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QUADRATIC FORMS FOR THE 1-D SEMILINEAR

SCHRÖDINGER EQUATION

CARLOS E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

Abstract. This paper is concerned with 1-D quadratic semilinear
Schrödinger equations. We study local well posedness in classical Sobolev
space Hs of the associated initial value problem and periodic boundary value
problem. Our main interest is to obtain the lowest value of s which guarantees
the desired local well posedness result. We prove that at least for the quadratic
cases these values are negative and depend on the structure of the nonlinearity
considered.

1. Introduction

This paper is concerned with the semilinear Schrödinger equation. Our purpose
is to study the well posedness of the associated initial value problem (IVP) and
periodic boundary value problem (pbvp) under low regularity of the data.

To measure this regularity we shall use the classical Sobolev spaces Hs(Rn) or
Hs(Tn), and remark that our main interest is in the nonlinearities for which the
Sobolev index s can take negative values, i.e., s < 0.

In this work we restrict ourselves to the one-dimensional case with quadratic
homogeneous nonlinearities.

The IVP for the 1-D semilinear Schrödinger equation{
∂tu = i∂2

xu+N(u, ū), x, t ∈ R,
u(x, 0) = u0(x)

(1.1)

as well as its higher dimensional version, has been extensively studied (see [C],
[CW], [GV1], [K2], [T] and references therein). (Here, we shall only consider the
case where N(·, ·) is a polynomial.) In particular, T. Cazenave and F. Weissler
[CW] and Y. Tsutsumi [T] have shown that for u0 ∈ L2(R) the IVP (1.1) is locally
well posed for every polynomial N of degree ≤ 5, i.e.,

N(z1, z2) =
∑
|α|≤5

aαz
α1
1 zα2

2 .(1.2)

The proof of this result is based on the version of the Strichartz estimate [S] for
the free Schrödinger group {eit∆}∞−∞ found in [GV2], which in the 1-D case affirms
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that (∫ ∞
−∞
‖eit∂

2
xu0‖rLpxdt

)1/r

≤ c ‖u0‖L2(1.3)

for r, p ∈ [2,∞] with 2
r = 1

2 −
1
p .

This local well posedness result depends on the degree of the nonlinearity N(·),
and its proof does not distinguish any other structure on N(·).

We observe that for N(·) homogeneous of degree k, i.e., |α| = k in (1.2), it follows
that if u = u(x, t) solves (1.1) so does

uλ(x, t) = λ2/(k−1)u(λx, λ2t), for any λ ∈ R,(1.4)

with data

uλ(x, 0) = λ2/(k−1)u0(λx).(1.5)

In particular, for k = 5

‖uλ(0)‖L2 = ‖u0‖L2 , for any λ ∈ R.(1.6)

The scaling argument in (1.4)–(1.6) suggests that in this setting, 1-D, N(·) ho-
mogeneous of degree 5 and u0 ∈ L2(R), the result in [CW] should be optimal. This
was proven in [BKPSV] for the nonlinearity N(z1, z2) = −iµz3

1z
2
2 , with µ > 0. Also

this scaling argument hints that for lower nonlinearities N(·) one may expect local
well posedness results in Hs(R) with s < 0. However no results in this direction
were previously known.

As it was mentioned above, here we study the IVP (1.1) with nonlinearities

N1(u, ū) = c1uu, N2(u, ū) = c2uū and N3(u, ū) = c3ūū.(1.7)

It will be proven that for the nonlinearities N1(·) and N3(·) the IVP (1.1) is
locally well posed in Hs(R), for s > −3/4, and that a similar result holds for N2(·)
in Hs(R) with s > −1/4.

It is interesting to compare these results with those known for other evolution
models.

For the IVP for the generalized Korteweg-de Vries{
∂tu+ ∂3

xu+ ∂x(uk+1) = 0, x, t ∈ R, k = 1, 2, . . . ,

u(x, 0) = u0(x),
(1.8)

we showed in [KPV1] that for k ≥ 4 (1.8) is locally well posed in Hs(R), s ≥ s(k) =
(k − 4)/2k, as the scaling argument suggests, and in [BKPSV] that these results
are sharp. Also in [KPV1] we established similar local existence results for k = 2, 3
and s(k) = 1/4, 1/12 respectively. In [KPV3], for the KdV equation, k = 1, we
obtain local well posedness for s > −3/4 (see also [B]).

In a recent work [D] D. Dix has shown that the IVP for Burgers’ equation{
∂tu− ∂2

xu+ ∂x(u2) = 0, x, t ∈ R,
u(x, 0) = u0(x)

(1.9)

is ill-posed, more precisely, uniqueness fails in Hs(R) for s < −1/2. Thus we have
that the IVP for the dispersive models, like the KdV ((1.8) with k = 1) and those
in (1.1) with N1 and N3 in (1.7) exhibit “better” local existence properties than
that of the parabolic equation in (1.9).
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Another interesting set of results are those concerned with the 3-D nonlinear
wave equation 

∂2
t ω −∆ω = G(∇ω, ∂tω), x ∈ R3, t ∈ R,
ω(x, 0) = f(x) ∈ Hs(R3),

∂tω(x, 0) = g(x) ∈ Hs−1(R3).

(1.10)

Written as a quasi-linear hyperbolic system we have that (1.10) is locally well-
posed for s > n

2 + 1 = 5/2 (see [K1]). On the other hand, the scaling argument
suggests that for G(·) satisfying

G(λ∇ω, λ∂tω) = λjG(∇ω, ∂tω), j = 2, . . . ,(1.11)

one should have local well-posedness for

s > s(j) = (5j − 7)/(2j − 2).(1.12)

In [PS] G. Ponce and T. Sideris showed that this is the case if j ≥ 3, and this is op-
timal, and that if j = 2, then s > 2 suffices for the local well-posedness of (1.10). H.
Lindblad [L] gave examples ofG(·) satisfying (1.11), with j = 2, for which the corre-
sponding IVP (1.10) is ill-posed for s < 2. In [KM2] S. Klainerman and M. Mache-
don, improving their earlier result in [KM1] (which motivated those in [PS], [L]),
showed that, for a special form of the quadratic nonlinearity in (∇ω, ∂tω) the value
suggested by the scaling in (1.12) can be reached. More precisely, for nonlinearities
satisfying the so-called “null condition,” i.e. G(ω,∇ω, ∂tω) = φ(ω)((∂tω)2−(∇ω)2),
the IVP (1.10) is locally well-posed for s > 3/2, the value suggested by the scaling
argument, (j = 2 in (1.12)).

Thus, similar to the results obtained by S. Klainerman and M. Machedon in
[KM2], Theorems 1.5–1.7 suggest that the local existence theory for IVP (1.1) may
depend on the structure of the nonlinear terms as well as its degree.

Our method of proof combines the ideas of J. Bourgain in [B] and those in
[KPV3]. First we have the two parameter family spaces Xs,b introduced in [B].

Definition. For s, b ∈ R, Xs,b denotes the completion of the Schwartz class S(R2)
with respect to the norm.

‖F‖Xs,b =

(∫ ∞
−∞

∫ ∞
−∞

(1 +
∣∣τ − ξ2

∣∣)2b(1 + |ξ|)2s|F̂ (ξ, τ)|2dξdτ
)1/2

.(1.13)

For F ∈ Xs,b consider the bilinear operators

B1(F, F )(x, t) = F 2(x, t),(1.14)

B2(F, F )(x, t) = (FF̄ )(x, t),(1.15)

and

B3(F, F )(x, t) = F̄ 2(x, t),(1.16)

associated to the nonlinearities N1(·), N2(·) and N3(·) in (1.7) respectively.
Our well-posedness results for the IVP (1.1) are consequences of the following

estimates for the bilinear forms (1.14)–(1.16).

Theorem 1.1. Given s ∈ (−3/4, 0] there exists b ∈ (1/2, 1) such that

‖B1(F, F )‖Xs,b−1
≤ c ‖F‖2Xs,b .(1.17)
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Theorem 1.2. Given s ∈ (−1/4, 0] there exists b ∈ (1/2, 1) such that

‖B2(F, F )‖Xs,b−1
≤ c ‖F‖2Xs,b .(1.18)

Theorem 1.3. Given s ∈ (−3/4, 0] there exists b ∈ (1/2, 1) such that

‖B3(F, F )‖Xs,b−1
≤ c ‖F‖2Xs,b .(1.19)

As in [KPV3] our proof of Theorems 1.1–1.3 uses elementary techniques some-
what similar to those found in the works of C. Fefferman and E. M. Stein [F1] on
the L4/3(R2) restriction theorem for the Fourier transform to the circle and those
of C. Fefferman [F2] for the L4(R2) boundedness of the Bochner-Riesz operator.

The following theorem shows that the results in Theorems 1.1–1.3 are sharp,
except for the limiting cases which remain open.

Theorem 1.4.

i) For any s < −3/4 and any b ∈ R the estimate (1.17) fails.
ii) For any s < −1/4 and any b ∈ R the estimate (1.18) fails.
iii) For any s < −3/4 and any b ∈ R the estimate (1.19) fails.

Once the bilinear estimates (1.17)–(1.19) have been established we follow an
approach similar to that given in [KPV2], [KPV3] to obtain the following local
well-posedness results for the IVP (1.1) with nonlinear terms in (1.7).

Theorem 1.5. Let s ∈ (−3/4, 0]. Then there exists b ∈ (1/2, 1) such that for any
u0 ∈ Hs(R) there exists T = T (‖u0‖Hs) > 0 (with T (ρ) → ∞ as ρ → 0) and a
unique solution u(t) of the IVP (1.1), with the nonlinear term N = N1 given by
(1.7), satisfying

u ∈ C([−T, T ] : Hs(R)),(1.20)

u ∈ Xs,b(1.21)

and

u2 ∈ Xs,b−1, ∂tu, ∂
2
xu ∈ Xs−2,b−1.(1.22)

Moreover, given T ′ ∈ (0, T ) there exists R = R(T ′) > 0 such that the map
ũ0 → ũ(t) from {ũ0 ∈ Hs(R) : ‖ũ0 − u0‖Hs < R} into the class (1.20)–(1.21) with
T ′ instead of T is Lipschitz.

If in addition, u0 ∈ Hs′(R) with s′ > s, then the above results hold with s′ instead
of s in the same time interval [−T, T ].

Theorem 1.6. For the IVP (1.1) with nonlinear term N = N2 given in (1.7) the
results in Theorem 1.4 (with uū in (1.22) instead of uu) hold for s ∈ (−1/4, 0].

Theorem 1.7. For the IVP (1.1) with nonlinear term N = N3 given in (1.7) the
results in Theorem 1.4 (with ūū in (1.22) instead of uu) apply in the same interval
s ∈ (−3/4, 0].

Next we consider the pbvp for the Schrödinger equation{
∂tu = i∂2

xu+N(u, ū), x ∈ T, t ∈ R,
u(x, 0) = u0(x),

(1.23)

with the quadratic homogeneous nonlinearities in (1.7).
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In [B] J. Bourgain showed that the IVP (1.23) with nonlinearity

N(z1, z2) =
∑
|α|≤3

aαz
α1
1 zα2

2(1.24)

is locally well-posed in L2(T).
In the case of quadratic nonlinearities, i.e. |α| ≤ 2 in (1.24), this result follows

as a consequence of the estimate due to A. Zygmund [Z],∥∥∥∥∥
∞∑

n=−∞
ane

i(nx+n2t)

∥∥∥∥∥
L4
x,t(T2)

≤ c
( ∞∑
n=−∞

|an|2
)1/2

(1.25)

(observe that in R (1.25) corresponds to the case p = r = 6 in (1.3)).
To state our result for the pbvp (1.23) we need the function spaces Ys,b.

Definition. Let Y be the space of functions F (·) such that

(i) F : T× R→ C.
(ii) F (x, ·) ∈ S(R) for each x ∈ T.
(iii) F (·, t) ∈ C∞(T) for each t ∈ R.

For s, b ∈ R, Ys,b denotes the completion of Y with respect to the norm

‖F‖Ys,b =

( ∞∑
n=−∞

∫ ∞
−∞

(
1 +

∣∣τ − n2
∣∣)2b (1 + |n|)2s|F̂ (n, τ)|2dτ

)1/2

.(1.26)

As in the case of the IVP (1.1), our well-posedness results for the pbvp (1.23)
will be a consequence of the following estimates for the bilinear forms (1.14)–(1.16).

Theorem 1.8. Given s ∈ (−1/2, 0] there exists b ∈ (1/2, 1) such that

‖B1(F, F )‖Ys,b−1
≤ c‖F‖2Ys,b.(1.27)

Theorem 1.9. Given s ∈ (−1/2, 0] there exists b ∈ (1/2, 1) such that

‖B3(F, F )‖Ys,b−1
≤ c‖F‖2Ys,b.(1.28)

The following result shows the sharpness of (1.27)–(1.28).

Theorem 1.10.

(i) For any s < −1/2 and any b ∈ R the estimate (1.27) fails.
(ii) For any s < −1/2 and any b ∈ R the estimate (1.28) fails.
(iii) For any s < 0 and any b ∈ R the estimate

‖B2(F, F )‖Ys,b−1
≤ c‖F‖2Ys,b(1.29)

fails.

Theorem 1.11. Let s ∈ (−1/2, 0]. Then there exists b ∈ (1/2, 1) such that for any
u0 ∈ Hs(T) there exists T = T (‖u0‖Hs) > 0 and a unique solution u(t) of the pbvp
(1.23), with the nonlinear term N = N1 given in (1.7), satisfying

u ∈ C ([−T, T ] : Hs(T)) ,(1.30)

u ∈ Ys,b(1.31)

and

u2 ∈ Ys,b−1, ∂tu, ∂
2
xu ∈ Ys−2,b−1.(1.32)
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Moreover, given T ′ ∈ (0, T ) there exists R = R(T ′) > 0 such that the map
ũ0 → ũ(t) from {ũ0 ∈ Hs(T) : ‖ũ0 − u0‖Hs < R} into the class (1.30)–(1.31).

Theorem 1.12. for the pbvp (1.23) with nonlinearity N = N3 given in (1.7) the
results in Theorem 1.12 (with ūū in (1.32) instead of uu) apply in the same interval
s ∈ (−1/2, 0].

We observe a loss of 1/4 derivatives in each result corresponding to the pbvp
(1.23) in comparison to the corresponding one for the IVP (1.1). In particular, for
the nonlinearity N2(u, ū) = cuū we do not improve the L2-result which follows from
(1.25) (see [B]).

This paper is organized as follows. Section 2 is concerned with the results for
the IVP (1.1) with N = N1, (i.e., Theorems 1.1, 1.4(i) and 1.5). Section 3 contains
the proof of Theorems 1.2 and 1.4(ii) and section 4 the proof of Theorems 1.3 and
1.4(iii). Finally, in section 5 we include our result for the pvbp (1.23), Theorems 1.8–
1.10. We remark that once that the bilinear estimates (1.27)–(1.28) (resp. (1.18)–
(1.19)) have been established, the proof of Theorems 1.11–1.12 (resp. Theorems
1.6–1.7) follows an argument similar to that provided in the proof of Theorem 1.5
in section 2 (see [KPV2], [KPV3]); therefore their proof will be omitted.

2. Proof of Theorems 1.1, 1.4(i) and 1.5

First we state some elementary calculus inequalities which are the main tools in
the proof of Theorems 1.1–1.3.

Lemma 2.1. If r > 1/2, then there exists c > 0 such that∫ ∞
−∞

dx

(1 + |x− α|)2r(1 + |x− β|)2r
≤ c

(1 + |α− β|)2r
,(2.1)

∫ ∞
−∞

dx

(1 + |x|)2r
∣∣√α− x∣∣ ≤ c

(1 + |α|)1/2
,(2.2)

∫ ∞
−∞

dx

(1 + |x− α|)2(1−r)(1 + |x− β|)2r
≤ c

(1 + |α− β|)2(1−r) ,(2.3)

and ∫
|x|≤β

dx

(1 + |x|)2(1−r)
∣∣√α− x∣∣ ≤ c (1 + β)2(r−1/2)

(1 + |α|)1/2
.(2.4)

Next we define

ρ = −s ∈ [0, 3/4),(2.5)

and for F ∈ Xs,b = X−ρ,b

f(ξ, τ) ≡
(
1 +

∣∣τ − ξ2
∣∣)b (1 + |ξ|)−ρ F̂ (ξ, τ) ∈ L2(R2).(2.6)

Thus

‖f‖L2
ξL

2
τ

= ‖F‖Xs,b ,(2.7)
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and we can rewrite (1.17) in terms of f as

‖B1(F, F )‖Xs,b−1
=
∥∥∥(1 +

∣∣τ − ξ2
∣∣)b−1(1 + |ξ|)−ρF̂ 2

∥∥∥
L2
ξL

2
τ

=
∥∥∥(1 +

∣∣τ − ξ2
∣∣)b−1(1 + |ξ|)−ρ(F̂ ∗ F̂ )

∥∥∥
L2
ξL

2
τ

= c

∥∥∥∥ 1

(1 + |τ − ξ2|)1−b(1 + |ξ|)ρ

×
∫∫

f(ξ1, τ1)(1 + |ξ1|)ρ
(1 + |τ1 − ξ2

1 |)b
f(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρ

(1 + |τ − τ1 − (ξ − ξ1)2|)b dξ1dτ1

∥∥∥∥
L2
ξL

2
τ

.

(2.8)

Defining

B1(f, g, ρ, b)(ξ, τ) =
1

(1 + |τ − ξ2|)1−b(1 + |ξ|)ρ

×
∫∫

f(ξ1, τ1)(1 + |ξ1|)ρ
(1 + |τ1 − ξ2

1 |)b
g(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρ

(1 + |τ − τ1 − (ξ − ξ1)2|)b dξ1dτ1,

(2.9)

Theorem 1.1 can be restated as follows.

Theorem 2.2. Given ρ = −s ∈ [0, 3/4) there exists b ∈ (1/2, 1) such that

‖B1(f, g, ρ, b)‖L2
ξL

2
τ
≤ c‖f‖L2

ξL
2
τ
‖g‖L2

ξL
2
τ
.(2.10)

The proof of Theorem 2.2 will be based on the following three lemmas.

Lemma 2.3. If b ∈ (1/2, 1], then

‖B1(f, g, 0, b)‖L2
ξL

2
τ
≤ c‖f‖L2

ξL
2
τ
‖g‖L2

ξL
2
τ
.(2.11)

Proof. It suffices to see that for b′ > 1/2 and b ≤ 1

sup
ξ,τ

1

(1 + |τ − ξ2|)1−b

×
(∫ ∞
−∞

∫ ∞
−∞

dτ1dξ1
(1 + |τ1 − ξ2

1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)2|)2b′

)1/2

<∞.

(2.12)

This stronger statement will be useful later on.
From (2.1) it follows that∫ ∞

−∞

dτ1
(1 + |τ1 − ξ2

1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)2|)2b′

≤ c

(1 + |τ − ξ2 + 2ξ1(ξ − ξ1)|)2b′
.

(2.13)

To integrate in ξ1 we change variables

η = τ − ξ2 + 2ξ1(ξ − ξ1),(2.14)

thus

dη = 2(ξ − 2ξ1)dξ1(2.15)
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and

ξ1 =
1

2

(
ξ ±

√
2τ − ξ2 − 2η

)
, i.e. |2ξ1 − ξ| =

∣∣∣√2τ − ξ2 − 2η
∣∣∣ .(2.16)

Hence

dξ1 = c
dη∣∣∣√τ − η − ξ2/2

∣∣∣ ,(2.17)

and from (2.2) we get∫ ∞
−∞

dξ1
(1 + |τ − ξ2 + 2ξ1(ξ − ξ1)|)2b′

= c

∫ ∞
−∞

dη

(1 + |η|)2b′
∣∣∣√τ − η − ξ2/2

∣∣∣
≤ c

(1 + |τ − ξ2/2|)1/2
.

(2.18)

Thus the expression in (2.12) can be bounded by

c sup
ξ,τ

1

(1 + |τ − ξ2|)1−b
1

(1 + |τ − ξ2/2|)1/4
,(2.19)

which yields the result.

In the proof of the following two lemmas we will use the algebraic inequalities∣∣τ − ξ2
∣∣+
∣∣τ − τ1 − (ξ − ξ1)2

∣∣+
∣∣τ1 − ξ2

1

∣∣ ≥ 2 |ξ1(ξ − ξ1)| ,(2.20)

and consequently

max{
∣∣τ − ξ2

∣∣ ; ∣∣τ − τ1 − (ξ − ξ1)2
∣∣ ; ∣∣τ1 − ξ2

1

∣∣} ≥ 2

3
|ξ1(ξ − ξ1)| .(2.21)

Lemma 2.4. If ρ = −s ∈ (1/2, 3/4), b′ > 1/2 and b ≤ 5/4− ρ, then

sup
ξ,τ

1

(1 + |τ − ξ2|)1−b
1

(1 + |ξ|)ρ

×
(∫∫

A

|ξ1(ξ − ξ1)|2ρ

(1 + |τ1 − ξ2
1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)2|)2b′

dξ1dτ1

)1/2

<∞,

(2.22)

where A = A(ξ, τ) is defined as

A = {(ξ1, τ1) ∈ R2 :
∣∣τ − τ1 − (ξ − ξ1)2

∣∣ ≤ ∣∣τ1 − ξ2
1

∣∣ ≤ ∣∣τ − ξ2
∣∣}.(2.23)

Proof. From (2.21) it follows that in A, if |ξ1| ≥ 1 then

|ξ1(ξ − ξ1)| ≤ 3
∣∣τ − ξ2

∣∣ /2(2.24)

and ∣∣τ − ξ2 + 2ξ1(ξ − ξ1)
∣∣ ≤ ∣∣τ1 − ξ2

1

∣∣+
∣∣τ − τ1 − (ξ − ξ1)2

∣∣ ≤ 2
∣∣τ − ξ2

∣∣ .(2.25)

Thus, from (2.1) ∫
dτ1

(1 + |τ1 − ξ2
1 |)2b′(1 + |τ − τ1 − (ξ − ξ1)2|)2b′

≤ cψ((τ − ξ2 + 2ξ1(ξ − ξ1))/2(τ − ξ2))

(1 + |τ − ξ2 + 2ξ1(ξ − ξ1)|)2b′
,

(2.26)
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where ψ ∈ C∞0 (R), ψ ≡ 1 in [−1, 1] and supp ψ ⊆ (−2, 2).
Combining the change of variables (2.14)–(2.17) and (2.2) we obtain that∫

ψ((τ − ξ2 + 2ξ1(ξ − ξ1))/2(τ − ξ2))

(1 + |τ − ξ2 + 2ξ1(ξ − ξ1)|)2b′
dξ1

≤ c
∫
|η|≤|τ−ξ2|

dη

(1 + |η|)2b′
∣∣∣√τ − η − ξ2/2

∣∣∣ ≤ c

(1 + |τ − ξ2/2|)1/2
.

(2.27)

Thus collecting the information in (2.24)–(2.27) the expression in (2.22) can be
bounded by

sup
ξ,τ

1

(1 + |ξ|)ρ
(1 +

∣∣τ − ξ2
∣∣)ρ+b−1

(1 + |τ − ξ2/2|)1/4
,(2.28)

which yields the desired result.

Lemma 2.5. If ρ = −s ∈ (1/2, 3/4), b ∈ (1/2, 1) and b′ ≥ ρ/2− 3/4 + b, then

sup
|ξ1|≥1

sup
τ1

1

(1 + |τ1 − ξ2
1 |)b

′

×
(∫∫

Ã

|ξ1(ξ − ξ1)|2ρ

(1 + |ξ|)2ρ(1 + |τ − ξ2|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1)2|)2b′
dξdτ

)1/2

<∞,

(2.29)

with Ã = Ã(ξ1, τ1) defined as

Ã =


(ξ, τ) ∈ R2 :

∣∣τ − τ1 − (ξ − ξ1)2
∣∣ ≤ ∣∣τ1 − ξ2

1

∣∣
and

∣∣τ − ξ2
∣∣ ≤ ∣∣τ1 − ξ2

1

∣∣
 .(2.30)

Proof. From (2.21) it follows that in Ã

|ξ1(ξ − ξ1)| ≤ 3
∣∣τ1 − ξ2

1

∣∣ /2(2.31)

and ∣∣τ1 − ξ2
1 + 2ξ1(ξ − ξ1)

∣∣ ≤ ∣∣τ − ξ2
∣∣+
∣∣τ − τ1 − (ξ − ξ1)2

∣∣ ≤ 2
∣∣τ1 − ξ2

1

∣∣ .(2.32)

Thus, as in (2.3) we obtain∫
dτ

(1 + |τ − ξ2|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1)2|)2b′

≤ cψ((τ − ξ2
1 + 2ξ1(ξ − ξ1))/2(τ1 − ξ1))

(1 + |τ1 − ξ2
1 + 2ξ1(ξ1 − ξ)|)2(1−b) .

(2.33)

Define, for a set C ⊆ R2

I(C) =
1

(1 + |τ1 − ξ2
1 |)b

′

(∫
C

|ξ1(ξ − ξ1)|2ρ dξ

(1 + |ξ|)2ρ(1 + |τ1 − ξ2
1 + 2ξ1(ξ1 − ξ)|)2(1−b)

)1/2

.

(2.34)

Our aim is to bound I(D), where

D = D(ξ1, τ1) = {ξ ∈ R :
∣∣τ1 − ξ2

1 + 2ξ1(ξ1 − ξ)
∣∣ ≤ 2

∣∣τ1 − ξ2
1

∣∣},(2.35)
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uniformly in (ξ1, τ1) ∈ R2. We divide D into two subdomains D1 and D2. In

D1 = {ξ ∈ D : |2ξ1(ξ1 − ξ)| ≤
∣∣τ1 − ξ2

1

∣∣ /2}(2.36)

one has that ∣∣τ1 − ξ2
1

∣∣ ≤ 2
∣∣τ1 − ξ2

1 + 2ξ1(ξ1 − ξ)
∣∣ ,(2.37)

and consequently

I(D1) ≤
(1 +

∣∣τ1 − ξ2
1

∣∣)ρ
(1 + |τ1 − ξ2

1 |)1−b+b′

(∫
D1

dξ

(1 + |ξ|)2ρ

)1/2

< c.(2.38)

We subdivide D2, i.e.

D2 =
{
ξ ∈ D :

∣∣τ1 − ξ2
1

∣∣ /4 ≤ |ξ1(ξ1 − ξ)| ≤ 3
∣∣τ1 − ξ2

1

∣∣ /2} ,(2.39)

into three pieces. First

D2,1 = {ξ ∈ D2 : |ξ|/4 ≤ |ξ1| ≤ 100|ξ|}.(2.40)

In this set

|ξ|2 ∼ |ξ1|2 ≥ c(1 +
∣∣τ1 − ξ2

1

∣∣).(2.41)

Therefore using the change of variables

η = τ1 − ξ2
1 + 2ξ1(ξ1 − ξ), dη = −2ξ1dξ,(2.42)

we obtain

I(D2,1) ≤ c(1 +
∣∣τ1 − ξ2

1

∣∣)ρ/2−b′ (∫
|η|≤2|τ1−ξ2

1 |

1

|ξ1| (1 + |η|)2(1−b) dη

)1/2

≤ c(1 +
∣∣τ1 − ξ2

1

∣∣)ρ/2−b′+3/4+b ≤ c.

(2.43)

In

D2,2 = {ξ ∈ D2 : 1 ≤ |ξ1| ≤ |ξ|/4}(2.44)

using (2.21) one has

I(D2,2) ≤ c(1 +
∣∣τ1 − ξ2

1

∣∣)−b′ (∫
|η|≤2|τ1−ξ2

1|

|ξ1|2ρ

|ξ1| (1 + |η|)2(1−b) dη

)1/2

≤ c(1 +
∣∣τ1 − ξ2

1

∣∣)2ρ−1−b′+ρ−1/2+b−1/2.

(2.45)

Finally we consider

D2,3 = {ξ ∈ D2 : 100|ξ| ≤ |ξ1|}.(2.46)

In this region

|ξ1|2 ∼
∣∣τ1 − ξ2

1

∣∣ .(2.47)

Hence,

I(D2,3) ≤ c(1 +
∣∣τ1 − ξ2

1

∣∣)ρ−b′−3/4+b ≤ c,(2.48)

which completes the proof of (2.29).
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Proof of Theorem 2.2. First we consider the case s = 0. Combining Cauchy-
Schwarz inequality, (2.12) and Fubini’s theorem, it follows that

∥∥∥∥ 1

(1 + |τ − ξ2|)1−b

∫∫
f(ξ1, τ1)

(1 + |τ1 − ξ2
1 |)b

′
g(ξ − ξ1, τ − τ1)

(1 + |τ − τ1 − (ξ − ξ1)2|)b′ dξ1dτ1
∥∥∥∥
L2L2

≤
∥∥∥∥∥ 1

(1 + |τ − ξ2|)1−b

(∫∫
dξ1dτ1

(1 + |τ − τ1 − (ξ − ξ1)2|)2b′

)1/2
∥∥∥∥∥
L∞ξ L

∞
τ

×
∥∥∥∥∥
(∫∫

|f(ξ1, τ1)|2 |g(ξ − ξ1, τ − τ1)|2 dξ1dτ1
)1/2

∥∥∥∥∥
L2
ξL

2
τ

≤c‖f‖L2
ξL

2
τ
‖g‖L2

ξL
2
τ

(2.49)

for any b′ > 1/2 and b ≤ 1. Taking b = b′ we obtain the result.
Next we consider the case ρ = −s ∈ (1/2, 3/4). We observe that if

either |ξ1| ≤ 1 or |ξ − ξ1| ≤ 1,(2.50)

then

(1 + |ξ1|)ρ(1 + |ξ − ξ1|)ρ ≤ c(1 + |ξ|)ρ,(2.51)

which reduces the estimate to the previous case s = 0. Therefore, we assume

|ξ1| ≥ 1 and |ξ − ξ1| ≥ 1.(2.52)

Also by symmetry we can restrict ourselves to the case∣∣τ − τ1 − (ξ − ξ1)2
∣∣ ≤ ∣∣τ1 − ξ2

1

∣∣ .(2.53)

Now we split the domain of integration into two pieces∣∣τ1 − ξ2
1

∣∣ ≤ ∣∣τ − ξ2
∣∣ and

∣∣τ − ξ2
∣∣ ≤ ∣∣τ1 − ξ2

1

∣∣ .(2.54)

In the first part, (
∣∣τ1 − ξ2

1

∣∣ ≤ ∣∣τ − ξ2
∣∣) we combine Cauchy-Schwarz and (2.22)

with b = b′, as in (2.49), to obtain the result. In the second part we use duality,
Cauchy-Schwarz and (2.29) with b = b′ to complete the result.

Corollary 2.5. If ρ = −s ∈ (1/2, 3/4), b ∈ (1/2, 5/4 − ρ] and b′ > 1/2 with
b− b′ ∈ (0, 3/4− ρ/2], then

‖B1(F, F )‖Xs,b−1
≤ c‖F‖2Xs,b′ .(2.55)

Moreover (2.55) holds for s = 0, and 1/2 < b < b′ ≤ 1.

Proof of Theorem 1.4(i). For N ∈ Z+ define

fN(ξ, τ) = ψ(ξ −N)ψ(τ − ξ2)(2.56)

and

gN (ξ, τ) = ψ(ξ +N)ψ(τ − ξ2)(2.57)

where ψ ∈ C∞(R), ψ ≥ 0, ψ ≡ 1 in [−1, 1] and suppψ ⊆ [−2, 2]. A simple
computation shows that for N large

(fN ∗ gN )(ξ, τ) ≥ c

N
ψ(2N2 + τ/N)ψ(ξ).(2.58)
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Thus (2.10) implies that

1

N2(1−b)
N2ρ

N1/2
≤ c.(2.59)

Now, taking

hN (ξ, τ) = ψ(ξ +N)ψ(τ + ξ2)(2.60)

we have that for N large

(fN ∗ hN )(ξ, τ) ∼= cχR(ξ, τ),(2.61)

where χA(·) denotes the characteristic function of the set A, and R is the rectangle
of dimensions cN × N−1 centered in the origin with longest side pointing in the
(1, 2N) direction.

Thus, (2.10) tells that

1

N1−b
N2ρ

N2b
≤ c.(2.62)

Combining (2.59), (2.62) and letting N tend to infinity, we obtain that

ρ ≤ min

{
5

4
− b; b

2
+

1

2

}
,(2.63)

which completes the proof of Theorem 1.4(i).

Next, we deduce general estimates which are needed in the proof of Theorems
1.5–1.7.

We denote by {eit∂2
x}∞t=−∞ the unitary group describing the solution of the linear

IVP associated to (1.1). {
∂tu− i∂2

xu = 0, t, x ∈ R,
u(x, 0) = u0(x)

(2.64)

where

u(x, t) = eit∂
2
xu0(x) = c(e−itξ

2

û0(ξ))∨(x).(2.65)

We shall use the notations

‖f‖LpxLqt =

(∫ ∞
−∞

(∫ ∞
−∞
|f(t, x)|q dt

)p/q
dx

)1/p

,(2.66)

Ĵsh(ξ) = (1 + |ξ|)sĥ(ξ)(2.67)

and

Λ̂bg(τ) = (1 + |τ |)bĝ(τ).(2.68)

The identity

‖F‖Xs,b =
∥∥∥ΛbJseit∂

2
xF
∥∥∥
L2
xL

2
t

(2.69)

describes the relationship between the spaces Xs,b’s and the group
{
eit∂

2
x

}∞
t=−∞

.

Let ψ ∈ C∞0 (R) with ψ ≡ 1 on [−1, 1] and suppψ ⊆ (−2, 2).
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Lemma 2.6. If s ≤ 0 and b ∈ (1/2, 1], then for δ ∈ (0, 1)∥∥∥ψ(δ−1t)eit∂
2
xu0

∥∥∥
Xs,b
≤ cδ(1−2b)/2 ‖u0‖Hs ,(2.70)

∥∥ψ(δ−1t)F
∥∥
Xs,b
≤ cδ(1−2b)/2‖F‖Xs,b ,(2.71)

∥∥∥∥ψ(δ−1t)

∫ t

0

ei(t−t
′)∂2

xF (t′)dt′
∥∥∥∥
Xs,b

≤ cδ(1−2b)/2‖F‖Xs,b−1
(2.72)

and

sup
t

∥∥∥∥ψ(δ−1t)

∫ t

0

ei(t−t
′)∂2

xF (t′)dt′
∥∥∥∥
Hs
≤ cδ(1−2b)/2‖F‖Xs,b−1

.(2.73)

Proof. The proof of (2.70)–(2.72) is similar to that in [KPV2] (Lemmas 3.1–3.3)
(see also [KPV3]) for the linear group {W (t)}∞−∞ associated to the linearized KdV
equation.

Proof of Theorem 1.5. Using a scaling argument it follows that if u = u(x, t) is a
solution of the IVP (1.1) then for any λ > 0

uλ(x, t) = λ2u(λx, λ2t)(2.74)

also solves the equation in (1.1) with initial data

uλ(x, 0) = λ2u(λx, 0).(2.75)

Thus for s ≤ 0

‖uλ(·, 0)‖Hs = O(λ3/2+s) as λ→ 0.(2.76)

Since we are considering s ∈ (−3/4, 0], we can restrict ourselves to solve the IVP
(1.1) with data u0 ∈ Hs(R) such that

‖u0‖Hs = µ << 1,(2.77)

and use (2.74) to extend the result for data in Hs(R) of arbitrary size.
For u0 ∈ Hs(R), s ∈ (−3/4, 0], satisfying (2.77) we define the operator

Λu0(ω) = Λ(ω) = ψ(t)eit∂
2
xu0 + c1ψ(t)

∫ t

0

ei(t−t
′)∂2

xu2(t′)dt′.(2.78)

Our goal is to show that Λ(·) defines a contraction map on

Ds,b(2cµ) = {ω ∈ Xs,b : ‖ω‖Xs,b ≤ 2cµ}(2.79)

for any b ∈ (1/2, 1).
Combining (2.70), (2.72) with δ = 1 and (1.17), we find that

‖Λ(ω)‖Xs,b ≤ cµ+ c
∥∥ω2

∥∥
Xs,b−1

≤ cµ+ c‖ω‖2Xs,b
≤ cµ+ c(2cµ)2 ≤ 2cµ

(2.80)

if we choose µ in (2.77) such that

4c2µ ≤ 1/2.(2.81)
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Similarly

‖Λ(ω)− Λ(ω̃)‖Xs,b ≤ c
∥∥∥∥ψ(t)

∫ t

0

ei(t−t
′)∂2

x(ω2 − ω̃2)dt′
∥∥∥∥
Xs,b

≤ c
∥∥ω − ω̃2

∥∥
Xs,b−1

= c ‖(ω + ω̃)(ω − ω̃)‖Xs,b−1

≤ 4c2µ ‖ω − ω̃‖Xs,b ≤
1

2
‖ω − ω̃‖Xs,b .

(2.82)

Thus, Λ(·) defines a contraction map, and consequently there exists a unique u ∈
Ds,b(2cµ) such that

u(t) = ψ(t)

(
eit∂

2
xu0 + c1

∫ t

0

ei(t−t
′)∂2

xu2(t′)dt′
)
.(2.83)

Therefore in the time interval [−1, 1] solves the integral equation associated to the
IVP (1.1) with N = N1(·) given by (1.7). Since u ∈ Xs,b, with b > 1/2, by the
Sobolev embedding theorem and (2.69) it follows that

u |[−1,1]∈ C([−1, 1] : Hs(R)).(2.84)

Finally we explain how to extend the uniqueness result in Ds,b(2cµ) to the whole
space Xs,b. First we restrict the time interval, i.e. consider Λu0(·) in (2.78) with
ψ(δ−1t), δ ∈ (0, 1), instead of ψ(t). Arguing as in [KPV2] we obtain estimates
similar to those in (2.80), (2.82) but with a factor δθ0 , θ0 = θ0(b, b′) > 0, in the
left side, which allows us to establish the contraction principle in Ds,b(R) with
R(δ)→∞ as δ → 0 (for details see [KPV2]).

3. Proof of Theorems 1.2, 1.4(ii) and 1.6

Define

ρ = −s ∈ [0, 1/4)(3.1)

and for F ∈ Xs,b = X−ρ,b

f(ξ, τ) = (1 +
∣∣τ − ξ2

∣∣)b(1 + |ξ|)−ρF̂ (ξ, τ) ∈ L2(R2),(3.2)

thus

‖f‖L2
ξL

2
τ

= ‖F‖Xs,b .(3.3)

Since

¯̂
F (ξ, τ) = ˆ̄F (−ξ,−τ)(3.4)

it follows that

ˆ̄F (ξ, τ) =
(1 + |ξ|)ρ

(1 + |τ + ξ2|)b f̄(−ξ,−τ)(3.5)

with

‖f‖L2
ξL

2
τ

= ‖F‖Xs,b .(3.6)
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Thus we can rewrite (1.18) in terms of f as

‖B2(F, F )‖Xs,b−1
=
∥∥∥(1 +

∣∣τ − ξ2
∣∣)b−1(1 + |ξ|)−ρF̂ F̄

∥∥∥
L2
ξL

2
τ

=
∥∥∥(1 +

∣∣τ − ξ2
∣∣)b−1(1 + |ξ|)−ρ(F̂ ∗ ˆ̄F )

∥∥∥
L2
ξL

2
τ

=c

∥∥∥∥ 1

(1 + |τ − ξ2|)1−b(1 + |ξ|)ρ

×
∫∫

f(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρ
(1 + |τ − τ1 − (ξ − ξ1)2|)b

f̄(−ξ1,−τ1)(1 + |ξ1|)ρ
(1 + |τ1 + ξ2

1 |)b
dξ1dτ1

∥∥∥∥
L2
ξL

2
τ

.

(3.7)

Defining

B2(f, g, ρ, b)(ξ, τ) =
1

(1 + |τ − ξ2|)1−b(1 + |ξ|)ρ

×
∫∫

f(ξ1, τ1)(1 + |ξ1|)ρ
(1 + |τ1 + ξ2

1 |)b
g(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1|)ρ

(1 + |τ − τ1 − (ξ − ξ1)2|)b dξ1dτ1,

(3.8)

Theorem 1.2 can be rewritten as follows.

Theorem 3.1. Given ρ = −s ∈ [0, 1/4) there exists b ∈ (1/2, 1) such that

‖B2(f, g, ρ, b)‖L2
ξL

2
τ
≤ c‖f‖L2

ξL
2
τ
‖g‖L2

ξL
2
τ
.(3.9)

The proof of Theorem 3.1 will be deduced from the following lemmas.

Lemma 3.2. If b ∈ (1/2, 1], then

‖B2(f, g, 0, b)‖L2
ξL

2
τ
≤ c‖f‖L2

ξL
2
τ
‖g‖L2

ξL
2
τ
.(3.10)

Proof. It will be shown that

sup
|ξ|≥1

sup
τ

1

(1 + |τ − ξ2|)1−b

×
(∫∫

dτ1dξ1
(1 + |τ1 + ξ2

1 |)2b(1 + |τ − τ1 − (ξ − ξ1)2|)2b

)1/2

<∞

(3.11)

and

sup
ξ1,τ1

1

(1 + |τ1 + ξ2
1 |)b

×
(∫
|ξ|≤1

∫
dτdξ

(1 + |τ − ξ2|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1)2|)2b

)1/2

<∞.

(3.12)

It is easy to see that (3.10) follows by combining (3.11)–(3.12), Cauchy-Schwarz
and duality.

To prove (3.11) we first use (2.1) to find that∫
dτ1

(1 + |τ1 + ξ2
1 |)2b(1 + |τ − τ1 − (ξ − ξ1)2|)2b

≤ c

(1 + |τ − ξ2 + 2ξξ1|)2b
.(3.13)
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Next, changing variables

η1 = τ − ξ2 + 2ξξ1, dη1 = 2ξdξ1,(3.14)

it follows that ∫
dξ1

(1 + |τ − ξ2 + 2ξξ1|)2b
≤ c

∫
dη1

|ξ|(1 + |η1|)2b
≤ c′

|ξ| .(3.15)

Inserting (3.15) in (3.13) we obtain (3.11). To prove (3.12) we use (2.3) to conclude
that ∫

|ξ|≤1

(∫
dτ

(1 + |τ − ξ2|)2(1−b)(1 + |τ − τ1 − (ξ − ξ1)2|)2b

)
dξ

≤ c
∫
|ξ|≤1

dξ

(1 + |τ1 + ξ2
1 − 2ξξ1|)2(1−b) ≤ 2c,

(3.16)

which yields (3.12).

In the next proofs we will use the following algebraic relations∣∣τ − τ1 − (ξ − ξ1)2
∣∣+
∣∣τ1 + ξ2

1

∣∣+
∣∣τ − ξ2

∣∣ ≥ 2 |ξξ1|(3.17)

and consequently

max{
∣∣τ − τ1 − (ξ − ξ1)2

∣∣ ; ∣∣τ1 + ξ2
1

∣∣ ; ∣∣τ − ξ2
∣∣} ≥ 2 |ξξ1| /3.(3.18)

Lemma 3.3. If ρ = −s ∈ [0, 1/4), then there exists b > 1/2 such that

sup
|ξ|≥1

sup
τ

1

(1 + |τ − ξ2|)1−b
1

(1 + |ξ|)ρ

×
(∫∫

A1

|ξ1(ξ − ξ1)|2ρ

(1 + |τ1 + ξ2
1 |)2b(1 + |τ − τ1 − (ξ − ξ1)2|)2b

dξ1dτ1

)1/2

<∞

(3.19)

where A1 = A1(ξ, τ) is defined as

A1 =


(ξ1, τ1) ∈ R2 : |ξ1| ≥ 10, |ξ − ξ1| ≥ 10∣∣τ − τ1 − (ξ − ξ1)2

∣∣ ≤ ∣∣τ − ξ2
∣∣

and
∣∣τ1 + ξ2

1

∣∣ ≤ ∣∣τ − ξ2
∣∣

 .(3.20)

Proof. From (2.1) it follows that∫
τ1∈A1

dτ1
(1 + |τ1 + ξ2

1 |)2b(1 + |τ − τ1 − (ξ − ξ1)2|)2b

≤ψ((τ − ξ2 + 2ξξ1)/2(τ − ξ2))

(1 + |τ − ξ2 + 2ξξ1|)2b
,

(3.21)

and changing variable as in (3.14)

∫
|τ−ξ2+2ξξ1|≤2|τ−ξ2|

dξ1
(1 + |τ − ξ2 + 2ξξ1|)2b

≤ c 1

|ξ|

∫
|η1|≤2|τ−ξ2|

dη1

(1 + |η1|)2b
≤ c

(3.22)

since |ξ| ≥ 1.
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In A1, (3.18) and the hypothesis guarantee that there exists b > 1/2 such that

|ξ1(ξ − ξ1)|2ρ ≤ c
∣∣τ − ξ2

∣∣4ρ ≤ c ∣∣τ − ξ2
∣∣2(1−b)

,(3.23)

thus by inserting (3.21)–(3.23) in (3.19) we obtain the desired result.

Lemma 3.4. If ρ = −s ∈ [0, 1/4), then there exists b > 1/2 such that

sup
|ξ1|≥10

sup
τ1

1

(1 + |τ1 + ξ2
1 |)b

×
(∫∫

|ξ|≤1

|ξ1(ξ − ξ1)|2ρ dξdτ
(1 + |ξ|)2ρ(1 + |τ − τ1 − (ξ − ξ1)2|)2b(1 + |τ − ξ2|)2(1−b)

)1/2

<∞.

(3.24)

Proof. Using (2.3) we find that

∫
dτ

(1 + |τ − τ1 − (ξ − ξ1)2|)2b(1 + |τ − ξ2|)2(1−b) ≤
c

(1 + |τ1 + ξ2
1 − 2ξξ1|)2(1−b) ,

(3.25)

and by changing variables

η = τ1 + ξ2
1 − 2ξξ1, dη = −2ξ1dξ,(3.26)

we get (∫
|ξ|≤1

|ξ1(ξ − ξ1)|2ρ

(1 + |τ1 + ξ2
1 − 2ξξ1|2(1−b) dξ

)1/2

≤c |ξ1|
2ρ

|ξ1|1/2

(∫
|η|≤|τ1+ξ2

1 |+2|ξ1|

dη

(1 + |η|)2(1−b)

)1/2

≤c |ξ1|2ρ−1/2
(

(1 +
∣∣τ1 + ξ2

1

∣∣)b−1/2 + |ξ1|b−1/2
)
.

(3.27)

Thus we obtain the following bound for the term in (3.24)

sup
|ξ1|≥10

sup
τ1

|ξ1|2ρ−1/2

(1 + |τ1 + ξ2
1 |)b

(
(1 +

∣∣τ1 + ξ2
1

∣∣)b−1/2 + |ξ1|b−1/2
)
,(3.28)

which yields the result.

Lemma 3.5. If ρ = −s ∈ [0, 1/4), then there exists b > 1/2 such that

sup
|ξ1|≥10

sup
τ1

1

(1 + |τ1 + ξ2
1 |)b

×
(∫∫

B1

|ξ1(ξ − ξ1)|2ρ dξdτ
(1 + |ξ|)2ρ(1 + |τ − τ1 − (ξ − ξ1)2|)2b(1 + |τ − ξ2|)2(1−b)

)1/2

<∞

(3.29)
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where B1 = B1(ξ1, τ1) is defined as

B1 =


(ξ, τ) ∈ R2 :

∣∣τ − τ1 − (ξ − ξ1)2
∣∣ ≤ ∣∣τ1 + ξ2

1

∣∣
∣∣τ − ξ2

∣∣ ≤ ∣∣τ1 + ξ2
1

∣∣
|ξ − ξ1| ≥ 10 and |ξ| ≥ 1

 .(3.30)

Proof. Arguing as in the previous proof, using that in B1

|η| =
∣∣τ1 + ξ2

1 − 2ξξ1
∣∣ ≤ 2

∣∣τ1 + ξ2
1

∣∣(3.31)

and also using (3.17), we see that the expression in (3.29) can be bounded by

sup
|ξ1|≥10

sup
τ

(1 +
∣∣τ1 + ξ2

1

∣∣)2ρ−1/2,(3.32)

which yields the result.

Lemma 3.6. If ρ = −s ∈ [0, 1/4), then there exists b > 1/2 such that

sup
|ξ1|≥10

sup
τ1

1

(1 + |τ1 − ξ2
1 |)b

×
(∫∫

C

|ξ1(ξ − ξ1)|2ρ dτdξ
(1 + |ξ|)2ρ(1 + |τ − τ1 + (ξ − ξ1)2|)2b(1 + |τ − ξ2|)2(1−b)

)1/2

<∞

(3.33)

where C = C(ξ1, τ1) is defined as

C =


(ξ, τ) ∈ R2 :

∣∣τ − τ1 + (ξ − ξ1)2
∣∣ ≤ ∣∣τ1 − ξ2

1

∣∣
∣∣τ − ξ2

∣∣ ≤ ∣∣τ1 − ξ2
1

∣∣
|ξ| ≥ 1 and |ξ − ξ1| ≥ 10

 .(3.34)

Proof. From (2.3) it follows that∫
τ∈C

dτ

(1 + |τ − τ1 + (ξ − ξ1)2|)2b(1 + |τ − ξ2|)2(1−b)

≤c
ψ
(
(τ1 − ξ2

1 − 2ξ(ξ − ξ1))/2(τ1 − ξ2
1)
)

(1 + |τ1 − ξ2
1 − 2ξ(ξ − ξ1)|)2(1−b)

(3.35)

since in C∣∣τ1 − ξ2
1 − 2ξ(ξ − ξ1)

∣∣ ≤ ∣∣τ − τ1 + (ξ − ξ1)2
∣∣+
∣∣τ − ξ2

∣∣ ≤ 2
∣∣τ1 − ξ2

1

∣∣ .(3.36)

Also we observe that in C (see (3.17))∣∣τ1 − ξ2
1

∣∣ ≥ c |ξξ1| .(3.37)

Next we introduce the notation

I(E) =
1

(1 + |τ1 − ξ2
1 |)b

(∫
E

|ξ1(ξ − ξ1)|2ρ

(1 + |ξ|)2ρ(1 + |τ1 − ξ2
1 − 2ξ(ξ − ξ1)|)2(1−b) dξ

)1/2

.

(3.38)
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Our aim is to bound I(D) where

D =


ξ ∈ C :

∣∣τ1 − ξ2
1 − 2ξ(ξ − ξ1)

∣∣ ≤ 2
∣∣τ1 − ξ2

1

∣∣
|ξ| ≥ 1 and |ξ − ξ1| ≥ 10

 .(3.39)

Changing variables

η = τ1 − ξ2
1 − 2ξ(ξ − ξ1), dη = 2(ξ1 − 2ξ)dξ = 2

√
2τ1 − 2η − ξ2

1dξ(3.40)

and splitting D into three parts, D1, D2, D3 we have, in D1, i.e.

D1 = {ξ ∈ D : |ξ1| ≤ 100|ξ|}(3.41)

from (3.37), (2.4) it follows that

I(D1) ≤ 1

(1 + |τ1 − ξ2
1 |)b−ρ

(∫
|η|≤2|τ1−ξ2

1|

dη

(1 + |η|)2(1−b)
√
|2τ1 − 2η − ξ2

1 |

)1/2

≤ c
(1 +

∣∣τ1 − ξ2
1

∣∣)ρ−1/4

(1 + |2τ1 − ξ2
1 |)1/4

< c′.

(3.42)

In D2, i.e.

D2 = {ξ ∈ D : |ξ1| ≥ 100|ξ| and |ξ1| ≤ 500
∣∣τ1 − ξ2

1

∣∣}(3.43)

we have that the change of variable (3.40) satisfies

|ξ1 − 2ξ| ∼ |ξ1| and dη ' ξ1dξ.(3.44)

Therefore

I(D2) ≤ c |ξ1|2ρ−1/2

(1 + |τ1 − ξ2
1 |)b

(∫
|η|≤2|τ1−ξ2

1|

dη

(1 + |η|)2(1−b)

)1/2

≤ c
(1 +

∣∣τ1 − ξ2
1

∣∣)2ρ−1/2

(1 + |τ1 − ξ2
1 |)b

(1 +
∣∣τ1 − ξ2

1

∣∣)b−1/2 ≤ c′.

(3.45)

Finally, a simple computation shows that

D3 = {ξ ∈ D : |ξ1| ≥ 100|ξ| ,
∣∣τ1 − ξ2

1

∣∣ ≤ |ξ1| /500}(3.46)

is empty.

Proof of Theorem 1.4(ii). For N ∈ Z+ we define

fN(ξ, τ) = ψ(ξ −N)ψ(τ − ξ2)(3.47)

and

pN(ξ, τ) = ψ(ξ +N)ψ(τ + ξ2).(3.48)

Thus

(fN ∗ pN )(ξ, τ) ∼ cχR0(ξ, τ)(3.49)

where χA(·) denotes the characteristic function of the set A, and R0 is the rectangle
of dimensions N × N−1 centered at the origin with longest side pointing in the
(1, 2N) direction.
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Finally from (3.9) it follows that for N large

N2s ≥ c
(∫
|ξ|≤1

∫
|τ |<1

χR0(ξ, τ)dξdτ

)1/2

≥ cN−1/2.(3.50)

Once Theorem 1.2 is available the proof of Theorem 1.6 reduces to that given in
section 2 for Theorem 1.5, therefore it will be omitted.

4. Proof of Theorems 1.3, 1.4(iii) and 1.7

Define

ρ = −s ∈ [0, 3/4)(4.1)

and

f(ξ, τ) = (1 +
∣∣τ − ξ2

∣∣)b(1 + |ξ|)−ρF̂ (ξ, τ) ∈ L2(R2).(4.2)

The argument in section 2 shows that

‖f‖L2
ξL

2
τ

= ‖F‖Xs,b .(4.3)

Thus B3 can be expressed in terms of f as

‖B3(F, F )‖Xs,b−1
=
∥∥∥(1 +

∣∣τ − ξ2
∣∣)b−1(1 + |ξ|)−ρ̂̄FF̄∥∥∥

L2
ξL

2
τ

=
∥∥∥(1 +

∣∣τ − ξ2
∣∣)b−1(1 + |ξ|)−ρ( ̂̄F ∗ ̂̄F )

∥∥∥
L2
ξL

2
τ

= c

∥∥∥∥ 1

(1 + |τ − ξ2|)1−b(1 + |ξ|)ρ×∫∫
f̄(ξ1 − ξ, τ1 − τ)(1 + |ξ − ξ1|)ρ

(1 + |τ − τ1 + (ξ − ξ1)2|)b
f̄(−ξ1,−τ1)(1 + |ξ1|)ρ

(1 + |τ1 + ξ2
1 |)b

dξ1dτ1

∥∥∥∥
L2
ξL

2
τ

.

(4.4)

Defining

B3(f, g, ρ, b)(ξ, τ) =
1

(1 + |τ − ξ2|)1−b(1 + |ξ|)ρ ×∫∫
f(ξ1, τ1)(1 + |ξ1|)ρ

(1 + |τ1 + ξ2
1 |)b

g(ξ − ξ1, τ − τ1)(1 + |ξ − ξ1)|)ρ
(1 + |τ − τ1 + (ξ − ξ1)2|)b dξ1dτ1,

(4.5)

Theorem 1.2 can be rewritten as follows.

Theorem 4.1. Given ρ = −s ∈ [0, 3/4) there exists b ∈ (1/2, 1) such that

‖B3(f, g, ρ, b)‖L2
ξL

2
τ
≤ c‖f‖L2

ξL
2
τ
‖g‖L2

ξL
2
τ
.(4.6)

The proof of Theorem 4.1 will be a direct consequence of the following lemmas.

Lemma 4.2. If b ∈ (1/2, 1], then

‖B3(f, g, 0, b)‖L2
ξL

2
τ
≤ c‖f‖L2

ξL
2
τ
‖g‖L2

ξL
2
τ
.(4.7)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUADRATIC FORMS FOR THE 1-D SEMILINEAR SCHRÖDINGER EQUATION 3343

Proof. It suffices to see that

sup
ξ,τ

1

(1 + |τ − ξ2|)1−b

(∫∫
dξ1dτ1

(1 + |τ1 + ξ2
1 |)2b(1 + |τ − τ1 + (ξ − ξ1)2|)2b

)1/2

<∞.

(4.8)

By changing variables (ξ, ξ1, τ, τ1) → −(ξ, ξ1, τ, τ1), the integral in (4.8) is the
same as that in (2.12) (Lemma 2.3). Following its proof we obtain the bound

sup
ξ,τ

1

(1 + |τ + ξ2|)1−b
1

(1 + |τ − ξ2/2|)1/4
,(4.9)

which yields the result.

In the proof of the following lemmas we use the algebraic relations

τ − τ1 + (ξ − ξ1)2 + τ1 + ξ2
1 − (τ − ξ2) = (ξ − ξ1)2 + ξ2

1 + ξ2,(4.10)

and consequently

max{
∣∣τ − ξ2

∣∣ ; ∣∣τ1 + ξ2
1

∣∣ ; ∣∣τ − τ1 + (ξ − ξ1)2
∣∣} ≥ 1

3
(ξ2

1 + ξ2 + (ξ − ξ1)2).(4.11)

Lemma 4.3. If ρ = −s ∈ (1/2, 3/4) and b ∈ (1/2, 5/4− s), then

sup
ξ,τ

1

(1 + |τ − ξ2|)1−b
1

(1 + |ξ|)ρ

×
(∫∫

A3

|ξ1(ξ − ξ1)|2ρ

(1 + |τ1 + ξ2
1 |)2b(1 + |τ − τ1 + (ξ − ξ1)2|)2b

dτ1dξ1

)1/2

<∞

(4.12)

where A3 = A3(ξ, τ) is defined as

A3 = {(ξ1, τ1) :
∣∣τ − τ1 + (ξ − ξ1)2

∣∣ ≤ ∣∣τ1 + ξ2
1

∣∣ ≤ ∣∣τ − ξ2
∣∣}.(4.13)

Proof. Changing (τ, τ1) by −(τ, τ1) and following the argument in the proof of
Lemma 2.4 (2.22) one obtains the following bound for (4.12)

sup
ξ,τ

1

(1 + |ξ|)ρ
(1 +

∣∣τ + ξ2
∣∣)ρ+b−1

(1 + |τ − ξ2/2|)1/4
,(4.14)

which yields the result.

Lemma 4.4. If ρ = −s ∈ (1/2, 3/4], then there exists b > 1/2 such that

sup
|ξ1|≥1

sup
τ1

1

(1 + |τ1 + ξ2
1 |)b

×
(∫∫

B3

|ξ1(ξ − ξ1)|2ρ

(1 + |ξ|)ρ(1 + |τ − ξ2|)2(1−b)(1 + |τ − τ1 + (ξ − ξ1)2|)2b
dτdξ

)1/2

<∞

(4.15)

where B3 = B3(ξ1, τ1) is defined as

B3 =


(ξ, τ) ∈ R2 :

∣∣τ − τ1 + (ξ − ξ1)2
∣∣ ≤ ∣∣τ1 + ξ2

1

∣∣
and

∣∣τ − ξ2
∣∣ ≤ ∣∣τ1 + ξ2

1

∣∣
 .(4.16)
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Proof. Following an argument similar to that used in the proof of Lemma 2.5, we
bound (4.15) by

sup
|ξ1|≥1,τ1

1

(1 + |τ1 + ξ2
1 |)b

(∫
D′

|ξ1(ξ − ξ1)|2ρ dξ

(1 + |ξ|)2ρ(1 + |τ1 − ξ2 − (ξ − ξ1)2|)2(1−b)

)1/2

(4.17)

with D′ = D′(ξ),

D′ = {ξ ∈ R :
∣∣τ1 − ξ2 − (ξ − ξ1)2

∣∣ ≤ 2
∣∣τ1 + ξ2

1

∣∣}.(4.18)

First we consider the subset of D′

D′1 = {ξ ∈ D′ : ξ2 + (ξ − ξ1)2 + ξ2
1 ≤

∣∣τ1 + ξ2
1

∣∣ /2}.(4.19)

In this domain it follows that

1

(1 + |τ1 + ξ2
1 |)b

(∫
D′1

|ξ1(ξ − ξ1)|2ρ

(1 + |ξ|)2ρ(1 + |τ1 − ξ2 − (ξ − ξ1)2|)2(1−b) dξ

)1/2

≤
(1 +

∣∣τ1 + ξ2
1

∣∣)ρ
(1 + |τ1 + ξ2

1 |)

(∫
dξ

(1 + |ξ|)2ρ

)1/2

<∞.(4.20)

Next we consider the remaining part of D1, i.e.

D′2 = {ξ ∈ D′ :
∣∣τ1 + ξ2

1

∣∣ /2 ≤ ξ2 + (ξ − ξ1)2 + ξ2
1 ≤ 3

∣∣τ1 + ξ2
1

∣∣}.(4.21)

We split D′2 into three pieces D′2,1, D
′
2,2 and D′2,3. In D′2,1, i.e.

D′2,1 = {ξ ∈ D′2 : |ξ|/4 ≤ |ξ1| ≤ 100|ξ|},(4.22)

combining the change of variables

η = τ1 − ξ2 − (ξ − ξ1)2, dη = −2(ξ1 − 2ξ)dξ, |ξ1 − 2ξ| '
√

(2τ1 − ξ2)/2− η),

(4.23)

so that since |ξ| ' |ξ1| we write

1

(1 + |τ1 + ξ2
1 |)b

(∫
D′2,1

|ξ1(ξ − ξ1)|2ρ

(1 + |ξ|)2ρ(1 + |τ1 − ξ2 − (ξ − ξ1)2|)2(1−b) dξ

)1/2

≤
c(1 +

∣∣τ1 + ξ2
1

∣∣)ρ/2
(1 + |τ1 + ξ2

1 |)b

( ∫
|η|≤3|τ1+ξ2

1|
dη√

(2τ1 − ξ2)/2− η)(1 + |η|)2(1−b)

)1/2

≤c (1 + |τ1 + ξ2
1 |)ρ/2−1/4

(1 + |2τ1 − ξ2
1 |)1/4

≤ c.

(4.24)

In D′2,2, i.e.

D′2,2 = {ξ ∈ D′2 : 1 ≤ |ξ1| ≤ |ξ|/4},(4.25)

one has in (4.23) that |ξ1| /|ξ| < 1, hence, the argument in (4.24) extends to this
case.

Finally we consider

D′2,3 = {ξ ∈ D′1 : 100|ξ| ≤ |ξ1|}.(4.26)
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In this region, the change of variable (4.23) satisfies

dη = −2(2ξ − ξ1)dξ ' |ξ1|dξ.(4.27)

An argument similar to that in (4.24) gives the bound

|ξ1|2ρ−1/2

(1 + |τ1 + ξ2
1 |)1/2

≤ c(1 +
∣∣τ1 + ξ2

1

∣∣)ρ−3/4.(4.28)

Proof of Theorem 1.4(iii). For N ∈ Z+ define

fN(ξ, τ) = ψ(ξ −N)ψ(τ + ξ2)(4.29)

and

gN(ξ, τ) = ψ(ξ +N)ψ(τ + ξ2).(4.30)

Since for large N

(fN ∗ gN)(ξ, τ) ≥ c

N
ψ(−2N2 − τ/N)ψ(ξ)(4.31)

(4.6) implies that

1

N2(1−b)
N2ρ

N1/2
≤ c.(4.32)

On the other hand, if

hN (ξ, τ) = ψ(ξ +N)ψ(τ − ξ2)(4.33)

it is easy to see that

(fN ∗ hN )(ξ, τ) ∼= cχR(ξ, τ)(4.34)

where R is the rectangle of dimensions cN × N−1 centered at the origin with its
longest side pointing in the (1, 2N) direction.

Thus (4.6) shows that

1

N1−b
N2ρ

N2b
≤ c.(4.35)

Collecting (4.32), (4.35) and letting N tend to infinity we obtain that

ρ ≤ min

{
5

4
− b; b

2
+

1

2

}
,(4.36)

which yields the result.

Finally, we remark that once Theorem 1.3 has been established, the proof of
Theorem 1.7 follows the argument used in Section 2 for proving Theorem 1.5,
therefore it will be omitted.

5. Proof of Theorems 1.8–1.10

For ρ = −s ∈ [0, 1/2] and F ∈ Ys,b define

f(n, τ) = (1 +
∣∣τ − n2

∣∣)b(1 + |n|)sF̂ (n, τ) ∈ `2nL2
τ .(5.1)

Thus

‖f‖`2nL2
τ

= ‖F‖Ys,b(5.2)
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and (1.27) can be rewritten in terms of f

‖B1(F, F )‖Ys,b−1
=
∥∥∥(1 +

∣∣τ − n2
∣∣)b−1(1 + |n|)sF̂ 2

∥∥∥
`2nL

2
τ

=
∥∥∥(1 +

∣∣τ − n2
∣∣)b−1(1 + |n|)s(F̂ ∗ F̂ )

∥∥∥
`2nL

2
τ

=

∥∥∥∥ 1

(1 + |τ − n2|)1−b(1 + |n|)ρ

×
∑
n1

∫
f(n1, τ1)(1 + |n1|)ρ

(1 + |τ1 − n2
1|)b

f(n− n1, τ − τ1)(1 + |n− n1|)ρ
(1 + |τ − τ1 − (n− n1)2|)b dτ1

∥∥∥∥
`2nL

2
τ

.

(5.3)

Defining

B1(f, g, ρ, b, b′)(n, τ) =
1

(1 + |τ − n2|)1−b(1 + |n|)ρ

×
∑
n1

∫
f(n1, τ1)(1 + |n1|)ρ

(1 + |τ1 − n2
1|)b

′
g(n− n1, τ − τ1)(1 + |n− n1|)ρ

(1 + |τ − τ1 − (n− n1)2|)b′ dτ1

(5.4)

we restate Theorem 1.8.

Theorem 5.1. If ρ = −s ∈ [0, 1/2], then

‖B1(f, g, ρ, 1/2, 1/2)‖`2nL2
τ
≤ c‖f‖`2nL2

τ
‖g‖`2nL2

τ
.(5.5)

As a consequence of the proof of Theorem 5.1 we have

Corollary 5.2. If ρ = −s ∈ [0, 1/2) and 1− b, b′ ≥ ρ with 1− b, b′ > 3/8, then

‖B1(f, g, ρ, b, b′)‖`2nL2
τ
≤ c‖f‖`2nL2

τ
‖g‖`2nL2

τ
.(5.6)

The following lemmas will be needed in the proof of Theorems 1.8–1.9.

Lemma 5.3. If γ > 1/2, then

sup
(n,τ)∈Z×R

∞∑
n1=−∞

1

(1 + |τ ± n1(n− n1)|)γ <∞.(5.7)

Proof. We rewrite (5.7)

∞∑
n1=−∞

1

(1 + |τ ± n1(n− n1)|)γ =
∑
n1

1

(1 + |(n1 − α±)(n1 − β±)|)γ(5.8)

where α = α±(n, τ), β = β±(n, τ) are the roots of the polynomial

τ ± (n1(n− n1) = 0, i.e. τ ± n1(n− n1) = (n1 − α±)(n1 − β±).(5.9)

There are at most 10 n′1’s such that |n1 − α| ≤ 2 or |n1 − β| ≤ 2. The remaining
n1’s satisfy

(1 + |(n1 − α)(n1 − β)|) ≥ 1

2
(1 + |n1 − α|)(1 + |n1 − β|).(5.10)

Hence, applying the Cauchy-Schwarz inequality in (5.7) we obtain the desired result.
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In the proof of the following lemmas the following algebraic relation will be used

τ − n2 − (τ1 − n2
1)− (τ − τ1 − (n− n1)2) = −2n1(n− n1).(5.11)

In particular, this guarantees that

max{
∣∣τ − n2

∣∣ ; ∣∣τ1 − n2
1

∣∣ ; ∣∣τ − τ1 − (n− n1)2
∣∣} ≥ 2

3
|n1(n− n1)| .(5.12)

Lemma 5.4. If ρ = −s ∈ [0, 1/2], then

sup
(n,τ)∈Z×R

1

(1 + |τ − n2|)1/2

1

(1 + |n|)ρ

×
(∑
n1∈A

∫
τ1∈A

(1 + |n1|)2ρ(1 + |n− n1|)2ρ

(1 + |τ1 − n2
1|)(1 + |τ − τ1 − (n− n1)2|)

)1/2

<∞

(5.13)

where A = A(n, τ) is defined as

A = {(n1, τ1) ∈ Z× R :
∣∣τ − τ1 − (n− n1)2

∣∣ ≤ |τ1 − n1| ≤
∣∣τ − n2

∣∣}.(5.14)

Proof. It suffices to consider the extremal cases, ρ = 0 and ρ = 1/2. If ρ = 0,
changing variables

θ1 = τ1 − n2
1(5.15)

it follows that ∫
τ1∈A

dτ1
(1 + |τ1 − n2

1|)(1 + |τ − τ1 − (n− n1)2|)

=

∫
dθ1

(1 + |θ1|)(1 + |θ1 − (τ − n2 + 2n1(n− n1))|)

≤
`n(2 +

∣∣τ − n2 + 2n1(n− n1)
∣∣)

(1 + |τ − n2 + 2n1(n− n1)|) .

(5.16)

Thus we have bound the term in (5.13) by

sup
(n,τ)∈Z×R

(∑
n1

`n(2 +
∣∣τ − n2 + 2n1(n− n1)

∣∣)
1 + |τ − n2 + 2n1(n− n1)|

)1/2

.(5.17)

Hence (5.7) completes the proof.

We observe that the factor
(
1 +

∣∣τ − n2
∣∣)−1/2

in (5.13) has not been used in the
proof.

If ρ = 1/2, the bound for the values n1 = 0 and n1 = n follows from the previous
case. Now restricting the sum in (5.13) to the n1’s such that n1 6= 0 and n1 6= n
from (5.12) it follows that

(1 +
∣∣τ − n2

∣∣) ≥ 1

3
(1 + |n1|)(1 + |n− n1|),(5.18)

which reduces the proof to the previous case ρ = 0.
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Lemma 5.5. If ρ = −s ∈ [0,−1/2], then

sup
(n1,τ1)∈Z×R

1

(1 + |τ1 − n2
1|)1/2

×
(∑
n∈D

∫
τ∈D

(1 + |n1|)2ρ(1 + |n− n1|)2ρ

(1 + |n|)2ρ(1 + |τ − n2|)(1 + |τ − τ1 − (n− n1)2|)dτ
)1/2

<∞,

(5.19)

where D = D(n1, τ1) is defined as

D = {(n, τ) ∈ Z× R :
∣∣τ − τ1 − (n− n1)2

∣∣ ≤ ∣∣τ1 − n2
1

∣∣ and
∣∣τ − n2

∣∣ ≤ ∣∣τ1 − n2
1

∣∣}.(5.20)

Proof. It is similar to the proof of the previous lemma, hence it will be omitted.

Proof of Theorem 5.1. From (5.13)-(5.14) and symmetry it follows that

‖B1(f, g, ρ, 1/2, 1/2)‖`2nL2
τ (A)

≤ c sup
n,τ

1

(1 + |τ − n2|)1/2

1

(1 + |n|)ρ

×
(∑
n1∈A

∫
τ1∈A

(1 + |n1|)2ρ(1 + |n− n1|)2ρ

(1 + |τ1 − n2
1|)(1 + |τ − τ1 − (n− n1)2|)dτ1

)1/2

×‖f‖`2nL2
τ
‖g‖`2nL2

τ
≤ c‖f‖`2nL2

τ
‖g‖`2nL2

τ
.

(5.21)

Also by duality and (5.20)

‖B1(f, g, ρ, 1/2, 1/2)‖`2nL2
τ (D)

= sup
‖h‖`2nL2

τ
≤1

∑
n

∫
|B1(f, g, ρ, 1/2, 1/2)(n, τ)χDh(n, τ)| dτ

= sup
‖h‖`2nL2

τ
≤1

∑
n1

∫
|B∗1(hχD, g, ρ, 1/2)(n1, τ1)f(n1, τ1)| dτ1

(5.22)

where

B∗1(p, q, ρ, b, b′)(n1, τ1) =
(1 + |n1|)ρ

(1 + |τ1 − n2
1|)b

′

×
∑
n∈D

∫
τ∈D

p(n, τ)

(1 + |n|)ρ(1 + |τ − n2|)1−b
q(n− n1, τ − τ1)(1 + |n− n1|)ρ

(1 + |τ − τ1 − (n− n1)2|)b′ dτ.

(5.23)

The argument in (5.21) combined with (5.13) shows that

‖B∗1(p, q, ρ, 1/2, 1/2)‖`2nL2
τ
≤ c‖p‖`2nL2

τ
‖q‖`2nL2

τ
.(5.24)

Collecting (5.21)-(5.24) we obtain the desired result.
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Proof of Theorem 1.10(i). For N ∈ Z define

hN (n, τ) = anχ
(
(τ − n2)/2

)
, with an =

{
1, n = N,

0, elsewhere,
(5.25)

and

gN(n, τ) = bnχ
(
(τ − n2)/2

)
, with bn =

{
1, n = 1−N,
0, elsewhere,

(5.26)

where χ(·) denotes the characteristic function of the interval [−1, 1]. Thus

an1bn−n1 6= 0 if and only if n1 = N and n = 1(5.27)

and consequently for N large∫
χ
(
(τ1 − n2

1)/2
)
χ
(
(τ − τ1 − (n− n1)2)/2

)
dτ ∼= χ

(
τ − (n− n1)2 − n2

1

)
∼= χ (τ − 1 + 2N(N − 1)) .

(5.28)

Therefore from the definition in (5.4)

B1(hN , gN , ρ, b, b
′)(1, τ) ≥ c N2ρ

(1 + |τ − 1|)1−bχ (τ − 1 + 2N(N − 1)) .(5.29)

Hence, (5.6) implies that

N2ρ

N2(1−b) ≤ c.(5.30)

Now we define

pN (n, τ) = anχ
(
(τ − n2)/2

)
, with an =

{
1, n = 1,

0, elsewhere
(5.31)

and

gN(n, τ) = bnχ
(
(τ − n2)/2

)
, with bn =

{
1, n = N − 1,

0, elsewhere.
(5.32)

Thus

an1bn1−n 6= 0 if and only if n1 = N and n = 1,(5.33)

and ∫
χ
(
(τ − n2)/2

)
χ
(
(τ − τ1 − (n− n1)2)/2

)
dτ ∼ χ

(
τ1 + (n− n1)2 + n2

)
∼ χ(τ1 +N2 − 2N).

(5.34)

Hence, using the definition in (5.23)

B∗1(pN , gN , ρ, b, b
′)(N, τ1) ≥ c N2ρ

(1 + |τ1 − n1
2|)b′ χ(τ1 +N2 − 2N).(5.35)

Then (5.6) affirms that

N2ρ

N2b′
≤ c.(5.36)

Combining (5.30), (5.36) the results in Theorem 1.10(i) follow.
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Now we turn our attention to Theorem 1.9. As in the proof of Theorem 1.8
defining

B3(f, g, ρ, b, b′)(n, τ) =
1

(1 + |τ − n2|)1−b(1 + |n|)ρ

×
∑
n1

∫
f(n1, τ1)(1 + |n1|)ρ

(1 + |τ1 + n2
1|)b

′
g(n− n1, τ − τ1)(1 + |n− n1|)ρ

(1 + |τ − τ1 + (n− n1)2|)b′ dτ

(5.37)

we restate Theorem 1.9.

Theorem 5.6. If ρ = −s ∈ [0, 1/2], then

‖B3(f, g, ρ, 1/2, 1/2)‖`2nL2
τ
≤ c‖f‖`2nL2

τ
‖g‖`2nL2

τ
.(5.38)

From the proof of Theorem 5.6 one can obtain the following result.

Corollary 5.7. If ρ = −s ∈ [0, 1/2) and 1− b, b′ ≥ ρ with 1− b, b′ > 3/8, then

‖B3(f, g, ρ, b, b′)‖`2nL2
τ
≤ c‖f‖`2nL2

τ
‖g‖`2nL2

τ
.(5.39)

We shall use the algebraic relation

τ − n2 − (τ1 + n2
1)− (τ − τ1 + (n− n1)2) = −n2 − n2

1 − (n− n1)2.(5.40)

In particular, this implies that

max{
∣∣τ − n2

∣∣ ; ∣∣τ1 + n2
1

∣∣ ; ∣∣τ − τ1 + (n− n1)2
∣∣} ≥ n2 + n2

1 + (n− n1)2 ≥ 1

2
n(n− n1).

(5.41)

The proof of Theorem 5.1 is a direct consequence of the following two lemmas,
whose proofs we omit since they are similar to those given for Lemmas 5.4 and 5.5.

Lemma 5.8. If ρ = −s ∈ [0, 1/2], then

sup
(n,τ)∈Z×R

1

(1 + |τ − n2|)1/2

1

(1 + |n|)ρ

×

 ∑
(n1,τ1)∈A1

∫
(1 + |n1|)2ρ(1 + |n− n1|)2ρ

(1 + |τ1 + n2
1|)(1 + |τ − τ1 + (n− n1)2|)dτ1

1/2

<∞

(5.42)

where

A1 = A1(n, τ) =
{

(n1, τ1) ∈ Z× R :
∣∣τ − τ1 + (n− n1)2

∣∣ ≤ ∣∣τ1 − n2
1

∣∣ ≤ ∣∣τ − n2
∣∣} .(5.43)

Lemma 5.9. If ρ = −s ∈ [0, 1/2], then

sup
(n1,τ1)∈Z×R

1

(1 + |τ1 + n2
1|)1/2

×

 ∑
(n,τ)∈D1

∫
(1 + |n1|)2ρ(1 + |n− n1|)2ρ

(1 + |n|)2ρ(1 + |τ − n2|)(1 + |τ − τ1 − (n− n1)2|)dτ

1/2

<∞

(5.44)
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where

D1 = D1(n1, τ1) =


(n, τ) ∈ Z× R :

∣∣τ − τ1 + (n− n1)2
∣∣ ≤ ∣∣τ1 + n2

1

∣∣
and

∣∣τ − n2
∣∣ ≤ ∣∣τ1 + n2

1

∣∣
 .(5.45)

Proof of Theorem 1.10(ii). For N ∈ Z define

fN (n, τ) = anχ
(
(τ + n2)/2

)
, with an =

{
1, n = N,

0, elsewhere
(5.46)

and

gN(n, τ) = bnχ
(
(τ + n2)/2

)
, with bn =

{
1, n = 1−N,
0, elsewhere

(5.47)

with χ(·) denoting the characteristic function of the interval [−1, 1]. Thus

an1bn−n1 6= 0 if and only if n1 = N and n = 1,(5.48)

and for N large∫
χ
(
(τ1 + n2

1)/2
)
χ
(
(τ − τ1 + (n− n1)2)/2

)
dτ1 ∼= χ

(
τ + (n− n1)2 + n2

1

)
∼= χ(τ + 1 + 2N(N − 1)).

(5.49)

From the definition (5.37) it follows that

B3(fn, gN , ρ, b, b
′)(1, τ) ≥ c N2ρ

(1 + |τ + 1|)1−bχ(τ + 1 + 2N(N − 1)),(5.50)

and from (5.38)

N2ρ

N2(1−b) ≤ c.(5.51)

A similar argument with

pN (n, τ) = anχ((τ + n2)/2), with an =

{
1, n = 1,

0, elsewhere
(5.52)

and

qN (n, τ) = bnχ((τ + n2)/2), with bn =

{
1, n = N − 1,

0, elsewhere
(5.53)

shows that

B∗3(pN , qN , ρ, b, b
′)(N, τ1) ≥ c N2ρ

(1 + |τ1 + n1|)b′
χ(τ1 − (n− n1)2 + n2)(5.54)

where B∗3 is defined similarly as B∗1 in (5.23), and by (5.38) that

N2ρ

N2b′
≤ c.(5.55)

Combining (5.51)–(5.55) we obtain the desired result.
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Proof of Theorem 1.10(iii). We shall prove that for any ρ = −s > 0 and b ∈ R

B2(f, g, ρ, b)(n, τ) =
1

(1 + |τ − n2|)1−b(1 + |n|)ρ

×
∑
n1

∫
f(n1, τ1)(1 + |n1|)ρ

(1 + |τ1 + n2
1|)b

g(n− n1, τ − τ1)(1 + |n− n1|)ρ
(1 + |τ − τ1 − (n− n1)2|)b dτ

(5.56)

the estimate

‖B2(f, g, ρ, b)‖`2nL2
τ
≤ C‖f‖`2nL2

τ
‖q‖`2nL2

τ
(5.57)

fails. For N ∈ Z+ define fN(n, τ) as in (5.46) and

gN(n, τ) = bnχ((τ − n2)/2), with bn =

{
1 n = −N,
0, elsewhere.

(5.58)

Using that

an1bn−n1 6= 0 if and only if n1 = N and n = 0(5.59)

and

∫
χ((τ1 + n2

1)/2)χ(τ − τ1 − (n− n1)2/2)dτ ∼= χ(τ − (n− n1)2 + n2
1) ∼= χ(τ)

(5.60)

in (5.56) we obtain

B2(fN , gN , ρ, b)(0, τ) ≥ cN2ρ

(1 + |τ |)1−b χ(τ) = cN2ρχ(τ).(5.61)

Finally from (5.57) we obtain

N2ρ ≤ c.(5.62)
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