
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 359, Number 11, November 2007, Pages 5449–5483
S 0002-9947(07)04194-3
Article electronically published on June 13, 2007

QUADRATIC HARNESSES, q-COMMUTATIONS,
AND ORTHOGONAL MARTINGALE POLYNOMIALS

W�LODZIMIERZ BRYC, WOJCIECH MATYSIAK, AND JACEK WESO�LOWSKI

Abstract. We introduce the quadratic harness condition and show that in-
tegrable quadratic harnesses have orthogonal martingale polynomials with a
three step recurrence that satisfies a q-commutation relation. This implies
that quadratic harnesses are essentially determined uniquely by five numerical
constants. Explicit recurrences for the orthogonal martingale polynomials are
derived in several cases of interest.

1. Introduction

Hammersley [23] introduced harnesses on R
n as probabilistic models of long-

range misorientation in the crystalline structure of metals. Several authors studied
mathematical aspects of the concept: Mansuy and Yor [28] analyzed harnesses on
R+, Williams [40] analyzed harnesses with the discrete index set; see also [17], [30],
[41], [42]. The class of random fields on R+ which we call quadratic harnesses is re-
lated to Hammersley’s harnesses in parallel to the relation between martingale and
quadratic martingale conditions. Such processes have already been studied implic-
itly by several authors; see the paragraph following Definition 2.2. In particular,
ref. [14] gives a construction of the three parameter family of Markov processes
with the quadratic harness property. Some of these processes are related to the free
Lévy processes, and some correspond to the non-commutative q-Gaussian processes
introduced by Frisch and Bourret [21] and studied in [7]. Examples of quadratic
harnesses appear in mathematical literature; see [14], [39], and see also more recent
works [10], [12], [13]. In full generality however, constructions of quadratic harnesses
on R+ are not yet completely understood. In this paper we concentrate on proper-
ties and uniqueness of quadratic harnesses. We show that quadratic harnesses are
described by five numerical constants, which, under appropriate integrability con-
ditions, determine the process. We also study related integrability properties of a
slightly wider class of processes, improving earlier results of that type [9, Corollary
4], [11, Theorem 2], [39, Theorem 2(1◦)]. We show that martingale polynomials
associated with a quadratic harness that has finite moments of all orders lead to a
q-commutation equation

(1.1) [x, y]q = I + τx2 + σy2 + θx + ηy,

Received by the editors June 8, 2005 and, in revised form, September 26, 2005.
2000 Mathematics Subject Classification. Primary 60J25; Secondary 46L53.
Key words and phrases. Quadratic conditional variances, harnesses, orthogonal martingale

polynomials, hypergeometric orthogonal polynomials.
This research was partially supported by NSF grants #INT-0332062, #DMS-0504198, and by

the C.P. Taft Memorial Fund.

c©2007 American Mathematical Society

5449

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5450 W�LODZIMIERZ BRYC, WOJCIECH MATYSIAK, AND JACEK WESO�LOWSKI

where x, y are infinite matrices satisfying xe0 = 0, ye0 = e0 with e0 = (1, 0, . . .)T ,

[x, y]q = xy − qyx,

and where q, η, θ, σ, τ are numerical constants that describe the quadratic harness.
This hints at more connections with non-commutative probability theory, q-Fock
space constructions, and classical versions of non-commutative processes; see [7].
Relation (1.1) defines an algebra on two generators. Such algebras have been studied
by other authors and can take many equivalent forms; see [38]. In this paper we
use (1.1) to prove that quadratic harnesses with finite moments of all orders have
orthogonal martingale polynomials and to derive their three term recurrences. The
explicit three term recurrences that are associated with quadratic harnesses include
a four-parameter family of the polynomials in Section 4.2 and a four-parameter
family of q-orthogonal polynomials in Section 4.3. Later, in [10] we extend the
construction from [12] to the construction of a quadratic harness, which we call the
bi-Poisson process, based on one of the explicit recurrences from this paper.

Some of our arguments rely on the symmetries of the problem, though perhaps we
did not explore the symmetries deeply enough. The family of quadratic harnesses
that we study is invariant under the action of the translations and reflections of R,
and the associated affine Hecke algebra is known to be associated with the Askey-
Wilson polynomials; see [29]. It is plausible that the theory of affine root systems
[27] might lead to additional progress.

The paper is organized as follows. In Section 2 we define quadratic harnesses
and state the main results. Proofs of the main results are given in Section 3,
with some more technical proofs deferred to the appendix. In Section 4 we derive
explicit recurrences for the orthogonal martingale polynomials. We also introduce
an operator technique motivated by umbral calculus that simplifies the proof of the
quadratic harness property.

Note added after submission. After this paper was submitted, we learned that
equations similar to (1.1) appear in the analysis of the asymmetric exclusion process
[16], and that various tri-diagonal matrix solutions are known; see in particular [36,
Section 4], where such solutions are elegantly expressed in terms of the Jacobi
matrices of the Askey-Wilson polynomials with appropriate parameters. Essler
and Rittenberg [19] consider the general quadratic q-commutation relation (1.1)
and provide details in two important cases when η = θ = 0, or η = θ = 1.

2. Definitions and main results

2.1. Harnesses and quadratic harnesses. Let (Xt)t>0 be a separable square in-
tegrable stochastic process with σ-fields Fs,u = σ{Xt : t ∈ (0, s]∪ [u,∞)}. Consider
the following two “increment” functionals:

∆t,u = ∆t,u(X) =
Xu − Xt

u − t
,(2.1)

∆̃t,u = ∆̃t,u(X) =
uXt − tXu

u − t
.(2.2)

Both functionals appear in the statement of Theorem 2.2 below, and the second
one is the time-inverse of the first one. Namely, if (X̃t)t>0 denotes the time-inverse
process (tX1/t)t>0, then

∆̃t,u(X) = ∆1/u,1/t(X̃), 0 < t < u.
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Definition 2.1 ([28]). An integrable process (Xt)t>0 is a (simple) harness if

E [∆s,t| Fr,u] = ∆r,u

for every r < s < t < u.

A trivial example of a harness is a Gaussian process with covariance (2.5); addi-
tional examples follow Definition 2.2. As pointed out in [28], the harness condition
is equivalent to the linearity of the regression property

(2.3) E [Xt| Fs,u] = at,s,uXs + bt,s,uXu,

where the coefficients are given by

(2.4) at,s,u =
u − t

u − s
, bt,s,u =

t − s

u − s
.

It is clear that at,s,u+bt,s,u = 1 and sat,s,u+ubt,s,u = t; these two identities will often
be used. Since condition (2.3) is invariant under the time-inversion (Xt) �→ (tX1/t),
another equivalent condition for a harness is

E

[
∆̃s,t

∣∣∣Fr,u

]
= ∆̃r,u, r < s < t < u.

The general form of the covariance of a square-integrable harness is as follows.

Proposition 2.1. If (Xt) is a square-integrable centered harness on R+, then there
are constants c0, c1, c2, c3 such that for s ≤ t we have

(2.5) E(XtXs) = c0 + c1s + c2t + c3st.

Proof. Multiplying (2.3) by Xs and averaging we get E(XsXt) = at,s,uE(X2
s ) +

bt,s,uE(XsXu). Thus E(XsXt) = α(s) + β(s)t is linear in t and E(XtXu) =
at,s,uE(XsXu) + bt,s,uE(X2

u) = γ(u) + δ(u)t is linear in t. This gives a functional
equation

α(s) + β(s)t = γ(t) + δ(t)s,
which, by taking s = 0, gives γ(t) = α(0)+β(0)t. Thus E(XsXt) = c0 + c1s+ c2t+
c3st. �

For a centered standardized square-integrable Z that is independent of a qua-
dratic harness (Xt), taking (X̃t) = (Xt + (t + 1)Z) we get a quadratic harness with
E(X̃sX̃t) = E(XsXt) + 1 + t + s + ts. To avoid such non-uniqueness, throughout
this paper we assume that

(2.6) E(Xt) = 0, E(XtXs) = min{t, s}.
If (2.6) and (2.3) hold true and 0 < s ≤ t ≤ u, then

(2.7) E [Xt| F≥u] =
t

u
Xu

and

(2.8) E [Xt| F≤s] = Xs;

see [14, (4) and (5)]. From the martingale (2.8) and reverse martingale (2.7) con-
ditions it follows that the limits X0 := limt↘0 Xt, and limt→∞ Xt/t exist with
probability one. Under assumption (2.6) we have

(2.9) lim
t↘0

Xt = 0, lim
t→∞

Xt/t = 0,
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so without loss of generality we may extend (Xt)t>0 to include the value X0 = 0
when convenient. Similarly, we may extend (X̃t)t>0 = (tX1/t)t>0 to include the
value X̃0 = 0 corresponding to t = 0.

We now turn to the quadratic harness condition. The familiar quadratic mar-
tingale condition associated with the martingale property (2.8) can be written as

(2.10) E
[
X2

t

∣∣F≤s

]
= X2

s + t − s.

This suggests that the quadratic harness condition associated with the simple har-
ness property (2.3) should be written as

(2.11) E
[
X2

t

∣∣Fs,u

]
= Qt,s,u(Xs, Xu),

where

(2.12) Qt,s,u(x, y) = At,s,ux2 + Bt,s,uxy + Ct,s,uy2 + Dt,s,ux + Et,s,uy + Ft,s,u

is a quadratic form in variables x, y with time-dependent coefficients; under as-
sumption (2.6) we trivially have

(2.13) sAt,s,u + sBt,s,u + uCt,s,u + Ft,s,u = t.

Definition 2.2. A square integrable process (Xt)t>0 is a quadratic harness on R+

if it satisfies conditions (2.3) and (2.11).

The well-known examples of quadratic harnesses are the Wiener, Poisson, and
Gamma processes. Ref. [39] identifies all quadratic harnesses with covariance
(2.6) when the quadratic form on the right hand side of (2.11) is such that the
corresponding conditional variance is a function of the increments Xu−Xs only; this
adds to the already listed examples two additional Lévy processes: the Pascal, and
Meixner processes. A related non-commutative form of condition (2.11) appears
in [6]. The main result of [14] asserts that quadratic harnesses with covariance
(2.6) which satisfy the quadratic martingale condition (2.10) are in fact uniquely
determined q-Meixner Markov processes. A quadratic harness that does not satisfy
condition (2.10) is analyzed in [12].

2.2. Five-parameter representation. Generically, the quadratic form Qt,s,u on
the right hand side of (2.11) is determined uniquely up to five numerical parameters.

Theorem 2.2. Let (Xt) be a quadratic harness with covariance ( 2.6). Suppose that
( 2.11) holds with Ft,s,u �= 0 for all 0 < s < t < u, and that 1, Xs, Xt, XsXt, X

2
s , X2

t

are linearly independent for all 0 < s < t. Then there exist η, θ ∈ R, σ, τ ≥ 0, and
q ≤ 1 + 2

√
στ such that

Var [Xt| Fs,u] = Ft,s,u K

(
Xu − Xs

u − s
,
uXs − sXu

u − s

)
(2.14)

for all 0 < s < t < u, where

(2.15) Ft,s,u =
(u − t)(t − s)

u(1 + σs) + τ − qs

and
K(x, y) = 1 + θx + τx2 + ηy + σy2 − [x, y]q

comes from ( 1.1), and is applied here to commuting variables ∆s,u, ∆̃s,u.
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Recall that the conditional variance of X with respect to a σ-field F is defined
as Var [X| F ] = E

[
X2

∣∣F]− (E [X| F ])2.

Remark 2.1. Time-inversion (Xt) �→ (tX1/t) preserves the class of quadratic har-
nesses, modifying the coefficients in (2.11). More precisely, suppose (Xt) satisfies
the assumptions of Theorem 2.2, and let X̃t = tX1/t be its time inverse. Then (X̃t)
is a quadratic harness with respect to its σ-fields F̃s,u = F1/u,1/s, and (2.14) holds
with the roles of the parameters (η, θ) and (σ, τ ) switched within each pair:

Var
[
X̃t

∣∣∣ F̃s,u

]
= F̃t,s,u K̃

(
X̃u − X̃s

u − s
,
uX̃s − sX̃u

u − s

)

where F̃t,s,u = (u−t)(t−s)
u(1+τs)+σ−qs and K̃(x, y) = 1 + ηx + σx2 + θy + τy2 − [x, y]q. Ref.

[22] gives criteria for time-inversion invariance of Markov processes.

2.3. Orthogonal martingale polynomials. Suppose that a quadratic harness
(Xt) has moments of all orders and martingale polynomials pn(x; t) of all degrees
n ≥ 0, that is,

(2.16) E [pn (Xt; t)| F≤s] = pn (Xs; s) , 0 < s < t.

Clearly, p0 = 1 and p1(x; t) = x are natural initial choices; see (2.8). Since xpn(x; t)
is a polynomial of degree n + 1, it follows that

(2.17) xpn(x; t) =
n+1∑
k=0

Ck,n(t)pk(x; t).

Theorem 2.3. Suppose a quadratic harness (Xt) with covariance ( 2.6) and condi-
tional variance ( 2.14) has finite moments of all orders and martingale polynomials
pn(x; t). If for each t > 0 the random variable Xt has infinite support, then recur-
rence ( 2.17) holds with the infinite matrices

Ct :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C00(t) C01(t) C02(t) C03(t) . . .

C10(t) C11(t) C12(t) C13(t) . . .

0 C21(t) C22(t) C23(t) . . .

0 0 C32(t) C33(t) . . .

0 0 0 C43(t)
. . .

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
given by

(2.18) Ct = tx + y, t > 0,

and the infinite matrices x = C1 − C0, y = C0 satisfy equation ( 1.1).

From Theorem 2.3 we derive a number of equations that eventually determine the
orthogonal martingale polynomials. Namely, it is well known that for orthogonal
martingale polynomials {pn(x; t)} recurrence (2.17) holds with a tri-diagonal matrix
C; see [15]. Writing (2.17) as

(2.19) xpn(x; t) = an(t)pn+1(x; t) + bn(t)pn(x; t) + cn(t)pn−1(x; t), n ≥ 0,
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from (2.18) we get

(2.20) an(t) = σαn+1t + βn+1 , bn(t) = γnt + δn , cn(t) = εnt + ϕn,

and the coefficients in (2.20) satisfy a number of equations that result from the
q-commutation equation (1.1). Setting p−1(x; t) = 0, p0(x; t) = 1, p1(x; t) = x, and
using (2.6) we see that the initial values are given by

(2.21) α1 = 0, β1 = 1, γ0 = δ0 = 0, ε1 = 1, ϕ1 = 0.

For n ≥ 1, (1.1) implies that coefficients αn, βn, γn, δn, ϕn, εn satisfy

(2.22) σ2ταnαn+1 + σαnβn+1q + σβnβn+1 = σαn+1βn,

βn+1γn+1 + σαn+1δn(2.23)

= σαn+1(γn + γn+1)τ + (σαn+1δn+1 + βn+1γn)q + βn+1(δn + δn+1)σ
+ σαn+1θ + βn+1η,

βn+1εn+1 + γnδn + σαnϕn(2.24)

= (σαn+1εn+1 + γ2
n + σαnεn)τ + (σαn+1ϕn+1 + γnδn + βnεn)q

+ (βn+1ϕn+1 + δ2
n + βnϕn)σ + γnθ + δnη + 1,

γn−1ϕn + δnεn(2.25)

= (γn−1 + γn)εnτ + (γnϕn + δn−1εn)q + (δn−1 + δn)ϕnσ + εnθ + ϕnη,

(2.26) εnϕn+1 = εnεn+1τ + εn+1ϕnq + ϕnϕn+1σ.

If an(t) �= 0 for all n, then the three step recurrence (2.19) defines a family of
polynomials in the variable x. We now show that these are indeed the martingale
orthogonal polynomials for (Xt).

Theorem 2.4. Suppose a quadratic harness (Xt) with covariance ( 2.6) and condi-
tional variance ( 2.14) has finite moments of all orders, parameters q, η, θ, σ, τ are
such that (q, στ ) �= (−1, 1), and the equations ( 2.21)–( 2.26) have a solution such
that an(t) �= 0 for all t ≥ 0, n ≥ 0. Let {pn(x; t) : n ≥ 0, t > 0} satisfy ( 2.19) and
( 2.20) for n = 0, 1, ... with p−1(x, t) = 0, p0(x, t) = 1, p1(x, t) = x. Then {pn(x; t)}
are orthogonal martingale polynomials for (Xt). (In particular, an(t)cn(t) ≥ 0.)

In Section 4, we give sufficient conditions in terms of parameters q, η, θ, σ, τ for
the assumptions of Theorem 2.4 to be satisfied, and we derive explicit three step
recurrences for the orthogonal martingale polynomials in several cases of interest.
If quadratic harnesses (Xt)t>0 and (Yt)t>0 satisfy the assumptions of Theorem 2.4
with the same parameters q, η, θ, σ, τ , then

E(Xn1
t1 Xn2

t2 . . .Xnk
tk

) = E(Y n1
t1 Y n2

t2 . . . Y nk
tk

)

for all k ≥ 1, 0 < t1 < t2 < · · · < tk, and n1, . . . , nk ∈ N. Under appropriate inte-
grability conditions, this implies that (Xt) is a uniquely determined Markov process
with parameters q, η, θ, σ, τ . In particular, this is the case when supn |bn(t)| < ∞
and supn |an−1(t)cn(t)| < ∞, as in this case recurrence (2.19) corresponds to a com-
pactly supported measure; see [4, Section 2]. However, the question of existence of
such a process is non-trivial and the constructions are known only in special cases;
see [10], [12], [14].
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Next, we show that the integrability assumption of Theorem 2.4 is automatically
satisfied if στ = 0. We remark that the result stated below does not use the full
power of the quadratic harness condition and generalizes [11, Theorem 2] and [39,
Theorem 2(1◦)]. Since

Var [Xt| Fs,u] = E
[
X2

t

∣∣Fs,u

]
− (at,s,uXs + bt,s,uXu)2,

using (2.9) we can pass to the limit in (2.14) as u → ∞ or as s → 0. This gives

Var [Xt| F≤s] =
t − s

1 + σs

(
σX2

s + ηXs + 1
)
,(2.27)

Var [Xt| F≥u] =
t(u − t)
u + τ

(
τ

X2
u

u2
+ θ

Xu

u
+ 1

)
.(2.28)

Theorem 2.5. If a square-integrable stochastic process (Xt) with covariance ( 2.6)
satisfies ( 2.7), ( 2.8), ( 2.27) and ( 2.28) with σ, τ ≥ 0 such that στ ≤ 1/24r+10

for some r > 2, then E(|Xt|r) < ∞ for all t > 0. In particular, if στ = 0, then
E(|Xt|r) < ∞ for all r, t > 0.

3. Proofs of the main results

3.1. Proof of Theorem 2.2. For 0 < x < y < z define

σy,x,z :=
Ay,x,z + By,x,z + Cy,x,z − 1

Fy,x,z
,

τy,x,z :=
x2Ay,x,z + xzBy,x,z + z2Cy,x,z − y2

Fy,x,z
,

1 + qy,x,z :=
By,x,z(z − x)

Fy,x,z
, ηy,x,z :=

Dy,x,z + Ey,x,z

Fy,x,z
, θy,x,z :=

xDy,x,z + zEy,x,z

Fy,x,z
.

We will show that the left hand sides of the above equations do not depend on the
arguments y, x, z. To this end we use three claims, proofs of which are given in the
appendix.

Claim 3.1. For all 0 < x < y < z, and for f = σ, τ, q, η, θ we have

(3.1) fy,x,z = fỹ,x,z ,

provided x < ỹ < z.

Claim 3.2. For all 0 < x < y < z, and f = σ, τ, q, η, θ we have

(3.2) fy,x,z = fy,x̃,z,

provided 0 < x̃ < y.

Claim 3.3. For all 0 < x < y < z, and f = σ, τ, q, η, θ we have

(3.3) fy,x,z = fy,x,z̃ ,

provided z̃ > y.

It is easy to deduce that (3.1), (3.2) and (3.3) imply that functions σ, τ, q, η, θ
are in fact constants. Indeed, given 0 < x1 < y1 < z1 and 0 < x2 < y2 < z2, and
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f = σ, τ, q, η, θ, with x̃ := min {x1, x2} and z̃ := max {z1, z2}, we see that

fy1,x1,z1 = fy1,x1,z̃ by Claim 3.3,
= fy1,x̃,z̃ by Claim 3.2,
= fy2,x̃,z̃ by Claim 3.1,
= fy2,x2,z̃ by Claim 3.2,
= fy2,x2,z2 by Claim 3.3.

(If x2 = x̃ or z2 = z̃, one or both of the last two steps is unnecessary.) So, for all
0 < s < t < u we have

σ =
At,s,u + Bt,s,u + Ct,s,u − 1

Ft,s,u
, τ =

s2At,s,u + suBt,s,u + u2Ct,s,u − t2

Ft,s,u
,(3.4)

1 + q =
Bt,s,u(u − s)

Ft,s,u
, η =

Dt,s,u + Et,s,u

Ft,s,u
, θ =

sDt,s,u + uEt,s,u

Ft,s,u
.(3.5)

The above equations, along with (2.13), form a system of linear equations in vari-
ables At,s,u, . . . , Ft,s,u. This system must be solvable for all 0 < s < t < u, so its
determinant (u − s)3(u(1 + σs) + τ − qs) �= 0. As u → ∞, s → 0, the expression
u(1 + σs) + τ − qs is positive. Thus u(1 + σs) + τ − qs > 0. Taking the limits
s → 0, u → 0, s = 1, u → ∞, and s → u, we get τ ≥ 0, σ ≥ 0 and q ≤ 1 + σu + τ/u
respectively. Minimizing the latter over u > 0 we get q ≤ 1 + 2

√
στ . The unique

solution of the system of equations is given by (2.15) and

At,s,u =
(u − t)[u(1 + σt) + τ − qt]
(u − s)[u(1 + σs) + τ − qs]

,(3.6)

Bt,s,u =
(u − t)(t − s)(1 + q)

(u − s)[u(1 + σs) + τ − qs]
,(3.7)

Ct,s,u =
(t − s)[t(1 + σs) + τ − qs]
(u − s)[u(1 + σs) + τ − qs]

,(3.8)

Dt,s,u =
(u − t)(t − s)(uη − θ)

(u − s)[u(1 + σs) + τ − qs]
,(3.9)

Et,s,u =
(u − t)(t − s)(θ − sη)

(u − s)[u(1 + σs) + τ − qs]
.(3.10)

A calculation shows that (2.14) holds.

3.2. Proof of Theorem 2.3.

Lemma 3.4. Under the assumptions of Theorem 2.3,

Ct = at,s,uCs + bt,s,uCu ,(3.11)

C2
t = Qt,s,u(Cs,Cu) ,(3.12)

where (compare ( 2.12))

(3.13) Qt,s,u(x, y) = At,s,ux2 + Bt,s,uxy + Ct,s,uy2 + Dt,s,ux + Et,s,uy + Ft,s,u,

with the coefficients given by ( 2.15) and ( 3.6)–( 3.10).
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For the proof of Lemma 3.4, see the appendix. Note that from (3.11) it follows
that Ct = tx + y for some infinite matrices x, y. Expanding the expressions such as
C2

t = t2x2 + t(xy + yx) + y2 on both sides of (3.12) we get

(3.14) t2x2 + t(xy + yx) + y2 = At,s,u

(
s2x2 + s(xy + yx) + y2

)
+ Bt,s,u

(
y2 + uyx + sxy + sux2

)
+ Ct,s,u

(
u2x2 + u(xy + yx) + y2

)
+ (Dt,s,u + Et,s,u)y + (sDt,s,u + uEt,s,u)x + Ft,s,uI.

Applying the relations (2.13), (3.4), and (3.5) to the coefficients at each of the
monomials in (3.14) we get

xy + yx = τx2 + σy2 + ηy + θx + I + (1 + q)yx,

which is the same as (1.1).

3.3. Proof of Theorem 2.4.

3.3.1. Martingale property ( 2.16). We proceed by induction on n. Trivially, (2.16)
holds for n = 0, 1; see (2.8). Assume then that n > 1 and that (2.16) holds for
0, 1, . . . , n − 1 and all 0 < s < t.

Lemma 3.5. Denoting

X := E [pn (Xu; u)| F≤s] , Y := E [pn (Xt; t)| F≤s] ,

we have

(3.15) bt,s,uan−1(u)X − an−1(t)Y = −at,s,uan−1(s)pn (Xs; s) ,

and
Ct,s,uan−2(u)an−1(u) X − an−2(t)an−1(t) Y

= −an−1(s)pn (Xs; s) (At,s,uan−2(s) + Bt,s,uan−2(u))
(3.16)

for all n > 1.

The proof of this lemma is in the appendix. Subtracting equation (3.15) multi-
plied by an−2(t) from (3.16), we get

an−1(u) (Ct,s,uan−2(u) − bt,s,uan−2(t))X
= −an−1(s)pn (Xs; s) (At,s,uan−2(s) + Bt,s,uan−2(u) − at,s,uan−2(t)) .

(3.17)

Now we notice that

Ct,s,uan−2(u) − bt,s,uan−2(t)

= − (t − s)(u − t)
(u − s) [u(1 + σs) + τ − qs]

[(qs − τ )σαn−1 + (1 + sσ)βn−1] ;

see (2.4), (2.20), and (3.8). Similarly,

At,s,uan−2(s) + Bt,s,uan−2(u) − at,s,uan−2(t)

=
(t − s)(u − t)

(u − s) [u(1 + σs) + τ − qs]
[(qu − τ )σαn−1 + (1 + uσ)βn−1] .

Since (2.22) implies that

an−1(u)((qs − τ )σαn−1+(1 + sσ)βn−1)

= an−1(s) ((qu − τ )σαn−1 + (1 + uσ)βn−1) ,
(3.18)
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and an−1(u) �= 0 by assumption, therefore, (3.17) becomes
(3.19)
((qs − τ )σαn−1 + (1 + sσ)βn−1)X = ((qs − τ )σαn−1 + (1 + sσ)βn−1) pn (Xs; s) .

It remains to verify that

(3.20) ((qs − τ )σαn−1 + (1 + sσ)βn−1) �= 0.

Since βn−1 = an−1(0) �= 0 by assumption, this is trivially true if σ = 0. Suppose
σ > 0 and (3.20) is not true. Since an−1(u) �= 0 from (3.18) we see that then the
left hand side of (3.20) must vanish also when s is replaced by u. Thus

(3.21) σ(αn−1q + βn−1) = 0, βn−1 − σταn−1 = 0.

Since βn−1 �= 0, the determinant of the system of equations (3.21) is zero, q+στ = 0,
and the second equation in (3.21) gives στ �= 0. Since α1 = 0, from (2.22) with
q = −στ �= 0 we get αj = βj for all j ≥ 1. As στ �= 1, this contradicts (3.21). Thus
(3.20) holds. By (3.20), from (3.19) we get

X = pn (Xs; s) ,

which means that {pn(x; t)}t>0 is a martingale for every n ≥ 0.

3.3.2. Orthogonality. Now we shall show that polynomials {pn(x; t)}n are orthog-
onal with respect to the distribution of Xt. Since the polynomials satisfy the three
term recurrence (2.19), it suffices to show that for all k = 1, 2, . . .,

(3.22) E(pk (Xt; t)) = 0.

Clearly, by the martingale property, µk = E(pk (Xt; t)) does not depend on t. We
proceed again by induction. From (4.2) we see that a1(t) = 1 + σt, so
(1+σt)p2(x; t) = x2 − b1(t)p1(x; t)− t. Since p1(x; t) = x, assumption (2.6) implies
that (3.22) holds for k = 1, 2. Assume then that for some n ≥ 3 we have µk = 0
for all 1 ≤ k ≤ n − 1. By (2.19),

E(Xtpn (Xt; t)) = an(t)E(pn+1 (Xt; t)) = an(t)µn+1.

By (2.7), the martingale property of {pn(x; t)}n, (2.19) and the induction assump-
tion, the left hand side of the above equation transforms into

E(Xtpn (Xt; t)) = E

( t

s
E [Xs| F≥t] pn (Xt; t)

)
=

t

s
E

(
XsE [pn (Xt; t)| F≤s]

)
=

t

s
E

(
Xspn (Xs; s)

)
=

t

s
an(s)E(pn+1 (Xs; s)) =

t

s
an(s)µn+1,

so (
an(s)

s
− an(t)

t

)
µn+1 = 0.

Since
an(s)

s
− an(t)

t
= an(0)

t − s

ts
�= 0,

we get µn+1 = E(pn+1 (Xt; t)) = 0, and the orthogonality of {pn(x; t)}n is proved.
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3.4. Proof of Theorem 2.5. The proof is based on the following two lemmas, the
proofs of which are given in the appendix.

Lemma 3.6. Suppose X, Y are square-integrable, standardized, and there are con-
stants ε, A, B ≥ 0, 0 < ρ < 1 such that

E
[
(X − ρY )2

∣∣Y ]
≤ A + B|Y | + (1 − ρ2)ε2

1 + ε2
Y 2,(3.23)

E
[
(Y − ρX)2

∣∣X]
≤ A + B|X| + (1 − ρ2)ε2

1 + ε2
X2.(3.24)

If 2ε < ρ < 1, then there are constants C1, C2 < ∞ such that for x > 0 we have

Pr(|X| > 2x/ρ) + Pr(|Y | > 2x/ρ)

≤
(

C1/x2 + C2/x +
4ε2

ρ2 + ε2

1 + ρ

1 − ρ

)
(Pr(|X| > x) + Pr(|Y | > x)) .

(3.25)

Lemma 3.7. Suppose X, Y are square-integrable, standardized, E(|X|p)+E(|Y |p) <
∞ for some p > 1 and the assumptions of Lemma 3.6 are satisfied with constants
ε > 0, 0 < ρ < 1 such that

(3.26) 2p+3ε2 1 + ρ

1 − ρ
≤ ρp+3.

Then E(|X|p+1) + E(|Y |p+1) < ∞.

Proof of Theorem 2.5. Let r > 2 be fixed. Since our proof relies only on inequali-
ties, if στ = 0 we can increase slightly the values of the parameters σ, τ on the right
hand sides of (2.28) and (2.27) to ensure σ′, τ ′ > 0 and σ′τ ′ ≤ 2−4r−10, replacing
both equalities by the appropriate inequalities; thus without loss of generality we
may assume that στ > 0.

Let p = r − 1 > 1. Define ε2 =
√

στ/2, t0 = τ/ε2, and s0 = ε2/σ. Then
the correlation coefficient between Xs0 and Xt0 is ρ =

√
s0/t0 = ε2/

√
στ = 1/2.

From the inequality form of (2.28) and (2.27) we deduce that random variables
X = Xs0/

√
s0 and Y = Xt0/

√
t0 satisfy (3.23) and (3.24) with

A =
1 − ρ2

1 + ε2
, B =

1 − ρ2

1 + ε2
max{|η|ε/

√
σ, |θ|

√
τ/ε}.

Condition (3.26) is satisfied since with r = p + 1 we have (στ )1/2 ≤ 1/22p+7. Thus

2p+3ε2 1 + ρ

1 − ρ
= 2p+33ε2 < 2p+4(στ )1/2 ≤ 1/2p+3 = ρp+3.

Therefore, by Lemma 3.7, E(|Xt0 |r) = E(|Xt0 |p+1) < ∞. Observe that if E(|Xt0 |r)
< ∞ for some t0 > 0, r > 1, then E(|Xt|r) < ∞ for all t > 0. Indeed, if E(|Xt0 |r) <
∞ then E(|Xs|r) < ∞ for all s < t by (2.8). Similarly, E(|Xu|r) < ∞ for all u > t
by (2.7). Therefore, E(|Xt|r) < ∞ for all t ≥ 0. �

4. Examples of explicit recurrences

In this section we will call (Xt) a quadratic harness with parameters q, η, θ, σ, τ
if (2.3), (2.6), and (2.14) hold. Our goal is to derive explicit versions of (2.19) at
the expense of additional assumptions on the parameters.
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Theorem 4.1. Suppose (Xt) is a quadratic harness with parameters 0 ≤ στ < 1,
−1 < q ≤ 1−2

√
στ . Moreover, assume that for each t > 0, the random variable Xt

has moments of all orders and infinite support. Then (Xt) has orthogonal martin-
gale polynomials which are given by recurrence ( 2.19) with p0(x, t) = 1, p1(x, t) = x,
where the coefficients of the recurrence are linear functions of t,

(4.1) an(t) = σαn+1t + βn+1 , bn(t) = γnt + δn , cn(t) = (βnt + ταn)ωn ,

which are determined as follows.
(1) The initial conditions are

α1 = 0, β1 = 1, γ0 = δ0 = 0, ω1 = 1.

(2) Sequences (αn), (βn) satisfy

(4.2)
[

αn+1

βn+1

]
=
[

q 1
−στ 1

]
×
[

αn

βn

]
, n ≥ 1.

Moreover, denoting

λn,k = βnβn+k − σταnαn+k

we have λn,k > 0 for all n ≥ 1, k ≥ 0.
(3) Setting λ0,2 = α0 = β0 = 0, sequences (γn), (δn) satisfy the following

system of linear recurrences:

γn+1 =
q + στ

λn+2,0
(λn,2γn + (αn+2βn − βn+2αn)σδn)

+
σαn+2

λn+2,0
(ηταn+1 + θβn+1) +

βn+2

λn+2,0
(θσαn+1 + ηβn+1),(4.3)

δn+1 =
q + στ

λn+2,0
(λn,2δn + (αn+2βn − βn+2αn)τγn)

+
βn+2

λn+2,0
(ηταn+1 + θβn+1) +

ταn+2

λn+2,0
(θσαn+1 + ηβn+1), n ≥ 0.

(4) Sequence (ωn) satisfies the linear recurrence

ωn+1 =
(q + στ )λn−1,1

λn+1,1
ωn

+
1 + γn(τγn − δn + θ) + δn(qγn + σδn + η)

λn+1,1
, n ≥ 2

(4.4)

with the initial term

ω2 = (1 + q)
(1 − στ )2 + (η + θσ)(θ + ητ)

(1 − στ )2(1 − στ (2 + q))
.

Remark 4.1. If −1 ≤ q < 1 − 2
√

στ , then the explicit solution of recurrence (4.2)
is

(4.5) αn =
λn−1

+ − λn−1
−

λ+ − λ−
, βn =

λn−1
+ (1 − λ−) + λn−1

− (λ+ − 1)
λ+ − λ−

,

where
λ± =

1
2

(
1 + q ±

√
(1 + q)2 − 4(q + στ )

)
.

The proof of Theorem 4.1 relies on Theorem 2.4 and the following lemma.
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Lemma 4.2. If στ < 1 and −1 ≤ q ≤ 1−2
√

στ , then the solutions of ( 4.2) satisfy

βn >
√

σταn ≥ 0.

In particular,

βnβn+1 > σταnαn+1, β2
n > στα2

n , for all n ≥ 1.

Proof. From the explicit solution in Remark 4.1, we see that |λ−| ≤ |λ+| and hence
αn ≥ 0 for n > 1. We now prove by induction that βn >

√
σταn for all n. This

is trivially true for n = 1; see (2.21). Suppose the inequality is satisfied for some
n ≥ 1. Then (4.2) implies that βn+1−

√
σταn+1 = (1−

√
στ )βn−

√
στ(q+

√
στ)αn ≥

(1 −
√

στ)(βn −
√

σταn) > 0. �

Proof of Theorem 4.1. By Lemma 4.2, an(t) = σαn+1t + βn+1 ≥ βn+1 > 0 for all
t ≥ 0, n ≥ 0. Moreover, recurrences (4.3), (4.4) are well defined and have a unique
solution. Therefore, to end the proof we need only to verify that with

(4.6) εn = ωnβn, ϕn = τωnαn,

the equations (2.21)–(2.26) are satisfied. Trivially, (2.21) holds true. It is easy to
verify that the solution of (4.2) satisfies (2.22). Using (4.6) from (4.2) we also get
(2.26). It remains to show that equations (2.23), (2.24), and (2.25) hold. We will
rewrite these equations using (4.2) and its equivalent form

(4.7) qβn+1 + σταn+1 = (q + στ )βn, βn+1 − αn+1 = −(q + στ )αn, n ≥ 1.

Equation (2.23) is equivalent to

γn+1(βn+1 − σταn+1) − δn+1σ(βn+1 + αn+1q)

= (σταn+1 + βn+1q)γn + δnσ(βn+1 − αn+1) + σαn+1θ + βn+1η.

Using (4.2) and (4.7), we can rewrite it as

(4.8) γn+1βn+2 − σδn+1αn+2 =(q+στ )βnγn−(q+στ )σαnδn + σαn+1θ + βn+1η.

Similarly, (2.25) for our sequences can be rewritten as

ωn (δn+1(βn+1 − σταn+1) − τγn+1(βn+1 + qαn+1))

= ωn ((qβn+1 + σταn+1)δn + τ (βn+1 − αn+1)γn + θβn+1 + ηταn+1) .
(4.9)

Equations (4.8), (4.9) are satisfied; in fact, (4.3) was obtained by solving this system
of equations when ωn > 0. Thus (2.23) and (2.25) hold. Substituting (4.6) into
(2.24) and using (4.2) and Lemma 4.2 we get

ωn+1 =
βn(qβn + σταn) + σταn(βn − αn)

βn+1βn+2 − σταn+1αn+2
ωn

+
1 + γn(τγn − δn + θ) + δn(qγn + σδn + η)

βn+1βn+2 − σταn+1αn+2
.

Since (4.7) holds, thus (2.24) is equivalent to (4.4). �

Remark 4.2. From (4.3) we get

(4.10) γ1 =
η + θσ

1 − στ
, δ1 =

ητ + θ

1 − στ
,
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which implies that the initial recurrences are

xp0(x; t) = p1(x; t),(4.11)

xp1(x; t) = (1 + σt)p2(x; t) +
(η + θσ)t + (ητ + θ)

1 − στ
p1(x; t) + tp0(x; t).(4.12)

Thus the first three orthogonal martingale polynomials are

p0(x; t) = 1, p1(x;t) = x,

p2(x; t) =
1

1 + σt
x2 − (η + θσ)t + ητ + θ

(1 − στ )(1 + σt)
x − t

1 + σt
.

(4.13)

4.1. Free quadratic harnesses. Free harnesses have parameter

(4.14) q = −στ.

The adjective “free” is motivated by the fact that when στ = 0 this choice is related
to free convolutions that arise in free probability; see [14, Section 4.3] and [12,
Section 4]. In general, from Theorem 4.1 it is clear that this choice of q significantly
simplifies the recurrences. It is not obvious whether this case is further related to
free convolutions; see however [26].

Assuming στ < 1, (4.14) implies that −1 < q < 1 − 2
√

στ , so it follows from
Theorem 4.1 that the orthogonal martingale polynomials exist. It is easy to check
that the solution of (4.2) is

(4.15) αn = (1 − στ )n−2, βn = (1 − στ )n−2, n ≥ 2.

For our choice of q and n ≥ 0 we have

λn+2,0 = β2
n+2 − στα2

n+2 = (1 − στ )2n+1.

Using this identity, from (4.3) we get for n ≥ 2,

γn =
η + 2 θ σ + η σ τ

(1 − σ τ )2
,

δn =
θ + 2 η τ + θ σ τ

(1 − σ τ )2
.

Similarly,

λn+1,1 = βn+1βn+2 − σταn+1αn+2 = (1 − στ )2n, n ≥ 0.

Substituting this and δn, γn into (4.4), we get

ωn =
(1 − στ )2 + (η + θσ)(θ + ητ)

(1 − στ )2n , n ≥ 3.

We also compute

ω2 =
(1 − στ )2 + (η + θσ)(θ + ητ)

(1 − στ )3
.
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Therefore recurrence (2.19) with initial values (2.21) gives

xp2(x) = (1 − στ )(1 + σt)p3(x) +
(η + 2 θσ + η σ τ )t + θ + 2ητ + θστ

(1 − στ )2
p2(x)

+
(1 − στ )2 + (η + θσ)(θ + ητ)

(1 − στ )3
(t + τ )p1(x) ,

xpn(x) = (1 − στ )n−1(1 + σt)pn+1(x) +
(η + 2θσ + ηστ )t + θ + 2ητ + θστ

(1 − στ )2
pn(x)

+
(1 − στ )2 + (η + θσ)(θ + ητ)

(1 − στ )n+2
(t + τ )pn−1(x)

for n ≥ 2. After renormalizing the n-th polynomial by (1 − στ )(n−2)(n−1)/2, and
denoting

γ = γ1, δ = δ1,

see (4.10), from Theorem 4.1 we get the following.

Proposition 4.3 (Free quadratic harnesses). Suppose (Xt) is a quadratic harness
with parameters such that 1 + γδ > 0, 0 ≤ στ < 1, and q = −στ . If for t > 0, the
random variable Xt has all moments and infinite support, then it has orthogonal
martingale polynomials given by the three step recurrences

xp0(x; t) = p1(x; t),
xp1(x; t) = (1 + σt)p2 + (γt + δ)p1(x; t) + tp0(x; t),

xp2(x; t) = (1 + σt)p3(x; t) +
(γ + σδ)t + δ + τγ

1 − στ
p2(x; t) +

1 + γδ

1 − στ
(t + τ )p1(x; t),

xpn(x; t) = (1 + σt)pn+1(x; t) +
(γ + σδ)t + δ + τγ

1 − στ
pn(x; t)

+
1 + γδ

(1 − στ )2
(t + τ )pn−1(x; t), n ≥ 3.

Remark 4.3. The recurrence in Proposition 4.3 is a finite perturbation of the con-
stant coefficient recurrence which was analyzed by many authors; see [34] and the
references therein, and see also [32] and [5, (4.29)].

Remark 4.4. In [12] we show that the free bi-Poisson process is associated with the
generalized free convolution studied in [8]. It is interesting to ask if an analogous
situation occurs for the general free harnesses of Proposition 4.3; for recent exten-
sions of generalized free convolutions to perturbations of higher-order terms, see
[26].

4.2. Classical quadratic harnesses. The classical quadratic harnesses have pa-
rameter q = 1−2

√
στ . The adjective “classical” is motivated by the fact that when

στ = 0, quadratic harnesses with q = 1 are related to classical stochastic processes;
see [14, Section 4.2].

Proposition 4.4 (Classical quadratic harnesses). Suppose (Xt) is a quadratic har-
ness with parameters such that (1 − στ )2 + (η + θσ)(θ + ητ) > 0, 0 ≤ στ < 1, and
q = 1 − 2

√
στ . If for t > 0, the random variable Xt has all moments and infi-

nite support, then it has orthogonal martingale polynomials given by the three step
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recurrences ( 4.11), ( 4.12), and

xpn(x; t) = (1 + (n − 1)ρ + nσt) pn+1(x; t) + (γnt + δn) pn(x; t)

+ ω◦
n ((1 + (n − 2)ρ)t + τ (n − 1)) pn−1(x; t), n ≥ 2,

(4.16)

where ρ =
√

στ ,

γn =
n(1 + (n − 2)ρ)

(1 − ρ)2(1 + (2n − 1)ρ)(1 + (2n − 3)ρ)
×
(
η + (2n − 1)θσ

(4.17)

+ (2n − 3)ηρ + 2(n − 1)2ηρ2 + (2(n − 1)2 − 1)θσρ
)
, n ≥ 1,

δn =
n(1 + (n − 2)ρ)

(1 − ρ)2(1 + (2n − 1)ρ)(1 + (2n − 3)ρ)
×
(
θ + (2n − 1)ητ

(4.18)

+ (2n − 3)θρ + 2(n − 1)2θρ2 + (2(n − 1)2 − 1)ητρ
)
, n ≥ 1,

ω◦
n =

n(1 + (n − 3)ρ)
(1 − ρ)2(1 + (2n − 2)ρ)(1 + (2n − 4)ρ)

(4.19)

+
n(n − 1)(1 + (n − 2)ρ)(1 + (n − 3)ρ)

(1 − ρ)4(1 + (2n − 2)ρ)(1 + (2n − 3)ρ)2(1 + (2n − 4)ρ)
×
(
(1 + (n − 2)ρ) θ + (n − 1)ητ

)(
(1 + (n − 2)ρ) η + (n − 1)θσ

)
, n ≥ 2.

Proof. The assumptions of Theorem 4.1 are satisfied, so the orthogonal martingale
polynomials exist, and we only need to solve the recurrences (4.2), (4.3), (4.4), and
renormalize the polynomials to simplify the final three step recurrence (4.16). From
(4.2) we get

αn = (1 − ρ)n−2(n − 1), n ≥ 1,

βn = (1 − ρ)n−2(1 + (n − 2)ρ), n ≥ 2.

Thus λ1,k = βk+1, k ≥ 0, and a calculation gives

λn,k = (1 − ρ)2n+k−3(1 + (2n + k − 3)ρ), n ≥ 2,(4.20)

αn+2βn − βn+2αn = 2(1 − ρ)2n−1, n ≥ 1.

Since q + στ = (1 − ρ)2, equations (4.3) simplify to

γn+1 =
1 + (2n − 1)ρ
1 + (2n + 1)ρ

γn +
2σ

1 + (2n + 1)ρ
δn(4.21)

+
(1 + (2n − 1)ρ + 2n2ρ2)η + (2n + 1 + (2n2 − 1)ρ)θσ

(1 − ρ)2(1 + (2n + 1)ρ)
,

δn+1 =
1 + (2n − 1)ρ
1 + (2n + 1)ρ

δn +
2τ

1 + (2n + 1)ρ
γn(4.22)

+
(1 + (2n − 1)ρ + 2n2ρ2)θ + (2n + 1 + (2n2 − 1)ρ)ητ

(1 − ρ)2(1 + (2n + 1)ρ)
.

Formula (4.10) shows that (4.17) and (4.18) hold true for n = 1. Assuming that
(4.17) and (4.18) hold true for some n ≥ 1, from equations (4.21) and (4.22) a
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computer-assisted calculation shows that the formulas hold true for n + 1 as well.
We now show that the solution of (4.4) is

ωn =
n(1 + (n − 3)ρ)

(1 − ρ)2n−2(1 + (2n − 2)ρ)(1 + (2n − 4)ρ)

(4.23)

+
n(n − 1)(1 + (n − 2)ρ)(1 + (n − 3)ρ)

(1 − ρ)2n(1 + (2n − 2)ρ)(1 + (2n − 3)ρ)2(1 + (2n − 4)ρ)
×
(
(1 + (n − 2)ρ) θ + (n − 1)ητ

)(
(1 + (n − 2)ρ) η + (n − 1)θσ

)
, n ≥ 1.

Indeed, a calculation shows that the formula holds true for n = 1, 2. Suppose (4.23)
holds for some n ≥ 2. For k = 1, formula (4.20) holds also for n = 1; thus for n ≥ 2,
recurrence (4.4) simplifies to

ωn+1 =
1 + (2n − 4)ρ

(1 − ρ)2(1 + 2nρ)
ωn +

1 + τγ2
n + σδ2

n + θγn + ηδn − 2ρδnγn

(1 − ρ)2n(1 + 2nρ)
.

Using (4.21), (4.22) and (4.23), a computer assisted calculation verifies that (4.23)
holds true for n + 1. Renormalizing the n-th polynomial in (2.19) by the factor
(1 − ρ)(n−2)(n−1)/2, n ≥ 1, we get (4.16) with ωn replaced by ω◦

n. �

4.3. Orthogonal martingale polynomials when στ = 0. We use the standard
q-notation

[n]q = 1 + q + · · · + qn−1,

[n]q! = [1]q[2]q . . . [n]q ,

with the usual conventions [0]q = 0, [0]q! = 1. In this notation, Remark 4.1 gives
αn = [n−1]q, and βn = 1. Passing to the time-inverse (tX1/t) if necessary, without
loss of generality we may assume that σ = 0. In this case, recurrences in Theorem
4.1 have explicit solutions and orthogonal martingale polynomials are monic.

Theorem 4.5. Suppose (Xt) is a quadratic harness with covariance ( 2.6) and
parameters such that σ = 0, −1 < q ≤ 1, and 1 + [n]qηθ + [n]2qτη2 > 0 for all
n. If for each t > 0 the random variable Xt has infinite support, then the monic
orthogonal martingale polynomials pn(x; t) are given by the recurrence

xpn(x; t) = pn+1(x; t) + (ηt + θ + ([n]q + [n − 1]q)ητ) [n]qpn(x; t)

+ (t + τ [n − 1]q)
(
1 + [n − 1]qηθ + [n − 1]2qτη2

)
[n]qpn−1(x; t), n ≥ 1,

(4.24)

with the initial condition p0 = 1, p1(x) = x.

Remark 4.5. It is easy to give simple sufficient conditions on the parameters which
imply that ωn := 1 + [n − 1]qηθ + [n − 1]2qτη2 > 0 for all n ≥ 1. Suppose that
−1 < q ≤ 1.

(1) If ηθ ≥ 0, then, trivially, ωn > 0.
(2) If τ = 0, then ωn > 0 provided 1 + ηθ > max{q, 0}. Indeed, for n ≥ 2 we

have

1 + q ≤ [n]q ≤ 1 if −1 < q < 0,(4.25)
1 ≤ [n]q < 1/(1 − q) if 0 ≤ q < 1.(4.26)

For ηθ < 0 we get ωn > 0 from the right hand sides of these equations.
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(3) If −1 < q < 1 and θ2 < 4τ , then ωn > 0. Indeed, then the quadratic
function f(x) = 1 + xηθ + x2τη2 is non-negative.

(4) If τ > 0, ηθ < 0, 1+ηθ+τη2 > 0, and θ2 ≥ 4τ , then the sufficient condition
is

(4.27) 1 + min{q, 0} >
|θ| +

√
θ2 − 4τ

2τ |η| .

Indeed, inequality 1 + ηθ + τη2 > 0 implies ω2 > 0. Considering separately
the cases θ < 0 and θ > 0, the larger root of 1 + xηθ + x2τη2 = 0 is
|θ|+

√
θ2−4τ

2τ |η| . If (4.27) holds, then the left hand sides of inequalities (4.25),
(4.26) imply ωn > 0 for n ≥ 3.

It might be interesting to point out the explicit recurrence for the case τ = 0.

Corollary 4.6. Suppose (Xt) is a quadratic harness with covariance ( 2.6) and
parameters such that τ = 0, −1 < q < 1, and 1 + [n]qηθ + [n]2qσθ2 > 0 for all n.
Suppose that for t > 0 the random variable Xt has infinite support. Then as the
orthogonal martingale polynomials for (Xt) we can take polynomials pn(x; t) given
by the recurrence

xpn(x; t) = (1 + tσ[n]q)pn+1(x; t) + (θ + tη + ([n]q + [n − 1]q)θσt)[n]qpn(x; t)

+t(1 + [n − 1]qηθ + [n − 1]2qσθ2)[n]qpn−1(x; t).

Proof of Theorem 4.5. We use the notation from (2.20). The integrability assump-
tion of Theorem 4.1 is fulfilled by Theorem 2.5 and the system of recurrences in
Theorem 4.1 simplifies. Since αn = [n−1]q, βn = 1, the first equation of recurrence
(4.3) becomes

γn+1 = η + γnq,

which gives

(4.28) γn = η[n]q.

The other recurrences are solved inductively. Suppose that

δn−1 = (θ + ητ([n − 1]q + [n − 2]q))[n − 1]q ,(4.29)

ωn = (1 + [n − 1]qηθ + [n − 1]2qτη2)[n]q(4.30)

hold. The initial conditions say that both formulas are satisfied for n = 1, and the
second one holds true also for n = 2. We use (4.28) and (4.29) to compute δn from
the second equation in (4.3) as follows:

δn = θ + qδn−1 + q([n]q − [n − 2]q)τγn−1 + ητ [n − 1]q + ητ [n]q = θ(1 + q[n − 1]q)

+ητ(q([n − 1]q + [n − 2]q)[n − 1]q + q([n]q − [n − 2]q)[n − 1]q + [n − 1]q + [n]q)

= θ[n]q + ητ(q([n − 1]q + [n]q)[n − 1]q + [n − 1]q + [n]q)

= θ[n]q + ητ([n − 1]q + [n]q)(1 + q[n − 1]q) = θ[n]q + ητ([n − 1]q + [n]q)[n]q.

Finally, (4.4) determines ωn+1 as

ωn+1 = qωn + γ2
nτ + qγnδn + γnθ + δnη + 1 − γnδn.
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Using the inductive assumption (4.30), and already established formulas (4.28) and
(4.29), we get

ωn+1 = (1 + q[n]q) + (1 + q[n − 1]q)[n]qηθ + q[n − 1]2q [n]qτη2 + τη2[n]2q
+η(1 + q[n]q)δn − η[n]qδn = [n + 1]q + [n]2qηθ + q[n − 1]2q[n]qτη2 + τη2[n]2q + ηqnδn

= [n + 1]q + [n + 1]q[n]qηθ + τη2(q[n − 1]q[n]q([n − 1]q + qn−1) + [n]2q + qn[n]2q).

The coefficient at τη2 simplifies to

q[n − 1]q[n]2q + [n]2q + qn[n]2q = [n + 1]q[n]2q .

Thus ωn+1 = (1+ [n]qηθ +[n]2qτη2)[n+1]q. Formula (4.24) comes from (2.19) after
substituting (4.28)–(4.30) into (2.20). �

4.4. Operator solutions. In this section we re-derive the recurrences for some
special orthogonal martingale polynomials from Section 4.3 by an operator ap-
proach which is related to Lie algebra techniques. This method has a more ad hoc
character, so we concentrate on two relatively simple cases only.

In the operator approach, we go back directly to Theorem 2.3. We re-interpret
the matrices x, y as the linear operators acting on the formal power series in an
auxiliary variable z. This identifies the martingale polynomial pn(x; t) with zn,
where z is an auxiliary variable; a similar technique appeared in umbral calculus [33,
Ch. 1], in orthogonal polynomials [24], and in the Segal-Bargmann representation
[31]. We seek the solutions of (1.1) in terms of the q-differentiation operator

Dq(g)(z) =

{
g(z)−g(qz)

(1−q)z q �= 1,

g′(z) q = 1,

and the multiplication operator

Z(g)(z) = zg(z),

treated as the linear operators on formal series g(z) in the variable z. Table 1
lists the q-commutators of the combinations of these two operators that we need
here and in Section 4.5. The requirement on the 0-th column of Ct reduces to the
requirement that on the unit constant function, x1 = 0, y1 = z. When σ = 0, we
have an(t) = 1, so we are looking for the operators that satisfy

(4.31) (tx + y)zn = zn+1 + lower order terms.

Table 1. q-commutators [A, B]q := AB − qBA

A\B Z ZDq ZD2
q Z2Dq

Dq I Dq D2
q (1+q)ZDq − q(1−q)Z2D2

q

ZDq Z (1 − q)ZDq1 +q(1−q)Z2D2
q Z2Dq

ZD2
q (1+q)ZDq − q(1−q)Z2D2

q ZD2
q

Z2Dq Z2
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Example 4.7 (q-Meixner processes). The q-Meixner process is a quadratic harness
with parameters σ = η = 0; see [14]. Inspecting Table 1 we verify that

x = Dq

and

y = Z(1 + θDq + τD2
q)

solve (1.1) when σ = η = 0. Indeed,

[x, y]q = [Dq, Z]q + θ[Dq, ZDq]q + τ [Dq, ZD2
q ]q = I + θDq + τD2

q.

A calculation shows now that

(tx + y)zn = zn+1 + θ[n]qzn + (t + τ [n − 1]q)[n]qzn−1,

which by the identification of zn with pn(x; t) implies that the corresponding mar-
tingale polynomials satisfy the three step recurrence

(4.32) xpn(x; t) = pn+1(x; t) + θ[n]qpn(x; t) + (t + τ [n− 1]q)[n]qpn−1(x; t), n ≥ 1.

Of course, this is a special case of (4.24) corresponding to η = 0. Feinsilver [20, Sec-
tion 3.4] gives a reparametrization of recurrence (4.32) and considers q-commutator
relations [x, y]q = h as well as their realizations via operators Dq, Z without consid-
ering (1.1). Anshelevich [2, Remark 6] discusses a reparametrization of recurrence
(4.32) in relation to free Sheffer systems. In [14] recurrence (4.32) is used as the
first step in the construction of the q-Meixner Markov processes.

We now use the same method to derive the recurrence for the martingale poly-
nomials of the bi-Poisson process.

Example 4.8 (bi-Poisson process). The bi-Poisson process is a quadratic harness
with parameters σ = τ = 0. Inspecting Table 1 we verify that

x = Dq + ηZ(Dq + θD2
q)

and

y = Z(1 + θDq)

solve (1.1) when σ = τ = 0. Indeed,

[x, y]q = [Dq, Z]q + θ[Dq, ZDq]q + η[ZDq, Z]q + ηθ[ZDq, ZDq]q
+ ηθ[ZD2

q , Z]q + ηθ2[ZD2
q , ZDq]q

= I + θDq + ηZ + ηθ(1 − q)ZDq + ηθq(1 − q)Z2D2
q

+ ηθ(1 + q)ZDq − ηθq(1 − q)Z2D2
q + ηθ2ZD2

q

= I + θDq + ηZ + ηθZDq + ηθZDq + ηθ2ZD2
q

= I + (θDq + ηθZDq + ηθ2ZD2
q) + (ηZ + ηθZDq)

= I + θx + ηy.

Operator tx + y satisfies the constraint (tx + y)1 = z. A calculation shows that

(tx + y)zn = zn+1 + (θ + tη)[n]qzn + t(1 + ηθ[n − 1]q)[n]qzn−1,
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so the constraint (4.31) holds. By the identification of zn with pn(x; t), the corre-
sponding martingale polynomials satisfy the three step recurrence

(4.33) xpn(x; t) = pn+1(x; t)+(θ+ tη)[n]qpn(x; t)+ t(1+ηθ[n−1]q)[n]qpn−1(x; t),

n ≥ 0, with p−1 = 0, p0 = 1. Of course, this is a special case of (4.24) corresponding
to τ = 0. But this recurrence was hard to guess without (1.1), so in [12] it appears
for q = 0 only.

4.5. Dual q-commutation equation. Coherent states. Coherent states and
the Segal-Bargmann representation are analytical techniques developed in mathe-
matical physics [31]. The full Segal-Bargmann isomorphism is known to fail even
in the relatively simple case of q-Brownian motion with q < 0; compare [37]. But
algebraic duality is available and useful in a more general setting. Let

(4.34) Q∗
t,s,u(x, y) = At,s,ux2 + Bt,s,uyx + Ct,s,uy2 + Dt,s,ux + Et,s,uy + Ft,s,u

be the quadratic form in the non-commuting variables x, y; for background, see e.g.
[25, page 7]. Note that this is a dual of the quadratic form (3.12) that appears in
the proof of Theorem 2.3. The following relates (4.34) to the dual version of the
q-commutation equation (1.1).

Proposition 4.9. Let Xt be a linear function Xt = x + ty of non-commutative
variables x, y, and suppose that the coefficients of the quadratic form Q∗

t,s,u are
given by ( 2.15) and ( 3.6)–( 3.10). Then the following statements are equivalent.

(1) The operator identity

(4.35) X2
t = Q∗

t,s,u(Xs, Xu)

holds for all s < t < u.
(2) The non-commutative variables x, y satisfy the equation

(4.36) [x, y]q = σx2 + τy2 + ηx + θy + I.

Proof. Since XuXs = x2 + suy2 + s(xy + yx) + (u − s)yx, we have

X2
t − Q∗

t,s,u(Xs, Xu)

= (1 − At,s,u − Bt,s,u − Ct,s,u)x2 + (t2 − s2At,s,u − suBt,s,u − u2Ct,s,u)y2

+ (t − sAt,s,u − sBt,s,u − uCt,s,u)(xy + yx) − (u − s)Bt,s,uyx

− (Dt,s,u + Et,s,u)x − (sDt,s,u + uEt,s,u)y − Ft,s,uI.

Relations (2.13), (3.4), and (3.5) are equivalent to

X2
t − Q∗

t,s,u(Xs, Xu) = −σFt,s,ux2 − τFt,s,uy2

+Ft,s,u(xy + yx) − (1 + q)Ft,s,uyx − ηFt,s,ux − θFt,s,uy − Ft,s,uI

= Ft,s,u([x, y]q − σx2 − τy2 − ηx − θy − I).

�

4.5.1. Coherent states of q-Meixner process. Continuing Example 4.7, the analogue
of the coherent state in physics is the generating function

(4.37) ϕt(z, x) =
∞∑

n=0

zn

[n]q!
pn(x; t),

where pn(x; t) are the orthogonal martingale polynomials given by recurrence (4.32).
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Proposition 4.10. The operator

(4.38) Xt = (I + θZ + τZ 2)Dq + tZ

satisfies ( 4.35) with the quadratic form Q∗
t,s,u given by ( 2.15), ( 3.6)–( 3.10) where

σ = η = 0. Moreover,

(4.39) xϕt(z, x) = (Xtϕt)(z, x).

Proof. Inspecting Table 1 it is easy to verify that x = (I + θZ + τZ2)Dq and y = Z
satisfy (4.36) with σ = η = 0. Indeed,

[x, y]q = [Dq, Z]q + θ[ZDq, Z]q + τ [Z2Dq, Z]q
= I + θZ + τZ2 = I + θy + τy2.

Therefore, Proposition 4.9 implies (4.35). The algebraic identity (4.39) follows from
recurrence (4.32) by the following calculation:

xϕt(z, x) =
∞∑

n=0

zn

[n]q!
xpn(x; t)

=
∞∑

n=0

zn

[n]q!
(pn+1(x; t) + θ[n]pn(x; t) + τ [n][n − 1]pn−1(x; t) + t[n]pn−1(x; t))

= Dq

∞∑
n=0

zn+1

[n + 1]q!
pn+1(x; t) + θzDq

∞∑
n=0

zn

[n]q!
pn(x; t)

+τz2Dq

∞∑
n=1

zn−1

[n − 1]q!
pn−1(x; t) + tz

∞∑
n=1

zn−1

[n − 1]q!
pn−1(x; t)

= (Dq + θZDq + τZ2Dq + tZ)ϕt(z, x).

�

Formula (4.39) is implicit in the usual derivation of the product formula for
ϕt(z, x); compare [1]. When the parameters τ, θ vanish, it appears in [37, Section
3] in the context of analyzing ground states for the q-deformed Gauss distribution.
Ref. [3] gives a more general analytical scheme which coincides with (4.38) and
(4.39) when τ = 0, q = 1; however, it advocates the normalization by the L2-norm
of the polynomials, which does not fit all the cases we are interested in.

In [14] we defined the q-Meixner process as a Markov process with the initial
state X0 = 0 and with the transition probabilities Ps,t(x, dy) determined as the
unique probability measure orthogonalizing the polynomials Qn in the variable y
which are given by the three step recurrence

yQn(y|x) = Qn+1(y|x, t, s) + (θ[n]q + xqn)Qn(y|x, t, s)

+ (t − sqn−1 + τ [n − 1]q)[n]qQn−1(y|x, t, s).
(4.40)

In that paper, we showed that this Markov process is well defined, that it has orthog-
onal martingale polynomials pn(x; t) given by recurrence (4.32), and we used this
to prove that (Xt) is a quadratic harness with parameters σ = η = 0. Proposition
4.10 simplifies the verification of the quadratic harness condition in [14, Proposition
3.4], condensing more than three pages of proof into one page.
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Proposition 4.11 ([14]). If |q| ≤ 1 and the polynomials pn(x; t) defined by ( 4.32)
are orthogonal martingale polynomials for a Markov process (Xt), then (Xt) is a
quadratic harness with parameters σ = η = 0.

Proof. For simplicity, we consider only |q| < 1, as in this case (4.32) implies that
|Xt| ≤ Ct has bounded support. Consider the generating function (4.37). Since
(Xt) is Markov, condition (2.3) is equivalent to

E (ϕs(z1, Xs)Xtϕu(z, Xu))

= at,s,uE (ϕs(z1, Xs)Xsϕs(z, Xs)) + bt,s,uE (ϕs(z1, Xs)Xuϕu(z, Xu))
(4.41)

holding for all z1, z in a neighborhood of 0 (or just as an identity in formal power
series in the variables z1, z). We now use the martingale polynomial property, which
implies that

(4.42) E [ϕt(z, Xt)|Xs] = ϕs(z, Xs),

and we use (4.39) to represent the process through the operator (4.38) as

Xtϕt(z, Xt) = Xt(ϕt(z, Xt)).

This gives

E (ϕs(z1, Xs)Xtϕu(z, Xu)) = E (ϕs(z1, Xs)Xtϕt(z, Xt))

= XtE (ϕs(z1, Xs)ϕs(z, Xs)) = XtGs(z1, z),

where

Gs(z1, z) = E(ϕs(z1, Xs)ϕs(z, Xs)) =
∞∑

n=0

(z1z)n

[n]q!2
E(pn(Xs; s)2)

=
∞∑

n=0

(z1z)n

[n]q!

n∏
k=1

(t + τ [k − 1]),

and Xt acts on Gs(z1, z) as a series in the variable z. Therefore, equation (4.41) is
equivalent to

XtGs(z1, z) = at,s,uXsGs(z1, z) + bt,s,uXuGs(z1, z)

and follows from the (trivial) operator identity Xt = at,s,uXs + bt,s,uXu. Similarly,
condition (2.11) is equivalent to

E
(
ϕs(z1, Xs)X2

t ϕu(z, Xu)
)

= At,s,uE
(
ϕs(z1, Xs)X2

s ϕs(z, Xs)
)

+ Bt,s,uE (ϕs(z1, Xs)XsXuϕu(z, Xu)) + Ct,s,uE
(
ϕs(z1, Xs)X2

uϕu(z, Xu)
)

+ Dt,s,uE (ϕs(z1, Xs)Xsϕs(z, Xs)) + Et,s,uE (ϕs(z1, Xs)Xuϕu(z, Xu))

+ Ft,s,uE (ϕs(z1, Xs)ϕs(z, Xs)) .

(4.43)

Notice that for s ≤ u we have

E (ϕs(z1, Xs)XsXuϕu(z, Xu)) = E (ϕs(z1, Xs)XsXuϕu(z, Xu))

= XuE (ϕs(z1, Xs)Xsϕs(z, Xs)) = XuXsE (ϕs(z1, Xs)ϕs(z, Xs)) = XuXsGs(z1, z).

Therefore, equation (4.43) follows from the operator identity (4.35), which in ex-
panded form says

X2
t = At,s,uX2

s + Bt,s,uXuXs + Ct,s,uX2
u + Dt,s,uXs + Et,s,uXu + Ft,s,uI,

applied to Gs(z1, z) treated as a series in the variable z. �
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4.5.2. Coherent states of the bi-Poisson process. We now repeat the methods of
Section 4.5.1 to derive new results about the bi-Poisson process from Example 4.8.

Proposition 4.12. The operator

(4.44) Xt = (I + (θ + ηt)Z + tηθZ 2)Dq + tZ

satisfies ( 4.35) for the quadratic form Q∗
t,s,u with the coefficients ( 2.15), ( 3.6)–

( 3.10) such that σ = τ = 0. Moreover, if ϕt(z, x) is the generating function ( 4.37)
of the orthogonal martingale polynomials pn(x; t) given by recurrence ( 4.33), then

(4.45) xϕt(z, x) = (Xtϕt)(z, x).

Proof. Inspecting Table 1, we verify that

x = (I + θZ)Dq

and
y = Z + η(Z + θZ2)Dq

solve (4.36) with σ = τ = 0. Indeed,

[x, y]q = [Dq, Z]q + θ[ZDq, Z]q + η[Dq, ZDq]q + ηθ[ZDq, ZDq]q + ηθ[Dq, Z
2Dq]q

+ ηθ2[ZDq, Z
2Dq]q = I + θZ + ηDq + ηθ((1 − q)ZDq + q(1 − q)Z2D2

q)

+ ηθ((1 + q)ZDq − q(1 − q)Z2D2
q) + ηθ2Z2Dq = I + θZ + ηDq + ηθZDq

+ ηθZDq + ηθ2Z2Dq = I + η(I + θZ)Dq + θ(Z + η(ZθZ2)Dq) = I + ηx + θy.

Therefore, Proposition 4.9 implies (4.35). We now derive (4.45) from (4.33) by the
following calculation:

xϕt(z, x) =
∞∑

n=0

zn

[n]q!
xpn(x; t)

=
∞∑

n=0

zn

[n]q!
(pn+1(x; t) + (θ + tη)[n]qpn(x; t) + t(1 + ηθ[n − 1]q)[n]qpn−1(x; t))

= Dq

∞∑
n=0

zn+1

[n + 1]q!
pn+1(x; t) + (θ + tη)zDq

∞∑
n=0

zn

[n]q!
pn(x; t)

+tz

∞∑
n=1

zn−1

[n − 1]q!
pn−1(x; t) + tηθz2Dq

∞∑
n=1

zn−1

[n − 1]q!
pn−1(x; t)

=
(
(I + (θ + ηt)Z + tηθZ2)Dq + tZ

)
ϕt(z, x).

�

Next we give the bi-Poisson version of Proposition 4.11.

Proposition 4.13. Fix −1 ≤ q ≤ 1. If polynomials pn(x; t) given by ( 4.33) are
orthogonal martingale polynomials for a Markov process (Xt), then (Xt) is a bi-
Poisson process, i.e., ( 2.3) and ( 2.14) hold with σ = τ = 0, and 1+ηθ ≥ max{q, 0}.
Moreover, such a Markov process (Xt) is determined uniquely.

Proof. Property (2.6) follows from the explicit form of the polynomials p0, p1, p2.
Orthogonality gives E(Xt) = E(p1(Xt; t)p0(Xt; t)) = 0 and E(X2

t ) = E((p2(Xt; t) +
(θ + ηt)Xt + t)p0(Xt)) = t. The martingale polynomial property then implies that
E(XsXt) = E(XsE [p1(Xt; t)| F≤s]) = E(X2

s ) = s.
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If −1 ≤ q < 1, from (4.33) it follows that |Xt| ≤ Ct has bounded support; if
q = 1, then it is not hard to identify the distribution of |Xt| for example, from
[35, Chapter 4] or [15, pages 175–181], verifying that |Xt| has a finite exponential
moment. Thus the moment problem has a unique solution and the process (Xt)
is determined uniquely. Moreover, polynomials are dense in L2(Xs, Xu); see [18,
Theorem 3.1.18]. Consider the generating function (4.37) with polynomials pn(x; t)
satisfying (4.33). Notice that property (4.42) follows again from the martingale
polynomial condition. By Proposition 4.12 with Xt defined by (4.44) we have the
representation

Xtϕt(z, Xt) = Xt(ϕt(z, Xt)).

Since (Xt) is Markov and polynomials are dense in L2(Xs, Xu), condition (2.3)
is again equivalent to (4.41), which we can interpret as the identity between the
formal power series in the variables z1, z. The latter follows again from the (trivial)
operator identity Xt = at,s,uXs + bt,s,uXu, applied to

Gs(z1, z) = E(ϕs(z1, Xs)ϕs(z, Xs)) =
∞∑

n=0

(z1z)n

[n]q!2
E(pn(Xs; s)2),

treated as the formal power series in the variable z. Similarly, condition (2.11) is
equivalent to (4.43), and again

E (ϕs(z1, Xs)XsXuϕu(z, Xu)) = XuXsGs(z1, z).

Therefore, equation (4.43) follows from the operator identity (4.35) applied to
Gs(z1, z) treated as the formal power series in the variable z. Since the third
coefficient in (4.33) is nonnegative for all n, we get 1 + ηθ ≥ max{q, 0}; compare
Remark 4.5. �

Appendix A. Proofs of claims and lemmas

Throughout the proofs of the next three Claims, 0 < r < s < t < u are arbitrary
numbers.

Proof of Claim 3.1. Observe that from (2.3) and (2.11) we get

E [XsXt| Fr,u] = E [XsE [Xt| Fs,u]| Fr,u]

= at,s,uE
[
X2

s

∣∣Fr,u

]
+ bt,s,uXuE [Xs| Fr,u]

= at,s,u

(
As,r,uX2

r + Bs,r,uXrXu + Cs,r,uX2
u + Ds,r,uXr + Es,r,uXu + Fs,r,u

)
+bt,s,uXu (as,r,uXr + bs,r,uXu) = at,s,uAs,r,uX2

r + (at,s,uBs,r,u + bt,s,uas,r,u)XrXu

+ (at,s,uCs,r,u + bt,s,ubs,r,u)X2
u + at,s,uDs,r,uXr + at,s,uEs,r,uXu + at,s,uFs,r,u .

On the other hand,

E [XsXt| Fr,u] = E [E [Xs| Fr,t] Xt| Fr,u] = as,r,tXrE [Xt| Fr,u] + bs,r,tE
[
X2

t

∣∣Fr,u

]
= as,r,tXr (at,r,uXr + bt,r,uXu)

+bs,r,t

(
At,r,uX2

r + Bt,r,uXrXu + Ct,r,uX2
u +Dt,r,uXr + Et,r,uXu + Ft,r,u)

= (as,r,tat,r,u + bs,r,tAt,r,u)X2
r + (as,r,tbt,r,u + bs,r,tBt,r,u)XrXu

+bs,r,tCt,r,uX2
u + bs,r,tDt,r,uXr + bs,r,tEt,r,uXu + bs,r,tFt,r,u .
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Comparing the coefficients at X2
r , XrXu, X2

u, Xr, Xu and 1 in the above expressions
we get

at,s,uAs,r,u = bs,r,tAt,r,u + as,r,tat,r,u ,(A.1)
at,s,uBs,r,u = bs,r,tBt,r,u ,(A.2)

bt,s,ubs,r,u + at,s,uCs,r,u = bs,r,tCt,r,u ,(A.3)
at,s,uDs,r,u = bs,r,tDt,r,u ,(A.4)
at,s,uEs,r,u = bs,r,tEt,r,u ,(A.5)
at,s,uFs,r,u = bs,r,tFt,r,u .(A.6)

( In the derivation of (A.2) we used the fact that bt,s,uas,r,u = as,r,tbt,r,u.) Adding
(A.1), (A.2) and (A.3), we get

at,s,u (As,r,u + Bs,r,u + Cs,r,u − 1) + at,s,u + bt,s,ubs,r,u

= bs,r,t (At,r,u + Bt,r,u + Ct,r,u − 1) + bs,r,t + as,r,tat,r,u.

Since a calculation shows that

(A.7) at,s,u + bt,s,ubs,r,u = bs,r,t + as,r,tat,r,u,

dividing by (A.6), we get σs,r,u = σt,r,u, which proves (3.1) when f = σ. We proceed
similarly when f = τ, q, η, θ. Adding (A.1) multiplied by r2, (A.2) multiplied by ru,
(A.3) multiplied by u2, and dividing by (A.6), we obtain τs,r,u = τt,r,u, after noticing
that s2at,s,u + u2bt,s,ubs,r,u = t2bs,r,t + r2as,r,tat,r,u. Equation (A.2) multiplied by
(u − r) and divided by (A.6) gives qs,r,u = qt,r,u. Adding equations (A.4) and
(A.5) and dividing by (A.6) gives ηs,r,u = ηt,r,u and similarly multiplying (A.4)
by r and (A.5) by u after dividing by (A.6) gives θs,r,u = θt,r,u. Thus we have
obtained fs,r,u = ft,r,u for f = σ, τ, q, η, θ. If 0 < x < y < z, then substitution
r = x, s = y, u = z yields (3.1) for ỹ ∈ (y, z); substitution r = x, t = y, u = z gives
(3.1) for ỹ ∈ (x, y), completing the proof of Claim (3.1). �

Proof of Claim 3.2. Now consider the identity

E
[
X2

t

∣∣Fr,u

]
= E

[
E
[
X2

t

∣∣Fs,u

]∣∣Fr,u

]
.

Using (2.3) and (2.11) we see that E
[
E
[
X2

t

∣∣Fs,u

]∣∣Fr,u

]
is given by

E
[
At,s,uX2

s + Bt,s,uXsXu + Ct,s,uX2
u + Dt,s,uXs + Et,s,uXu + Ft,s,u

∣∣Fr,u

]
= At,s,uE

[
X2

s

∣∣Fr,u

]
+ Bt,s,uXuE [Xs| Fr,u] + Ct,s,uX2

u + Dt,s,uE [Xs| Fr,u]

+Et,s,uXu + Ft,s,u = At,s,u

(
As,r,uX2

r + Bs,r,uXrXu + Cs,r,uX2
u + Ds,r,uXr

+Es,r,uXu + Fs,r,u

)
+ Bt,s,uXu (as,r,uXr + bs,r,uXu) + Ct,s,uX2

u

+Dt,s,u (as,r,uXr + bs,r,uXu) + Et,s,uXu + Ft,s,u = At,s,uAs,r,uX2
r

+ (At,s,uBs,r,u + Bt,s,uas,r,u)XrXu + (At,s,uCs,r,u + Bt,s,ubs,r,u + Ct,s,u)X2
u

+ (At,s,uDs,r,u + Dt,s,uas,r,u) Xr + (At,s,uEs,r,u + Dt,s,ubs,r,u + Et,s,u)Xu

+At,s,uFs,r,u + Ft,s,u.

On the other hand,

E
[
X2

t

∣∣Fr,u

]
= At,r,uX2

r + Bt,r,uXrXu + Ct,r,uX2
u + Ct,r,uXr + Dt,r,uXu + Ft,r,u.
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Comparing the coefficients at X2
r , XrXu, X2

u, Xr, Xu and 1, we obtain

At,r,u = At,s,uAs,r,u ,(A.8)
Bt,r,u = At,s,uBs,r,u + Bt,s,uas,r,u ,(A.9)
Ct,r,u = At,s,uCs,r,u + Bt,s,ubs,r,u + Ct,s,u ,(A.10)
Dt,r,u = At,s,uDs,r,u + Dt,s,uas,r,u ,(A.11)
Et,r,u = At,s,uEs,r,u + Dt,s,ubs,r,u + Et,s,u ,(A.12)
Ft,r,u = At,s,uFs,r,u + Ft,s,u .(A.13)

Substituting the right-hand sides of equation (A.8)–(A.13) for At,r,u, Bt,r,u, . . . ,
Ft,r,u on the right-hand sides of (A.1)–(A.6) we get

As,r,u(at,s,u − bs,r,tAt,s,u) = as,r,tat,r,u ,(A.14)

Bs,r,u(at,s,u − bs,r,tAt,s,u) = bs,r,tBt,s,uas,r,u ,(A.15)

Cs,r,u(at,s,u − bs,r,tAt,s,u) = bs,r,t(Bt,s,ubs,r,u + Ct,s,u) − bt,s,ubs,r,u ,(A.16)

Ds,r,u(at,s,u − bs,r,tAt,s,u) = bs,r,tDt,s,uas,r,u ,(A.17)

Es,r,u(at,s,u − bs,r,tAt,s,u) = bs,r,t(Dt,s,ubs,r,u + Et,s,u) ,(A.18)

Fs,r,u(at,s,u − bs,r,tAt,s,u) = bs,r,tFt,s,u .(A.19)

We can now proceed analogously to the proof of Claim 3.1. Namely, adding (A.14),
(A.15), (A.16), again taking into account (A.7), and dividing by (A.19), we get
σs,r,u = σt,s,u. Adding (A.14) multiplied by r2, (A.15) multiplied by ru and (A.16)
multiplied by u2, and dividing by (A.19), we obtain τs,r,u = τt,s,u. Equation (A.15)
multiplied by (u − r) and divided by (A.19) gives qs,r,u = qt,s,u. Adding equations
(A.17) and (A.18) and dividing by (A.19) gives ηs,r,u = ηt,s,u and similarly multiply-
ing (A.17) by r and (A.18) by u after dividing by (A.19) gives θs,r,u = θt,s,u. Thus
we have obtained fs,r,u = ft,s,u for f = σ, τ, q, η, θ. By Claim 3.1 fs,r,u = ft,r,u, so
ft,r,u = ft,s,u, ending the proof of Claim 3.2. �

Proof of Claim 3.3. This follows from Claim 3.2 by the time-inversion (Xt) �→
(tX1/t). Alternatively, one can repeat the previous arguments, starting with the
identity

E
[
X2

s

∣∣Fr,u

]
= E

[
E
[
X2

s

∣∣Fr,t

]∣∣Fr,u

]
.

�

Proof of Lemma 3.4. For a polynomial ϕ : R → R, consider the vectors

vs,t = [E(ϕ(Xs)p0(Xt; t)), E(ϕ(Xs)p1(Xt; t)), . . . , E(ϕ(Xs)pk(Xt; t)), . . . ] ∈ R
∞.

Since for s > 0 the random variable Xs has infinite support, then the polynomials
1, Xs, X

2
s , . . . are linearly independent, and the corresponding orthogonal polyno-

mials are non-degenerate. This implies that as we change ϕ for a fixed s > 0, vectors
of the form vs,s are dense in R

∞, equipped with the product topology. Indeed, ap-
plying the Gram-Schmidt orthogonalization process to p0(x; s), p1(x; s), . . . we get
a sequence of orthogonal polynomials q0, q1, . . . such that E(qk(Xs)2) �= 0. There-
fore, for any w = [w0, w1, . . . ] ∈ R

∞ and n ≥ 0, we can find numbers u0, u1, . . . , un

such that the first n + 1 coordinates of vs,s corresponding to ϕ =
∑n

j=0 ujqj are
equal to w0, w1, . . . , wn. This implies that to verify the identities, it suffices to
verify that the identities hold true when multiplied from the left by vs,s.
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By the martingale polynomial property, E(ϕ(Xs)pk(Xs; s)) = E(ϕ(Xs)pk(Xt; t)).
Therefore, from (2.17) it follows that vs,s = vs,t and

vs,s × Ct = vs,t × Ct

=

⎡⎣E

⎛⎝ϕ(Xs)
∑

j

Cj,0(t)pj(Xt; t)

⎞⎠ , E

⎛⎝ϕ(Xs)
∑

j

Cj,1(t)pj(Xt; t)

⎞⎠ , . . .

⎤⎦
= [E(ϕ(Xs)Xtp0(Xt; t)), E(ϕ(Xs)Xtp1(Xt; t)), . . . , E(ϕ(Xs)Xtpk(Xt; t)), . . . ]

= [E(ϕ(Xs)Xtp0(Xu; u)), E(ϕ(Xs)Xtp1(Xu; u)), . . . , E(ϕ(Xs)Xtpk(Xu; u)), . . . ]

= at,s,u [E(ϕ(Xs)Xspk(Xu; u)) : k ≥ 0] + bt,s,u [E(ϕ(Xs)Xupk(Xu; u)) : k ≥ 0] .

Using the martingale polynomial property again, we see that vs,s × Ct is equal to

at,s,u [E(ϕ(Xs)Xspk(Xs; s)) : k ≥ 0] + bt,s,u [E(ϕ(Xs)Xupk(Xu; u)) : k ≥ 0]

= at,s,uvs,s × Cs + bt,s,uvs,u × Cu = vs,s × (at,s,uCs + bt,s,uCu),

proving (3.11). Similar reasoning proves (3.12):

vs,s × C2
t = vs,t × C2

t = [E(ϕ(Xs)Xtpk(Xt; t)) : k ≥ 0] × Ct

=
[
E(ϕ(Xs)X2

t pk(Xt; t)) : k ≥ 0
]

=
[
E(ϕ(Xs)X2

t pk(Xu; u)) : k ≥ 0
]

=
[
E(ϕ(Xs)E

[
X2

t

∣∣Fs,u

]
pk(Xu; u)) : k ≥ 0

]
= [E(ϕ(Xs)Qt,s,u(Xs, Xt)pk(Xu; u)) : k ≥ 0]

= At,s,u

[
E(ϕ(Xs)X2

s pk(Xs; s)) : k ≥ 0
]
+ Bt,s,u [E(ϕ(Xs)XsXupk(Xu; u)) : k ≥ 0]

+ Ct,s,u

[
E(ϕ(Xs)X2

upk(Xu; u)) : k ≥ 0
]
+ Dt,s,u [E(ϕ(Xs)Xspk(Xs; s)) : k ≥ 0]

+ Et,s,u [E(ϕ(Xs)Xupk(Xu; u)) : k ≥ 0] + Ft,s,u [E(ϕ(Xs)pk(Xs; s)) : k ≥ 0]

= At,s,uvs,s × C2
s + Bt,s,u [E(ϕ(Xs)Xspk(Xs; s)) : k ≥ 0] × Cu

+ Ct,s,uvs,s × C2
u + Dt,s,uvs,s × Cs + Et,s,uvs,s × Cu + Ft,s,uvs,s

= vs,s ×
(
At,s,uC2

s+Bt,s,uCsCu+Ct,s,uC2
u + Dt,s,uCs + Et,s,uCu + Ft,s,uI

)
. �

Proof of Lemma 3.5. We start from calculating E [Xtpn−1 (Xu; u)| F≤s] in two
ways. On the one hand,

E [Xtpn−1 (Xu; u)| F≤s] = E [ (at,s,uXs + bt,s,uXu) pn−1 (Xu; u)| F≤s]

= at,s,uXspn−1 (Xs; s) + bt,s,uE [Xupn−1 (Xu; u)| F≤s]

= at,s,u (an−1(s)pn (Xs; s) + bn−1(s)pn−1 (Xs; s) + cn−1pn−2 (Xs; s))

+ bt,s,u (an−1(u)E [pn (Xu; u)| F≤s] + bn−1(u)pn−1 (Xs; s) + cn−1(u)pn−2 (Xs; s)) .

On the other hand,

E [Xtpn−1 (Xu; u)| F≤s]
= E [XtE [pn−1 (Xu; u)| F≤t]| F≤s] = E [Xtpn−1 (Xt; t)| F≤s]
= an−1(t)E [pn (Xt; t)| F≤s] + bn−1(t)pn−1 (Xs; s) + cn−1(t)pn−2 (Xs; s) .
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Thus comparing the right hand sides of the above equations we obtain the following
equation:

bt,s,uan−1(u)E [pn (Xu; u)| F≤s] − an−1(t)E [pn (Xt; t)| F≤s]

= −pn (Xs; s) at,s,uan−1(s) + pn−1 (Xs; s)
(
bn−1(t) − at,s,ubn−1(s) − bt,s,ubn−1(u)

)
+pn−2 (Xs; s)

(
cn−1(t) − at,s,ucn−1(s) − bt,s,ucn−1(u)

)
.

A trivial verification, using (2.20), shows that

bn−1(t) − at,s,ubn−1(s) − bt,s,ubn−1(u) = 0,

cn−1(t) − at,s,ucn−1(s) − bt,s,ucn−1(u) = 0.

Hence we have (3.15). To obtain a second equation for X and Y let us consider
E
[
X2

t pn−2 (Xu; u)
∣∣F≤s

]
. On the one hand,

E
[
X2

t pn−2 (Xu; u)
∣∣F≤s

]
= E

[
X2

t E [pn−2 (Xu; u)| F≤t]
∣∣F≤s

]
= E

[
X2

t pn−2 (Xt; t)
∣∣F≤s

]
.

Setting ak(t) = bk(t) = ck(t) = 0 for k < 0, a repeated application of (2.19) gives

E
[
X2

t pn−2 (Xu; u)
∣∣F≤s

]
= an−2(t)an−1(t) Y

+ pn−1 (Xs; s) an−2(t) [bn−2(t) + bn−1(t)]

+ pn−2 (Xs; s)
[
an−2(t)cn−1(t) + b2

n−2(t) + cn−2(t)an−3(t)
]

+ pn−3 (Xs; s) cn−2(t) [bn−3(t) + bn−2(t)] + pn−4 (Xs; s) cn−3(t)cn−2(t).

(A.20)

On the other hand, one can rewrite E
[
X2

t pn−2 (Xu; u)
∣∣F≤s

]
as

E
[
X2

t pn−2 (Xu; u)
∣∣F≤s

]
= E

[
E
[
X2

t

∣∣Fs,u

]
pn−2 (Xu; u)

∣∣F≤s

]
= At,s,uX2

s pn−2 (Xs; s) + Bt,s,uXsE [Xupn−2 (Xu; u)| F≤s]

+Ct,s,uE
[
X2

upn−2 (Xu; u)
∣∣F≤s

]
+ Dt,s,uXspn−2 (Xs; s)

+Et,s,uE [Xupn−2 (Xu; u)| F≤s] + Ft,s,upn−2 (Xs; s) .

After some algebra one gets

(A.21) E
[
X2

t pn−2 (Xu; u)
∣∣F≤s

]
= X Ct,s,uan−2(u)an−1(u)

+ pn (Xs; s) an−1(s)Rn(t, s, u) + pn−1 (Xs; s)Sn(t, s, u) + pn−2 (Xs; s)Tn(t, s, u)

+ pn−3 (Xs; s)Un(t, s, u) + pn−4 (Xs; s)Vn(t, s, u),
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where

Rn(t, s, u) = At,s,uan−2(s) + Bt,s,uan−2(u),

Sn(t, s, u) = At,s,uan−2(s) [bn−2(s) + bn−1(s)]

+ Bt,s,u [an−2(u)bn−1(s) + an−2(s)bn−2(u)]

+ Ct,s,uan−2(u) [bn−2(u) + bn−1(u)] + Dt,s,ubn−2(s)

+ Et,s,ubn−2(u) + Ft,s,u ,

Tn(t, s, u) = At,s,u

[
an−2(s)cn−1(s) + b2

n−2(s) + cn−2(s)an−3(s)
]

+ Bt,s,u [an−2(u)cn−1(s) + bn−2(u)bn−2(s) + cn−2(u)an−3(s)]

+ Ct,s,u

[
an−2(u)cn−1(u) + b2

n−2(u) + cn−2(u)an−3(u)
]

+ Dt,s,ubn−2(s) + Et,s,ubn−2(u) + Ft,s,u ,

Un(t, s, u) = At,s,ucn−2(s) [bn−3(s) + bn−2(s)]

+ Bt,s,u [bn−2(u)cn−2(s) + cn−2(u)bn−3(s)]

+ Ct,s,ucn−2(u) [bn−3(u) + bn−2(u)] + Dt,s,ucn−2(s) + Et,s,ucn−2(u),

Vn(t, s, u) = At,s,ucn−2(s)cn−3(s) + Bt,s,ucn−2(u)cn−3(s) + Ct,s,ucn−2(u)cn−3(u).

Comparing the right hand side of (A.21) with the right hand side of (A.20) we get
the second equation with unknowns X and Y :

(A.22) Ct,s,uan−2(u)an−1(u) X − an−2(t)an−1(t) Y = −pn (Xs; s)Rn(t, s, u)

+ pn−1 (Xs; s)
(
an−2(t) [bn−2(t) + bn−1(t)] − Sn(t, s, u)

)
+ pn−2 (Xs; s)

(
an−2(t)cn−1(t) + b2

n−2(t) + cn−2(t)an−3(t) − Tn(t, s, u)
)

+ pn−3 (Xs; s)
(
cn−2(t) [bn−3(t) + bn−2(t)] − Un(t, s, u)

)
+ pn−4 (Xs; s)

(
cn−2(t)cn−3(t) − Vn(t, s, u)

)
.

A calculation based on (2.20) and (3.6)–(3.10) gives

an−2(t) [bn−2(t) + bn−1(t)] − Sn(t, s, u)

= − (t − s)(u − t)
u(1 + σs) + τ − qs

[
θσαn−1 + ηβn−1 − βn−1γn−1 + σταn−1 (γn−2 + γn−1)

− σαn−1δn−2 + σβn−1 (δn−2 + δn−1) + q (βn−1γn−2 + σαn−1δn−1)
]
,

an−2(t)cn−1(t) + b2
n−2(t) + cn−2(t)an−3(t) − Tn(t, s, u)

= − (t − s)(u − t)
u(1 + σs) + τ − qs

[
1 + θγn−2 + ηδn−2 − γn−2δn−2 − βn−1εn−1

+ τ
(
γ2

n−2 + σαn−2εn−2 + σαn−1εn−1

)
− σαn−2φn−2

+ q (γn−2δn−2+βn−2εn−2+σαn−1φn−1)+σ
(
δ2
n−2+βn−2φn−2+βn−1φn−1

)]
,

cn−2(t) [bn−3(t) + bn−2(t)] − Un(t, s, u)

= − (t − s)(u − t)
u(1 + σs) + τ − qs

[
θεn−2 + τεn−2 (γn−3 + γn−2) − δn−2εn−2 + ηφn−2

− φn−2γn−3 + σ (δn−3 + δn−2)φn−2 + q (δn−3εn−2 + γn−2φn−2)
]
,
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cn−2(t)cn−3(t) − Vn(t, s, u)

= − (t − s)(u − t)
u(1 + σs) + τ − qs

[
εn−3 (τεn−2 − φn−2) + φn−3 (qεn−2 + σφn−2)

]
.

Therefore, by (2.23)-(2.26) the coefficients at pn−1 (Xs; s) , . . . , pn−4 (Xs; s) on the
right hand side of (A.22) vanish, and (A.22) is equivalent to (3.16). �

Proof of Lemma 3.6. Increasing ε if necessary, without loss of generality we may
assume that ε > 0. Let N(x) = P (|X| ≥ x) + P (|Y | ≥ x), K = 2/ρ. Throughout
the proof, C1, C2 denote positive constants which might differ at each occurrence.
The event {|X| ≥ Kx}, where x > 0 is fixed, can be decomposed into the sum
of two disjoint events {|X| ≥ Kx} ∩ {|Y | ≥ x} and {|X| ≥ Kx} ∩ {|Y | < x}.
Therefore, denoting

P1(x) = Pr(|X| ≥ x, |Y | ≥ x),
P2(x) = Pr(|X| ≥ Kx, |Y | < x),
P3(x) = Pr(|Y | ≥ Kx, |X| < x),

we get Pr(|X| ≥ Kx) ≤ P1(x)+P2(x), and hence by symmetry of the assumptions,

(A.23) N(Kx) ≤ 2P1(x) + P2(x) + P3(x).

To estimate P1(x), we observe the following.

Claim A.1. If |X| ≥ x, |Y | ≥ x, and 0 < a < 1, then either

(X − ρY )2 ≥ a(1 − ρ)2Y 2 + (1 − ρ)2(1 − a)x2,

or

(Y − ρX)2 ≥ a(1 − ρ)2X2 + (1 − ρ)2(1 − a)x2.

Indeed, suppose that both inequalities fail; i.e., on the set {|X| ≥ x, |Y | ≥ x} we
have (X − ρY )2 < a(1− ρ)2X2 + (1− ρ)2(1− a)x2 and (Y − ρX)2 < a(1− ρ)2Y 2 +
(1 − ρ)2(1 − a)x2. Adding the inequalities we obtain

(1 + ρ2)(X2 + Y 2) − 4ρXY < a(1 − ρ)2(X2 + Y 2) + 2(1 − ρ)2(1 − a)x2.

Since 4ρXY ≤ 2ρ(X2 + Y 2), this gives

(1 − ρ)2(1 − a)(X2 + Y 2) < 2(1 − ρ)2(1 − a)x2.

However, since |X| ≥ x, |Y | ≥ x, we have

(1 − ρ)2(1 − a)(X2 + Y 2) ≥ 2x2(1 − ρ)2(1 − a),

a contradiction.
Claim A.1 with a = 1/2 implies that

P1(x) ≤ Pr(|X − ρY | ≥ (1 − ρ)
√

Y 2 + x2/
√

2, |Y | ≥ x)

+ Pr(|Y − ρX| ≥ (1 − ρ)
√

X2 + x2/
√

2, |X| ≥ x).
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From the conditional Chebyshev inequality and (3.23) we get

Pr
(
|X − ρY | ≥ (1 − ρ)

√
Y 2 + x2/

√
2, |Y | ≥ x

)
≤ 2

∫
|Y |≥x

A + B|Y | + (1 − ρ2)ε2Y 2/(1 + ε2)
(1 − ρ)2(Y 2 + x2)

dP

≤
∫
|Y |≥x

2A

(1 − ρ)2x2
dP +

∫
|Y |≥x

2B|Y |
(1 − ρ)2|Y |x dP

+
∫
|Y |≥x

(1 − ρ2)2ε2Y 2/(1 + ε2)
(1 − ρ)2Y 2

dP

≤ C1

x2
Pr(|Y | ≥ x) +

C2

x
Pr(|Y | ≥ x) +

2ε2

1 + ε2

1 + ρ

1 − ρ
Pr(|Y | ≥ x),

where C1 = 2A/(1 − ρ)2, C2 = 2B/(1 − ρ)2. Since the assumptions are symmetric
in X, Y , this shows that there are constants C1, C2 < ∞ such that

(A.24) P1(x) ≤ C1N(x)
x2

+
C2N(x)

x
+

2ε2

1 + ε2

1 + ρ

1 − ρ
N(x).

To estimate P2(x), we use the trivial estimate |Y − ρX| ≥ ρ|X| − |Y |, which shows
that the event {|X| ≥ Kx, |Y | < x} implies that

|Y − ρX| ≥ ε|X| + ((ρ − ε)K − 1)x = ε|X| + ρ − 2ε

ρ
x.

Therefore

P2(x) ≤ Pr
(
|Y − ρX| ≥ ε|X| + ρ − 2ε

ρ
x, |X| ≥ Kx

)
=
∫
|X|≥Kx

Pr
(
|Y − ρX| ≥ ε|X| + ρ − 2ε

ρ
x
∣∣X)

dP

≤
∫
|X|≥Kx

A + B|X| + (1 − ρ2)ε2X2/(1 + ε2)
(ε|X| + (ρ − 2ε)x/ρ)2

dP

≤
∫
|X|≥Kx

A

((ρ − 2ε)x/ρ)2
dP +

∫
|X|≥Kx

B|X|
ε|X|(ρ − 2ε)x/ρ

dP

+
∫
|X|≥Kx

(1 − ρ2)ε2X2

(1 + ε2)ε2X2
dP.

Since N(Kx) ≤ N(x), this shows that

(A.25) P2(x) ≤ C1N(x)
x2

+
C2N(x)

x
+

1 − ρ2

1 + ε2
Pr(|X| ≥ Kx),

where C1 = ρ2A/(ρ−2ε)2, C2 = ρB/(ε(ρ−2ε)). By symmetry of the assumptions,
we also have

(A.26) P3(x) ≤ C1N(x)
x2

+
C2N(x)

x
+

1 − ρ2

1 + ε2
Pr(|Y | ≥ Kx).

Combining (A.23), (A.24), (A.25), and (A.26) we obtain that there are constants
C3, C4 > 0 such that

N(Kx) ≤ C3N(x)
x2

+
C4N(x)

x
+

1 − ρ2

1 + ε2
N(Kx) +

4ε2

1 + ε2

1 + ρ

1 − ρ
N(x),

which implies (3.25). �
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Proof of Lemma 3.26. Clearly, (3.26) implies that 2ε < ρ. Indeed,

22ε2 < 2p+3ε2 1 + ρ

1 − ρ
≤ ρp+3 < ρ2.

We use Lemma 3.6 and we use the notation N(x) = P (|X| ≥ x) + P (|Y | ≥ x),
K = 2/ρ introduced in its proof. Fix M > 0. Then, noticing that K > 1, from
Lemma 3.6 we get∫ M

0

(p + 1)xpN(x) dx = Kp+1

∫ M/K

0

(p + 1)xpN(Kx) dx

≤ p + 1
p − 1

C1

∫ ∞

0

(p − 1)xp−2N(x) dx +
p + 1

p
C2

∫ ∞

0

pxp−1N(x) dx

+
4ε2

ρ2 + ε2

1 + ρ

1 − ρ
Kp+1

∫ M

0

(p + 1)xpN(x) dx

<
p + 1
p − 1

C1

(
E(|X|p−1) + E(|Y |p−1)

)
+

p + 1
p

C2 (E(|X|p) + E(|Y |p))

+ε22p+3/ρp+3 1 + ρ

1 − ρ

∫ M

0

(p + 1)xpN(x) dx.

Therefore, if (3.26) holds true, then supM>0

∫M

0
(p + 1)xpN(x)dx < ∞, which im-

plies E(|X|p+1) + E(|Y |p+1) =
∫∞
0

(p + 1)xpN(x)dx < ∞. �
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