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QUADRATIC AND QUASI-QUADRATIC FUNCTIONALS

PETER SEMRL

(Communicated by Maurice Auslander)

Abstract. In this note we show how Jordan *-derivations arise as a "measure"

of the representability of quasi-quadratic functionals by sesquilinear ones. Our

main result can be considered as an extension of the Jordan-von Neumann

characterization of pre-Hilbert space.

1. Introduction

Let M be a module over a *-ring R . A mapping S: M x M —► R is called

a sesquilinear functional if it is linear in the first argument and antilinear in the

second argument:

(1) S(ax + by, z) = aS(x, z) + bS(y, z),       x, y, z £ M, a, b £ R,

(2) S(x, ay + bz) = S(x, y)a* + S(x, z)b*,       x ,y, z £ M, a, b £ R.

In the special case when R is a commutative ring with the trivial involution
a* = a, the relation (2) can be rewritten as S(x, ay + bz) = aS(x, y) +
bS(x, z). In this case the mapping S is called bilinear.

A quadratic functional Q on M is defined as the composition of some

sesquilinear functional from Af x Af to 7? with the diagonal injection of Af

into Af x Af; that is, Q(x) = S(x, x), where 5 is sesquilinear. There is some-

thing inappropriate about defining a quadratic functional which is a function of
one variable in terms of a sesquilinear functional which involves two variables.

This raises the question of what requirements can be imposed on a mapping

from Af to Tv to define the set of all quadratic functionals. The best-known

identities satisfied by quadratic functionals are the parallelogram law

(3) Q(x + y) + Q(x-y) = 2Q(x) + 2Q(y),       x,y£M,

and the homogeneity equation

(4) Q(ax) = aQ(x)a*,        xeAf, a£R.

A mapping Q: M —» R satisfying these two identities is called a quasi-quadratic

functional. In the special case that 7? is a commutative ring with the trivial

involution the relation (4) can be rewritten as Q(ax) = a2Q(x).
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It seems natural to ask when quasi-quadratic functionals are in fact quadratic

functionals. In other words, given a quasi-quadratic functional Q, does there

exist a sesquilinear functional S such that Q(x) = S(x, x) ? In 1963, Halperin

in his lectures on Hilbert spaces posed this problem for the special case that Af

is a vector space over F e {R, C, H} . Here, R and C denote the field of real

numbers and the field of complex numbers respectively, while H denotes the

skew-field of quaternions. In 1964, Kurepa [4] obtained the general form of

quasi-quadratic functionals defined on a vector space over R. In particular, he

showed that there exist quasi-quadratic functionals which cannot be represented

by bilinear functionals. In 1966, Gleason [2] generalized this result to vector

spaces V , dim V > 2, over an arbitrary field F, not of characteristic 2, and

with the trivial involution. He proved that all quasi-quadratic functionals on

V are quadratic if and only if all additive derivations on F are zero. The

same result holds for quasi-quadratic functionals defined on a module over a

commutative ring R with the trivial involution in which 2 is a unit. This result

follows from [1, Theorem 3]. It should be mentioned that in this commutative

case with the trivial involution the result of Jordan and von Neumann [3] implies

that for each quasi-quadratic functional Q the mapping S defined by

(5) 4S(x,y) = Q(x + y)-Q(x-y)

is symmetric and biadditive and Q(x) = S(x, x) (see [2]). Thus, the above-

mentioned results imply that 5 is homogeneous in both variables if and only

if all additive derivations on R are zero.
In 1965, Kurepa [5] gave a positive answer to Halperin's problem for quasi-

quadratic functionals defined on a vector space V over F e {C, H} . In 1984,

Vukman [9] posed the problem of representability of quasi-quadratic functionals

by sesquilinear ones on modules over complex *-algebras. This problem was

treated in [6-11]. The complete solution was given in [7]. It was proved that if

Q is a quasi-quadratic functional on a module over a complex *-algebra with

an identity element, then the mapping 5 defined by

(6) S(x, y) = I«2(x + y)- Q(x - y)) + {(Q(x + iy) - Q(x - iy))

is the unique sesquilinear functional satisfying Q(x) = S(x, x). This result

is an extension of the Jordan-von Neumann theorem [3] which characterises

pre-Hilbert space among all normed spaces.

A mapping J defined on a *-ring R is called a Jordan *-derivation if it is

additive and satisfies

(7) J(a2) = aJ(a) + J(a)a*.

We shall denote by f the set of all Jordan *-derivations on R. Over a com-

mutative ring with the trivial involution in which 2 is not a zero divisor, the

set of all Jordan ^-derivations is equal to the set of all additive derivations [1].
A mapping Ja: R —> R, a £ R, defined by Ja(b) = ba - ab* will be called
an inner Jordan ^-derivation. In [8] it was proved that the representability of

quasi-quadratic functionals by sesquilinear functionals on modules over a real

Banach *-algebra A with an identity element depends on the existence of Jor-

dan ^-derivations on A which are not inner. The proof of this result given

in [8] uses the fact that Banach algebras have enough invertible elements. It

is the purpose of this note to extend this result to quasi-quadratic functionals
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defined on modules over arbitrary *-rings. In this general setting it is impossi-

ble to find a relation (similar to (5) in the commutative case) telling us how to

recover from a quadratic functional Q a sesquilinear functional S satisfying

Q(x) = S(x,x).

2. Statement of the results

Main Theorem. Let R be a *-ring with identity 1 such that 2 is a unit in R. As-

sume that for every Jordan ^-derivation J: R —> R there exists a unique a £ R

such that J(b) = Ja(b) = ba - ab*, b £ R. Then every quasi-quadratic func-

tional Q defined on an arbitrary unitary R-module M is a quadratic functional.

Note that the uniqueness of a in the above theorem is equivalent to the

statement that ba - ab* = 0 for all b £ R implies a = 0. For the proof of the

Main Theorem we shall need the following simple lemma.

Lemma 1. Let R be a *-ring with identity 1 such that ba - ab* = 0 for all
b £ R implies a = 0. If e,■, i =1,2,1,4, are elements from R such that

aexa* + ae2b* + be^a* + be4b* = 0

for all a, b £ R then e,■ = 0, ( = 1,2,3,4.

The next theorem shows that the existence of noninner Jordan ^-derivations

yields the existence of quasi-quadratic functionals that cannot be represented

by sesquilinear ones.

Theorem 2. Let R be a *-ring with identity 1 such that 2 is not a zero divisor.

If J: R -» R is a Jordan ^-derivation then the mapping Q: R x R -> R given

by Q((a, b)) = J(ba) - bJ(a) - J(a)b* is a quasi-quadratic functional. If J is
not inner then Q is not a quadratic functional.

A ring R is said to be a prime ring if aRb = {0} implies a = 0 or b = 0.
We shall prove that the mapping F: R —> f , F(a) = Ja , is one-to-one if 7? is

a noncommutative prime ring. Thus, we shall prove the following result.

Corollary 3. Let R be a noncommutative prime *-ring with identity 1 such that

2 is a unit in R. Then all Jordan ^-derivations on R are inner if and only if

every quasi-quadratic functional Q defined on an arbitrary unitary R-module

M is a quadratic functional.

Next, we shall show that all the assumptions of the Main Theorem are satis-

fied if Tv is a complex *-algebra with an identity element. This together with

the Main Theorem implies the following extension of the Jordan-von Neumann

characterization of pre-Hilbert spaces (see [7]).

Corollary 4. Let R be a complex *-algebra with identity 1 and let M be a

unitary R-module. Assume that Q: M —> R is a quasi-quadratic functional.

Under these conditions the mapping S: M x M —> R defined by the relation (6)

is the unique sesquilinear functional satisfying Q(x) = S(x, x).

We shall conclude by giving an example of a Jordan *-derivation which is
not inner.

Example 5. There exists a Jordan ^-derivation on a finite-dimensional noncom-

mutative real *-algebra with an identity element which is not inner.
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3. Proofs

Proof of Main Theorem. Let Q be a quasi-quadratic functional defined on a

unitary Ti-module Af. We shall divide our proof into two steps. First, we shall

prove that if the restriction of Q to each submodule of Af generated by two

elements is a quadratic functional, then Q is a quadratic functional on Af. Our

second step will be to prove that under the assumptions of the Main Theorem

every quasi-quadratic functional defined on an arbitrary unitary 7v-module Af

generated by two elements is a quadratic functional.

Step 1. Assume that the restriction of Q to each submodule of Af generated

by two elements is a quadratic functional. Let us choose arbitrary elements

x, y £ M. We denote by Mxy = {ax + by : a, b £ R} the submodule of Af
generated by x and y. According to our assumption there exists a sesquilinear

functional Sx<y: Mx<y x Mx^y —> R such that

Q(ax + by) = Sx,y(ax + by, ax + by)

(8) =aSx,y(x,x)a*+aSx,y(x,y)b*

+ bSx>y(y, x)a* + bSx,y(y, y)b*,       a,b£R.

Let us define a functional S: M x M —> R by S(x, y) = Sx,y(x, y) for all

x, y £ M.
In order to see that the mapping S is well defined we assume that there exists

another sesquilinear functional Txy: Mx<y x Mx^y —> R satisfying

Q(ax + by) = Tx,y(ax + by, ax + by)

= aTx,y(x, x)a* + aTx,y(x, y)b*

+ bTx<y(y,x)a* + bTXty(y,y)b*,        a,b£R.

Comparing this with (8) and using Lemma 1 we get that Sx,y(x,y) =
Tx,y(x, y). Thus, S is well defined. Moreover, we have proved that

(9) Sy,x(x,y) = Sx,y(x,y)

holds for all x, y £ M. Let x, y , and z be elements from Af. Then we have

Sx,y(x, x) = Q(lx + 0y) = Q(lx + 0z) =Sx>z(x,x). In particular, we obtain

Sx,x(x, x) = Sx,y(x, x). This last relation implies together with (9) that (8)

can be rewritten as

Q(ax + by) = aS(x, x)a* + aS(x, y)b*

[    } + bS(y, x)a* + bS(y, y)b*,       a,b£R,

where x, y are arbitrary elements from Af. It follows that Q(x) = S(x, x)

is valid for all x e Af. In order to complete the first step of our proof we must

show that S is a sesquilinear functional.

For arbitrary x, y £ M and a, b, c, d £ R we have

caS(x, x)a*c* + caS(x, y)b*d* + dbS(y, x)a*c* + dbS(y, y)b*d*

= Q(cax + dby) = cS(ax, ax)c* + cS(ax, by)d*

+ dS(by, ax)c* + dS(by, by)d*.

Applying Lemma 1 we get S(ax, by) = aS(x, y)b*. It remains to prove that

S is biadditive. Define

bx = Q(axXx + a2x2 + a3x3),        b2 = Q(axxx + a2x2 - a3x3),
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and

bi = Q(axxx - a2x2 - a3x3).

The parallelogram law (3) gives us

bx+b2 = 2Q(a\xx + a2x2) + 2Q(a3x3),

-b2 -h = -2Q(axxx - fl3x3) - 2Q(a2x2),

bx+b3 = 2Q(axXx) + 2Q(a2x2 + a3x3).

Solving this system of equations and using (10) we obtain

3

bx =  Y^ aiS(Xi' xi)a*j ■

In particular, for arbitrary x, y, z £ M and a, b £ R we have the relation

Q(ax + ay + bz) = a(S(x, x) + S(y, x) + S(x, y) + S(y, y))a*

+ a(S(x, z) + S(y, z))b*

+ b(S(z, x) + S(z, y))a* + bS(z, z)b*.

On the other hand, using (10) we get that

<2(a(x + y) + bz) = aS(x + y, x + y)a* + aS(x + y, z)b*

+ bS(z,x+y)a* + bS(z,z)b*.

Comparing the two expressions for Q(ax + ay + bz) we obtain, using Lemma

1, the biadditivity of S. Thus, under the assumptions of the Main Theorem,

a quasi-quadratic functional Q on Af is a quadratic functional if and only

if its restriction to each submodule generated by two elements is a quadratic

functional.
Step 2. Let Af = {ax + by : a, b £ R} be a unitary 7v-module generated

by x and y. We have to prove that for a given quasi-quadratic functional

Q: M -» R there exists a sesquilinear functional S from M x M to R such

that Q(z) = S(z, z) for all z £ M.
Let us define a functional D: R x R -» R by

(11)      D(a, b) = Q(ax + by) - aQ(x)a* - bQ(y)b* - 2~x(afb* + bfa*),

where / = Q(x + y) - Q(x) - Q(y). We shall first prove that D is biaddi-
tive. Clearly, it is enough to prove that the functional E given by E(a, b) =

Q(ax + by) - aQ(x)a* - bQ(y)b* is biadditive. Applying the parallelogram law
(3) we get

2E(a,b) + 2E(c,b)

= 2Q(ax + by) + 2Q(cx + by) - 2Q(ax) - 2Q(cx) - 4Q(by)

= Q((a + c)x + 2by) + Q((a - c)x) - 2Q(ax) - 2Q(cx) - Q(2by)

= Q((a + c)x + 2by) - Q((a + c)x) - Q(2by) = E(a + c, 2b).

Substituting c = 0 and using the obvious relation E(0, b) = 0 we obtain

(13) 2E(a,b) = E(a,2b).

It follows from (12) and (13) that the mapping E is additive in the first argu-
ment. The same must be true for the functional D. In the same way we prove

that D is additive in the second argument.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1110 PETER SEMRL

It is not difficult to verify that (4) and (11) imply

D(a,a) = 0,        a£R,

and

D(ca, cb) = cD(a, b)c*,        a,b,c£R.

Using these two relations and biadditivity of D we shall prove that the mapping

/: R —> R given by J (a) = D(a, 1) is a Jordan ^-derivation satisfying

(14) D(a,b) = J(ab)-aJ(b)-J(b)a*,       a,b£R.

Clearly, J is additive. For arbitrary a, b, c, d £ R we have

aD(b, c)a* + D(db, ac) + D(ab, dc) + dD(b, c)d*

= D((a + d)b, (a + d)c) = (a + d)D(b, c)(a + d)*

= aD(b, c)a* + dD(b, c)a* + aD(b, c)d* + dD(b, c)d*,

which yields

D(db, ac) + D(ab, dc) = dD(b, c)a* + aD(b, c)d*.

Putting c = d = 1 we get D(b, a) + J(ab) = J(b)a* + aJ(b). As D(a, a) = 0
implies D(a, b) = -D(b, a), we have proved that (14) is valid. Replacing a

in this relation by ba we see that

bJ(a)b* = J(bab) - baJ(b) - J(b)a*b*

holds for all a, b £ R. Putting a = 1 and using 7(1) = 0 we finally get
J(b2) = bJ(b) + J(b)b* for all b £ R.

According to our assumptions, J is an inner Jordan *-derivation. Thus, we

can find an element g £ R such that J(a) = ag - ga* is valid for all a £ R.

It follows from (14) that

D(a, b) = agb* -bga*,        a,b£R.

Applying (11) one can easily see that

Q(ax + by) = ae\xa* +ael2b* + be2xa* + be22b*,        a, b £ R,

where eXx = Q(x), el2 = g + 2~xf, e2x = 2~xf-g, and e22 = Q(y). We
define S: M x M -► 7? by

S(ax + by, cx + dy) = aexxc* +ael2d* + be2ic* + be22d*,        a, b,c, d e 7?.

In order to see that S is well defined we choose ax, a2 £ R such that a\X +

a2y = 0. For arbitrary elements b\, b2 £ R we have

2

Y, b'eubj = Qih* + foy) = Qi(ai +bx)x + (a2 + b2)y)

2

= Y, (««■ + b')eu(a* + b*)
i.j'l

2 2 2 2

= Y aieUaj + Y aieiJbj + YI bieHa) + Y bieHb) ■
ij=l ij=l i,j=l i,j=\
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It follows from 0 = Q(axx + a2y) = £2 . , ate^a* that

2 2

(is) Ya'e'JbJ+ £ v,,«; = o.
i,j=\ i,7=l

Putting bx = 1 and b2 = 0 we get p + q = 0, where

p = axex\ +a2e2l,       q = exxa\ + ex2a*2.

On the other hand, if we set in (15) bx = c and b2 = 0, we obtain pc* +cq = 0.

Together with c<7 + cp = 0 this implies cp - pc* = 0 for all c £ A. It follows

that p = q = 0, or

S(axx + a2y, x) = 0 = 5(x, axx + a2y).

In a similar way we get

S(axx + a2y,y) = 0 = S(y, axx + a2y).

Thus, S is well defined. Clearly, it is a sesquilinear functional satisfying Q(z) =

S(z, z) for all z £ M. This completes the proof.

Proof of Lemma 1. Putting a = 1 and b = 0 we get ex = 0. Similarly, we

obtain e4 = 0. Substituting a = b = 1 we see that e2 = -e3. Substituting

once again b = 1 we get that ae2 - e2a* = 0 is valid for all a £ R. Thus,

e2 = e-i = 0. This completes the proof.

Proof of Theorem 2. It is easy to verify that Q satisfies the parallelogram law

(3). In order to see that also the homogeneity law (4) is fulfilled we must show

that every Jordan *-derivation /: 7? -» 7? satisfies

(16) J(cbca) = cbJ(ca) + J(ca)b*c* + cJ(ba)c* - cbJ(a)c* - cJ(a)b*c*

for all a, b, c £ R. For this purpose first replace a by a + b in (7) to get

(17) J(ab) + J(ba) = bJ(a) + aJ(b) + J(a)b* + J(b)a*

for all a, b £ R. Consider now d = J(a(ab + ba) + (ab + ba)a). Using (17)
we see that

d = aJ(ab + ba) + (ab + ba)J(a) + J(ab + ba)a* + J(a)(b*a* + a*b*)

= 2abJ(a) + a2J(b) + aJ(a)b* + 2aJ(b)a* + baJ(a)

+ bJ(a)a* + 2J(a)b*a* + J(b)a*2 + J(a)a*b*.

On the other hand,

d = 2J(aba) + J(a2b) + J(ba2)

= 2J(aba) + bJ(a2) + a2J(b) + J(a2)b* + J(b)a*2

= 2J(aba) + baJ(a) + bJ(a)a* + a2J(b) + aJ(a)b* + J(a)a*b* + J(b)a*2.

Comparing the two expressions for d we arrive at

(18) J(dba) = J(a)b*a* + aJ(b)a*+abJ(a),       a,b£R.

Replacing a in (18) by a + c we obtain

J(abc + cba) = J(a)b*c* + aJ(b)c* + abJ(c) + J(c)b*a*

(1 ' +cJ(b)a*+cbJ(a),       a,b,c£R.
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Applying (18) and (19) we get

J(cbca) = J(cb(ca) + (ca)bc) - J(c(ab)c)

= cbJ(ca) + J(ca)b*c* + c(J(b)a* + aJ(b) - J(ab))c*.

Applying (17) we get (16). Thus, we have proved that Q is a quasi-quadratic

functional.

Assume now that J is not inner. If there is a sesquilinear functional S

which generates Q, then S is of the form S((a, b), (c, d)) = aed* + bfc* for

some e, f £ R. The relation Q((a, b)) = S((a, b), (a, b)) with b = 1 gives
us J (a) = -ae - fa*. Since J( 1) = 0, we have e = -f, so that J is an inner

Jordan ^-derivation. This contradiction completes the proof.

Proof of Corollary 3. Let us first assume that all Jordan *-derivations on R are

inner. We claim that Ja = 0, a £ R, implies a = 0. Indeed, for such an a

we have

(20) ba = ab*

for all b £ R. Replacing b by bc and applying (20) two times we get

(21) (bc-cb)a = 0.

Substituting c = dc in (21) we obtain (bdc-dcb)a = 0, which can be rewritten
as

(bd - db)ca + d(bc - cb)a = 0

where b, c, d are arbitrary elements from 7?. The second term is zero by (21).

As R is noncommutative and prime, we have necessarily a = 0. Using the
Main Theorem one can complete the proof of the "if part". Theorem 2 shows

that the converse is also true.

Proof of Corollary 4. Substituting a = ia and b = i in (17) we prove that every

Jordan *-derivation on R is inner. From Ja(i) = 2ia it follows that a ^ 0

implies that Ja is nonzero. Using the Main Theorem one can complete the
proof.

Verification of Example 5. Let 7? be a real *-algebra consisting of elements

X + up, where X and p are complex numbers. We define the operations by

t(X + up) = tX + u(tp) for real t, (Xx + upx) + (X2 + up2) = (X\ +X2) + u(px+p2),

(Xx + upx)(X2 + up2) = XxX2 + u(pxX2 + Xxp2) and the involution by (X + up)* =

X- up.
There exists a nontrivial and therefore discontinuous additive derivation on

R, that is, an additive function /: M -» R satisfying f(ts) = tf(s) + sf(t) for
all pairs t, s £ R (see [12]). Putting D(s + it) = f(s) - if(t) we get a function

D: C -► C which is additive and satisfies D(X2) = 2XD(X). It is not difficult to
verify that the mapping J: R —> 7? given by J(X + up) = uD(X) is a Jordan

*-derivation. However, it is discontinuous and therefore noninner.
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