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QUADRATIC EXTENSIONS
OF TOTALLY REAL QUINTIC FIELDS

SCHEHRAZAD SELMANE

Abstract. In this work, we establish lists for each signature of tenth degree
number fields containing a totally real quintic subfield and of discriminant less
than 1013 in absolute value. For each field in the list we give its discriminant,
the discriminant of its subfield, a relative polynomial generating the field over
one of its subfields, the corresponding polynomial over Q, and the Galois group
of its Galois closure.

We have examined the existence of several non-isomorphic fields with the
same discriminants, and also the existence of unramified extensions and cyclic
extensions.

1. Introduction

Although A. Leutbecher showed 42 examples of totally imaginary tenth degree
Euclidean fields in 1985 [5], there exist, to our knowledge, no extensive tables of
tenth degree number fields. In this paper, we present tables for each signature of
tenth degree number fields containing totally real quintic fields, of discriminant less
than 1013 in absolute value.

To establish these lists we have explicitly constructed all quadratic extensions of
totally real quintic fields with discriminant less than 1013 in absolute value, each
field being defined by a second degree generating polynomial with coefficients in a
convenient subfield. To obtain these lists, we used techniques of the geometry of
numbers [6] as described in the second section of this paper. The description of the
results is done in the third section, where we also provide several tables illustrating
some of the results of these computations.

2. The method

If L is a number field of degree n and of signature (r, s), we denote by ϑL its
ring of integers, by dL its discriminant, by h+

L the narrow class number of L and
by J(L) the set of distinct Q-isomorphisms of L into C. For β ∈ L, we denote the
corresponding conjugates by β(1), ..., β(n) and we set T2(β) =

∑n
i=1 |β(i)|2.

Each relative quadratic extension of a quintic field will be given by a second
degree polynomial with coefficients in the subfield. In this section we develop a
method allowing us to construct explicitly all the relative polynomials.

Let K be a number field of degree 10, of signature (r, s) and of discriminant dK ,
such that |dK | ≤ 1013, containing a totally real quintic field F . Theorem 2.8 of
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J. Martinet [6] proves the existence of an integer θ ∈ K, θ /∈ F , such that K = F (θ)
and

10∑
i=1

|θ(i)|2 ≤ 1
2

∑
σ∈J(F )

∣∣∣∣∣∣
∑

τ∈Jσ(K)

τ(θ)

∣∣∣∣∣∣
2

+
(
|dK |
4dF

) 1
5

,(1)

where Jσ(K) = {τ ∈ J(K) : τ/F = σ}. This inequality is also valid for all elements
of K of the form θ + γ or −θ, where γ is any integer of F .

Let

P (x) = x2 + ax+ b ∈ ϑF [x]

be the minimal polynomial of θ over F . We denote by θ′ the other root of P , by
Pσ(x), σ ∈ J(F ), the polynomial

Pσ(x) = x2 + σ(a)x+ σ(b),

and we define f(x) the polynomial

f(x) =
∏

σ∈J(F )

Pσ(x) =
10∑
i=0

tix
10−i (t0 = 1).

To construct all the polynomials P of which a root generates one of the searched
fields K over F , we will work in the field F . Since

|dK | = d2
FN(δ),

where δ is the relative discriminant of K/F and N is the absolute norm in the
extension F/Q, we must consider all totally real quintic fields F with discriminant
smaller than 10

13
2 [4]. We assume that the discriminant dF and an integral basis

W = {w1 = 1, w2, ..., w5} of F are already known. We denote by B the matrix
whose (i, j) entry is w(j)

i and we define A = B ·Bt.
Let us show how to determine the coefficients a and b of the relative polynomial

P . Since the inequality (1) is valid by translation by an element of ϑF , we only
have to make a run through a system of representatives of ϑF modulo 2ϑF , and so
only 25 values must be considered for a:

a =
5∑
i=1

aiwi with ai ∈ {0, 1} for i = 1, ..., 5.

We determine all the possible values of b from the second relative symmetric
function, s2 = a2 − 2b = θ2 + θ

′2, via the inequality

5∑
i=1

|s(i)
2 |2 ≤ T2(θ)2.

We notice that for a fixed value of a, the running time for the computation
of the possible b’s strongly depends upon the size of the real constant bound κ

on T2(θ)
(
κ = 1

2

∑5
i=1 |a(i)|2 +M, where M =

(
1013

4dF

) 1
5
)

. The constant κ only

depends on the value of a. Let us show now that a can be chosen such that κ will
be minimum. Indeed, as inequality (1) remains valid if we replace θ by θ+ γ for an
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arbitrary γ ∈ ϑF , and as θ+ γ is also a generator of extension K/F , then if we set
c = −TrK/L(θ + γ) = a− 2γ and represent it by means of the basis W of F as

c =
5∑
i=1

ciwi,

then T2(c) becomes a positive definite quadratic form

q(c) = cAct

in the coefficients c1, ..., c5 (c = (c1, ..., c5)), and there exists at least one choice of
γ which makes T2(c) minimal. The desired choice is obtained as follows.

We start by computing the coefficient matrix A = (mij) of the quadratic form
q. Clearly,

mij = Tr(wiwj) (1 ≤ i, j ≤ 5).

Then we decompose the matrix A into a sum of squares by Cholesky’s method
[8]

q(c) =
5∑
i=1

mii

ci +
5∑

j=i+1

mijcj

2

and we make c1, ..., c5 run through the integer values for which q(c) ≤ T2(a) and
for which the relationship c ≡ a (mod 2ϑF ) is satisfied. We shall associate to a the
value of c for which q(c) is minimal, and we shall set C = 1

2

∑5
i=1 |a(i)|2 +M .

Remark 2.1. The choice of a is independent of the signature of K and is also inde-
pendent of the chosen bound; it depends only on the field F . Therefore, we have
established the list of the 32 possible values of a for a fixed quintic field, and have
considerably improved the execution time of our programs.

Once a convenient value of a is determined, we compute the set of suitable values
of b =

∑5
i=1 biwi using the inequality

5∑
i=1

|s(i)
2 |2 ≤ C2,

which comes from (1) and the inequality

5∑
i=1

|s(i)
2 | ≤ C.

If we represent s2 by means of the basis W , s2 =
∑5

i=1 yiwi, we notice that∑5
i=1 |s

(i)
2 |2 is just the quadratic form q in the coefficients y1, ..., y5 (y = (y1, ..., y5)).

As we have already computed the coefficient matrix A and decomposed it into a
sum of squares, we compute all y ∈ Z5 subject to q(y) ≤ C2 and yi ≡ zi (mod 2)
(1 ≤ i ≤ 5), where a2 =

∑5
i=1 ziwi. Therefore we obtain all the possible choices for

the coefficient b.
For each of the constructed polynomials, we start by determining whether it can

define a field with the desired signature. This question is solved by simply examining
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the sign of the polynomial discriminant ∆ = a2 − 4b of each conjugate of P . To
considerably reduce the number of polynomials to be considered, we also eliminate
the polynomials having too large values of T2(θ). To achieve this, we check whether
the inequality

5∑
i=1

|∆(i)| ≤ 2M,

which follows from inequality (1) and the fact that if z and z′ are two complex
numbers then

|z + z′|2 + |z − z′|2 = 2(|z|2 + |z′|2)2,

is fulfilled.
The computation of the roots of the five conjugate polynomials of P was only

necessary for totally real tenth degree fields, to test the irreducibility of the poly-
nomial P . We computed L = |N(∆)|; if L is squarefree, we obtain the value of dK
directly; otherwise we used KANT [2] to compute the field discriminant.

For each value of dK less than 1013 in absolute value we have found several
polynomials; the number of these polynomials varies between 545 for the first ones
and 4 for the last ones. To decide whether or not such polynomials correspond to
isomorphic fields, the function OrderIsSubfield [2] was used. To compute the Galois
group of each polynomial represented in the tables, we used KANT [2].

3. Description of tables

This section is devoted to a brief description of some information provided by
these computations; several tables illustrating some of the results are given.

In Table 1, we present the number of fields that were constructed as well as the
number of the discriminants for which there are exactly k non-isomorphic fields
with the same discriminants.

In Table 2, we give some data regarding the smallest discriminant for each signa-
ture where ρ1 (resp. ρ2, ρ3) is a root of the polynomial x5−2x4−3x3 +4x2 +2x−1
(resp. x5 − x4 − 4x3 + 3x2 + 3x − 1, x5 − 2x4 − 3x3 + 5x2 + x − 1) and where η
denotes the number of conjugate extensions.

Table 1.

signature (10, 0) (8, 1) (6, 2) (4, 3) (2, 4) (0, 5)
number of fields 313 2845 7579 7420 3950 770

k Number of k non-isomorphic fields
2 3 316 1180 1331 345 22
3 − 22 312 253 47 −
4 − 6 97 108 5 −
5 − 6 22 19 5 −
6 − − 8 12 − −
7 − − − 1 − −
8 − 1 2 4 1 −
9 − − − 2 − −
10 − − 6 4 − −
12 − − 3 3 − −
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Table 2.

smallest
discriminant (r, s) p(x) δ f(x) η

443952558373 (10, 0) x2 + (−2− 3ρ1 + 3ρ2
1 + 2ρ3

1 − ρ
4
1)x (757, ρ1 + 52) x10 − 11x8 − 3x7 + 37x6 + 14x5 − 48x4 − 22x3 + 20x2 + 12x + 1 1

+(−1 + 3ρ1 − 2ρ2
1 − 2ρ3

1 + ρ4
1)

−70952789611 (8, 1) x2 + (2− ρ2
2)x + (3ρ2 − 3ρ2

2 − ρ
3
2 + ρ4

2) (331, ρ2 + 159) x10 + x9 − 7x8 − x7 + 16x6 − 6x5 − 14x4 + 8x3 + 6x2 − 2x− 1 5

17007429581 (6, 2) x2 + (1− ρ1)x + (−3ρ1 + 3ρ3
1 − ρ

4
1) (29, ρ1 + 2) x10 + 3x9 − 7x8 − 10x7 + 15x6 + 9x5 − 15x4 − 3x3 + 7x2 − 1 1

−4930254263 (4, 3) x2 + (−1 + 3ρ2 + ρ2
2 − ρ

3
2)x + 1 (23, ρ2 + 4) x10 + 3x9 + 2x8 − 3x7 − 9x6 − 11x5 − 9x4 − 3x3 + 2x2 + 3x + 1 5

1332031009 (2, 4) x2 + x + (2− 6ρ3 + 3ρ2
3 + 2ρ3

3 − ρ
4
3) () x10 + 5x9 + 22x8 + 58x7 + 120x6 + 178x5 + 183x4 + 127x3 + 54x2 + 12x + 1 1

−2357947691 (0, 5) x2 + ρ2x + 1 (11, ρ2 + 2) x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1 1

Table 3.

signature (10, 0) (8, 1) (6, 2) (4, 3) (2, 4) (0, 5)
Type
T1 5 572981288913 - - - - - - - - 3 −2357947691
T3 - - - - - - - - - - 1 −6283241669043
T8 - - - - 6 113395848049 - - 4 113395848049 - -
T14 37 617567936161 138 −70952789611 226 42228699557 256 −4930254263 140 19077940409 22 −311034736331
T15 - - - - 2 232712654409 - - 6 232712654409 - -
T22 4 1832697153125 - - - - - - - - 73 −142510530627
T23 - - 6 −698137963227 8 1473846811257 15 −77570884803 1 2404697428893 - -
T37 12 1363999753216 - - 712 44860510809 - - 436 1332031009 - -
T39 199 443952558373 1492 −97939335863 3055 17007429581 3681 −12932524947 1443 2932315445 235 −257457296071
T44 1 6714415905961 - - 590 50522901529 - - 460 20796235681 - -
T45 55 2424184585229 1209 −146407115723 2980 23365118029 3468 −14362045027 1460 38628899261 436 −52089208083
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Table 4.

dK f(x) w h+
K

(10, 0)
572981288913 x10 + x9 − 10x8 − 10x7 + 34x6 + 34x5

− 43x4 − 43x3 + 12x2 + 12x+ 1 2 2
669871503125 x10 + x9 − 13x8 − 8x7 + 46x6 + 11x5

− 52x4 − 7x3 + 18x2 + 3x− 1 2 1
762939453125 x10 − 10x8 + 35x6 + x5 − 50x4 − 5x3 + 25x2 + 5x− 1 2 1
2414538435584 x10 − 11x8 + 44x6 − 77x4 + 55x2 − 11 2 2
7024111812608 x10 − 18x8 + 112x6 − 280x4 + 240x2 − 32 2 1

(0, 5)
−2357947691 x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 22 1
−219503494144 x10 + 9x8 + 28x6 + 35x4 + 15x2 + 1 4 1
−7024111812608 x10 + 18x8 + 112x6 + 280x4 + 240x2 + 32 2 5

For each type of Galois group found, the number of fields and smallest discrim-
inant are given in Table 3; the notation for the group names is similar to that
of Butler and McKay [1]. In Table 4, we present some data on the cyclic fields
found (w denotes the order of group of roots of unity). We notice that three totally
imaginary cyclic number fields have the same value of regulator (26.171106).

We finish by stating three propositions on unramified extensions

Proposition 3.1. For each totally real quintic field of discriminant less than 10
13
2

with narrow class 4 there exist, up to isomorphism, two non-isomorphic unramified
extensions of signature (6, 2). All these extensions have class number 1.

Proposition 3.2. For each totally real quintic field of discriminant less than 10
13
2

with narrow class 4 there exist, up to isomorphism, one and only one unramified
extension of signature (2, 4).

Proposition 3.3. For each totally real quintic field of discriminant less than 10
13
2

with narrow class 2 there exist, up to isomorphism, one unramified extension and
only one either for the signature (2, 4) or the signature (6, 2).

All computations were done on SPARC ULTRA 170E at Fachbereich Informatik
Technische Universität Darmstadt.
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Added after posting

Replace Table 1 with the following table.

signature (10, 0) (8, 1) (6, 2) (4, 3) (2, 4) (0, 5)
number of fields 313 2849 7592 7527 3954 772

k Number of k non-isomorphic fields
2 3 317 1182 1352 344 22
3 − 22 314 256 47 −
4 − 6 97 109 5 −
5 − 6 22 20 5 −
6 − − 8 13 − −
7 − − − 1 − −
8 − 1 2 4 1 −
9 − − − 2 − −
10 − − 6 4 − −
12 − − 3 3 − −

Remove Table 3.
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