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Quadratic Backward Propagation of Variance for
Nonlinear Statistical Circuit Modeling
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Abstract—Accurate statistical modeling and simulation are keys to
ensure that integrated circuits (ICs) meet the specifications over the
stochastic variations that are inherent in IC manufacturing technologies.
Backward propagation of variance (BPV) is a general technique for sta-
tistical modeling of semiconductor devices. However, the BPV approach
assumes that statistical fluctuations are not large so that variations in de-
vice electrical performances can be modeled as linear functions of process
parameters. With technology scaling, device performance variability over
manufacturing variations becomes nonlinear. In this paper, we extend the
BPV technique to take into account these nonlinearities. We present the
theory behind the technique and apply it to specific examples. We also
investigate the effectiveness of several possible solution algorithms.

Index Terms—Backward propagation of variance (BPV), nonlinear
devices, semiconductor device modeling, statistical modeling.

I. INTRODUCTION

Integrated circuit (IC) design in the presence of manufacturing
process variations requires statistical simulation [1], [2] and, therefore,
statistical device models [3]. The models should work with all types of
statistical analyses: process corner simulation, distributional (Monte
Carlo or MC) simulation, and mismatch simulation.

A number of different approaches for statistical modeling have been
proposed. The simplest method is to introduce variations directly into
Simulation Program with Integrated Circuit Emphasis (SPICE) model
parameters; however, this leads to inaccurate results as it ignores
correlations between SPICE model parameters.

Extreme case data, either from split manufacturing lots or from
physical simulations of manufacturing extremes, can be used to gen-
erate models [4]. However, this does not give distributional models.
Standard numerical techniques like principle components analysis
[5]–[7] and response surface modeling [8]–[10] can be used to gen-
erate statistical models. However, these require significant effort to
extract model parameter sets from many statistical device samples
and can neither be updated efficiently if a process changes, as it does
during development, nor be used for prediction for new generation
technologies.

Given a process and a geometry level model, statistical modeling
can be done by directly measuring the statistics of the process level
model parameters p and then basing the statistical SPICE models on
these variations [11], [12]. Although this provides both corner and
distributional models, it is not always possible to directly measure
all required process parameters. More importantly, this does not take
into account the fact that the same variation in similar parameters for
different models will give different variations in the modeled electrical
performances e [3]. The goal of modeling is to accurately represent
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the device electrical performance variation, not the model parameter
variation.

A general technique for statistical modeling of semiconductor de-
vices, called backward propagation of variance (BPV), was introduced
in [3], [13], and [14]. This technique is based on the models defined
as functions of the fundamental (independent) process parameters p
(used for statistical simulation for IC design) and on the statistical
device data collected in manufacturing. The method is termed BPV
because it takes measurements in variances of important electrical
quantities and then calculates the variances in the process parame-
ters necessary to fit the measured data. This gives models that are
guaranteed to match the manufacturing extremes and distributions
of e (including mismatch). In addition, the models can easily be
updated when the process changes or new generation technologies are
introduced. However, BPV assumes that statistical variations are not
large so that linearization of e(p) is accurate. For general measures of
circuit performance, this is not always valid [15], and even for common
measures of device performances, this assumption is becoming less
valid because variability increases as device dimensions continue to
decrease.

In this paper, we extend the BPV technique to account for the
nonlinearities in e(p). We denote this technique “quadratic BPV”
(QBPV) as it is based on the quadratic (forward) propagation of
variance approach introduced in [16]. We present the theory behind the
technique and its application to specific examples. We also investigate
the effectiveness of several possible solution algorithms.

II. PROPAGATION OF VARIANCE

Consider an electrical performance ei = ei(p), where p = (p1,
p2, . . . , pN ) is the vector of N process parameters. The second-
degree Taylor series expansion of ei in the neighborhood of p̄ =
(p̄1, p̄2, . . . , p̄N ) gives

ei(p) ≈ ei(p̄) +

N∑
j=1

(pj − p̄j)

(
N∑

k=1

si,j + si,jk(pk − p̄k)

)
(1)

where

si,j =
∂ei(p)

∂pj

∣∣∣∣
p=p̄

si,jk =
1

2

∂2ei(p)

∂pj∂pk

∣∣∣∣
p=p̄

.

If pj is statistically independent and normally distributed with
pj ∼ N (p̄j , σ

2
j ), then it follows that [16], [17]

μei
=E{ei} ≈ ei(p̄) +

N∑
j=1

si,jjσ
2
j (2)

σ2
ei

=var{ei} ≈
N∑

j=1

s2
i,jσ

2
j + 2

N∑
j,k=1

s2
i,jkσ2

j σ2
k. (3)

For si,jk = 0, this gives the standard linear form

μei
= E{ei} ≈ ei(p̄) σ2

ei
= var{ei} ≈

N∑
j=1

s2
i,jσ

2
j . (4)

The standard linear form (4) is sufficiently accurate if ei is only weakly
nonlinear in the neighborhood of p̄. For electrical performances that
are not well approximated by the linear functions of the process
parameters, a better approximation uses the quadratic forms (2)
and (3). In contrast to the linear approximation, E{ei} is no longer
equal to ei(p̄); therefore, ei is no longer normally distributed.

The measure of the degree of asymmetry (deviation from normality)
of the probability distribution function of ei is the skewness [18]

γei
= μ3

e3
i

/
μ

3/2

e2
i

(5)

where μen
i

= E{(ei − E{ei})n} denotes the nth-order central
moments of the distribution of ei. After some algebraic manipulation

γei
≈ 1

σ3
ei

N∑
j,k=1

si,jkσ2
j σ2

k

(
6si,jsi,k+8

N∑
l=1

si,klsi,ljσ
2
l

)
(6)

from which it is apparent that, for a linear response (si,jk = 0), the
skewness of ei is zero, as expected.

III. QBPV

The statistical variation in a particular process parameter pj can be
modeled as

pj = p̄j + δpj (7)

where p̄j is the nominal (mean) value of the parameter and δpj is
its variation. We assume that all process parameter variations are
normally distributed and statistically independent. (A parameter that
is distributed lognormally, i.e., the nonideal base–emitter saturation
current for bipolar transistors Iben, can be modeled by introducing a
normally distributed statistical parameter and multiplying Iben by the
exponential of that statistical parameter. Parameters that are partially
correlated, for example, channel length variation for NMOS and
PMOS devices, can be modeled by using appropriate combinations of
independent parameters [19]. We have yet to encounter any statistical
device modeling problem that, with some thought, cannot be formu-
lated based on independent normally distributed process parameters.)

Let e = (e1, e2, . . . , eM ) be a vector of the device electrical per-
formances that can be measured in IC manufacturing lines. Statistical
variations in p directly affect the variations in e. Rather than calculat-
ing the variances of e from the variances of p using (4), for statistical
modeling purposes, the procedure can be reversed to characterize the
variances of p from the measured variances of e. If σei

is known, then
si,j = ∂ei/∂pj can be calculated about the nominal value p̄ from the
underlying SPICE models. The variance equations of (4) then give a
set of linear equations that can be solved for the unknowns σj . This
procedure is termed BPV [3]. (The nominal values of p, which give
the nominal values of e, are determined using nonlinear least squares
optimization. The sensitivities are computed from the ±3σ variations
in each pj ; therefore, the solution for σj is done iteratively until the
sensitivities and the standard deviations are self-consistent.)

Note that not all process parameters pj need to be characterized
statistically using BPV [3]. For example, for MOSFETs, it can be best
to directly measure the distribution of the oxide thickness from the
capacitance data. Therefore, statistical characterization can be a mix
of forward and backward propagations of variance. If the variances of
n of the process parameters pj , j ∈ F = {j1, j2, . . . , jn}, are known,
then (4) becomes

σ2
ei

−
∑
j∈F

s2
i,jσ

2
j =

∑
j∈B

s2
i,jσ

2
j , i = 1, . . . , M (8)

where B = {j = 1, 2, . . . , N : j /∈ F} is the set of indexes of the
BPV process parameters. These equations can be solved as long as
M ≥ N − n.

For situations where approximation (4) is not sufficiently accurate,
the statistical modeling problem then becomes: How can the nominal
values and variances of pj be calculated so that the nominal values,
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variances, and skewness of ei are modeled accurately? We propose a
new approach, i.e., the QBPV, for this task.

If n process parameters are Forward Propagation of Variance (FPV)
parameters, then, from (2)

μei
− ei(p̄) −

∑
j∈F

si,jjσ
2
j =

∑
j∈B

si,jjσ
2
j . (9)

The mean value of δei = ei − ei(p̄) is not zero since a nonlinear
function of expected values is not equal to the expected value of
the nonlinear function. Therefore, the processes of finding the mean
values and the variances of the process parameters cannot be anymore
decoupled, as is the case for the BPV procedure. The first M of the
QBPV system of equations is, therefore, (9).

Accounting for the FPV parameters, from (3), one obtains

σ2
ei

−
∑
j∈F

(
s2

i,jσ
2
j + 2s2

i,jjσ
4
j

)

=
∑
j∈B

(
s2

i,j +4
∑
k∈F

s2
i,jkσ2

k

)
σ2

j +2
∑

j,k∈B

s2
i,jkσ2

j σ2
k. (10)

These provide additional M equations that must be solved as part of
the QBPV procedure.

The final set of M equations for the QBPV process targets the fitting
of the skewness of the electrical performances. From (6)

γei
σ3

ei
−

∑
j∈F

(
6s2

i,jsi,jjσ
4
j + 8s3

i,jjσ
6
j

)
= 12

∑
j∈B

∑
k∈F

(
si,jsi,k + 2si,jksi,kkσ2

k

)
si,jkσ2

j σ2
k

+ 6
∑

j,k∈B

(
si,jsi,k + 4

∑
m∈F

si,jmsi,kmσ2
m

)
si,jkσ2

j σ2
k

+ 8
∑

j,k,l∈B

si,jksi,klsi,ljσ
2
j σ2

kσ2
l . (11)

The QBPV equations (9)–(11) give 3M equations to solve for the
2(N − n) unknowns, i.e., the means and the variances of the BPV
process parameters pj , j ∈ B. The defined modeling targets are the
means, the variances, and the skewnesses of each of the M electrical
performances.

IV. NUMERICAL RESULTS

A. Three Methods to Numerically Solve the QBPV Equations

We have a system of 3M equations (for the mean, variance, and
skewness of each device performance) with at most 2N unknowns
(the unknown means and variances of the process parameters). The
first M equations (9) have p̄j coupled with σj as the unknowns. The
remaining 2M equations (10) and (11) are the nonlinear functions of
σj . These equations all involve sensitivity coefficients that depend on
the underlying SPICE models and, more importantly, on the unknown
values p̄j (as for a nonlinear function, the sensitivity si,j = ∂ei/∂pj

depends on the point p at which it is evaluated). Therefore, in contrast
to the (linear) BPV process, where the means p̄j can be determined
as one step and the sensitivity and variance computations can be done
as independent and subsequent steps, for QBPV, the means and the
sensitivities need to be calculated self-consistently with, and coupled
to, the solution for σj . We have investigated three methods to solve the
QBPV equations (see Fig. 1).

Method 1: Obtain initial estimates for the means and variances of
the process parameters, for example, from linear BPV. From these

Fig. 1. Three methods to numerically solve the QBPV equations.

values, compute the (first and second order) sensitivity coefficients
si,j and si,jk. Based on these sensitivities, use a nonlinear solver to
compute the means and the variances of pj that best satisfy (9)–(11).
Iterate the sensitivity calculations and subsequent computations of the
means and variances of pj until they are, within some convergence
criterion, self-consistent.

Method 2: Obtain initial estimates for the means and variances of
the process parameters, for example, from linear BPV. From these
values, compute the (first and second order) sensitivity coefficients
si,j and si,jk. Based on these sensitivities, use a nonlinear solver to
compute the variances of pj that best satisfy (10) and (11). Use these
variances in (9) to update values for the process parameter means, and,
then, recalculate the sensitivities. Iterate the sequential variance and
mean calculations until they converge.

Method 3: Obtain initial estimates for the means and variances of
the process parameters, for example, from linear BPV. Use a nonlinear
(iterative) solver to self-consistently solve the system of equations
(9)–(11). Here, “self-consistent” means that, as the means and the
standard deviations of the process parameters change at each step
of the iterative solution process, the calculations of the sensitivity
coefficients, which are based on the perturbations of ±3σ of each pj ,
are updated at each iteration. Although this takes more computation
time per iteration than methods 1 and 2, for the sensitivity calculations,
it obviates the need for the outer iteration loop of methods 1 and 2 and
could improve the overall convergence.

For both methods 1 and 2, damping is used for the outer loop
iterations on both the means and the variances. Among the software
packages for solving systems of nonlinear equations and nonlinear
least square problems, TENSOLVE [20], which is based on the tensor
method, is proven to be robust and efficient [20], [21] and is used here.

B. Evaluation of Convergence Properties

To evaluate the methods, we first investigate a known analytical
nonlinear problem with N = 3 process parameters pj and M = 3
device performances ei related by the following system of equations:

ei =

N∑
j=1

a2
ijp

2
j .

This nonlinear example is quadratic; therefore, the QBPV procedure
should give an exact solution. It can be shown that the ei for this
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TABLE I
CONVERGENCE PROPERTIES OF THE THREE QBPV SOLUTION METHODS

FOR DIFFERENT INITIAL VALUES OF THE PROCESS PARAMETER SIGMA.
(A) σj = 0.1. (B) σj = 1.1. (C) σj = 2. (D) σj = 10

example has mean, variance, and skewness given by

μei
=

∑
j

a2
ij

(
μ2

j + σ2
j

)

σ2
ei

=2
∑

j

a4
ijσ

2
j

(
2μ2

j + σ2
j

)

γei
=

8

σ3
ei

∑
j

a6
ijσ

4
j

(
3μ2

j + σ2
j

)
.

We choose μpj
= σpj

= 0.5j and aij = (i + j)/10, where i = 1,
. . . , M and j = 1, . . . , N . This gives the following target mean,
sigma, and skewness values: μei

= {0.92, 1.49, 2.2}, σei
=

{0.9093, 1.4336, 2.0788}, and γei
= {2.0170, 1.9778, 1.9491},

i = 1, 2, 3. Using these target values, we applied the QBPV procedure
to calculate the means and the variances of the process parameters,
using each of the three methods described previously. The default
TENSOLVE convergence tolerances, which depend on the machine
precision [20], were used, the maximum number of TENSOLVE
iterations was 40, and the maximum number of “outer loop” iterations
for methods 1 and 2 was 60. For these two double-iteration procedures,
the convergence of the outer loop was defined as when the change in
the process parameter means and variances between two consecutive
iterations was less than 0.01%. Table I summarizes the convergence
and the CPU time results (for methods 1 and 2, the number of
iterations is of the outer loop; for method 3, it is the number of
TENSOLVE iterations). Note that, for each iteration for method 3, the
sensitivity coefficients are updated about six times.

Methods 2 and 3 are the most robust and converge equally well
for the different initial values that were tried. Method 3 needs on
average only six TENSOLVE iterations to converge, but each iteration
takes approximately 10 s because of the effort needed to compute the
sensitivities. In contrast, method 2 needs 13 outer loop iterations to
converge, but each iteration takes significantly less time, i.e., about
2 s, because there is only one sensitivity calculation per iteration.
Method 1 is the least robust in terms of convergence (for initial value
cases C and D, it did not converge after a maximum of 60 iterations).

C. Evaluation of Solution Accuracy

In this section, we investigate the performance of methods 2 and
3 in solving the analytical quadratic example when the target values
are given exactly as computed from the analytical formulas. We also
investigate the performance of QBPV when only the mean and the
variance are targeted, as well as the mean, the variance, and the
skewness, and compare the results with those obtained from the linear
BPV procedure (which only targets the mean and the variance).

When targeting the values of an analytic nonlinear problem, both
methods 2 (Table II) and 3 (Table III) perform equally well. This is
valid when we target the mean and the variances only and when we tar-
get the skewness values as well (i.e., when we have an overdetermined
system). Moreover, the QBPV methods converge, as expected, to the

TABLE II
RESULTS OBTAINED USING BPV AND QBPV (METHOD 2)

TABLE III
RESULTS OBTAINED USING BPV AND QBPV (METHOD 3)

TABLE IV
BJT RESULTS OBTAINED USING BPV

TABLE V
BJT RESULTS OBTAINED USING QBPV

known values of the process parameters, whereas the BPV procedure,
because it assumes linear ei(p) mappings, has some inaccuracy.

D. BJT Example

In this section, we analyze the QBPV procedure on an n-p-n bipolar
junction transistor (BJT). The models used included mappings from
geometry and process parameters to model parameters [12], [13].
The p’s used for the statistical modeling were the following: the
(normalized) pinched base-sheet resistance ρbs, the (normalized) ideal
component of base current density Jbei, and the geometric deviation
in the emitter length ΔLe. The e’s targeted for the statistical modeling
were the following: the current gain β = Ic/Ib, the base–emitter
voltage Vbes (measured at a fixed emitter current with the base and the
collector tied together), and the forward Early voltage Vaf (calculated
from the collector current measured at two collector voltages and fixed
base voltage).

The measured means and standard deviations of the device electrical
performances from the fab data are in the last columns of Table IV.
The results of the BPV procedure (computed values for the means
and standard deviations of p) and the statistics from a 10 000-sample
MC simulation based on the BPV model results are in the remaining
columns. Table V shows a similar model and the MC simulation
results from the QBPV procedure solved using method 2. (The BPV
procedure took eight iterations to self-consistently solve for the stan-
dard deviations of p; the QBPV procedure took 11 iterations. The as-
extracted model was from silicon that was different from the typical
one for the process; hence, the nominal values (means) of the process
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Fig. 2. Scatter plots of the BJT device performances from the MC simulations.
The dashed lines are the ±3σ limits; the shaded bell curves are the sample
distributions.

parameters had to be skewed as part of the statistical model generation
to center the model on the target fab data.)

Comparison of the measured values with the MC simulations shows
that the QBPV results are in better agreement with the measurements
than the BPV results. This is expected, because the e(p) mappings are
fairly nonlinear for BJTs, and the variations are reasonably large. That
this problem is nonlinear was confirmed from the skewnesses com-
puted from the MC simulation (γβ =1.2, γVbes =0.7, and γVaf =4.2)
and is visually apparent in the scatter plots of the MC results (see
Fig. 2).

V. CONCLUSION

BPV is a common technique to characterize process parameter
variability. This method is effective if the random process parameter
deviations are normally distributed and statistically independent and if
the dependence of the device electrical performances on the process
parameters is nearly linear. With technology scaling and increased
variability of process parameters, the assumption of linearity is no
longer always reasonable. In this paper, we have introduced QBPV that
takes into account the nonlinear dependences of the device electrical
performances on the process parameters. We have investigated several
different techniques for solving the QBPV equations and compared
them in terms of accuracy and computational efficiency. QBPV has
been applied to a set of nonlinear problems and provides a significant
improvement in the accuracy compared with the (linear) BPV proce-
dure. The method is important in practice as it helps in the reduction of
parametric yield loss and overdesign in high-variability and nonlinear
IC processes.
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