross
field’s curl change caused by moving a singularity. Note that
this is not appropriate for our highly constrained problem
where a major part of the residual is caused by the con-
straints, not the field’s curl.

Notice that our relocation strategy does not rely on a lay-
out – it can likewise be used for singularity relocation in
general quad meshing scenarios based on energy (1). In this
context singularity locations are typically determined a pri-
ori [KNP07,BZK09,MZ12], with only limited awareness of
implications for the parameterization. The advantage of re-
locating them (directly driven by parameterization quality)
over the alternative of using stiffening is demonstrated in the
following example (using the MIQ approach [BZK09]):

MIQ
result

E =1112, 55 folds

with
stiffen.

E =1289, 0 folds

our
reloca.

E =507, 0 folds

Limitations of Node Movement No matter which node re-
location strategy is used, potentially some fold-overs (i.e.
non-injectivities) remain after convergence, especially when
the layout is coarse and ignores significant geometric fea-
tures, or when nodes or arcs are fixed by the user in bad
positions. Subsequent stiffening proved to often be a helpful
remedy in such case. A more reliable solution, however, is to
use strict triangle orientation constraints, e.g. as in [Lip12]
or [BCE∗13]. We employ the latters’ linear tri-sector con-
straints to get rid of folds in the last iteration.

The definitive version is available at wileyonlinelibrary.com
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7. Gradient Computation

The gradient (6) of (1) depends on x and y in multiple ways:
they appear directly in the discrete gradient operator ∇ and
in At , but indirectly also in the cross field, i.e. in u and v,
as well as in the parameterization (u,v). As these depen-
dencies are via the solution of (constrained) minimization
problems, a closed-form expression of gradient d(h) is not
available. One possibility to compute (or approximate) it is
to use numerical differentiation, e.g. using finite differences:
∂
∂x

E(hx,hy) ≈ (E(hx + ε,hy)− E(hx,hy))/ε. This amounts
to moving vertex ν(h) by a small ε, re-solving the cross field
and parameterization systems, and evaluating the residual.
While simple, this needs to be done two times (∂x and ∂y) per
node in each step, thus clearly is a costly procedure. Another
option is to use exact algorithmic differentiation. Exploiting
recent results which allow for the efficient differentiation of
functions involving systems of linear equations [NL12], we
are able to handle our E. This technique only requires the
equation systems to be solved two times per step (once nor-
mal, once adjoint) yielding the gradient w.r.t. all nodes at
once. Implementation, however, is relatively demanding.

As practical alternative we devised a gradient estimator,
described in the following, which is both, easy to implement
and very efficient, avoiding additional system solves alto-
gether (cf. Appendix C for pseudo code).

7.1. Efficient Estimator

Let’s consider the energy functional (1) again. The position
(x,y) of a node appears directly in ∇t and At , but also in
the cross field and the parameterization. If we neglect these
indirect dependencies, i.e. consider Ẽ where u and v as well
as (u,v) are fixed, we can analytically derive

∂

∂x
Ẽ = ∑

t∈T (h)

2

(

∂∇t

∂x
u

)T
(

∇tu−ut

)

At +
∂At

∂x
||∇tu−ut ||

2+ · · ·

where we omitted the second analogous half. Note that the
sum is only over triangles T (h) incident to node h, as all
other terms vanish due to independence from x. The corre-
sponding approximate gradient d̃(h) can thus very efficiently
be evaluated based on only the 1-ring neighborhood.

This approximation is surprisingly well-behaved in terms
of gradient direction, even in configurations with strong dis-
tortions and inversions where one could easily expect the lo-
cal per-triangle gradients to be severely perturbed and non-
informative. Tests on several hundreds of nodes in numerous
layouts showed that the average angular deviation between
d and d̃ is around 4◦, with very few outliers (typically rather
small gradients) which showed deviations up to 35◦. Fig-
ure 5 gives an impression of the amount of deviation. We
observed the magnitude of d̃ to be around 1.5 times larger
than that of d (caused by neglecting the dependence of the
parameterization on (x,y)). The average magnitude devia-
tion between 2

3 d̃ and d was only 6% in our tests.

Figure 5: Visualization of descent directions: negative gra-

dient d (yellow) and our estimator d̃ (red). The angular devi-

ation is typically very low, even in complicated regions with

severe distortions and inversions (shaded darker).

7.2. Step Length

In addition to the gradient direction, we also need to de-
termine an appropriate step length for the iterative gradi-
ent descent procedure. We empirically found that E(hx,hy)
grows roughly quadratically with the geodesic distance
of node h from the position where E(hx,hy) attains a

||d(h)||

distance

minimum – at least in the range
of relevance, i.e. unless we mali-
ciously move h way beyond its ad-
jacent vertices, twisting the layout.
This means ||d(h)|| is approximately
proportional to the distance of h from
its locally optimal position – as can be seen in the inset graph
for 20 different nodes in an example layout. Note that the
proportionality factor between ||d(h)|| and the distance is
scale independent: if we scale a model by a factor f , its area
and the residual E are scaled by f 2 – distances and d(h) are
both scaled by f . Hence we can directly rely on the gradient
magnitude to determine a suitable step length.

We observe in the graph that there is some variation
among the nodes – different slopes. These are not due to the
model’s scale or varying local density of the layout, but de-
pend on variations in local surface and layout region shape
in a complex manner. As the range of variation is not very
large (the graph already shows a rather extreme case), we can
easily account for this using a conservative global damping
factor, i.e. we use l(h)= α||d(h)|| (respectively: α 2

3 ||d̃(h)||)
as step length for node h. A value of α = 0.75 proved to per-
form very well in practice – we used it in all the examples.
As a safeguard, we limit each node’s movement to its current
cell in a simple Dijkstra-based node Voronoi diagram on M.

8. Quad Mesh Generation

One particular use case of quad layouts is the generation of
quad meshes via subsequent refinement, as the block struc-
ture of the resulting meshes provides specific advantages
[BLP∗13]. One option is a posteriori subdivision of each
patch parameterization into an m× n grid, where m and n

comply between neighboring patches. This is the case if we
choose m = ⌈w/q⌉ and n = ⌈h/q⌉, where (w,h) is the patch’s
parametric extent and q the quad mesh target edge length.

The definitive version is available at wileyonlinelibrary.com
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Mixed-Integer Option When rather coarse meshes are to
be generated it is advantageous for uniformity to require the
parameterization to yield patch sizes (w,h) such that w and
h are integer multiples of q (sparing the above rounding) al-
ready during the optimization. This is accomplished by re-
quiring the parameters (u,v) of nodes and the translations
( j,k) of transitions (2) to be integer multiples of q, result-
ing in a mixed integer problem [BZK09]. It proved advan-
tageous to first optimize node positions in the relaxed (non-
integer) setting, then solve for the integers, and then further
optimize nodes with respect to the fixed integers. This avoids
discontinuities during the gradient descent. Finally, a quad
mesh can be extracted from the parameterization [EBCK13].

9. Results

We applied the proposed method (using the efficient gradi-
ent estimator) to input layouts sketched manually as well
as to layouts constructed by automatic methods [BLK11,
CBK12]. Figure 6 shows the input and output layouts, Ta-
ble 1 the corresponding statistics. The patch parameteriza-
tions are visualized using m× n grid textures (as described
in Section 8). The accompanying video demonstrates the op-
timization process on several examples.

We used CHOLMOD [CDHR08] for the equation systems
and IPOPT [WB06] to handle the orientation constraints.
Runtime is dominated by the repeated systems solving –
the complexity
of the layout
has only lit-
tle influence
(cf. Table 1,
BUNNY), as we
move all nodes
at once between
two solves.

We observed nice convergence properties of the node op-
timization strategy: in every case more than half of the total
decrease in residual happened during the first three steps.

9.1. Comparison

Most previous approaches to complete embedding optimiza-
tion are based on the concept of fixing a node’s 1-link and re-
laxing the interior [GVSS00,PSS01,KLS03,SAPH04,KS04,
DBG∗06, TPP∗11] . We compare the results of an imple-
mentation of the most recent one (TPP, the final stage of
[TPP∗11]) to ours. TPP has some restrictive requirements
that prevented us from applying it to all examples, e.g.
patches must nowhere be narrow (below 1-2 triangle mesh
edge lengths), neither initially nor during the course of the
optimization, unaligned boundaries cannot be handled, etc.

The following table shows conformal energy Econfor =
1
A

R

M
(

σ1
σ2

+ σ2
σ1

)

[FH05] (A being M’s surface area, σ1

Model faces patches time (s) Einit Efinal folds∗

TRIHOLE 30K 20 24 1087 430
ELK 18K 86 18 3058 751 1
JOINT 43K 79 31 221 167
ROCKERARM 70K 115 75 2669 842 1
FACE 25K 50 11 1531 588
FERTILITY A 28K 72 40 1889 522
FERTILITY B 28K 98 33 4538 662 5
BLOCK 36K 76 42 1523 140
MASK 9K 30 8 3709 2732
ELEPHANT 40K 104 69 3336 1398 2
LEVER 20K 275 18 2092 1055 2
BOTIJO 30K 167 37 1946 675
BUNNY 51K 1063 67 8033 3935

Table 1: Statistics: mesh and layout complexity, total op-

timization time, residual before and after node optimization

(note the significant decrease in each case), ∗number of fold-

over faces if orientation constraints would not have been

used; with them (or stiffening) all results are fold-over free.

and σ2 the singular values of the parameterization’s Jaco-
bian), average angular deviation E◦ between ∇u and ∇v

and the principal directions weighted by squared princi-
pal curvature difference (κ1 − κ2)

2, and conjugacy error
Eplanar = 1√

A

R

M II
(

∇u/||∇u||,∇v/||∇v||
)

which, based

on M’s second fundamental form II [LXW∗11], quantifies
how non-planar the (infinitesimal) elements of a quad mesh
generated from the parameterization would be.

Ours TPP
Model Econfor Eplanar E◦ Econfor Eplanar E◦

TRIHOLE 2.047 1.40 6.2 2.026 2.12 9.5
ROCKERARM 2.069 1.93 5.8 2.085 2.62 8.7
FERTILITY 2.049 1.57 4.2 2.066 2.57 7.4
BLOCK 2.013 1.24 3.2 2.022 2.39 7.2
ELK 2.065 1.29 4.3 2.106 2.56 8.6
BOTIJO 2.060 1.57 3.3 2.074 2.72 5.6
ELEPHANT 2.145 2.71 7.4 2.109 4.16 12.0

Note that a “random” parameterization would have E◦

around 22.5◦; as the input layouts have been constructed
with principal directions in mind, also TPP shows smaller
deviations, but the alignment-awareness of our method con-
sistently led to lowest E◦ (note that non-integrability of the
principal direction field prevents E◦=0 in general). In com-
bination with good conformality (no large difference be-
tween both methods) our method also generally achieved
better Eplanar values. Figure 7 illustrates the differences.

9.2. Limitations

There are types of input which are problematic for the pro-
posed method, as outlined in the following.

High valence nodes Around nodes with high valence (in
regions without correspondingly high Gaussian curvature)
there are typically quite some distortions. While the valence
8 node in Figure 8a is surrounded by a distorted but still valid
parameterization, there are fold-overs around the valence 12

The definitive version is available at wileyonlinelibrary.com
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Figure 6: Input and result layouts. Feature alignment has been used for models JOINT (yellow) and LEVER (pink), boundary

alignment on eyes and mouth of the MASK model (blue). Irregular nodes are displayed as little spheres for visual orientation.

node in Figure 8b – fold-overs which (in the 1-ring) cannot
be prevented even by orientation constraints: the six triangles
surrounding the valence 12 node need to span an angle of 6π

in parameter space, but in a valid piecewise linear parame-
terization all inner angles are less than π. Note that this is a
general problem of PL triangle parameterizations [NP09].

Principal direction conflict Figure 8c/d shows an input
layout which largely contradicts the principal directions. The
conflict between the objectives of layout structure preserva-
tion and alignment leads to large distortions.

Overly coarse structure The layout in Figure 8e is much
coarser than the feature structure of the underlying model.
This necessarily causes large alignment deviations, thus dis-

tortions or even fold-overs. In this example still a valid em-
bedding was found, but there is no general guarantee.

Notice that in all these cases it is questionable whether a
method aiming for principal direction alignment is the right
choice. It seems unlikely that such layouts are actually in-
tended to be aligned, or that there even exists a solution with
reasonable alignment. Layout optimization methods which
do not aim for alignment (cf. Section 2) are then preferable.

10. Outlook & Future Work

In a few cases we observed adjacent nodes ending up quite
close together (cf. the green FACE model). Typically not only
individual pairs move towards each other, but rather all pairs

The definitive version is available at wileyonlinelibrary.com
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bordering a dual loop or poly-chord. This is plausible, con-
sidering that the parametric distance of each such pair is
equal. As the resulting narrow patches can be undesirable,
we experimented with node spacing constraints – similar to
the node connection constraints (3). For each arc a from s

to t the parametric distance of its end nodes can be com-
puted as

∣

∣

[

τ(a)(u,v)s

]

i
−

[

(u,v)t

]

i

∣

∣ with i ∈ {u,v}, i 6= λ(a).
If this drops below a desired minimal spacing ε (e.g. dictated
by the quad mesh target edge length) during the gradient de-
scent, one can add a constraint

[

τ(a)(u,v)s

]

i
=

[

(u,v)t

]

i
± ε

to ensure that this distance is kept in following iterations.

Alternatively, one could understand the narrowing as in-
dication that merging the approaching nodes is advanta-
geous. If such structure modification is desired we can con-
strain the parametric distance to zero when it drops below ε,
effectively enforc-
ing a poly-chord

collapse. These
two options are
illustrated here
next to the standard
solution (left).
We leave in-depth
exploration of such possibilities to future work.

It is also worth noting that partial layouts, where only a
subset of all arcs is speci-
fied (together with irregular
nodes and their valences),
can be taken as input, too.
Missing arcs then naturally
emerge from the parameter-
ization (as shown in the in-
set) and their routes may indicate suitable layout comple-
tions. Considering this in conjunction with the fast conver-
gence properties, we imagine using the presented techniques
in an assisted layout system with interactive feedback.

Figure 7: Zoom-ins comparing TPP (red) and our method

(green). Some isocurves are highlighted to ease visual align-

ment quality comparison. (cf. Appendix E for full models.)

b)

a)

d)

c)

e)

Figure 8: Problematic input configurations: high valence

nodes, principal direction conflicts, overly coarse structure.

11. Conclusion

We have presented a method for the simultaneous geometric
optimization and parameterization of quad layouts on sur-
faces. What sets our approach apart from related methods
is its unique property of yielding aligned layout parameteri-
zations, taking surface anisotropy and features into account.
A key contribution is a novel efficient technique to continu-
ously optimize node positions, directly driven by the objec-
tive of minimizing distortion and misalignment. Its applica-
bility extends to related areas like quadrangular remeshing.
With these capabilities our method complements recent ap-
proaches to automatic quad layout structure generation and
offers support to the process of manual quad layouting.
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