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Quadratic head loss approximations for optimisation

problems in water supply networks

Filippo Pecci, Edo Abraham and Ivan Stoianov
ABSTRACT
This paper presents a novel analysis of the accuracy of quadratic approximations for the Hazen–

Williams (HW) head loss formula, which enables the control of constraint violations in optimisation

problems for water supply networks. The two smooth polynomial approximations considered here

minimise the absolute and relative errors, respectively, from the original non-smooth HW head loss

function over a range of flows. Since quadratic approximations are used to formulate head loss

constraints for different optimisation problems, we are interested in quantifying and controlling their

absolute errors, which affect the degree of constraint violations of feasible candidate solutions. We

derive new exact analytical formulae for the absolute errors as a function of the approximation

domain, pipe roughness and relative error tolerance. We investigate the efficacy of the proposed

quadratic approximations in mathematical optimisation problems for advanced pressure control in

an operational water supply network. We propose a strategy on how to choose the approximation

domain for each pipe such that the optimisation results are sufficiently close to the exact

hydraulically feasible solution space. By using simulations with multiple parameters, the

approximation errors are shown to be consistent with our analytical predictions.
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NOTATION
np, nn
 number of links and nodes, respectively
nl
 number of different loading conditions
L[m],D[m],

S[m2]
pipe length, diameter and cross-sectional area,

respectively
C
 Hazen–Williams roughness coefficient
q
 pipe flow [m3=s] or [l/s]
v
 fluid velocity [m/s]
Qmax
 maximum flow value [m3=s] or [l/s]
Vmax
 maximum velocity corresponding to Qmax

[m/s]
Q1, Q2
 bounds of the approximation range [m3=s] or

[l/s]
p
 nodal pressure head [m]
a1, b1
 coefficients in quadratic approximation QA1
A1, A2, A3,

A4, A5
constants used to compute QA1
α1, β1,kα, kβ
 coefficients in QA1
a2, b2
 coefficients in quadratic approximation QA2
B1, B2, B3,

B4, B5
constants used to compute QA2
α2, β2, γ, lα,

lβ
coefficients in QA2
δp
 accuracy threshold for pressures [m]
δq
 accuracy threshold for flows [m3=s] or [l/s]
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INTRODUCTION

The optimal management of water supply networks

requires the satisfaction of multiple objectives, ranging

from leakage reduction to improvements in water quality

and system resilience. Consequently, various optimisation

problems need to be solved including network design prob-

lems (Savic & Walters ), pump scheduling problems

(Jung et al. ) and the optimal placement and operation

of control valves (Nicolini & Zovatto ; Wright et al.

). Any optimisation problem, which is formulated for

the hydraulic management of water supply networks, is

constrained by the mass and energy conservation laws.

These hydraulic expressions take into consideration fric-

tion head losses that can be represented by either the

Hazen–Williams (HW) or Darcy–Weisbach (DW) for-

mulae. The HW formula is semi-empirical (Liou ;

Christensen et al. ) and it involves a non-smooth frac-

tional exponential function, whose Hessian is unbounded

around the origin. Consequently, the HW formula is diffi-

cult to handle as a constraint for nonlinear programming

solvers, for which second order derivatives are often

needed. In DW models, the relation between friction

head loss and flow is defined by an implicit equation,

which involves non-smooth terms, and it can be numeri-

cally calculated through an iterative process (Larock

et al. , Section 2.2.2). This complicates the use of

such models in a smooth mathematical optimisation frame-

work. As a consequence, optimisation problems for water

supply networks are often addressed using heuristic

approaches that handle the nonlinear nonsmooth hydraulic

equations through highly specialised and customised simu-

lation approaches (Maier et al. ). For example, genetic

algorithms (Galdiero et al. ), ant colony optimisation

(Mortazavi-Naeini et al. ) and simulated annealing

(McCormick & Powell ) have been applied to optimal

design and operation problems in water supply networks.

Heuristic approaches, however, are computationally

expensive and do not provide guarantees of optimality

nor bounds on the global optimality of the solution. In

comparison, this important information can be obtained

when a mathematical programming method is applied to

the same optimisation problems.
om http://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
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The solution of a wide range of problems for the optimal

design and operation of water supply networks (Vairava-

moorthy & Lumbers ; Bragalli et al. ; Gleixner

et al. ; Menke et al. ) by using mathematical pro-

gramming methods requires rigorously investigated and

formulated smooth approximations of the friction head

loss formulae. For example, Bragalli et al. () approxi-

mated the HW head loss formula with a piecewise

function, using a quintic polynomial approximation near

zero. As noted in Eck & Mevissen (), such approach

introduces computational complexities due to the high

order polynomial function. Furthermore, in order to model

these piecewise approximations, it is necessary to use

binary variables. These result in mixed integer nonlinear

constraints that are difficult to accomodate.

Various explicit approximations of the DW head loss for-

mula have been published so far. A smooth and

asymptotically consistent approximation is presented by

Burgschweiger et al. (). Different analytical approxi-

mations for the DW friction factor are studied by Giustolisi

et al. (). A smooth quadratic friction loss approximation

for both HW and DW models was proposed by Eck & Mevis-

sen (), together with a simulation-based analysis of the

accuracy. The results in Eck & Mevissen () showed that

in practical applications, the use of polynomial quadratic fric-

tion loss formulae does not affect significantly the distribution

of network pressures and flows. However, these approxi-

mations were not analytically discussed and accuracy bounds

were not provided. In the case of DW models, the quadratic

approximation in Eck & Mevissen () is a least-squares fit

on discrete head loss values over a range of flows. In compari-

son, we show that the explicit HW formula allows a more

insightful analysis that better informs solution methods for

the optimisation problems in water supply networks.

In this paper, we study the quadratic approximations of

the commonly used HW head loss formula. We present a

novel error analysis of the different quadratic approxi-

mations schemes, and investigate their impact on the

solutions of optimisation problems for water supply net-

works. We propose and analyse an approximation that

minimises the integral of square absolute errors, and we

also formulate an alternative quadratic approximation to

the one described by Eck & Mevissen (). We derive



Figure 1 | Graph of friction head loss computed using HW model and a quadratic
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novel exact formulae to quantify the absolute errors for both

approximations and we show how these errors are related to

constraint violations in optimisation problems for water

supply networks. Furthermore, we assess the efficacy of

the smooth approximation framework for water supply net-

work optimisation using an operational network as a case

study. Finally, we propose a strategy for the choice of

approximation parameters such that the corresponding

optimisation results are sufficiently close to hydraulic

feasibility.

approximation hf (q). The considered pipe has L¼ 100 m, D¼ 0.25 m, C¼ 100

and Vmax ¼ 3m=s.
QUADRATIC APPROXIMATIONS FOR FRICTION
HEAD LOSSES

Throughout this paper, the friction head loss across a pipe is

represented by the HW formula and it is given by

HWf(q) ¼ r � q � jqjn�1, (1)

with n¼ 1.852 and the positive real number r, which is the

resistance coefficient of the pipe, is defined as

r ¼ 10:67 � L
CnD4:871 , (2)

where L, D, C are length, diameter and HW roughness coef-

ficient of the pipe, respectively. For a given flow velocity v in

a pipe, the corresponding flow q is given by q ¼ S � v, where

S is the cross-sectional area of the pipe. In particular, if Vmax

is the maximum expected flow velocity in a pipe, we have

that Qmax ¼ Vmax � S is the maximum flow.

Formula (1) is non-smooth due to the rational exponent

n¼ 1.852. In various optimisation problems for water supply

networks, the friction head losses appear as constraints. In

order to apply standard nonlinear programming techniques,

it is necessary to use a sufficiently smooth approximation of

Equation (1). In particular, given an expected maximum

flow Qmax, we look for a quadratic polynomial function

hf(q) ¼ q(ajqj þ b) ¼ aq2 þ bq if q � 0
�aq2 þ bq if q< 0

�
, q ∈ R (3)

which approximates the original HW model over the range

of flows [�Qmax, Qmax] – see as example Figure 1.
://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
Analogously to that observed in Abraham & Stoianov

(, Appendix I), it is possible to show that hf is a

continuous function with Lipschitz continuous first

order derivative. Unlike formula (1), the second order

derivative of the approximation hf is continuous almost

everywhere and it is bounded at the discontinuous point

q¼ 0. Note that the condition of Lipschitz continuous

first order derivatives is sufficient to prove local conver-

gence properties of numerical methods involving

functions like (3); see Nocedal & Wright (, Theorem

11.2). As a consequence, and without loss of generality,

we can restrict our analysis to positive flows only. In par-

ticular, we look for a quadratic polynomial function

hf(q) ¼ aq2 þ bq close to the HW friction head loss

formula over the range of flows [0, Qmax]. Various math-

ematical notions of closeness can be used, each one

resulting in approximation with particular characteristics.

In this paper, we focus on two different approaches and

analyse their goodness for optimisation problems in

water supply networks.
A QUADRATIC MODEL THAT MINIMISES ABSOLUTE
ERRORS

In the present formulation we consider a smooth quadratic

approximation of the friction losses across a pipe, generated

by flow q ranging between 0 and some fixed maximum

flow Qmax. We look for a polynomial function

hf1(q) ¼ a�1q
2 þ b�1q which minimises the integral of square
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errors defined by

I1(a, b) ¼
ðQmax

0
(aq2 þ bq� rqn)2dq (4)

In the following, we refer to this approximation as QA1.

An analytical expression for I(a, b) can be derived as

I1(a, b) ¼
ðQmax

0
(a2q4 þ b2q2 þ r2q2n þ 2abq3

� 2arqnþ2 � 2brqnþ1)dq

¼ a2
q5

5

� �Qmax

0
þ b2

q3

3

� �Qmax

0
þ r2

q2nþ1

2nþ 1

� �Qmax

0

þ 2ab
q4

4

� �Qmax

0
� 2ar

qnþ3

nþ 3

� �Qmax

0
� 2br

qnþ2

nþ 2

� �Qmax

0

¼ a2A1 þ b2A2 þ 2abA3 � 2arA4

� 2brA5 þ r2
(Qmax)2nþ1

2nþ 1
(5)

where

A1 ¼ (Qmax)5

5
, A2 ¼ (Qmax)3

3
, A3 ¼ (Qmax)4

4

A4 ¼ (Qmax)nþ3

nþ 3
, A5 ¼ (Qmax)nþ2

nþ 2

(6)

Therefore, a couple (a�1, b
�
1) minimises the integral if it

satisfies the following equations:

@I1
@a

¼ aA1 þ bA3 � rA4 ¼ 0

@I1
@b

¼ bA2 þ aA3 � rA5 ¼ 0

8><
>: (7)
Figure 2 | Graphs of the function jϕj over different ranges of x values: (a) x varies between 0
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The solution of the above linear system yields:

a�1 ¼ rA4 � b�1A3

A1
and b�1 ¼ r(A5A1 �A3A4)

A2A1 �A2
3

: (8)
ANALYSIS OF THE APPROXIMATION ERROR

We study the errors introduced by the considered smooth

friction loss approximation formula. Given the quadratic

polynomial function with coefficients (a�1, b
�
1) defined by

equations in (8), it holds

e1(q) ¼ ja�1q2 þ b�1q� rqnj ¼ r(Qmax)n ϕ
q

Qmax

� �����
����, (9)

where the function ϕ(x) ¼ kαx2 þ kβx� xn depends only on n.

In particular, we have

kα ¼ 20
n� 1

(nþ 3)(nþ 2)
, kβ ¼ 12

2� n
(nþ 3)(nþ 2)

: (10)

The reader is referred to Lemma 1 in Appendix 1 (avail-

able with the online version of this paper) for a technical

proof of the above statements.

In the following, we further analyse the impact of Qmax

on the approximation accuracy and we propose a selection

strategy for its value. Recall that in our study n¼ 1.852. As

shown in Figure 2(a), it holds

max
x∈[0,1]

jϕ(x)j ¼ jϕ(1)j ¼ kα þ kβ � 1 ≈ 6:7 � 10�3: (11)
and 1, (b) a wide range of values of x.
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In particular

max
q∈[0,Qmax]

e1(q) ¼ max
x∈[0,Qmax]

r(Qmax)n � ϕ
q

Qmax

� �����
����

¼ r(Qmax)n � max
x∈[0,1]

jϕ(x)j

¼ r(Qmax)n � (kα þ kβ � 1)

≈ r(Qmax)n � 6:7 � 10�3,

(12)

suggests that to improve accuracy we should avoid large

values of Qmax.

In addition, from Figure 2(b) we can conclude that the

function jϕ(x)j is monotone increasing for x> 1. Therefore,

the greater the flow is than Qmax, the less accurate the quad-

ratic friction loss approximation is. This is not surprising as

the approximation is optimised to minimise errors in

[0, Qmax].

In conclusion, we consider an approximation interval

large enough to include the majority of expected feasible

flows. However, this does not mean that the value of Qmax

should be unnecessarily large.
A QUADRATIC MODEL THAT MINIMISES RELATIVE
ERRORS

We consider the quadratic approximation that is obtained

by minimising the integral of relative errors (Eck & Mevis-

sen ). In this approximation scheme, a quadratic

function hf2(q) ¼ a�2q
2 þ b�2q is defined to minimise the

integral:

I2(a, b) ¼
ðQ2

Q1

aq2 þ bq� rqn

rqn

� �2

dq (13)

where Q1 > 0 and Q2 ¼ Qmax >Q1 specify the approxi-

mation range. We refer to this approach as QA2.

Furthermore:

ðQ2

Q1

aq2 þ bq� rqn

rqn

� �2

dq ¼ a2B1

r2
þ b2B2

r2
þ 2abB3

r2

� 2aB4

r
� 2bB5

r
þQ2 �Q1 (14)
://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
with

B1 ¼ Q5�2n
2 �Q5�2n

1

5� 2n
, B2 ¼ Q3�2n

2 �Q3�2n
1

3� 2n
,

B3 ¼ Q4�2n
2 �Q4�2n

1

4� 2n
, B4 ¼ Q3�n

2 �Q3�n
1

3� n
,

B5 ¼ Q2�n
2 �Q2�n

1

2� n
:

(15)

We look for (a�2, b
�
2) which solve the following system of

equations:

@I2
@a

¼ a
B1

r2
þ b

B3

r2
� B4

r
¼ 0

@I2
@b

¼ b
B2

r2
þ a

B3

r2
� B5

r
¼ 0,

8><
>: (16)

therefore:

a�2 ¼ rB4 � b�2B3

B1

b�2 ¼ r
B5B1 � B4B3

B2B1 � B2
3

,

8>><
>>:

(17)
ANALYSIS OF THE APPROXIMATION ERROR

It can be shown from (17) that the accuracy of the quad-

ratic approximation depends on Q1, Q2 and the resistance

coefficient r. In Eck & Mevissen (), a method for

choosing Q1 was suggested, in order to control the rela-

tive error of the proposed approximation. In fact, given

that Q2 is equal to the maximum considered flow value

Qmax, we choose Q1 so that the minimum of the relative

error function is within a given tolerance ϵrel (see

Figure 3).

Since our aim is to apply the considered approximation

scheme to formulate constraints of different optimisation

problems for water supply networks, we study the effect of

Q1, Q2 and ϵrel on the absolute errors. In fact, these variables

affect the degree of constraints violation for a feasible candi-

date solution. Therefore, we derive new exact analytical

formulae for the absolute error. With the application of

these formulae, we provide new insights into the
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approximation defined in (17). In particular, we show that,

as for QA1, the absolute error is proportional to the resist-

ance coefficient and it is a nonlinear function of Qmax.

Given Qmax and ϵrel, let a�2 and b�2 be the coefficients

defined in (17) where Q1 is chosen according to the

method proposed in Eck & Mevissen (). In this case,

we have:

e2(q) ¼ ja�2q2 þ b�2q� rqnj ¼ r(Qmax)n ψ
q

Qmax

� �����
����, (18)

where function ψ(x) ¼ lαx2 þ lβx� xn depends only on ϵrel

and n. In particular, it is possible to compute a real

number γ ¼ γ(ϵrel, n) such that:

lα ¼ lα(γ) ¼ ((1� γ3�n)=(3� n))� lβ((1� γ4�2n)=(4� 2n))
((1� γ5�2n)=(5� 2n))

lβ ¼ lβ(γ) ¼
((1� γ2�n)=(2� n))((1� γ5�2n)=(5� 2n))

�((1� γ3�n)=(3� n))((1� γ4�2n)=(4� 2n))
((1� γ3�2n)=(3� 2n))((1� γ5�2n)=

(5� 2n))� ((1� γ4�2n)=(4� 2n))2

:

(19)

See Lemma 2 (Appendix 1) for a detailed derivation of

the above expressions. In addition, there is an implicit non-

linear relation between function ψ and the couple (ϵrel, n).

From Figure 4, we can see that when q< (Qmax=10), the

choice of ϵrel ¼ 0:1 results in jψ(q=Qmax)j ≪ 10�3. Therefore,

if we expect that most flows are significantly smaller than

Qmax, we can set ϵrel ¼ 0:1. The accuracy of the hydraulic
Figure 3 | Graphs of relative and absolute error functions of the quadratic friction loss approxim

while Q1 is chosen so that the minimum of the relative error function ϵrel sits at �

om http://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
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solver for larger flows is improved when smaller values of

ϵrel are used. In the remaining part of the paper we consider

the case of ϵrel ¼ 0:1.

From Figure 5(b), the value jψ(q=Qmax)j is large for

q>Qmax. Therefore, in order to have a small approximation

error, Qmax should be defined so that the majority of

expected feasible flows does not exceed this value. On the

other hand, Equation (18) suggests that the use of a

unnecessarily large value of Qmax can generate high errors.

Nonetheless, if Qmax is such that q< (Qmax=10) for most

feasible flows, then the corresponding values of

jψ(q=Qmax)j can be very small and, consequently, the

approximation is sufficiently accurate. As a result, we

cannot conclude that a large value of Qmax necessarily

results in big approximation errors for QA2, which is con-

trary to the conclusion for QA1 (see also the numerical

analysis section).

Now let (a�1, b
�
1) and (a�2, b

�
2) be the coefficients of the

quadratic frictional loss formulae computed according to

QA1 and QA2, respectively. From the previous sections,

we have:

e1(q) ¼ r(Qmax)n ϕ
q

Qmax

� �����
����,

e2(q) ¼ r(Qmax)n ψ
q

Qmax

� �����
����:

(20)

In Figure 6, we compare the graphs of jϕ(�)j and jψ(�)j.
From Figure 6(a), we conclude that when q< (Qmax=5),

QA2 results in a smaller absolute error than QA1. In the
ation for a typical pipe with L¼ 1,000 m, D¼ 0.1 m, C¼ 120. The value of Q2 is set to 8 l/s

0.1: (a) relative error, (b) absolute error.



Figure 4 | Plot of jψ (�)j for different values of ϵrel .
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case when the flow q is closer to Qmax, the best level of accu-

racy is achieved with QA1. Note that both approximation

schemes can result in large errors when q ≫ Qmax.

Finally, recall that r ¼ (10:670 � L=CnD4:871). Therefore,

the absolute errors for QA1 and QA2 friction head loss

approximations can be written as:

e1(q) ¼ 10:67 � L
CnD4:871 (Q

max)n ϕ
q

Qmax

� �����
����,

e2(q) ¼ 10:67 � L
CnD4:871 (Q

max)n ψ
q

Qmax

� �����
����:

(21)

Even though the quadratic approximation was observed

to be more accurate for rough pipes in the case of DW fric-

tion models (Eck & Mevissen ), the above formulae

demonstrate that this does not hold for HW models. In

fact, when L, D and Qmax are fixed, both approximation

schemes become less accurate for rough pipes. This is

shown also in Figure 7, where a pipe with L¼ 100 m, D¼
0.25 m and Vmax ¼ 3m=s is considered.
Figure 5 | Graphs of the function jψ (�)j over different ranges of x values: (a) x varies between

://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
NUMERICAL RESULTS AND DISCUSSION

Smooth head loss approximations are critical in the formu-

lation and solution of mathematical optimisation problems

for water supply networks. This is because frictional head

loss formulae appear as nonlinear constraints in many

optimisation problems (Burgschweiger et al. ; Bragalli

et al. ; Eck & Mevissen ; Menke et al. ; Pecci

et al. ). In this paper, we consider optimisation problems

that require the computation of optimal control settings for

pressure reducing valves (PRVs) in order to minimise aver-

age zone pressure (AZP) (and leakage) (Vairavamoorthy

& Lumbers ; Wright et al. ). In Pecci et al. (),

the co-design problem of optimal placement and operation

of PRVs used QA1 to approximate frictional head loss for-

mula within the optimisation constraint. We refer the

reader to Appendix 2 (available with the online version of

this paper) for a description of the problem formulation.

We model a water supply network as a graph with np

links and nn nodes. We define an extended period simu-

lation and optimisation formulation, with nl different

demand conditions. Once the locations of the valves are

fixed, the same mathematical framework can be used to

optimise valve operational settings, resulting in a nonlinear

program. The unknown variables include pressure at

demand nodes and flows in pipes while the objective to be

minimised is AZP. The optimisation problem is solved

using the interior point nonlinear programming solver

IPOPT (Waechter & Biegler ). All computations were

performed within MATLAB 2015a-64 bit for Windows 7,
0 and 1, (b) a wide range of values of x.



Figure 6 | Comparison between functions jϕ(�)j and jψ (�)j: (a) x varies between 0 and 1, (b) a wide range of values of x.

Figure 7 | Comparison of the absolute error functions for QA1 and QA2 with different pipe roughness values: (a) absolute error for QA1, (b) absolute error for QA2.

Figure 8 | BWFLnet network model.
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installed on a 2.50 GHz Intel® Xeon(R) CPU E5-2640 0 with

18 cores.

As a case study, we consider the Smart Water Network

Demonstrator operated by Bristol Water, InfraSense Labs at

Imperial College London and Cla-Val presented in Wright

et al. (). We refer to this case study model as BWFLnet.

BWFLnet consists of 2,374 nodes, 2,434 pipes, two inlets

(with fixed known hydraulic heads) and it is simulated

under 96 different demand conditions for the extended

period hydraulic simulation; its network topology and

elevation map is presented in Figure 8.

BWFLnet is composed of two interconnected district

metered areas (DMAs) and it is currently operated with

dynamic network connectivity (Wright et al. ). Two

kept shut boundary valves between the DMAs were replaced

by two dynamic boundary valves that are autonomously

closed at low demand periods (night hours) and opened

for the remaining 24 hours of a diurnal operational cycle.
om http://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
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Three PRVs are optimally controlled using daily derived

flow modulation polynomials to minimise AZP. The net-

work model and control options have been expanded from

the model presented in Wright et al. (). The HW formula

is used to model friction losses within the BWFLnet.



Figure 9 | Maximum velocity achieved in simulation across each link.

Figure 10 | (a) Errors on pressures for T1, (b) errors on flows for T1, (c) errors on press-

ures for T2, (d) errors on flows for T2.

501 F. Pecci et al. | Quadratic head loss approximations for optimisation problems Journal of Hydroinformatics | 19.4 | 2017

Downloaded from http
by guest
on 21 August 2022
We investigate the effect of the quadratic approxi-

mations QA1 and QA2 on the quality of the solutions.

When optimal settings for the PRVs are derived, these are

implemented within the hydraulic equations to simulate net-

work pressures and flows, while valves are optimally

operated. The hydraulic equations are solved using algor-

ithm 1 in Abraham & Stoianov (), which is sometimes

called a loop method – see also Appendix 2. The optimis-

ation solution is then compared with simulated pressures

and flows.

We define the mean absolute error on nodal pressure as

ΔP(i) ¼
Pnl

t¼1 j~pi(t)� pi(t)j
nl

, i ¼ 1, . . . , nn (22)

where ~p(t) ∈ Rnn represents the vector of nodal pressures at

loading condition t, computed by the optimisation process

using a quadratic approximation for friction losses; on the

other hand, p(t) ∈ Rnn represents the vector of nodal press-

ures computed by hydraulic simulation with optimised

valve settings and HW friction loss model. Analogously,

we define

ΔQ(j) ¼
Pnl

t¼1 j~qj(t)� qj(t)j
nl

, j ¼ 1, . . . , np (23)

with ~q(t) ∈ Rnp and q(t) ∈ Rnp vectors of flows computed in

valve optimisation and simulation, respectively. Finally,

we formulate two empirical cumulative distribution

functions as

FP(δp) ¼ number of nodes iwithΔP(i)< δp
nn

,

FQ(δq) ¼ number of pipes jwithΔQ(j)< δq
np

:

(24)

A preliminary investigation of the network model based

on hydraulic simulations under different demand conditions

has highlighted that the maximum velocities in all links are

below 6 m/s – see Figure 9 for a scatter plot of the maximum

velocities across all links.

Let Vmax ∈ Rnp be the vector of maximum expected vel-

ocities across all links. We can define the corresponding

vector of maximum expected flows as Qmax ∈ Rnp with
://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
Qmax
j ¼ Sj � Vmax

j for all j ∈ {1, . . . , np}, where Sj is the

cross-sectional area of link j.

Note that the value of Qmax (and Vmax) used in comput-

ing the quadratic approximation does not need to be equal

to the optimisation upper bound on flow (and hence vel-

ocity) variables. For example, it is possible to compute the

coefficients of the quadratic friction head loss formulae

with Vmax
j ¼ 0:1 m=s for all pipes and allow the optimisation

to consider velocities up to 10m/s – we refer to this scenario

as T1. In this case, the feasible flow qj(t) may be larger than

Qmax
j for most j ∈ {1, . . . , np} and t ∈ {1, . . . , nl}. Therefore,

according to Figure 6, we expect QA1 to be more precise

than QA2. As reported in Figure 10(a), this is verified by

our experiment, with QA1 being more accurate than QA2.
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We have already observed in the previous section that a

better level of accuracy is reached when the values in Qmax

are larger than all possible feasible flows for the considered

case study. However, unnecessarily large maximum flow

values can cause significant inaccuracies, see Equation

(20). In order to investigate this aspect, we set

Vmax
j ¼ 6m=s for all j ∈ {1, . . . , np} and run the optimis-

ation, we refer to this scenario as T2. In the case of QA1,

the optimisation-simulation difference on nodal pressures

reaches large values for most nodes as summarised in

Figure 10(c) and 10(d). The expected optimised AZP value

is 37 m while the actual simulated AZP with optimised

valves is found to be 39m. When QA2 is used, the accuracy

is improved, with an average error of 0.13m.

The difference in accuracy described above is increased

if we consider Vmax
j ¼ 10 m=s for all links j ∈ {1, . . . , np};

this is scenario T3. In this case, the inaccuracies introduced

by QA1 in the computation of friction losses, prevent con-

vergence of the nonlinear program solver. On the

contrary, in the case of QA2, the mean difference between

pressures computed during the optimisation process and

those obtained from hydraulic simulation is close to 0.15m

(Figure 11(a) and 11(b)).

In the case of Vmax
j ¼ 10 m=s, the behaviour of the two

quadratic approximation schemes can be described as fol-

lows. As shown in the previous section, the inaccuracies
Figure 11 | (a) Errors on pressures for T3, (b) errors on flows for T3, (c) errors on press-

ures for T4, (d) errors on flows for T4.
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due to unnecessarily large Qmax
j on many links can result

in high errors of approximations. Note from Figure 12(a)

that many feasible flows are much smaller than the expected

Qmax
j . Specifically, we observe that qj ≪ (Qmax

j =10) for most

j ∈ {1, . . . , np}. This implies that jψ(qj=Qmax
j )j< 10�4 for

most j ∈ {1, . . . , np}; see also Figure 12(b). In comparison,

the values jϕ(qj=Qmax
j )j are at least an order bigger for the

same links. With reference to Equation (20), we conclude

that, in the case of QA2, the value of jψ(qj=Qmax
j )j is small

enough to compensate the large (Qmax
j )n on most links

j ∈ {1, . . . , np}. This is not valid for QA1.

In order to improve the accuracy of both optimisation

strategies, we should tailor the value of the maximum

expected flow for each particular link j and avoid unnecess-

arily large Qmax
j . Recall that for each j ∈ {1, . . . , np}, we have

Qmax
j ¼ Sj � Vmax

j , where Sj is the cross-sectional area of link j.

Therefore, a tailored choice of vector Vmax
j for each link

results in a tailored Qmax
j for each link. Given μ � 1, we set

Vmax
j ¼ μ � ν if the maximum simulated velocity across link

j is lower than ν, for ν ¼ 1, . . . , 6. In cases where the optim-

isation processes result in increased flow velocities, for

example, in operational optimisation to improve ‘self-clean-

ing capacity’ of the network (Vreeburg et al. ; Abraham

et al. ), we can set μ> 1 large enough so that all

expected feasible flows are within the approximation

interval.

The proposed strategy avoids overestimating values

Qmax
j on small pipes with low velocities. We consider tai-

lored maximum velocities with μ ¼ 1; this is scenario T4.

In this case, we obtain the best pressure accuracy for the

two approximations (see Figure 11(c)).

We further analyse the quality of the different solutions

provided by the optimisation process with QA1 and QA2

friction head loss models, using a tailored maximum

expected flow for each link. In this case, many feasible

flows are such that qj(t)< (Qmax
j =5). In the previous section,

we have shown that this implies e2(q)< e1(q) and have con-

firmed by the experimental results. In fact, as shown in

Figure 11(c), the optimal solution corresponding to QA2 is

more accurate than the one related to QA1. As observed

in Figure 11(d), both quadratic approximations cause large

errors (more than 1 l/s) in the computation of a small frac-

tion of network flows (less than 2% for the described case

study).



Figure 12 | (a) Empirical cumulative distribution function (CDF) of the values qj=Qmax
j . Here, Vmax

j has been set for each link to 10 m/s. (b) Semilogarithmic plots of functions jϕ(�)j and jψ(�)j.
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However, such inaccuracies do not affect the quality of

feasible solutions for the considered application of minimis-

ing of AZP. The reason is that the AZP depends on nodal

pressures only, which are computed with high accuracy.

As shown in Figure 13, the value of AZP computed from

the optimisation is close to the one obtained from hydraulic

simulation with the original HW friction head loss formula

for both QA1 and QA2.

We observe that the optimisation with friction head

loss model QA1 underestimates network pressures, while

in the case of QA2 the simulated pressures are lower

than the values computed from optimisation. For example,

Figure 14 plots the pressure profiles at a critical point – i.e.,

the lowest pressure point within the zone. The minimum

allowed pressure at this node has been set by the network

operator to 18 m. From Figure 14(a), the simulated
Figure 13 | Comparisons of different AZP profiles obtained from optimisation and HW simulat

://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
pressure based on optimisation with QA1 satisfies the mini-

mum pressure constraints. On the contrary, the hydraulic

solution corresponding to QA2 results in a constraint

violation.

In the considered case study, most of the feasible flows

qj(t) are smaller than (2Qmax
j =5). With reference to

Figure 15 and Equation (20), we conclude that QA1 overes-

timates friction losses on the majority of network flows,

while QA2 underestimates these values. For this reason,

pressures computed using QA1 are lower than correspond-

ing hydraulically feasible pressures. In comparison, the

optimisation with QA2 computes higher pressures than

obtained from hydraulic simulation. Nonetheless, by appro-

priately choosing the ranges for the two quadratic

approximations, a good level of accuracy is achieved. Con-

sequently, smooth quadratic approximations for friction
ion: (a) friction head loss model QA1, (b) friction head loss model QA2.



Figure 14 | Comparisons of pressure profile at the critical point for (a) QA1 and (b) QA2.

Figure 15 | Graphs of functions ϕ(x) and ψ (x), when x ∈ [0, 1].

Table 1 | Computational performance of the solver IPOPT

QA1 QA2

CPU Iter CPU Iter

T1 8,332 s 702 1,196 s 138

T2 2,424 s 295 1,284 s 149

T3 – – 1,930 s 201

T4 7,445 s 642 7,240 s 590

For each quadratic approximation scheme, four optimisation problems were considered

corresponding to different scenarios. In scenario T1, the quadratic approximations of

the friction head loss formula is performed over an interval defined by Vmax ¼ 0:1m=s,

while the optimisation allows velocities up to 10 m/s. Scenarios T2, T3 and T4 use maxi-

mum velocities of 6 m/s, 10m/s and tailored Vmax, respectively, both for

approximations and optimisation frameworks.
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head loss models enable the application of standard non-

linear programming tools for the mathematical

optimisation problems arising in the framework of optimal

design and operation of water supply networks.

In the present analysis, we study eight different optim-

isation problems; in fact, for each approximation scheme,

four different scenarios are investigated. All the con-

sidered optimisation problems are large-scale nonlinear

programs with 695,232 variables, 934,656 nonlinear

constraints and 1,618,368 linear constraints. The compu-

tational performance of the solver IPOPT is reported in

Table 1. We observe that in the case of T3 the solver

failed to converge to a solution of the optimisation pro-

blem formulated using QA1. Although the overall

computational performance is satisfactory, improvements

can be achieved by simplifying the problem formulation.

The study of alternative and computationally efficient for-

mulations for optimal valve operation problems in water

supply networks is beyond the scope of this work and is

a subject for future research.
om http://iwaponline.com/jh/article-pdf/19/4/493/391756/jh0190493.pdf
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CONCLUSIONS

Quadratic approximations have been effectively used to for-

mulate head loss constraints in different optimisation

problems for water supply networks. Therefore, quantifying

and controlling their absolute errors, which affect the degree

of constraint violations of feasible candidate solutions, has a

strong impact on the application of mathematical optimis-

ation. Both the HW and DW friction head loss models

need smooth approximations to be posed as explicit con-

straints in mathematical optimisation. However, we show

tight analytic error bounds for the HW case because of its

explicit formula, unlike the implicit DW model.

In this paper, we have presented two quadratic approxi-

mations that minimise the absolute and relative errors,

respectively, for the non-smooth HW friction head loss for-

mula over a range of flows for each pipe. We have derived
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exact analytical formulae for absolute errors for two quadra-

tic approximations that we investigated. In particular, we

have shown that the absolute head loss approximation

error for each pipe is proportional to the resistance coeffi-

cient and it is a nonlinear function of the approximation

domain. Based on the derived explicit formulae, we have

provided new insights into quadratic approximations of

the HW head loss formula for solving optimisation problems

for water supply systems. We have also discussed the critical

nonlinear relations between errors and the range of flows.

Moreover, in the case of the quadratic approximation that

minimises relative errors, our analytical framework allows

an efficient strategy for the computation of the quadratic

approximation coefficients, which is especially well suited

when considering large-scale water supply networks with

many pipes.

Friction head loss formulae appear as nonlinear con-

straints in many optimisation problems for water supply

networks. These problems include optimal network design

(Bragalli et al. ), optimal placement and operation of

valves (Pecci et al. ) and optimal pump scheduling

(Gleixner et al. ; Bonvin et al. ; Menke et al. ).

The presented quadratic approximation schemes facilitate

the solution of such problems in a more deterministic and

rigorous mathematical programming framework.

Furthermore, we have experimentally validated the

application of these approximations to the mathematical

optimisation problem for the pressure control of an oper-

ational network. This case study represents a new

generation of intelligent water supply networks that dynami-

cally adapt their connectivity and operational objectives.

The constraint violations and approximation errors in

numerical experiments are found to be consistent with our

analytical predictions. Finally, we have proposed a strategy

for the choice of the approximation domain such that the

derived optimisation results are sufficiently close to hydrau-

lic feasibility.
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