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Abstract. We introduce techniques to analyze unitary operations in terms of
quadratic form expansions, a form similar to a sum over paths in the computa-
tional basis when the phase contributed by each path is described by a quadratic
form overR. We show how to relate such a form to an entangled resource akin to
that of the one-way measurement model of quantum computing.Using this, we
describe various conditions under which it is possible to efficiently implement a
unitary operationU , either when provided a quadratic form expansion forU as
input, or by finding a quadratic form expansion forU from other input data.

1 Introduction

In the one-way measurement model [1,2], quantum states are transformed using
single-qubit measurements on an entangled state, which is prepared from an
input state by performing controlled-Z operations on pairs of qubits, including
the input system and ancillas prepared in the|+〉 state. This model lends itself
to ways of analyzing quantum computation which do not naturally arise in the
circuit model,e.g.with respect to depth complexity [3] and discrete structures
underlying unitary operations [6,8]. In this article, we present another result of
this variety, by introducingquadratic form expansions.

Definition 1. LetV be a set ofn elements, andI,O ⊆ V be (possibly intersect-
ing) subsets. For a binary stringx ∈ {0, 1}V , let xI andxO be the restriction
of x to those bit-positions indexed by elements ofI andO, respectively. Then a
quadratic form expansionis a matrix-valued expression of the form

U =
1

C

∑

x∈{0,1}V

eiQ(x) |xO〉〈xI | , (1)

U : H⊗I
2 → H⊗O

2 , whereQ is a real-valued quadratic form onx, andC ∈ C.

Quadratic form expansions bear a formal similarity to a representation of a prop-
agator of a quantum system in terms of a sum over paths. For a unitary U given
as in (1), the outer product|xO〉〈xI | essentially specifies a particular coeffi-
cient, in the row indexed by the substringxI and the column indexed byxO:
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the amplitude of the transition between these standard basis states is propor-
tional to a sum of complex units specified byxI , xO, and the auxiliary variables
v ∈ V r (I ∪ O).

Representations of unitary transformations as sums over paths is a well-
developed subject in theoretical physics (see e.g. [4,5]);and a representation
of unitaries as a sum over paths was used in [9] to provide a simple proof of
BQP ⊆ PP.1 However, there are also examples of quadratic form expansions
which arise without explicitly seeking to represent unitaries in terms of path
integrals: the quantum Fourier Transform overZ2n can readily be expressed
in such a form, and quadratic form expansions for Clifford group operations
are implicit in the work of Dehaene and de Moor [17], as we willdescribe in
Section 3.3.

Given such an expression for a unitaryU , we show how to obtain a decom-
position ofU in terms of operations similar to those used in the one-way mea-
surement model. Using this connection, we demonstrate techniques involving
quadratic form expansions to efficiently implement a unitary operator, when the
coefficients of the quadratic form satisfies certain constraints related to “general-
ized flows” (orgflows) [8] or Clifford group operations. In particular, we exhibit
anO(n3/ log n) algorithm to obtain a reducedmeasurement pattern(an algo-
rithm in the one-way model) for Clifford group operations from a description of
how they transform the Pauli group, based on the results of [17].

2 Connection to the one-way model

2.1 Review of the one-way model

We can formulate the one-way measurement model as a way of transforming
quantum states in the following way. Given a state|ψ〉 on a set of qubitsI (the
input system), we embedI in a larger systemV , where the qubits ofV r I are
prepared in the|+〉 ∝ |0〉+ |1〉 state. We then perform entangling operations on
the qubits ofV , by performing controlled-Z (denoted∧Z) operations on some
sets of pairs of qubits. (These operations are symmetric andcommute with each
other, and so we may characterize the entangling stage by a simple graphG
whose vertices are the qubits ofV : we call this theentanglement graphof the
procedure.) We then measure each of the qubits ofV in some sequence, except
for some set of qubitsO ⊆ V (theoutput subsystem) which will support a final
quantum state. We may represent the measurement result for each qubitv by a

1 Unitaries were expressed in [9] in terms of paths whose phasecontributions are described by
cubic polynomials overZ2; comments made in Section VI of that paper essentially anticipate
quadratic form expansions with discretized coefficients. We describe how their techniques
provide a means of constructing quadratic form expansions from circuits in Appendix A.
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bit sv ∈ {0, 1} which indexes the orthonormal basis states of the measurement.
The measurement basis for each qubit may depend on the results of previous
measurements, but without loss of generality may be expressed in terms of a
“default” basis which is used when all preceding measurements yield the result
0. Depending on the measurement results, a final Pauli operator may be applied
to the qubits in the output subsystemO.2

In the original formulation of the one-way measurement model, the mea-
surement bases were described by some axis of the Bloch sphere lying on the
XY plane, which is sufficient for universal quantum computation. It is also easy
to prove that restricting this to states which are an angleθ ∈ π

4 Z from theX axis
is sufficient for approximately universal quantum computation [12]. While it is
reasonable to extend beyond this for choices of measurementbases [7], we will
only need to consider measurement bases from theXY plane.

2.2 Phase map decompositions from quadratic form expansions

Consider a unitaryU given by a quadratic form expansion as in (1), where the
quadratic formQ is given by

Q(x) =
∑

{u,v}⊆V

θuvxuxv , (2)

for some angles{θuv}u,v∈V , and where the sum includes terms foru = v. Note
thatQ(x) can be expressed as an expectation value〈x|H |x〉 , whereH is a
2-local diagonal operator:

H =
∑

{u,v}⊆V
u 6=v

θuv

[

|1〉〈1|u ⊗ |1〉〈1|v
]

+
∑

v∈V

θvv |1〉〈1|v . (3)

Then we may decomposeU as follows:

U ∝
∑

x∈{0,1}V

|xO〉〈x| eiH |x〉〈xI | =





∑

y∈{0,1}V

|yO〉〈y|



 eiH





∑

x∈{0,1}V

|x〉〈xI |





∝ RO eiH PI , (4)

wherePI is a unitary embedding which introduces fresh ancillas (indexed by
v ∈ Ic = V r I) initialized to the|+〉 state, andRO is a map projecting onto
the|+〉 state for all qubits inOc = V rO (tracing those qubits out afterwards).

2 The reason for using the same variablesV , I , andO for these sets of (labels for) qubits as for
the sets in Definition 1 will become apparent in the next section.
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Equation (4) is aphase map decomposition[10] for U : that is, it expresses
U in terms of a process of postselecting observables, as follows. DecomposeH
into termsHO,H1, andH2, whereHO consists of the1-local terms on the qubits
of O, H1 consists of the1-local term on the remaining qubits, andH2 contains
the remaining terms from (3). We then haveU ∝ RO eiHOeiH1eiH2PI . Note
that eiHO andeiH1 are simply single-qubitZ rotations applied to the elements
of O andOc respectively, where in each case the qubitsv in those sets are ro-
tated by an angleθvv . Then, the composite map̃RO = ROeiH1 projects each
the state of each qubitv ∈ Oc onto the vector|0〉+ e−iθvv |1〉 for eachv ∈ Oc.
We then haveU = eiHO R̃O eiH2PI , which is a decomposition ofU into the
preparation of some number of|+〉 states, followed by a diagonal unitary op-
erator consisting of two-qubit (fractional) controlled-Z operations, followed by
post-selection of states on the Bloch equator forv ∈ Oc, and (unconditionally
applied) single-qubitZ rotations on the remaining qubits. Ifθuv ∈ {0, π} for all
distinctu, v ∈ V and foru = v ∈ O, the above describes precisely the action of
a measurement-based computation in which the qubitsv ∈ Oc are measured in
the eigenbases of observables of the formM(−θvv) = cos(θvv)X− sin(θvv)Y ,
in the special case where all measurements result in the+1 eigenstate (which
we may label with the bitsv = 0).

If we are able to extend the above into a complete measurementalgorithm,
with defined behavior when not all measurements yield a specific outcome, we
obtain a measurement-based algorithm forU : we discuss this problem in the
next section. Conversely, from every measurement based algorithm, we may
obtain a quadratic form expansion:

Theorem 1. Every unitary operator onn qubits may be expressed by a quadratic
form expansion with|I| = |O| = n, and where the quadratic form has coeffi-
cientsθuv ∈ {0, π} for all cross-termsxuxv and−π < θvv 6 π for all terms
x2

v . Furthermore, any unitary can be approximated to arbitraryprecision by
such an expansion where we further requireθvv ∈ π

4 Z.

Proof. From [11] (and using the notation of that article), the measurement pat-
ternXsu

v M−α
u EuvNv performs the unitary transformationJ(α) = 1√

2

[

1 eiα

1 −eiα

]

for α ∈ R, from the state space of a qubitu to that of a “fresh” qubitv. These
operations generateSU(2), and generate a group dense inSU(2) if we restrict
to α ∈ π

4 Z, by [12].
For anyn qubit unitaryU , there exists a measurement pattern composed of

such patterns together with two-qubit controlled-Z operations (which we denote
∧Z) which implementsU . LetG be the entanglement graph of this pattern, and
I andO be the qubits defining the input space and output space (respectively) of
the measurement pattern. By [6], in this measurement pattern, the probability of
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every measurement resulting in the+1 eigenvalue (i.e.sv = 0 for all v ∈ Oc)
is non-zero. Then,U ∝ RO eiHPI , where

H =
∑

uv∈E(G)

π

[

|1〉〈1|u ⊗ |1〉〈1|v
]

−
∑

v∈Oc

αv |1〉〈1|v . (5)

By (4), this yields a quadratic form expansion forU , with

Q(x) =
∑

uv∈E(G)

πxuxv −
∑

v∈Oc

αvx
2
v . (6)

For a quadratic form expansion approximatingU , it is sufficient to consider
measurement patterns approximatingU using anglesαv ∈ π

4 Z. ✷

2.3 Measurement Pattern Interpolation

As we remarked above, the connection from quadratic form expansions to phase
map decompositions may allow us to obtain an implementationfor U , provided
we can determine how to adapt measurements in case the measurements for
qubitsv ∈ Oc do not all yield the resultsv = 0.

In a measurement pattern performingN measurements, the computation
may follow any of2N branches, corresponding to the different combinations of
measurement results. Let us call the branch in which every measurement pro-
duces the resultsv = 0 thepositive branchof the measurement pattern.3 With-
out loss of generality, we may restrict our attention to patterns where no clas-
sical feed-forward is required in the positive branch: then, the positive branch
of a measurement pattern is characterized by thegeometry(G, I,O) of the pat-
tern (whereG is the entanglement graph of the measurement algorithm, and
I,O ⊆ V (G) are the sets of qubits defining the input/output space of the pat-
tern), and the anglesa = {αv}v∈Oc defining the measurements to be performed.

To extend the description of the positive branch of a measurement algorithm
into a completemeasurement algorithm performing a unitary is the subject of
the following problem:

Measurement Pattern Interpolation (MPI). For input data(G, I,O,a), de-
scribing a unitary embeddingU asthe positive branchof a measurement pattern
with geometry(G, I,O) and performing measurementsa, determine if there a
measurement patternP with geometry(G, I,O) which performs the transfor-
mationU .

3 This choice of terminology refers to all measurements yielding the+1 eigenvalues of their
respective observablesM(−θvv).
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This problem is open, and seems to be difficult in general. We may attempt to
make the problem easier by considering a more restricted problem:

Generic Measurement Pattern Interpolation (GMPI). For an input geome-
try (G, I,O), determine if there exist measurement patternsP(a) parameter-
ized by a choicea of measurement angles, each with geometry(G, I,O), such
that the patternP(a) performs a unitary embedding for alla.

GMPI addresses, in anangle-independentmanner, the subject of the structure of
measurement patterns which perform unitary transformations. A special case of
the GMPI which has been solved are those geometries(G, I,O) which have a
“generalized flow” (orgflow), which are the “yes” instances of GMPI such that
the patternsP(a) yield maximally random outcomes on all of their measure-
ments [8]. The following is the definition of gflows in [13], for measurements
restricted to theXY plane:4

Definition 2. Given a geometry(G, I,O) for a measurement pattern, agflow
is a pair(g,4), whereg is a function fromOc to subsets ofIc and4 is a partial
order, such that the following conditions hold for allu andv in the graphG:

v ∈ g(u) =⇒ u ≺ v , (7a)

v ∈ odd(g(u)) =⇒ u 4 v , (7b)

u ∈ odd(g(u)) , (7c)

whereodd(S) is the set of vertices adjacent to an odd number of elements ofS.

Here,u 4 v essentially represents, for two qubitsu andv, thatv is measured
no earlier thanu; a gflow then specifies an ordering in which the qubits are to
be measured (with the functiong providing a description of how to adapt later
measurements). Mhalla and Perdrix [13] present an algorithm which determines
if a geometry has a gflow in this sense in polynomial time, which in turn yields
a polynomial time solution to the GMPI for that case. As a result, any instance
of the MPI where the geometry(G, I,O) has a gflow can be efficiently solved.

A different special case of the Measurement Pattern Interpolation problem
which has been solved is that where the measurement angles are restricted to
multiples of π

2 (or slightly more generally, where the measurement observables
are Pauli operations). In this case, as noted in [7], no measurement adaptations
are necessary, and the corrections can be determined via thestabilizer formal-
ism [16].

In the following section, we apply these solutions to special cases of the
MPI to describe how to synthesize implementations for a unitaryU given by a
quadratic form expansion.

4 The original definition of gflows in [8] also allows forYZ plane andXZ plane measurements,
which do not play a role either in our analysis or in [13].
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3 Synthesis via measurement pattern interpolation

In order to apply the partial solutions to the MPI described above, it will be
useful to define the following:

Definition 3. For a quadratic form expansion

1

C

∑

x∈{0,1}V

eiQ(x) |xO〉〈xI | where Q(x) =
∑

{u,v}⊆V

θuvxuxv , (8)

the geometry induced by the quadratic formis a triple (G, I,O) , whereG is
a weightedgraph with vertex-setV , edge-set{uv | u 6= v andθuv 6= 0} , and
edge-weightsWG(uv) = θuv/π.

Because we can require−π < θuv 6 π for all u, v ∈ V , we may without
loss of generality restrictG to have edge-weights−1 < WG(uv) 6 1. We will
assume that this holds for the remainder of the article, and speak of edges being
either ofunit weightor fractional weight.

In this section, we consider the problem of synthesizing an efficient imple-
mentation of unitariesU in terms of the geometry induced by a quadratic form
expansion forU by reduction to the solved cases of the Measurement Pattern
Interpolation problem discussed in the previous section.

3.1 Measurement pattern synthesis via gflows

Consider a geometry(G, I,O) induced by a quadratic form expansion for a
unitary embeddingU , whereG has only edges of unit weight: then(G, I,O) is
also a geometry for a measurement pattern. To obtain a measurement pattern for
U , it suffices to find a gflow for(G, I,O): in that case, by Theorem 2 of [8], for
any choice of measurement anglesa = {αv}v∈Oc , we may consider the pattern









∏

u∈Oc

<

(

⊗

v∈odd(g(u))
v 6=u

Zv

)(

⊗

v∈g(u)

Xv

)

Mαu
u









[

∏

u∼v

Euv

][

∏

u∈Ic

Nu

]

(9)

where the left-hand product may be ordered right-to-left inany linear extension
of the order4, and∼ denotes the adjacency relation ofG. This pattern thus
steers the reduced state after every measurement to the state which would occur
if the result had been the+1 eigenvalue. Every branch of the pattern then per-
forms the same operation as the positive branch, and so the pattern implements
a unitary operationU . To obtain a pattern in standard form (with corrections



8 Niel de Beaudrap, Vincent Danos, Elham Kashefi, Martin Roetteler

only on output qubits), it is sufficient to propagate the corrections to the left,
absorbing them into the measurement bases.

In [13], anO(n4) algorithm is provided to determine whether or not a ge-
ometry (G, I,O) has a gflow where every qubit is to be measured in theXY
plane (and obtain one in the case that one exists), wheren = |V (G)|. The mea-
surement pattern of (9) can be constructed in timeO(n2) by first producing a
pattern where corrections undo byproduct operations aftereach measurement,
commuting these corrections to the end, and simplifying; the resulting pattern
will haveO(n) operations each with complexityO(n). Thus:

Theorem 2. For a unitary embeddingU given as a quadratic form expansion
with geometry(G, I,O) with unit edge-weights, there is anO(n4) algorithm
which either determines that(G, I,O) has no gflow, or constructs a measure-
ment pattern consisting ofO(n2) operations5 implementingU (using measure-
ment angles of arbitrary precision), wheren = |V (G)|.

3.2 Circuit synthesis via flows

A geometry(G, I,O) which has fractional edges lies, at first glance, outside of
the domain of the Measurement Interpolation Problems described above. How-
ever, given a quadratic form expansion with such a geometry,we may still be
able to synthesize a circuit for a unitaryU represented by that expansion by
consideringflows, which correspond to gflows where the functiong maps each
vertexv ∈ Oc to a singleton set: we may say(f,4) is a flow if and only if
(gf ,4) is a gflow, wheregf(v) = {f(v)}.

Geometries which have flows are a solvable special case of theGMPI, where
the resulting measurement patterns are very “circuit-like”. Specifically, the pos-
itive branch of a measurement pattern whose geometry has a flow can be repre-
sented by a circuit with the following characteristics [6]:

– edges of the formv f(v) for v ∈ Oc correspond toJ(−αv) gates on some
wire, separating two wire segments which we labelv andf(v);

– edgesuv ∈ E(G) for u 6= f(v) andv 6= f(u) correspond to∧Z operations
acting on the wire segments labelled byu andv;

– wires whose initial segments are labelled by vertices ofI accept arbitrary
input states, while those labelled by verticesIc

r img(f) take input|+〉.

In the above formulation, the edges of the formv f(v) can be interpreted as
implementing single-qubit teleportation, in which case a fully entangling unitary

5 These operations may involve measurement angles of arbitrary precision. A corresponding ap-
proximate measurement pattern may useO(n2 +n polylog(n/ε)) operations by the Solovay-
Kitaev Theorem [14], whereε is the precision of the coefficients ofQ.
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is important in order to transfer the information of the “source” qubit to the
“target” qubit upon measurement. However, considering theanalysis of [6], it
is not important that the edges of the second kind above be fully entangling
operations: using such edges to represent fractional powers of∧Z will also yield
unitary circuits. This motivates the following definition:

Definition 4. Suppose(G, I,O) is a geometry of a quadratic form expansion
for a unitary transformationU . We may say that(f,4) is a fractional-edge
flow for (G, I,O) if it is a flow for that geometry, and for allab ∈ E(G) with
WG(ab) < 1, we havef(a) 6= b andf(b) 6= a.

If (G, I,O) has a fractional-edge flow, we may synthesize a circuit from a
quadratic form expansion forU using the description above, where edgesab
of fractional weight correspond to∧ZWG(ab) gates on the wire segments la-
belled bya andb rather than simple∧Z gates. We will make use the following
easily verified Lemma to consider how to compose/decompose quadratic form
expansions:

Lemma 1. LetU1, U2 be matrices given by quadratic form expansions

Uj =
1

Cj

∑

x∈{0,1}Vj

eiQj(x)
∣

∣xOj

〉〈

xIj

∣

∣ . (10)

In the following,C = C1C2 , and sums are over{0, 1}V1 ∪V2.

(i) If V1 ∩ V2 = I2 = O1 , thenU2U1 = 1
C

∑

x

e iQ1(x) + iQ2(x) |xO2〉〈xI1 | .

(ii ) If V1 andV2 are disjoint, thenU1 ⊗ U2 = 1
C

∑

x

e iQ1(x)+ iQ2(x) |xO〉〈xI | ,
whereI = I1 ∪ I2 andO = O1 ∪ O2 .

We prove the circuit construction given by inducting on the number of edges
of fractional weight. For the base case, if(G, I,O) has no fractional-weight
edges at all, we may synthesize a circuit forU as above, as it corresponds to a
normal measurement pattern with a flow, and so falls under theanalysis of [6].
We may then induct for geometries with fractional edge-weights if we can show
we can decompose the geometry into ones with fewer fractional edge-weights.

For any arbitrary fractional edgeab ∈ E(G) and each eachz ∈ O, we may
definem(ab, z) to be the maximal vertexv ∈ V (G) in the ordering4 subject to
z being in the orbit ofv underf (that is,z = f ℓ(v) for someℓ > 0), such that
at least one ofv 4 a or v 4 b holds. For a setS ⊆ V (G), letG[S] represent the
subgraph ofG induced byS (i.e. by deleting all vertices inG not inS). Then,
define the following subgraphs ofG, and corresponding geometries:



10 Niel de Beaudrap, Vincent Danos, Elham Kashefi, Martin Roetteler

a

b

I
O

V1
V3

V2

(G, I, O)

= a

b

I V2

(G1, I, V2)

◦ a

b

V2

(G2, V2, V2)

◦ a

b

V2
O

(G3, V2, O)

Fig. 1. Illustration of the decomposion of a quadratic form expansion about an
edgeab, expressed in terms of geometries.V2 is a set of maximal vertices under
the constraint of being bounded from above, by the verticesa andb, in a partial
order4 associated with a fractional-edge flow. Arrows represent the action of
the corresponding fractional-edge flow function,f .

– Let V2 be the set of verticesm(ab, z) for eachz ∈ Oc: it is easy to show
thata, b ∈ V2. LetG2 = G[V2], and letG2 = (G2, V2, V2).

– Let V1 be the set of verticesu ∈ V (G) such thatu 4 v for somev ∈ V2; let
G1 = G[V1] r

{

uv
∣

∣ u, v ∈ V2

}

; and letG1 = (G1, I, V2).
– Let V3 be the set of verticesu ∈ V (G) such thatu < v for somev ∈ V2; let
G3 = G[V3] r

{

uv
∣

∣ u, v ∈ V2

}

; and letG3 = (G3, V2, O).

This decomposes the geometry(G, I,O) into three geometries with fractional-
edge flows, as illustrated in Figure 1.

LetQ1 be a quadratic form on{0, 1}V1 consisting of the termsxuxv ofQ for
u ∈ V1 or v ∈ V1, but not both;Q2 be a quadratic form on{0, 1}V2 consisting
of the termsxuxv of Q for distinctu, v ∈ V2; and similarly letQ3 be defined on
{0, 1}V3 , and consist of the remaining terms ofQ. ThenQ1,Q2, andQ3 define
quadratic form expansions for some operationsU1, U2, andU3 (respectively)
with geometriesG1, G2, andG3 (respectively).

– U2 in particular will be a product of operations∧ZWG(uv) for distinctu, v ∈
V2 , as it is a quadratic form expansion whose input and output indices co-
incide. ThenU2 can be represented as a circuit with a wire for eachu ∈ V2,
with fractional controlled-Z gates∧ZWG(uv) for each edgeuv ∈ E(G).

– BothG1 andG3 have fractional-edge flows, but fewer fractional edges than
(G, I,O). By induction,U1 andU3 are also unitary embeddings, and have
circuits with wire-segments connected byJ(θv) gates (whereθv are the co-
efficients of the termsx2

v in each quadratic form) and possibly fractional∧Z
gates (as in the case forU2).

– In the circuits described above, the terminal wire-segments for U1 and (a
subset of) the initial wire-segments forU3 have the same labels as the wires
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1/4 1/4 1/4

1/8 1/8

1/2 1/2 1/21/2

1/16

x4
y0 x3

y1 x2
y2 x1

y3 x0
y4

H KK H MM H
NN H MM H

'& %$ ! "#R2 KK

qq '& %$ ! "#R2 MM

pp '& %$ ! "#R2 KK

qq '& %$ ! "#R2

ss

'& %$ ! "#R4 KK

ss '& %$ ! "#R4 MM

qq '& %$ ! "#R4

ss

'& %$ ! "#R8 MM

qq '& %$ ! "#R8

ss

'& %$ ! "#R16

qq

x1 LL
y1

'& %$ ! "#Rs
LL

rr
= 〈y1y0|SWAP∧Z1/s|x1x0〉

x0
rr y0

Fig. 2. The geometry for the quadratic form expansion of the QFT forZ32, and
the corresponding circuit due to [21]. In the geometry (on the left), input vertices
are labelled by circles, output vertices by lozenges, and fractional edges are
labelled with their edge-weights.

for U2 . The composite circuit forU3U2U1 can then use these labels to arrive
at a unified labelling of its’ wire-segments.

BecauseQ1(xV1
) + Q2(xV2

) + Q3(xV3
) = Q(x) for all x ∈ {0, 1}V by con-

struction, the composite operationU3U2U1 can differ fromU by at most a scalar
factor by Lemma 1; so the circuit obtained implements the operationU .

In [13], anO(kn) algorithm is provided to determine whether or not a ge-
ometry(G, I,O) has a flow, and obtain one if it exists, wheren = |V (G)| and
k = |O|. For each edgeuv, we may check whether one ofWG(uv) = 1 or
[

u 6= f(v) andv 6= f(u)
]

holds: if all edges satisfy this constraint, the circuit
described above is well-defined. By iterating through the vertices ofV (G) in an
arbitrary linear extension of4 , we may construct the circuit described above
can be constructed in timeO(m), and the size of the resulting circuit will also
beO(m), wherem = |E(G)|. By an extremal result [15], any geometry with a
flow hasm 6 kn: thus, the total running time of this algorithm isO(kn).

In the case|I| = |O|, a flow functionf is unique if it exists, by [20]; so in
this case, if(G, I,O) has a flow but there is an edgev f(v) of fractional weight,
there is no fractional-weight flow for(G, I,O). We then have:

Theorem 3. For a unitary transformationU given as a quadratic form expan-
sion with geometry(G, I,O), there is anO(kn) algorithm which either deter-
mines that(G, I,O) has no fractional-edge flow, or constructs a circuit consist-
ing ofO(kn) operations6 implementingU , wheren = |V (G)| andk = |O|.

6 These operations may consist ofJ(α) gates and fractional∧Z gates of arbitrary precision. A
corresponding circuit using a finite elementary gate set maybe of sizeO(kn polylog(kn/ε))
by the Solovay-Kitaev Theorem [14], whereε is the precision of the coefficients ofQ.
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Example. The Fourier Transform overZ2n is given by the matrix formula

Fn =
1√
2n

∑

x,y∈{0,1}n

e
2πi

[

n−1
P

h=0
2hxh

][

n−1
P

j=0
2jyj

]

/2n

|y〉〈x| , (11)

which is a quadratic form expansion; its quadratic form can be given by

Q(x,y) =

n−1
∑

h=0

n−1−h
∑

j=0

2(h+j)

2n−1
πxhyj . (12)

This has a fractional-edge flow for alln. Figure 2 illustrates this geometry for
n = 5, and the circuit (due to [21]) which may be synthesized from it.

3.3 Synthesizing measurement patterns for the Clifford group

If a quadratic form expansion has a geometry whose edges all have unit weight,
and its’ other coefficients are multiples ofπ

2 , then it corresponds to the positive
branch of a measurement pattern which measures onlyX or Y observables. A
measurement pattern of this sort, if it performs a unitary operation, performs a
Clifford group operation in particular.

An algorithm of Aaronson and Gottesman [19] can produce a circuit of size
O(n2/ log n) in classical deterministic timeO(n3/ log n) for a Clifford group
operationU acting onn qubits, from a description of howU transforms Pauli
operators by conjugation. By converting the circuit into a measurement-based
algorithm, and performing the graph transformations of [18] to remove auxiliary
qubits, we may obtain a pattern of at most3n qubits7 in time O(n4/ log n).
Building on the results of [17], we show how to classically compute such a
minimal pattern in timeO(n3/ log n) by solving the MPI for a quadratic form
expansion forU .

Obtaining a quadratic form expansion. For the sake of completeness, we
outline the relevant results of [17]. Define the following notation for bit-flip and
phase-flip operators on a qubitt out of a collection{1, . . . , n}:

Pt = Xt , Pn+t = Zt . (13)

Let diag(M) ∈ Z m
2 represent the vector of the diagonal elements of any square

boolean matrixM ; and letd(M) = diag
(

M⊤[ 0 1n
0 0

]

M
)

∈ Z
2n
2 for a2n× 2n

7 In [7], Clifford operations onn qubits are described as having minimal patterns for are de-
scribed as requiring at most2n qubits; however, this only holds up to local Clifford operations
on the output qubits.
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matrixM overZ2. Then, we may represent ann qubit unitaryU by a2n × 2n
boolean matrixC and a vectorh ∈ {0, 1}2n, whose coefficients are jointly
given by

UPtU
† = i

dt(C)(− 1
)ht

n
⊗

j=1

[

Z
C(n+j)t

j X
Cjt

j

]

(14)

for each1 6 t 6 2n. (Note that the factor ofidt(C) is only necessary to ensure
that the image ofPt is Hermitian, and does not serve as a constraint on the value
of C as a matrix.) We will call an ordered pair(C,h) a Leuven tableaufor a
Clifford group elementU if it satisfies (14).8

Provided a Leuven tableau(C,h) for a Clifford group operationU , [17] pro-
vides a matrix formula forU which we may obtain forU , as follows. Decom-
poseC as a block matrixC =

[

E F
G H

]

with n × n blocks, and then find
invertible matricesR̃1, R̃2 over Z2 such thatR̃−1

1 GR̃2 =
[

0 0
0 1r

]

for some
r < n (usinge.g.the decomposition algorithm of [22] to obtaiñR1 andR̃2 in
terms of elementary row operations). Then, define the matrices

[

Ẽ11 Ẽ12

Ẽ21 Ẽ22

]

= R̃⊤
1 ER̃2 , R1 = R̃1 , R2 =

[

Ẽ−1
11 0

0 1r

]⊤

R̃⊤
2 , (15)

whereẼ11 is taken to be a block of size(n− r)× (n− r). We may then obtain
the block matrices







1n–r E12 F11 F12

E21 E22 F21 F22

0 0 H11 H12

0 1r H21 H22






=
[

R⊤

1 0

0 R−1
1

]

C
[

R⊤

2 0

0 R−1
2

]

, (16)

and use these to construct then× n boolean matrices

Mbr =

[

F11 + E12H21 E12

E⊤
12 E22

]

, Mbc =

[

0 H⊤
21

H21 H22

]

. (17)

Next, define

dbr = diag(Mbr) ,

Lbr = lower
(

Mbr + dbrd
⊤
br

)

,

dbc = diag(Mbc) ,

Lbc = lower
(

Mbc + dbcd
⊤
bc

)

,
(18)

8 Note that the block matrix
ˆ

C⊤
h

˜

is similar to adestabilizer tableauas defined in [19].
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wherelower(M) is the strictly lower-triangular part of a square matrixM (with
all other coefficients set to0). Finally, defineΠr =

[

0 0
0 1r

]

andΠ⊥
r = 1n −Πr

for the sake of brevity, and let9

t =
[

1n 0
]

h + diag
(

[

R−1
2 Πr

]

Lbr

[

R−1
2 Πr

]⊤ )
, (19)

hbc =
[

0 R−⊤
2

]

h + R−⊤
2 diag

(

R⊤
2

[

Lbc + ΠrMbc

+
(

Π⊥
r +ΠrMbc

)

Lbr

(

Π⊥
r +MbcΠr

) ]

R2

)

.
(20)

Then Theorem 6 of [17] states that the unitary operationU for the Clifford
operation characterized by(C,h) is given by the matrix formula

U =
1√
2r

∑

xb∈{0,1}n–r

xc,xr∈{0,1}r

[

( − 1)(x
⊤

brLbrxbr +x⊤
r xc +x⊤

bcLbcxbc +h⊤

bcxbc) ×

(−i)(d⊤

brxbr +d⊤

bcxbc)
∣

∣R1xbr

〉〈

R−1
2 xbc + t

∣

∣

]

,
(21)

wherexbr = [ xb
xr ] andxbc = [ xb

xc ] aren bit boolean vectors.
The formula in (21) shows strong similarities to a quadraticform expansion.

In particular, consider disjoint sets of indicesVb, Vr, andVc, with |Vb| = n − r
and|Vr| = |Vc| = r. LetV = Vb ∪ Vc ∪ Vr, I = Vb ∪ Vc, andO = Vb ∪ Vr,
and define the following notation forx ∈ {0, 1}V :

xI =

[

xb

xc

]

=

[

xVb

xVc

]

∈ {0, 1}I , xO =

[

xb

xr

]

=

[

xVb

xVr

]

∈ {0, 1}O ,

(22)

Q(x) = π
(

x⊤
OLbrxO + x⊤

OΠrxI + x⊤
I LbcxI + x⊤

I hbch
⊤
bcxI

)

− π

2

(

x⊤
Odbrd

⊤
brxO + x⊤

I dbcd
⊤
bcxI

)

.
(23)

Then, (21) is equivalent to

U =
1√
2r

∑

x∈{0,1}V

eiQ(x)
∣

∣R1xO

〉〈

R−1
2 xI + t

∣

∣ , (24)

which is essentially a quadratic form expansion sandwichedbetween two net-
works of controlled-not andX gates. To obtain a simple quadratic form expan-
sion, we would like to perform a change of variables onxI andxO; but this
cannot be done asI andO intersect atVb, and the changes of variables do not

9 The vector formulas given here fort andhbc may be obtained by repeated application of
Theorem 2 of [17].
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I O

Vb = I ∩ O

∼=

I O′

Vb Vb′

◦
Vb Va Vb′

=

I O′

Fig. 3. Illustration of geometries arising from quadratic form expansions yield-
ing the same matrix. On the left is a geometry whose inputs andoutput inter-
sect; on the right is a geometry from an equivalent quadraticform expansion,
constructed so that the input and output indices are disjoint.

necessarily respect the partitioning ofI andO with respect to this intersection.
However, we may add auxiliary variables in order to produce an expansion with
disjoint input and output indices. Note that

12 =
∑

x∈{0,1}2

δx1,x2 |x2〉〈x1| =
1

2

∑

x∈{0,1}3

(−1)x1x3+x2x3 |x2〉〈x1| (25)

whereδx,y is the Kronecker delta. LetVa andVb′ be disjoint copies ofVb, and
setV ′ = V ∪ Va ∪ Vb′ andO′ = Vb′ ∪ Vr. Writing xa andxb′ for the restriction
of x ∈ {0, 1}V ′

to Va andVb′ , we then define

xI =

[

xb

xc

]

∈ {0, 1} I , xO′ =

[

xb′

xr

]

∈ {0, 1}O′

, (26)

Q′(xI , xa , xO′) = π
(

x⊤
O′LbrxO′ + x⊤

O′ΠrxI + x⊤
I LbcxI + h⊤

bcxI

)

+ πx⊤
I

[

1n–r

0

]

xa + πx⊤
O′

[

1n–r

0

]

xa

− π

2

(

d⊤
brxO′ + d⊤

bcxI

)

. (27)

Note that the difference between the expressions forQ′ andQ is essentially that
all instances ofxO have been replaced withxO′ (which is independent fromxI ),
and the presence of the terms involvingxa. (This manipulation is illustrated in
Figure 3 as a transformation of geometries.) We therefore have

∑

x∈{0,1}V

eiQ(x)
∣

∣R1xO

〉〈

R−1
2 xI + t

∣

∣

=
∑

xI ,xO′

δxb,xb′
eiQ′(xI ,0,xO′)

∣

∣R1xO′

〉〈

R−1
2 xI + t

∣

∣

=
1

2n−r

∑

x∈{0,1}V ′

eiQ′(xI , xa,xO′)
∣

∣R1xO′

〉〈

R−1
2 xI + t

∣

∣ . (28)
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Substituting the final expression of (28) into (24) and performing the appropriate
change of variables, we have

U =

√
2r

2n

∑

x∈{0,1}V ′

eiQ′(R2(xI+t),xa, R−1
1 xO′) |xO′〉〈xI | . (29)

Note that the quadratic form of the expansion in (29) has onlyanglesθuv

which are multiples ofπ2 , with θuv ∈ {0, π} for u 6= v. This then represents the
positive branch of a one-way measurement pattern on the geometry (G′, I,O′)
of the quadratic form expansion of 29, using onlyX or Y basis measurements,
and having onlyn− r auxiliary vertices.

Interpolating the measurement pattern. We can augment this to a measure-
ment pattern by applying the techniques of the stabilizer formalism [16] to the
stabilizer code generated by the operatorsK(v) = Xv

∏

v∼w Zw for v ∈ Ic

(where again∼ is the adjacency relation ofG), as follows. To obtain the final
correction, we do classical pre-processing simulating theevolution of thestate
spacewhen we perform one measurement at a time. For each measured qubit u,
there is an associated correctionσv which we may perform immediately after
the measurement if we obtain the resultsu = 1. We store for each qubitv two
boolean formulasβv andγv, representing theX andZ components of the ac-
cumulated corrections to be performed onv. Whenv is measured, the pending
X corrections will affect the result of anyY measurement, and the pendingZ
corrections will affect the result of anyX or Y measurement, in each case by
exchanging the significance of the two measurement outcomes.10 Just prior to
the (simulated) measurement ofδv, let δv = γv if v is to be measured with anX
observable, andδv = βv + γv if v is to be measured with aY observable. Thus,
upon measuringv, the following operations are accumulated into the corrections
which must be performed:

– For every qubitw whereσv acts with anX or Y operation, we must add
sv + δv to βw;

– For every qubitw whereσv acts with aY or Z operation, we must add
sv + δv to γw.

This accounts for the accumulated corrections due to the measurement ofv and
every preceding measurement which affects it. By simulating measurement for
all of the qubits inOc in this way, we obtain boolean formulae for the correc-
tions onO in terms of the results of the measurements: the correction to be

10 This can be described in terms ofsignal shifting, as described in [11].
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performed for somew ∈ O isXβwZγw , for βw andγw constructed after all of
the (simulated) measurements. To obtainβw andγw for all w ∈ O in this way
takes timeO(n2).

It is easy to show that the resulting measurement pattern is irreducible by the
techniques of [18], by the following argument. LetA denote the set of auxiliary
vertices corresponding to the bit positions ofxa: note that in the measurement
pattern, these are all to be measured with the observableX, and are adjacent
only to the input/output variablesxI andxO.11 To eliminate a vertexv ∈ A
using the methods of [18] on the geometry induced by the quadratic form ex-
pansion, we would have to identify an output variableb0 ∈ O adjacent tox,
and apply the graph transformation in [18, Proposition 1]. This would result in
a geometry whereb0 has the former neighbors ofv in G (and in particular is
not adjacent to any more removable vertices), and where a local Clifford (which
is not a Pauli operator) must be applied tob0 after the entangling procedure.
Becauseb0 is not adjacent to any other auxiliary qubit after this transforma-
tion, the local Clifford cannot be undone or made into a Paulioperator by e.g.
another vertex removal; then, except by extending the computational model to
allow for corrections which are local Clifford operations,performing the local
Clifford can only be done by introducing an auxiliary qubit (or rather, a new
output qubit followingb0, making the latter an auxiliary qubit). Thus:

Theorem 4. For an n-qubit Clifford group operationU given in the form of a
Leuven tableau, there is anO(n3/ log n) algorithm which produces a minimal
one-way measurement pattern forU .

The ability to obtain a quadratic form expansion representing a reduced
measurement pattern yields a more efficient algorithm to findtotally reduced
Clifford patterns than from using existing techniques to obtain one via the cir-
cuit model. The quadratic form of (29) can be found from a Leuven tableau
(C,h) in timeO(n3/ log n), which is dominated by the time required to com-
puteR1 andR2. To contrast, an approximately optimal quantum circuit fora
Clifford group operation (i.e. consisting ofO(n2/ log n) gates) can be found
from a Leuven tableau in timeO(n3/ log n) by transforming it into a destabi-
lizer tableau, and then applying the algorithm of [19]. To obtain a measurement
pattern from such a circuit by composing the patterns for each gate, removing
vertices opportunistically (with each removal taking timeO(n2)), requires time
O(n4/ log n). Thus, making use of quadratic form expansions provides us with
a faster algorithm to obtain reduced measurement patterns for Clifford group
operations.

11 There are no square termsx2
v for v ∈ A or cross-termxuxv for u, v ∈ A before the change

of variables in (28)), and the change of variables itself does not introduce any.
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4 Conclusions and Open Problems

We have introduced quadratic form expansions, and developed techniques which
suggest that they may be useful for synthesizing efficient implementations for
unitary operations. We described conditions under which implementations may
be efficiently found for unitaries specified by quadratic form expansions; and
we showed how quadratic form expansions leads to more efficient algorithms
for obtaining reduced patterns for Clifford operations in the one way measure-
ment model.

In the introduction, we mentioned that quadratic form expansions are sim-
ilar in form to a sum-over-paths representation of unitary operations, which
is a well-developed subject in theoretical physics. This raises the question of
whether the techniques developed here are useful e.g. for developing algorithms
to simulate physical systems. It is not known whether the solved cases of the
Measurement Pattern Interpolation problem correspond tonatural (in the more
literal sense) unitaries expressed as sums over paths: thisquestion, and how to
extend the solved cases of the MPI to include propagators forinteresting physi-
cal systems, remain open.
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A Quadratic form expansions as sums over paths

Let (G, I,O) be the geometry of a quadratic form expansion, as defined on
page 7. In the special case when(G, I,O) has a fractional-edge flow as de-
fined in Section 3.2, the quadratic form expansion corresponds exactly to a sum
over paths as described in [9], for the elementary gate set ofH, Zt, and∧Zt,
wheret ∈ R (i.e. admitting arbitraryZ rotations and fractional controlled-Z
gates). In order to demonstrate the sense in which quadraticform expansions
are sums over paths in this case, and because it represents a reasonably simple
algorithm for converting quantum circuits into quadratic form expansions, we
now present an alternate proof of Theorem 1 based on the techniques of [9].
That any quadratic form expansion with geometry with a fractional-edge flow
can be constructed in this way follows by reversing the construction below.

Proof of Theorem 1. Consider a quantum circuit implementingU exactly,
using the operationsH, ∧Zt, andZt. Enumerate the wires of the circuit from1
to k, and for each wire1 6 j 6 k, introduce apath labelxj for the input end
of the wire, corresponding to an input bitxj ∈ {0, 1}. We setI = {1, . . . , k}.
Divide each wire intosegments, bounded on each end by either a Hadamard
gate, the input terminal of the wire, or the output terminal.We label the wire
segments with path variables: for the segments at the inputs, we apply the labels
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xj for j ∈ I, and we introduce new path variables to label the remaining wire
segments. Computational paths in the circuit are then described by setting all
of the the path variablesx1 · · · xn collectively to some particular binary string
in {0, 1}n. The phase contribution of each paths, governing how they interfere
to produce an output state for any given input state, is described by a function
ϕ(x) depending the gates of the circuit as follows:

(i) For every Hadamard gate on a single wire, with a path variablexh labelling
the segment preceding the Hadamard and a path variablexj labelling the
segment following the Hadamard, we add a termxhxj .

(ii ) For every∧Zt operation between two wires, with a path variablexh labelling
the segment of one wire andxj labelling the segment of the other wire in
which the∧Zt operation is performed, we add a termtxhxj .

(iii ) For everyZt operation on a wire segment labelled with a path variablexj ,
we add a termtx2

j . (Because the path variablexj ranges over{0, 1}, the
extra power of2 has no effect.)

In particular, the functionϕ(x) is a quadratic form, where without loss of gen-
erality the coefficients may be constrained to−1 < t 6 1. The phase of a given
path, described by a bit-stringx ∈ {0, 1}n, is then given by(−1)ϕ(x) = eiπϕ(x).
Each path also has an associated amplitude of2−r/2, wherer = n − k is the
number of Hadamard gates in the circuit.12

Let O be the set of indicesj such that some wire is labelled by the path-
variablexj at its’ output end. Then, the initial points of computational paths
are described by bit-vectorsa ∈ {0, 1}I , and the terminal points of paths are
described byb ∈ {0, 1}O . The coefficientsUb,a can then be given as the sum
of the contributions of all paths beginning atxI = a and ending atxO = b :

Ub,a =
1√
2r

∑

x∈{0,1}n

xI=a
xO=b

eiπϕ(x) , (30)

which is an expression of the coefficients ofU as a quadratic form expansion.
To obtain a proof of Theorem 1, it is sufficient to note that without loss of

generality we may restrict ourselves to using∧Zt gates only fort = 1 to imple-
mentU exactly; and that to implementU to arbitrary precision, it suffices to use
Zt gates wheret is restricted to multiples of14 . ✷

12 Although it is quite reasonable to considerϕ to be simply a polynomial overR, in terms of the
descriptions used in Section VI of [9], one may considerϕ to be a polynomial over the ring
R/2Z. If we restrict tot ∈ π

4
Z, we may simplify this to the finite ringZ8 by multiplying all

of the coefficients by4, and using it to describe powers of
√

i rather than of−1.
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