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SUMMARY 
I present a 2-D numerical-modelling algorithm based on a first-order velocity-stress 
hyperbolic system and a non-rectangular-grid finite-difference operator. In  this method 
the velocity and stress are defined at different nodes for a staggered grid. The scheme 
uses non-orthogonal grids, thereby surface topography and curved interfaces can be 
easily modelled in the seismic-wave-propagation stimulation. The free-surface conditions 
of complex geometry are achieved by using integral equilibrium equations on  the 
surface, and the stability of the free-surface conditions is improved by introducing local 
filter modification. The method incorporates desirable qualities of the finite-element 
method and the staggered-grid finite-difference scheme, which is of high accuracy and 
low computational cost. 
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INTRODUCTION 

Many finite-difference schemes (Virieux zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1986; Levander 1988; 
Kosloff et al. 1990; Magnier, Mora & Tarantola 1994) have 
been developed from the first-order coupled elastic equations of 
motion and constitutive laws expressed in velocities and stresses. 
Many of these are stable (for all values of Poisson’s ratio) and 
accurate, making them ideal for modelling marine exploration 
problems. This feature is usually lacking from finite-difference 
schemes developed from the second-order coupled elastic equa- 
tions expressed in displacements (e.g. Kelly et al. 1976). The 
staggered-grid (Virieux 1986; Levander 1988) and minimal-grid 
(Magnier et al. 1994) schemes are of less computational cost; 
however, they are incapable of handling the complex geometrical 
surface. The pseudo-spectral method has been adopted to 
account for surface topography by mapping a rectangular grid 
onto a curved grid (Tessmer, Kosloff & Behle 1992; Tessmer 
& Kosloff 1994). However, the implementation of the above 
map is difficult when incorporating simultaneously the surface 
topography and other complex geometrical boundaries as well 
as curved interfaces. The finite-difference technique has been 
adopted to deal with S H  motion in complex geometries by 
using irregular grids (Moczo 1989). The finite-element method 
(Zienkiewitz 1977) is more flexible in handling complex geo- 
metrical boundaries. Unfortunately, this method is more time 
consuming and requires more computer memory. It is very 
important to develop a new finite-difference scheme which can 
serve as a powerful tool for the study of elastic-wave-propagation 
phenomena in the vicinity of non-planar surfaces and interfaces. 

In this paper, I adopt the velocity-stress finite-difference 
scheme to handle complex geometrical boundaries and interfaces 

by introducing a quadrangle-grid finite-difference approximation 
to derivatives of first-order velocity-stress hyperbolic systems. 
The free-surface boundary conditions of complex geometries 
are obtained by applying Gaussian quadrature formula 
approximation to integral equilibrium equations on the surface, 
and the numerical stability of the boundary conditions is 
improved by introducing local filter modifications to the 
numerical results of the boundary points. The resulting finite- 
difference scheme incorporates desirable qualities of the finite- 
element method and the staggered-grid finite-difference scheme, 
which is of high accuracy and low computational cost. The 
new scheme is tested against an analytical solution for Lamb’s 
problem to demonstrate the accuracy of this new modelling 
algorithm. I then present an example of surface-wave propa- 
gation in an elastic half-space with a cylindrical pit on the 
surface. The last example deals with a sinusoidal liquid/solid 
interface for an explosive source in the liquid. The scheme can 
readily be extended to three dimensions. 

BASIC CONCEPTS 

The first-order system of equations for the velocity and stress 
(Virieux 1986) are 

- au, =-(-+!%), 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaCrx 

aw, =!(%+!5), 

at ax 

at p ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30, au aw 
at 
- =(n+2/l)--!+A-, ax aZ (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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( 5 )  

where u, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1 are the particle velocity components in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and 
z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are the Lame coefficients, and p is the density. 
Many finite-difference schemes are based on solving the above 
equations. The key procedures of these are: (1) calculating 
time derivatives of the velocity components from eqs (1) and 
(2) by using finite-difference approximations to first-order 
space derivatives of the stress at time t and then obtaining 
particle velocities at time f + At/2 using time integration; 
( 2 )  calculating time derivatives of the stress components from 
eqs (3 j-( 5 )  by using finite-difference approximations to first- 
order space derivatives of the velocity at  time t + A t / 2  and 
then obtaining the stresses at time t + At using time integration. 
Stresses and velocities are thus updated in a staggered time 
grid. Virieux (1986) and Levander (1988) defined the spatial 
finite-difference operator in the orthogonal grids and Magnier 
( 1994) defined that in the equilateral-triangle grids, hence all 
these methods can only solve problems with standard geo- 
metrical boundaries. In this paper I enable the velocity-stress 
finite-difference scheme to handle complex geometrical bound- 
aries by introducing a non-rectangular-grid finite-difference 
operator. 

The non-rectangular-grid finite-difference operator is defined 
in non-orthogonal grids, which means that the approximation 
to spatial derivatives can be achieved by using field variable 
values at four corner nodes of an arbitrary quadrangle. In 
order to obtain the non-rectangular-grid finite-difference 
operator, I map the arbitrary quadrangle in the (x, z)-domain 
into a square of (5 ,  q)-coordinates. The mapping functions are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(7 )  
1 

+ $1 + 5K1- d z 4  

where (xi, zi), i = 1,2,3,4, are the coordinates of the quadrangle 
nodes in the (x, z)-domain. The derivatives of the field variable 
P(x, z) with respect to (t, q)-coordinates can be expressed as 
follows: 

aP aPax ap az 
at - ax at aZ at  +--, _ _ _ -  

ap aPax ap az 
aq ax aq aZ aq +--. _ - _ _  - 

From eq. (8) we obtain 

where the inverse of the matrix can be solled from eqs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 6 )  
and (7 j (Zienkiewitz 1977 ). 

With Pi, i = 1,4, denoting field variable balues at the four 
corner nodes of the quadrangle, the field Yariable l" .~.  :) i n  the 
(t, qj-domain can be expressed in the form of interpolation a.s 

1 1 

4 
P = - ( 1 + 5 j( 1 + q ) P ,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 ( 1 - 5 )( 1 + I?)P 2 

From eq. (lo), we obtain 

By substituting eq. (11) into eq. (9) we obtain the finite- 
difference operator for calculating first-order derivatives of 
the field variables in the inside of the arbitrary quadrangle 
with the field-variable values at the four nodes. Since the 
interpolation of eq. (10) makes the field variables conform on 
boundaries of meshes, the operator presented here is more 
accurate than the usual formulae obtained through inter- 
polating field variables in the (x, z)-domain and then calculating 
the derivatives directly (Zienkiewitz 1977). 

The new scheme is illustrated in Fig. 1, where the non- 
rectangular solid-line grids are generated taking into account 
boundary and interface geometries, and the dashed-line grids 
are generated by linking all the centres of the quadrangles. 
The two velocity components are defined at the nodes of solid- 
line grids and the three stress components are defined at the 
nodes of dashed-line grids. Substituting the velocities u, and 
wt at four groups of points, (a, b, c, m), (m, c, d, e),  (m, e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, g )  
and (rn, g,  h, a), into eqs (11) and (9) gives a finite-difference 
approximation to the first-order space derivatives of velocities 
at points i, j ,  k and 1; we can then compute the time derivatives 

(10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 1 
b d 

(9) 
Figure 1. Staggered-grid and spatial models for the velocity and stress 
update. The two velocity components are defined at the nodes of solid- 
line grids, represented by black dots. The three stress components are 
defined at the nodes of dashed-line grids, represented by circles. 
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of stresses a,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaz and zxr  from eqs (3)-(5)  at time-level to,  so 
stresses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAox, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,, at points i, j ,  k and 1 at time-level 
ro  + At/2 are obtained by time integration. Substituting the 
stress components at points i ,  j ,  k and 1 into eqs (1) and (2) 
gives the time derivatives of the velocities u, and W ,  at point m 

by using difference formulae of eqs (9) and ( 11 ) at time-level 
to + At/2, thus velocity components at point m at time-level 
to + At can be obtained by time integration. The velocity 
components at points a, b, c, d ,  e, f ,  g and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 at time level 
to + At can be solved in the same way. Furthermore, the whole 
velocity field is updated using this way. The stress field can be 
updated by analogous spatial stencils from time-level to + At/2  
to time-level to + 3At/2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BOUNDARY CONDITIONS 

Internal interfaces are incorporated naturally by changes of 
elastic parameters and density in the formulation. The boundary 
conditions on the edges of the domain of computation, except 
for the surface, can be treated with the radiation conditions 
for the modelling of a semi-infinite space. Radiation conditions 
have been studied by many authors (e.g. Clayton & Engquist 
1977), so in this paper only the free-surface boundary con- 
ditions in the presence of surface topography are discussed 
in detail. 

The local grids accounting for surface topography are shown 
in Fig. 2, where points a, f and e are grid nodes on the surface 
boundary. With h and j denoting the centres of the quadrangles 
ubcf and f cde ,  and g, i and k denoting the centres of the lines 
uf, f c  and f e ,  the integral equilibrium equations over the 
domain enclosed by contour ghijkf are expressed as follows: 

(~,I+z,,m)ds= p - d x d z ,  

(12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ghijk f Jj 2 

P ghijk f 

where 1 and m are direction cosines of outward-directed 
normals to the contour ghijkf .  The surface integrals of the 
right-hand side of the above equations can be approximated 
by Mf(tJu, /at) ,  and M,(aw,/at),, respectively. Here, M ,  is one- 
quarter of the sum of the masses of the area enclosed by 
quadrangle abcf and that enclosed by quadrangle fcde, and 
(au,/at), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(awl /&) ,  are, respectively, time derivatives of the 
velocities u, and W ,  at point f .  To cut the contour integral into 
five parts, an integral over the line g f k  and another four 
integrals over the lines gh, hi, i j  and j k ,  we know that the first 
integral is equivalent to the known total load acting on the 
local boundary g f k ,  and the other four integrals can be 
evaluated by using two-point Gaussian quadrature formula. 
In the spatial models of Fig. 2, the velocity components are 
defined at points represented by black dots, and the stress 
components are defined at points represented by circles and 
are also defined at eight Gaussian points indicated by squares. 
The stresses at the Gaussian points can be computed in the 
same way as calculating the stresses at points h and j .  Therefore, 
(au,/at), and (aw,/at), can be solved from eq. (12), and then 
the velocity components at point f on the surface are obtained 
using time integration. The whole velocity field on the surface 
can be updated in the manner described above. 

It has been observed that instabilities in solving hyperbolic 
equations are frequently caused by the treatment of the free- 
surface boundary conditions (Gottlieb, Gunzburger 1982; Kosloff 
et al. 1990). In order to improve the stability of the scheme 
presented here, we further filter the numerical solutions of the 
surface nodes achieved above. The local filter modification can 
be fulfilled by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(u,)~ is the horizontal velocity component at point f 
obtained using the free-surface conditions of eq. (12), (u,)~ and 
(u,)~ are the horizontal velocity components at points adjacent 
to point f (see Fig.2) obtained using the same free-surface 
conditions, p is a parameter that is selected in the domain 
0.5 5 B I 1.0 and (zZ,)~ is the modification value of the hori- 
zontal velocity component which will replace ( u ~ ) ~  to update 
the velocity field on the surface. Here, b=O.8 .  The vertical 
velocity component at point f also needs to be modified in 
the same way, and these modifications should be carried out 
for all the nodes on the surface. 

STABILITY ANALYSIS 

To analyse stability and dispersion properties, we assume a 
uniform infinite medium which supports a plane wave. 
Replacing differential operators with finite-difference operators 
in eqs (1)-(5) and substituting eqs (3)-(5) into eqs (1) and (2) 
provides a second-order system of difference equations in 
velocities only. This system can be written in matrix form 
using the second-order finite-difference operators D,, , D,, , D,, 
and Drt: 

Figure 2. Local grids with surface topography. The velocity com- 
ponents are defined at the nodes represented by black dots and stress 
components are defined at the points represented by circles and 
squares. The points a, f and e are on the surface and Gaussian points 
on line gh, hi, ij and j k  are indicated by squares. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) 

where 8 = is the S-wave velocity and a =  JW is 
the P-wave velocity. The finite-difference operator presented 

0 1997 RAS, GJI  131, 127-134 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
1
/1

/1
2
7
/7

5
0
4
7
7
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2
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Ic)cw:::::: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---JI Lx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 2000m 

A 

-Lamb 
Modelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.5 1 .o 1.5 2.0 2.5 

Time@) 
Figure 3. Comparison between numerical and analytical horizontal 
components for Lamb's problem at different stations on the free surface. 

in this paper will vary with changes in the geometry of the 
quadrangle mesh. For simplicity, we discuss the case when the 
quadrangle is a parallelogram with an internal angle of 8. Let 
one side of the parallelogram parallel the z-axis. With Ax and 
Az denoting the lengths of two sides of the parallelogram, the 
second-order finite-difference operators can be expressed as 
follows: 

X = 300m 

-Lamb 
I Modelling 

I 1 

0.0 0.5 1 .o 1.5 2.0 2.5 

Time (s) 
Figure 4. Comparison between numerical and analytical vertical com- 
ponents for Lamb's problem at a source-receiver distance of 300m 
on the free surface. 

where j is the index for time discretization, m for grid lines 
that parallel the z-axis, n for another group of grid lines, and 

PjA = P i +  1," + 1 + pi- 1.n + 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPj, + 1.n- 1 + pi- 1.n- 1 - 4Pi, ,  > 

pj - 2 p j  

pj - pj 

Let the frequency of the plane wave be w and the wave 
numbers in the x- and z-directions be, respectively, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk,  and k,. 
The velocity components at  grid point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m, n) at the time-level 
j are 

{ (u1)i,", ( w I ) i , n } T  = {u,, wO}T exp[i(k,mAx + k2nAz - wjAt)] , 

B - m+ l,n + 2% 1.n - 2pi.,,- 1 - 2Pi,fi+ 1 > 

c -  m + l , n + l  + P i - l , n - l  - P i - l , n + l  - P j , + l , n - 1 .  

(19) 

where {uo, w , } ~  is the velocity vector at  (0,O) at the initial 
time level and kl = k, sin 8 + k ,  cos 8, k ,  = k,. Substituting 
eq. (19) into eqs (15)-( 18) and then substituting the finite- 
difference operators into eq. (14) gives the following: 

where s1 = (2/Ax) sin[(klAx)/2] cos[(k2Az)/2], s2 = 2/Az x 
sin[(k2Az)/2] cos[(kiAx)/2], so = 4/AtZ sin'[(wAt)/2]. It should 
be noted that there should be a non-zero solution for the 
vector {u,, w ~ } ~  in eq. (20). Hence, the matrix in eq. (20) must 
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Quadrangle-grid jinite-difference method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 

0 m 
0 

up = 3000m/s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u, = 1730m/s 

++ 
)r-------- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6000m - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Elastic half-space with a cylindrical pit on the surface. The 
dimensions of the model are 6000 m in the horizontal direction and 
3000m in the vertical direction. The source is located at the surface 
shown by a black dot. The distance between the source and the pit is 
800 m. The cylindrical pit has a radius of 40 m. 

be singular, that is we obtain the following: 

[.2(”--”)2+j2s:-so] sin 8 tan 8 

Substituting so into eq. (21) we obtain the dispersion relations 
for the new scheme as follows: 

At2a2 
4 sin2 8 

At2j2 
4 sin2 8 

sin2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(F) = ~ (s: - 2s,s, cos 8 + s;), 

sin2 ($) = ~ (s: - 2s, s2 cos 8 + s;) . 
(22) 

At2a2 
4 sin2 8 

At2j2 
4 sin2 8 

sin2 (F) = ~ (s: - 2s,s, cos 8 + s;), 

sin2 ($) = ~ (s: - 2s, s2 cos 8 + s;) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ I  
(22) 

For stability we require that the frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw in eq. (19) is a 
real number, that is sin2[C(wAt)/2] 2 1.0. Since x 2  2 /I2, through 
substituting s1 and s2 into eq. (22) the stability criterion is 
given by 

k ,  Ax 

+ -s in2 (T )cos2 (? )  1 k ,  Az kl  Ax 
Az2 

sin(k,Ax) sin(k2Az) 5 1.0. 1 cos8  , 

2AxAz 
-~ 

Let A x 2  Az (or AzrAx) .  The stability criterion can be 
approximately reduced to 

At 4 sin 8AzJa . (24) 

From the stability criterion of eq. (24), it is seen that the 
stability of the scheme presented in this paper is independent 
of the S-wave velocity and the Poisson’s ratio. The algorithm 
is thus stable for all values of Poisson’s ratio and can similarly 
be used for modelling elastic-wave propagation in materials 
with a high Poisson’s ratio. 

It is difficult to analyse the stability of the free-surface 
conditions analytically, which couples the effects of the 
discretization of motion equations and the treatment of the 
free-surface conditions and involves the cumulation of multi- 
reflections at the surface. The good stability of the free-surface 
conditions presented in this paper can be demonstrated using 
numerical examples. Without the filtering of eq. (13),  the 
numerical result would appear to oscillate after many time- 
step calculations. From a numerical point of view, the filtering 
of eq. (13) can be considered to be some extent of the average 
of the wave amplitude in the time domain due to the 

-1000 range in metres 2000 

Figure 6.  Numerical seismograms of the horizontal components of the displacements at the free surface for the half-space with a plane surface (a) 
and with a pitted surface topography (b). 
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132 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJiunfeng zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t VP - - 1500m/s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S 
0 

- 4400m - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. Model with a water layer above an elastic half-space with 
sinusoidal topography of the sea bottom. The interface has a depth of 
1300 30 m. The source is located 200 m above the liquid/solid 
interface. 

similarity of wave motions in space and time. The origin of 
the oscillation is avoided using the filtering of eq. (13). 

ANALYTIC COMPARISON 

The accuracy of the numerical modelling algorithm is 
tested through a comparison of numerical results with an 
analytical solution of Lamb's problem. Fig. 3 shows the hori- 
zontal component due to a vertical Gaussian point source 
f ( t )  = exp(-cc(t - to)2), with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACI = 200 and to = 0.178. Fig. 4 
shows the vertical component due to the same source. The 
surface wave propagates without dispersion and the conical 
wave builds up. The numerical Rayleigh wave has a slightly 
lower amplitude than does the analytical Rayleigh wave due 
to the local filter modification (see eq. 13). Except for this 
slight misfit, the numerical solutions agree well with the 
analytical solutions. The total propagation time is 2.5 s with 
time steps of 4ms. The semi-infinite medium has a P-wave 
velocity of 3000 m s-' and an S-wave velocity of 1730 m SKI. 

The model is made up of square grids with a grid spacing of 
20 m in both the horizontal and the vertical directions. 40 grid 
points per P wavelength and 23 grid points per S \?.avelength 
are used in the computation. 

NUMERICAL EXAMPLES 

Pit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the free surface 

In the first example we compare wave propagation in two 
models which differ in the surface topography. The first 
model has a plane surface, whereas the second has a cylindrical 
pit on the surface, as shown in Fig. 5.  The cylindrical pit 
has a radius of 40m. A vertical Gaussian point-source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f(t) = exp(-a(t - to)*), with a = 200 and to = 0.178, is applied 
to the surface at the point indicated by a black dot. The 
distance between the source and the pit is 800m. The semi- 
infinite medium has a P-wave velocity of 3000 m s-' and an 
S-wave velocity of 1730ms-'. The grid spacing is 20m in 
both the horizontal and the vertical directions. The grids of 
the second model, whose grid spacings in the vicinity of the 
pit are less than 20 m, are non-orthogonal for modelling the 
surface topography. 40 grid points per P wavelength and 23 
grid points per S wavelength are used in the computations. 

Fig. 6 shows seismograms of the horizontal component of 
the displacements. The receivers are located at  the surface from 
- 1000 to 2000 m (source at zero) with a spacing of 20 m. The 
seismogram for the half-space with a plane surface is shown 
on the left-hand side of the figure and the seismogram for the 
half-space with a cylindrical pit is shown on the right. The 
difference in the seismograms is remarkable: diffractions due 
to the pit can be seen clearly. 

For a medium of size 300 x 150, each computation takes 
about 90 min on a 486 microcomputer to perform 625 time 
steps of 4 ms. If the finite-element method is used for solving 
a problem of the same size, a computer memory of more than 
100 M is needed. Hence, it is impossible to solve the problem 
with the finite-element method on a microcomputer. 

Figure 8. Numerical seismograms of the vertical component of the partical velocity for two models with a plane bottom (a) and with a sinusoidal 
interface (b). The receivers are located at the sea bottom in both cases. 
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134 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJianfeng zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sinusoidal acoustictelastic interface 

In a second example, we present a comparison of two models 
with a liquid layer on the top of an elastic half-space. In the 
real world such a model could represent a water layer over 
rock. The two models only differ in the topography of the 
ocean bottom. The first model has a plane bottom and the 
second has a sinusoidal topography, as shown in Fig. 7. 
The wavelength of the interface topography is 160m, where 
its height is 60m peak-to-peak. An explosive source is 
located 1100 m below the surface, as indicated by a black 
dot. The explosive source is modelled by adding a known 
value, whose time history is defined by the Gaussian source 
f ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= exp(-cc(t - to)'), with cc = 200 and to = 0.178, to the 
stresses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cx, 6,) at the centres of the four quadrangles around 
the point source. The sea bottom is at 1300 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 30 m depth. The 
models are made up of two grids of 221 x 181 grid nodes each, 
with a grid spacing of 20m in both the horizontal and the 
vertical directions; however, the grids of the second model are 
non-orthogonal for modelling the interface topography and 
the grid spacings near the interface are less than 20m. The 
solid medium has a P-wave velocity of 2000 m s-'  and an 
S-wave velocity of 1130 m SKI, and the liquid medium has a 
P-wave velocity of 1500 m s-'. 15 grid points per minimum 
wavelength are used in the computations. Each computation 
takes 90 min on a 486 microcomputer when performing 800 
time steps of 4 ms. 

Seismograms of the vertical component of the particle 
velocity at the sea bottom for the two models are shown in 
Fig. 8. The seismogram in Fig. 8(a) shows a strong direct P 

wave, a converted PS wave and a surface-reflected PP wave, 
as well as multiple reflected waves. Due to scattering at the 
rough sea bottom, the seismogram in Fig. 8(b) is not as clear 
as in Fig. 8(a). The direct wave and the surface-reflected wave 
can be identified. 

Snapshots of the vertical component of the particle velocity 
at 800, 1280 and 1600 ms propagation time of the two models 
are shown in Figs 9 and 10. The snapshots of the model with 
a plane bottom (Fig. 9) show very clear wavefronts of the 
direct, reflected and transmitted as well as the converted PS 

waves. A decaying surface wave can be seen. Also, a Stoneley 
wave is found in the liquid area above the interface in the 
snapshots. In contrast, the snapshots of the model with a 
sinusoidal interface (Fig. 10) show, along with clear direct and 
transmitted and Stoneley wavefronts, a distorted converted PS 

wave and the interface-reflected wave. The converted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPS wave 
and Stoneley wave are separated owing to the curved interface. 
Owing to its shorter wavelength the converted S wave is much 
more distorted than the transmitted P wave, as can be seen 
clearly in the snapshots. 

CONCLUSIONS 

I have presented a quadrangle-grid velocity-stress finite- 
difference method for wave calculations with variable surface 

topography. This work is based on the first-order velocity- 
stress hyperbolic system and a non-rectangular-grid finite- 
difference operator. The scheme uses non-orthogonal grids, 
thereby surface topography and curved interfaces can be 
incorporated easily. The method is stable for all values of 
Poisson's ratio. Liquid areas can be introduced inside the 
heterogeneous medium and the wave propagation in this 
mixed liquid-solid medium can be modelled using the same 
code as used for a solid. The comparison with analytic results 
shows that the numerical scheme is highly accurate. The 
numerical simulations show that the scheme is flexible in 
handling complex geometrical boundaries and the com- 
putational cost and storage requirements for the scheme are 
small. The numerical examples presented demonstrate clearly 
the wave phenomena which are caused by the corrugated 
surface or interface. 
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