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Abstract. In his remarkable article “Quadratic division algebras” (Trans.
Amer. Math. Soc. 105 (1962), 202–221), J. M. Osborn claims to solve
‘the problem of determining all quadratic division algebras of order 4 over an
arbitrary field F of characteristic not two . . . modulo the theory of quadratic
forms over F ’ (cf. p. 206). While we shall explain in which respect he has not
achieved this goal, we shall on the other hand complete Osborn’s basic results
(by a reasoning which is finer than his) to derive in the real ground field
case a classification of all 4-dimensional quadratic division algebras and the
construction of a 49-parameter family of pairwise nonisomorphic 8-dimensional
quadratic division algebras.

To make these points clear, we begin by reformulating Osborn’s fundamen-
tal observations on quadratic algebras in categorical terms.

1. First equivalence for anisotropic quadratic algebras

Let k be a field of characteristic not two. An algebra is a k-vectorspaceA endowed
with a k-bilinear multiplication A × A → A, (x, y) 7→ xy. A nonzero algebra A is
called quadratic in case an identity element 1 ∈ A exists and each x ∈ A satisfies
an equation x2 = αx + β1 with α, β ∈ k.

Given any quadratic algebra A, Frobenius’ lemma states that the set V = {v ∈
A | v2 ∈ k1} \ (k1 \ {0}) of purely imaginary elements of A forms a linear subspace
of A which is supplementary to k1 (cf. [9],[3],[11]). Accordingly, each x ∈ A has
unique decomposition x = λ(x)1 + ι(x), with λ(x) ∈ k and ι(x) ∈ V . The linear
form λ : A → k gives rise to the bilinear form ( ) : V × V → k, (x, y) = −λ(xy),
and the projection ι : A→ V gives rise to the bilinear multiplication ◦ : V × V →
V, v ◦ w = ι(vw) which by Frobenius’ lemma is anticommutative.

Let us introduce the category Aq of all quadratic k-algebras, and the category
Aab of all anticommutative k-algebras endowed with a bilinear form. Morphisms
in Aq are algebra morphisms respecting identity elements, while morphisms in Aab
are algebra morphisms respecting bilinear forms. In these terms, Frobenius’ lemma
gives rise to the map of object classes

Φ : Ob(Aq)→ Ob(Aab), Φ(A) = (V, ◦, ( )).
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Each morphism of quadratic algebras µ : A → A′ is of the form µ =
(
id ε
0 ν

)
,

where id : k1→̃k1′, 0 : k1 → V ′, ε : V → k1′ and ν : V → V ′ are its linear
components with respect to the Frobenius decomposition of A and A′ respectively.
The hope that ν might even be a morphism Φ(A)→ Φ(A′) in Aab is disappointed
by considering the example A = A′ = k[X ]/(X2 − 1), µ(X) = 1. But still, the
following facts are readily verified:

(1) If ε = 0, then ν ∈ Aab(Φ(A),Φ(A′)).
(2) If µ is an isomorphism, then ε = 0.
(3) If the quadratic form qA : A→ k, qA(x) = λ(x)2 + (ι(x), ι(x)) is anisotropic,

then ε = 0.
Looking in the converse direction, there is indeed a functor F : Aab → Aq,

defined on objects by F(V, ◦, ( )) = k × V with multiplication (α, v)(β,w) =
(αβ−(v, w), αw+βv+v◦w), and on morphisms by F(ν) = Ik×ν. By construction,
Φ and F are related by

(4) FΦ(A)→̃A for all A ∈ Aq.
The hope that F might even be an equivalence of categories is disappointed by

comparing the endomorphism monoids of the objects B = (k, ◦, (−1)) ∈ Aab and
A = F(B)→̃k[X ]/(X2 − 1) respectively: Aab(B,B) = {Ik,−Ik}, while Aq(A,A)
has cardinality 4. But still, the functor F is ‘nearly an equivalence’ in the following
sense.

Proposition 1. The functor F : Aab → Aq has the following properties:
(i) It is faithful and dense. It detects and exhausts isomorphisms.1

(ii) It induces a bijection F : Ob(Aab)/' →̃ Ob(Aq)/' between the sets of
isoclasses of the respective categories.

(iii) It induces an equivalence of full subcategories Fa : Aaba→̃Aqa, where Aaba
is formed by all objects B = (V, ◦, ( )) such that the quadratic form qB : k × V→ k,
qB(α, v) = α2 + (v, v) is anisotropic, and Aqa is formed by all quadratic algebras
A whose quadratic form qA : A → k, qA(x) = λ(x)2 + (ι(x), ι(x)) is anisotropic.
A quasi-inverse functor Φa : Aqa→̃Aaba to Fa is given by Φa(A) = Φ(A) and
Φa(µ) = ν.

Using (1)–(4), the proof of Proposition 1 amounts to a routine verification. The
fact that the map of object classes F : Ob(Aab) → Ob(Aq) is well-defined and
satisfies (4) constitutes [14], Theorem 1.

Let us denote by Aq0 the full subcategory of Aq formed by all quadratic algebras
without zero divisors. It is easily seen that Aq0 ⊂ Aqa. Thus the equivalence
Φa : Aqa→̃Aaba induces an equivalence Φ0 : Aq0→̃Aab0, where Aab0 is the full
subcategory of Aaba formed by all B ∈ Aaba such that FB ∈ Aq0. The interesting
question how to characterize the subclass Aab0 ⊂ Aab internally is answered in [14],
Theorem 2 and Theorem 3 as follows.

Proposition 2. An object B = (V, ◦, ( )) in Aab belongs to the subclass Aab0 if
and only if it satisfies the following two conditions:

(a) The quadratic form qB : k × V → k, qB(α, v) = α2 + (v, v) is anisotropic.
(b) If v, w ∈ V are linearly independent, then v, w, v ◦w are also.

1The functor F : Aab → Aq is said to detect isomorphisms in case for all B,B′ ∈ Aab and
for all ν ∈ Aab(B,B′), if F(ν) is an isomorphism, then ν is also. We say that F : Aab → Aq
exhausts isomorphisms in case for all B,B′ ∈ Aab and for each isomorphism µ ∈ Aq(FB,FB′)
there exists a morphism ν ∈ Aab(B,B′) such that F(ν) = µ.
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At this stage, turning to the problem of determining all 4-dimensional quadratic
division algebras, Osborn proceeds (p. 206 ff.) to observe that it ‘breaks’ (sic!)
into the two distinct problems of finding all bilinear forms in three variables satis-
fying (a) and of finding all 3-dimensional anticommutative algebras satisfying (b).
Concerning the first of these, he is content with the remark that it already be-
longs to the theory of quadratic forms over k. Concerning the second, he indeed
succeeds in reducing the classification problem for the algebras in question to a
problem in the theory of quadratic forms over k (Theorem 5). However, in doing so
he considers classification up to algebra isomorphism, and not up to isomorphism
in Aab, i.e. orthogonal algebra isomorphism. Thus, regarding quadratic division
algebras, he handles the second subproblem in a category with too many mor-
phisms! Consequently, interesting as Osborn’s Theorem 5 and Theorem 8 (dealing
with 7-dimensional anticommutative algebras) are as such, they convey but little
information on the classification of quadratic division algebras. The degree of inac-
curacy arising in this way can be made explicit in the classical case k = R. Here, the
3-dimensional anticommutative algebras satisfying (b) are completely classified up
to algebra isomorphism by a single 1-parameter family ([14], Theorem 6), whereas
there is a 9-parameter family of pairwise nonisomorphic 3-dimensional objects in
Aab0 (cf. section 3).

This finishes our discussion of Osborn’s article. We shall proceed by analy-
zing the category Aab0 so closely as to obtain, in the real ground field case, a
classification of all 4-dimensional quadratic division algebras and the construction of
a 49-parameter family of pairwise nonisomorphic 8-dimensional quadratic division
algebras. It turns out that this approach, based on Proposition 1 and Proposition
2, reveals a conceptual view of the material discussed in [4]–[7], generalizing it
considerably and provoking further investigations.

2. Second equivalence for quadratic anisotropic algebras

Let us consider the category E whose objects are triples (V, ξ, η) consisting of
a symmetric bilinear k-space2 V = (V, 〈 〉) and linear maps ξ : V ∧ V → k and
η : V ∧V → V . Morphisms ν : (V, ξ, η)→ (V ′, ξ′, η′) in E are orthogonal linear maps
ν : V → V ′ satisfying ξ = ξ′(ν ∧ ν) and νη = η′(ν ∧ ν). An obvious isomorphism of
categories Aab ˜̃→E , (V, ◦, ( )) 7→ ((V, 〈 〉), ξ, η), ν 7→ ν is obtained on decomposing
the bilinear form ( ) into its symmetric part 〈v, w〉 = 1

2 ((v, w) + (w, v)) and its
antisymmetric part −ξ(v∧w) = 1

2 ((v, w)− (w, v)), and on setting η(v∧w) = v ◦w.
Composing the inverse of this isomorphism with F : Aab → Aq, we obtain the
functor G : E → Aq. In explicit terms, G is given on objects by G((V, 〈 〉), ξ, η) =
k × V with multiplication

(α, v)(β,w) = (αβ − 〈v, w〉+ ξ(v ∧w), αw + βv + η(v ∧ w)),

and on morphisms by G(ν) = Ik×ν. Transferring the results of the previous section
via Aab ˜̃→E , we obtain the following plethora of statements on G.

Theorem 3. The functor G : E → Aq has the following properties:
(i) It is faithful and dense. It detects and exhausts isomorphisms.

2A symmetric bilinear k-space (V, 〈 〉) is a k-vectorspace V endowed with a symmetric k-
bilinear form 〈 〉 : V × V → k. A morphism ν : (V, 〈 〉)→ (V ′, 〈 〉′) of symmetric bilinear k-spaces
is an orthogonal linear map, i.e. a linear map ν : V → V ′ satisfying 〈v, w〉 = 〈ν(v), ν(w)〉′ for all
v, w ∈ V .
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(ii) It induces a bijection G : Ob(E)/' →̃ Ob(Aq)/' between the sets of isoclasses
of the respective categories.

(iii) It induces an equivalence of full subcategories Ga : Ea→̃Aqa, where Ea is
formed by all objects E = ((V, 〈 〉), ξ, η) such that the quadratic form qE : k × V→
k, qE(α, v) = α2 + 〈v, v〉 is anisotropic. A quasi-inverse functor Γa : Aqa→̃Ea
to Ga is given by Γa(A) = ((V, 〈 〉), ξ, η) and Γa(µ) = ν, where V is the hyper-
plane of purely imaginary elements in A, 〈v, w〉 = − 1

2λ(vw + wv), ξ(v ∧ w) =
1
2λ(vw − wv), η(v ∧w) = ι(vw) and µ = id⊕ ν.

(iv) It induces an equivalence of full subcategories G0 : E0→̃Aq0, where E0 is
formed by all objects E = ((V, 〈 〉), ξ, η) satisfying the following two conditions:

(a) The quadratic form qE : k × V → k, qE(α, v) = α2 + 〈v, v〉 is anisotropic.
(b) If v, w ∈ V are linearly independent, then v, w, η(v ∧ w) are also.
The functor Γ0 : Aq0→̃E0 induced by Γa : Aqa→̃Ea is quasi-inverse to G0.

Given any category Z for which a function dim : Ob(Z) → N ∪ {∞} is defined,
we denote for any n ∈ N by Zn the full subcategory of Z formed by dim−1(n).
Thus the equivalence Γ0 : Aq0→̃E0 induces for each n ∈ N \ {0} an equivalence
Γ0
n : Aq0n →̃E0

n−1. Moreover, Aq0n coincides with the category of all n-dimensional
quadratic division algebras.3

3. Dissident morphisms

Henceforth let k = R. Applying Theorem 3 (iv), we aim at classifying all
n-dimensional real quadratic division algebras by way of classifying all triples
((V, 〈 〉), ξ, η) ∈ E0

n−1. By Sylvester’s inertia theorem, property (a) is equivalent
to 〈 〉 being positive definite.

Therefore, when forgetting about ξ, we are left with the problem to describe
all dissident morphisms, i.e. all linear maps η : V ∧ V → V satisfying (b), where
V = (V, 〈 〉) is a euclidian vectorspace. Combining Theorem 3 (ii) and the celebrated
(1,2,4,8)-Theorem ([10],[13],[2],[1]), we recognize at once that dissident morphisms
exist in the exceptional dimensions 0,1,3,7 only.

Corollary 4. If η : V ∧V → V is a dissident morphism, then dimRV ∈ {0, 1, 3, 7}.

Proof. From any dissident morphism η : V ∧ V → V we may form the objects
(V, o, η) ∈ E0 and A = G0(V, o, η) ∈ Aq0. Application of the (1,2,4,8)-Theorem to
A yields the assertion.

Conversely, dissident morphisms in fact do exist in each of the dimensions 0,1,3,7.
Namely, each vectorproduct4 π : V ∧ V → V provides a classical example of a
dissident morphism. And indeed, vectorproducts are known ([8],[12]) to constitute
4 isoclasses, represented by those π : V ∧ V → V which arise from the alternative
division algebras A ∈ {R,C,H,O} via Γ0(A) = ((V, 〈 〉), o, π). Moreover, apart from
providing the simplest examples of dissident morphisms, vectorproducts even serve
to produce new dissident morphisms via composition with definite endomorphisms.5

3An algebra A is called division algebra in case the linear endomorphisms a? : A→ A, x 7→ ax
and ?a : A→ A, x 7→ xa are bijective for all a ∈ A \ {0}.

4A linear map π : V ∧ V → V , defined for a euclidian vectorspace V , is called a vectorproduct
in case 〈π(u ∧ v), w〉 = 〈u, π(v ∧ w)〉 and |π(u ∧ v)|2 = |u|2|v|2 − 〈u, v〉2 for all u, v, w ∈ V .

5A linear endomorphism ε : V → V of a euclidian vectorspace V is called definite in case the
quadratic form qε : V → R, qε(v) = 〈v, ε(v)〉 is positive definite or negative definite.
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Lemma 5. Let π : V ∧ V → V be a vectorproduct.
(i) If ε : V → V is a definite endomorphism, then επ : V ∧ V → V is a dissident

morphism.
(ii) If η : V ∧ V → V is a dissident morphism and dimRV ≤ 3, then there exists

a definite endomorphism ε : V → V such that η = επ.

Proof. (i) Let v, w ∈ V be nonproportional. The vectorproduct property of π
implies Rv ⊕ Rw ⊂ π(v ∧ w)⊥ and π(v ∧ w) 6= 0. Definiteness of ε further implies
〈π(v ∧ w), επ(v ∧ w)〉 6= 0, whence επ(v ∧ w) 6∈ Rv ⊕ Rw.

(ii) In case dimRV ≤ 1, the assertion is trivially true. If dimRV = 3, then π
is an isomorphism. Given u ∈ V \ {0}, choose v, w ∈ u⊥ such that u = π(v ∧ w).
Then η(v∧w) 6∈ Rv⊕Rw = u⊥. Therefore 〈u, ηπ−1(u)〉 = 〈u, η(v∧w)〉 6= 0. Hence
ε = ηπ−1 is definite and επ = η.

It will be useful to know that any nonzero dissident morphism of the form η = επ,
with ε and π as in Lemma 5, determines its factors ε and π uniquely up to sign.
Heading for this result (cf. Proposition 7 below) let us first consider an arbitrary
given dissident morphism η : V ∧V → V . We briefly write vw = η(v∧w). Then for
each v ∈ V \{0}, the endomorphism v? : V → V induces an epimorphism v⊥ → vv⊥

which (by dissidence) in fact is an isomorphism. Thus vv⊥ is a hyperplane in V .
Hence η determines a selfmap ηP : P(V ) → P(V ), defined by ηP(Rv) = (vv⊥)⊥.
Observe that πP = IP(V ) for each vectorproduct π : V ∧ V → V .

The adjoint of an endomorphism ε : V → V will be denoted by ε∗ : V → V . If
ε is invertible, then so is ε∗ and (ε∗)−1 = (ε−1)∗ will be denoted by ε−∗.

Lemma 6. Let η = επ, where ε : V → V is a definite endomorphism and π :
V ∧ V → V is a vectorproduct. Then ηP = P(ε−∗).

Proof. Let v, v ∈ V \ {0} such that ηP(Rv) = Rv. Then

〈ε∗(v), π(v ∧ x)〉 = 〈v, επ(v ∧ x)〉 = 〈v, vx〉 = 0

holds for all x ∈ v⊥. Thus Rε∗(v) = πP(Rv) = Rv, whence ηP(Rv) = Rv =
P(ε−∗)(Rv).

Proposition 7. Let η = επ = ε′π′, where ε, ε′ : V → V are definite endo-
morphisms and π, π′ : V ∧ V → V are nonzero vectorproducts. Then either
(ε, π) = (ε′, π′) or (ε, π) = (−ε′,−π′).

Proof. The hypothesis implies by Lemma 6 that ηP = P(ε−∗) = P(ε′−∗). In view
of the short exact sequence

1 −→ GL(R) −→ GL(V ) −→ PGL(V ) −→ 1

we conclude that ε = rε′ for some r ∈ R\{0}. Hence we obtain rε′π = ε′π′, whence
rπ = π′. Since both π and π′ are nonzero vectorproducts, we infer that r = 1 or
r = −1.

4. The matrix pair problem (Rm×mant × Rm×mpos )/Oπ(Rm)

Let us return to the equivalent categories Aq0n →̃E0
n−1 in question. We know that

they are nonempty if and only if n ∈ {1, 2, 4, 8}. Therefore let m ∈ {0, 1, 3, 7} and
n = m+ 1, henceforth.

Choose a vectorproduct π : Rm ∧ Rm → Rm with respect to the natural scalar
product v • w = vTw. The orthogonal group O(Rm) acts canonically on the set
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of all vectorproducts for Rm via σ · π′ = σπ′(σ−1 ∧ σ−1). Denote by Oπ(Rm) =
{σ ∈ O(Rm) | σ · π = π} the isotropy group of π in O(Rm). Moreover, denote by
Rm×mant (resp. Rm×mpos ) the set of all antisymmetric (resp. positive definite) matrices
in Rm×m, and set Pm = Rm×mant ×Rm×mpos . Then the map Λπ : Pm → Aqn, (X,Y ) 7→
G(Rm, ξ, η), where ξ(v ∧ w) = vTXw and η(v ∧ w) = Y π(v ∧ w), has the following
properties.

Theorem 8. (i) For each matrix pair (X,Y ) ∈ Pm the n-dimensional quadratic
algebra Λπ(X,Y ) is a division algebra.

(ii) For each quadratic division algebra A of dimension n ≤ 4 there exists a
matrix pair (X,Y ) ∈ Pm such that Λπ(X,Y ) →̃ A.

(iii) For all matrix pairs (X,Y ), (X ′, Y ′) ∈ Pm of size m > 1 the quadratic divi-
sion algebras Λπ(X,Y ) and Λπ(X ′, Y ′) are isomorphic if and only if (SXST , SY ST )
= (X ′, Y ′) for some S ∈ Oπ(Rm).

Proof. (i) and (ii) follow from Theorem 3, Lemma 5 and the fact that −IV :
(V, ξ, η)→̃(V, ξ,−η) is an isomorphism for each triple (V, ξ, η) ∈ E .

(iii) Let (X,Y ), (X ′, Y ′) ∈ Pm be given. If (SXST , SY ST ) = (X ′, Y ′) for
some S ∈ Oπ(Rm), then the orthogonal automorphism σ : Rm→̃Rm corresponding
to S is an isomorphism σ : (Rm, ξ, η)→̃(Rm, ξ′, η′) in E . Accordingly IR × σ :
Λπ(X,Y )→̃Λπ(X ′, Y ′) is an isomorphism of quadratic algebras. Conversely, if
ϕ : Λπ(X,Y )→̃Λπ(X ′, Y ′) is an isomorphism of quadratic algebras, then ϕ =
IR × σ for some isomorphism σ : (Rm, ξ, η)→̃(Rm, ξ′, η′) in E . Hence the matrix
S ∈ O(Rm) corresponding to σ satisfies SXST = X ′ and, due to Proposition 7,
both SY ST = Y ′ and S ∈ Oπ(Rm).

Let us draw conclusions for the classification of Aq0n . If m ≤ 1, then E0
m consists

of one isoclass represented by (Rm, o, o). Accordingly Aq0n consists of one isoclass,
represented by R and C respectively.

If m = 3, then Oπ(R3) = SO(R3). Accordingly, Theorem 8 yields the following

Corollary 9. The map Λπ : P3 → Aq04 induces a bijection

Λπ : P3/SO(R3) →̃ Aq04 /' .

In order to classify the SO(R3)–orbits of the matrix pair set P3, we introduce
the set K3 = R3 × R3 × T3 where T3 = {δ ∈ R3 | 0 < δ1 ≤ δ2 ≤ δ3}, and we define
the map Ψ : K3 → P3 by Ψ(x, y, δ) = (Mx,My + ∆δ) where

Mx =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 and ∆δ =

 δ1 0 0
0 δ2 0
0 0 δ3

 .

Moreover we denote by SOδ(R3) = {S ∈ SO(R3) | S∆δS
T = ∆δ} the isotropy

group of ∆δ in SO(R3), for any δ ∈ T3.
If now (X,Y ) ∈ P3 is given, decompose Y = Y a + Y s into its antisymmetric

summand Y a and its symmetric summand Y s, transform Y s into ∆δ applying
Jacobis spectral theorem, and observe that SMxS

T = MSx for all (S, x) ∈ SO(R3)×
R3, to prove

Lemma 10. The map Ψ : K3 → P3 induces a bijection Ψ : K3/∼ →̃ P3/SO(R3),
where (x, y, δ) ∼ (x′, y′, δ′) if and only if δ = δ′ and (Sx, Sy) = (x′, y′) for some
S ∈ SOδ(R3).
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Composing the maps Λπ and Ψ we obtain

Proposition 11. The map ΛπΨ : K3 → Aq04 , given by ΛπΨ(x, y, δ) = R×R3 with
multiplication

(α, v)(β,w) = (αβ − vTw + vTMxw, αw + βv +Myπ(v ∧ w) + ∆δπ(v ∧ w)),

induces a bijection ΛπΨ : K3/∼ →̃ Aq04 /' .

Note that any triple (x, y, δ) ∈ K3 may be interpreted as a configuration in R3

formed by a pair of points (x, y) and an ellipsoid Eδ = {z ∈ R3 | zT∆δz = 1}.
In this view, the equivalence of triples (x, y, δ) ∼ (x′, y′, δ′) means geometrically
that Eδ = Eδ′ and (x, y), (x′, y′) lie in the same orbit under the action of the
special orthogonal symmetry group of Eδ. Observe moreover that the particular
configuration (0, 0, S2) produces the particular division algebra ΛπΨ(0, 0, (1, 1, 1)) =
H.

By Proposition 11, any cross-section C for K3/ ∼ classifies all 4-dimensional
real quadratic division algebras in the sense that ΛπΨ(C) is a cross-section for
Aq04 /'. Due to the geometric interpretation of K3, cross-sections C for K3/∼ can
be detected through ‘inspection by the eye’. One possible choice for C is published
in [4]. It contains the 9-parameter family of pairwise nonequivalent configurations
(x, y, δ), where 0 < δ1 < δ2 < δ3, x1 > 0 and x2 > 0.

In case m = 7, the question whether the image of Λπ : P7 → Aq08 exhausts all
isoclasses of Aq08 is still open. It is equivalent to the interesting question whether
any dissident morphism η : R7 ∧ R7 → R7 admits a factorization η = επ into a
vectorproduct π : R7∧R7 → R7 and a definite endomorphism ε : V → V . However,
irrespective of the answer to this question we may use the map Λπ : P7 → Aq08 to
construct large families of 8-dimensional quadratic division algebras.

Proposition 12. Let K<7 = {(X,Y, δ) ∈ R7×7
ant × R7×7

ant × T7 | 0 < Yij for all 1 ≤
i < j ≤ 7 and 0 < δ1 < . . . < δ7}, and define Ψ : K<7 → P7 by Ψ(X,Y, δ) =
(X,Y + ∆δ). Then ΛπΨ(K<7 ) is a 49-parameter family of pairwise nonisomor-
phic objects in Aq08 . The composed map ΛπΨ : K<7 → A

q0
8 is given explicitly by

ΛπΨ(X,Y, δ) = R× R7, with multiplication

(α, v)(β,w) = (αβ − vTw + vTXw, αw + βv + Y π(v ∧ w) + ∆δπ(v ∧ w)) .

Proof. Let (X,Y, δ), (X ′, Y ′, δ′) ∈ K<7 such that ΛπΨ(X,Y, δ)→̃ΛπΨ(X ′, Y ′, δ′).
Then (SXST , SY ST , S∆δS

T ) = (X ′, Y ′,∆δ′) for some S ∈ Oπ(R7), by Theorem 8
(iii). From S∆δS

T = ∆δ′ we deduce that δ = δ′ and S = ∆ε for some ε ∈ {1,−1}7.
From SY ST = Y ′ we deduce further that S = I7 or S = −I7. Hence (X,Y, δ) =
(X ′, Y ′, δ′).

5. Historical note

The problem of constructing or even classifying finite-dimensional real division
algebras is as old as the discovery of the quaternion algebra H (Hamilton 1843)
and of the octonion algebra O (Graves 1843, Cayley 1845). Frobenius’ theorem,
asserting that {R,C,H} classifies all associative finite-dimensional real division
algebras, appeared in 1878 ([9]). In 1931, Zorn generalized it to the statement
that {R,C,H,O} classifies all alternative finite-dimensional real division algebras
([15]). A natural further generalization to ask for is the classification of all power-
associative finite-dimensional real division algebras. Due to the famous (1,2,4,8)-
Theorem ([10],[13],[2],[1]) it suffices to classify these in dimensions 4 and 8.
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In fact we have achieved their classification in dimension 4, and we have con-
structed a 49-parameter family of them in dimension 8. Namely by [4], Lemma
3, a finite-dimensional real division algebra is power-associative if and only if it is
quadratic.
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