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1 Introduction

The detection of gravitational waves by the LIGO and Virgo collaborations [2, 3] promises
intriguing new discoveries. The main sources of gravitational waves are binary systems
of compact astrophysical objects. Therefore, the great experimental advances also press
for the development of high-precision theoretical tools for the modeling of the evolution
of such systems. In the present paper we consider the inspiral phase of the evolution of
the binary. A well-developed theoretical tool to study this phase is the post-Newtonian
(PN) approximation. This approach consists of an expansion in small velocities and weak
gravitaional field. Several methods based on General Relativity (GR) [4, 5] as well as
effective field theory (EFT) [6] have been developed in this direction. We instead choose
to use the post-Minkowskian (PM) approximation, an expansion in Newton’s constant G
which yields the exact velocity dependence. The PM approximation has a long history in
GR [7] but has gained prominence recently (see e.g. [8–10]) due in part to the successful
adaptation of modern scattering-amplitudes techniques.

The application of quantum-field-theory (QFT) methods to the study of the two-body
problem dates back to the 1970’s [11]. However, it was recently that ref. [12] proposed
the application of the well-established scattering-amplitudes toolkit to the derivation of
gravitational potentials (see refs. [13–15] for reviews on the modern amplitudes program).
Along these lines, ref. [16] developed an EFT of non-relativistic scalar fields which allowed
the construction of the 2PM1 canonical Hamiltonian from a one-loop scattering amplitude.

1The nPM order corresponds to O(Gn).
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This Hamiltonian was equivalent to the one of ref. [7]. Refs. [17–19] later implemented
this approach to obtain novel results at 3PM order. Ref. [20] followed up shortly after to
compare these results against numerical relativity in terms of the energetics of the binary.
Very recently, ref. [21] obtained the conservative binary potential at 4PM order.

Besides making use of a non-relativistic EFT, various approaches have been developed
to extract the dynamics of compact non-spinning objects from scattering data. Refs. [22, 23]
established a formalism to obtain physical observables from unitarity cuts. Refs. [24, 25]
made use of the Lippman-Schwinger equation. Refs. [26, 27] developed a boundary-to-
bound (B2B) dictionary, and refs. [28, 29] implemented a worldline PM EFT. Ref. [30]
introduced a worldline QFT. Ref. [21] discovered an amplitude-action relation that allows
the calculation of physical observables directly from the scattering amplitude.

The techniques mentioned above have been extended in multiple directions in recent
years. Indeed, refs. [31–33] applied similar methods to supergravity. Ref. [34] studied
three-body dynamics, while refs. [35–39] incorporated the radiation emitted by the binary
into their analysis. Refs. [40–46] considered tidal deformations of the astrophysical objects.
In the present paper we explore a different direction and focus on effects due to the spin
of the compact objects.

When considering intrinsic angular momentum in the problem of a binary of compact
astrophysical objects, one assumes that the spin of the objects is subdominant to the
angular momentum of the system. In this way, we organize the effects we consider in a
systematic expansion in the spin of the objects. Along these lines, there has been great
progress in incorporating spin effects in the PN approximation. Refs. [47–51] approached
these effects with traditional GR techniques. Ref. [52] extended the worldline EFT methods
of ref. [6] in this direction, and since then there have been substantial developments [53–69]
(see refs. [70, 71] for reviews).

The current state-of-the-art results at the 5PN2 order include the linear-in-spin [72]
and quadratic-in-spin [73] interactions at next-to-next-to-next-to-leading order and the
cubic-in-spin [74] and quartic-in-spin [75] interactions at next-to-leading order. The PM
literature on the other hand is less developed. Refs. [76, 77] recently obtained results at
the 1PM and 2PM orders for effects linear in the spin of the objects via GR considerations.
Ref. [78] treated the black hole (BH) case at 1PM order and exactly in the spin by matching
an effective action to the linearized Kerr solution. Refs. [79, 80] obtained the 2PM-order
scattering angle in the special kinematic configuration where the spins of the BHs are
aligned to the orbital angular momentum of the binary.

Similarly to the non-spinning case, we may use scattering amplitudes to study the
gravitational potential between spinning objects. Indeed, ref. [81] calculated a one-loop
amplitude using Feynman rules, which allowed them to obtain a 2PM-order potential by
means of a Born iteration. Following the approach of [12], ref. [82] reproduced Hamilto-
nians describing the interactions between spinning BHs by considering spinning particles
minimally coupled to gravity. Later, ref. [83] used the generalization of minimal-coupling

2The nPN order corresponds to O(Gav2bSc) with a + b + c = n + 1, where v is the relative velocity of
the binary system and S corresponds collectively to the spins of the objects.
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amplitudes of [84] and the holomorphic classical limit of [85] to show that amplitudes encode
information about BHs that is exact in spin. Refs. [86, 87] used the massive spinor-helicity
formalism of [84] to study 2PM-order gravitational scattering from a one-loop amplitude.
Furthermore, ref. [88] related classical observables of a scattering process between spin-
ning particles directly to the scattering amplitude, extending the formalism of [22]. Using
this formalism, refs. [89–91] obtained a 1PM-order Hamiltonian that reproduced the result
of [78]. Finally, ref. [1] obtained the conservative 2PM-order potential that is bilinear in
the spin of the objects and valid for arbitrary spin orientations.

Studies of the classical physics of spinning particles have also revealed double copy
structures. Refs. [92–97] applied the definition of minimal coupling of [84] to classical
solutions. In this way they made contact with the classical double copy of ref. [98] and
with an effective theory of on-shell heavy spinning particles [99]. The latter generalizes
the heavy black hole effective theory of ref. [100], whose amplitudes are known to double
copy [101].

A suprising structure that emerged from the calculation of ref. [1] is the expression
of the observables in a scattering event in terms of the eikonal phase [102–104]. Similar
relations already existed in the non-spinning case [32, 33, 102–111]. In the spinning case
there was evidence for such a relation in the special kinematic configuration where the
spins of the particles are parallel to the angular momentum of the system [79, 80, 86]. The
formula of [1] was the first example of such a relation for arbitrary orientations of the spins.
This striking observation potentially implies that all physical observables are obtainable
via simple manipulations of the scattering amplitude.

The goal of the present paper is to obtain a 2PM-order Hamiltonian that describes the
dynamics between a binary of generic spinning objects in GR including effects that are up
to quadratic in the spin. We take the masses of the two objects to be m1 and m2 and the
rest-frame spin three vectors to be S1 and S2. We denote the relative distance between
the objects as r and the momentum three vector in the center-of-mass frame as p. The
Hamiltonian then reads

H =
√

p2 +m2
1 +
√

p2 +m2
2 +V (0)(r2,p2)+V (1,1)(r2,p2)L ·S1

r2 +V (1,2)(r2,p2)L ·S2
r2

+V (2,1)(r2,p2)(r ·S1)(r ·S2)
r4 +V (2,2)(r2,p2)S1 ·S2

r2 +V (2,3)(r2,p2)(p ·S1)(p ·S2)
r2

+V (2,4)(r2,p2)(r ·S1)2

r4 +V (2,5)(r2,p2)S2
1

r2 +V (2,6)(r2,p2)(p ·S1)2

r2 + . . . , (1.1)

where L = r × p is the orbital angular momentum, and the ellipsis stands for terms of
higher order in the spin. Note that we omit terms quadratic in S2 as they are obtained from
the ones quadratic in S1 via appropriate relabeling. The terms in eq. (1.1) take the form

V A(r2,p2) = G

|r|
cA1 (p2) +

(
G

|r|

)2
cA2 (p2) +O(G3) , (1.2)

where the label A takes the values indicated in eq. (1.1).
Our task is to determine the coefficients cAi appearing in eq. (1.2). For simplicity, and

since the bilinear-in-spin interactions were given in ref. [1], we may consider one of the
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bodies to be non spinning. This amounts to formally setting S2 = 0 in eq. (1.1). We have
explicitely verified that the results of this paper do not change if we take into account all
the terms in eq. (1.1).

Following refs. [1, 16], we obtain the potential coefficients in question via a matching
calculation. First, we calculate a one-loop scattering amplitude in our so-called full theory.
This is a theory that describes particles of arbitrary spin coupled to gravity. Specifically,
it captures minimal and non-minimal coupling of the particles to gravity. In terms of our
Lagrangian, we include all possible operators that are up to quadratic in the spin of the
massive particle and up to linear in the curvature. Then, we calculate the corresponding
amplitude in an EFT of spinning particles interacting via the Hamiltonian of eq. (1.1).
Our EFT generalizes that of refs. [1, 16] to consider effects quadratic in the spin of one of
the particles.

In obtaining these amplitudes we restrict to the piece that captures the classical dynam-
ics. We implement the classical limit by rescaling q → λq, S1 → (1/λ)S1 and expanding in
λ, where q denotes graviton momenta and S1 the covariant spin of the spinning particle.
Finally, we fix the desired coefficients by matching the two computed amplitudes.

The remainder of this paper is structured as follows: in section 2 we review some
aspects of the spin formalism introduced in [1] that we use throughout the paper. Namely,
we describe our field-theory approach to higher spin and its classical limit. We compute
the necessary full-theory tree and one-loop amplitudes in section 3. We adopt the method
of generalized unitarity [112–114] to produce the loop-level amplitude, using tree-level
amplitudes as building blocks. We then express the amplitudes in the center-of-mass frame,
which facilitates the matching to the EFT. Section 4 contains the setup of the EFT,
along with the computation of the EFT amplitudes. By equating the full-theory and EFT
amplitudes, we obtain the desired two-body Hamiltonian. We compare our result against
PN [115] and test-body [116] Hamiltonians in the literature. Finally, in section 5 we use
the derived Hamiltonian to compute scattering observables. We then establish that the
conjecture of ref. [1], which directly relates these observables to the eikonal phase [102–104],
holds unaltered when we include the quadratic-in-spin effects. We present our concluding
remarks in section 6.

Note added. As this paper was in its latest stages we learned about [117], which contains
overlap with our work. Ref. [117] extended the worldline PM EFT of [28, 29] to include
spin degrees of freedom. We have explicitly verified that, where overlapping, our results
are in agreement with those of [117].

2 Review of spin formalism

In this section, we review the aspects of the higher-spin formalism that we use in the paper.
For further details, we refer the reader to ref. [1].

We identify spinning compact astrophysical objects with higher-spin particles. We
describe these massive particles of integer-spin s by real symmetric traceless rank-s tensor
fields φs. For brevity, we suppress the indices of φs, implying matrix multiplication when
necessary.
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We use a Lagrangian to organize the interactions of higher-spin fields with gravity.
Ref. [118] obtained such a Lagrangian using auxiliary fields to eliminate all but the spin-s
representation of the SO(3) rotation group. Here we relax this requirement, and interpret
the theory as a relativistic effective theory that captures all spin-induced multipole mo-
ments of spinning objects coupled to gravity. We write the higher-spin Lagrangian L and
action S as

L = Lmin + Lnonmin , S =
∫
d4x
√
−gL . (2.1)

The minimal Lagrangian contains terms with up to two derivatives,

Lmin = −R(e, ω) + 1
2g

µν∇(ω)µφs∇(ω)νφs −
1
2m

2φsφs . (2.2)

The covariant derivative is

∇(ω)µφs ≡ ∂µφs + i

2ωµefM
efφs , (2.3)

where ω is the spin connection, and Mab are the Hermitian Lorentz generators. The
gravitational field is described in the vielbein formulation. The non-minimal Lagrangian
containing all the terms linear in the graviton and bilinear in the higher-spin field is

Lnon-min =
∞∑
n=1

(−1)n

(2n)!
CES2n

m2n ∇(ω)f2n · · ·∇(ω)f3Rf1af2b∇(ω)aφsS(f1 . . .Sf2n)∇(ω)bφs

−
∞∑
n=1

(−1)n

(2n+1)!
CBS2n

m2n+1∇(ω)f2n+1 · · ·∇(ω)f3
1
2εab(c|f1R

ab
|d)f2∇(ω)cφsS(f1 . . .Sf2n+1)∇(ω)dφs .

(2.4)

where we use an off-shell analog of the Pauli-Lubanski vector

Sa ≡ − i

2mεabcdMcd∇(ω)b . (2.5)

The operators in eq. (2.4) are in direct correspondence to the non-minimal couplings in
the worldline spinning-particle action of ref. [119]. One could, in principle, include terms
with dependence on higher powers of the curvature, but we do not attempt to do so in the
present paper. Since our objective is to describe the dynamics up to spin squared, we focus
on the first non-minimally coupled term,

LES2 =− CES2

2m2 Rf1af2b∇aφs S(f1Sf2)∇bφs. (2.6)

Ref. [52] first studied the effects captured by this operator at leading order in the PN
approximation. The extensions to next-to-leading and next-to-next-to-leading orders were
considered in refs. [55] and [115] respectively, while ref. [120] studied its contributions to
higher orders in spin. We instead consider its effects in the PM approximation.

To extract Feynman rules, we define the graviton as the fluctuation of the metric
around Minkowski space. We determine the spin connection ω as the solution of the
vielbein postulate, ∇µ(ω)e a

ν = 0. This yields the following expansions for the needed
quantities

gµν = ηµν + hµν , eµ
a = δaµ + 1

2hµ
a − 1

8hµρh
aρ +O(h3) ,

ω(e)µcb = −∂[chb]µ −
1
4h

ρ
[c∂µhb]ρ + 1

2h
ρ

[c∂ρhb]µ −
1
2h

ρ
[c∂b]hµρ +O(h3) . (2.7)

– 5 –
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k2k1k2k1

k3k4k3

(a) (b)

Figure 1. The Feynman vertices used to compute full-theory amplitudes. The three-particle vertex
(a) determines the O(G) dynamics. The Compton amplitude, which requires the contact vertex
(b), captures the O(G2) dynamics. The straight lines correspond to the spinning particle, while the
wiggly lines correspond to gravitons.

After substituting this expansion into the Lagrangian of eq. (2.6), we follow a straightfor-
ward procedure to obtain the Feynman vertices in figure 1. These are the vertices necessary
to determine the dynamics through O(G2).

We describe the state of the higher-spin particles by their momentum p and polariza-
tion tensor ε(p). To take the classical limit of expectation values, we choose “spin coherent
states” [121], whose defining property is that they minimize the standard deviation of ob-
servables. Following [122, 123], we relate the classical spin tensor and Lorentz generators via

ε(p̃)Mµ1ν1ε(p) = S(p)µ1ν1ε(p̃) · ε(p) + . . . ,

ε(p̃){Mµ1ν1 ,Mµ2ν2}ε(p) = S(p)µ1ν1S(p)µ2ν2ε(p̃) · ε(p) + . . . , (2.8)

where {A,B} ≡ 1
2(AB + BA) and p̃ ≡ −p − q (note that we use the all-outgoing con-

vention). We can also write analogous expressions for products with higher powers of the
Lorentz generator. Throughout the paper we omit terms that do not contribute to the
classical potential in ellipsis. These include terms that do not survive in the classical limit
and terms that cancel in the matching between full-theory and EFT amplitudes.

Importantly, one can only interpret the symmetric product of Lorentz generators as a
product of spin tensors. However, it is always possible to decompose a product of Lorentz
generators into a sum of completely symmetric products by means of the Lorentz algebra,

[Mµ1ν1 ,Mµ2ν2 ] = i(ηµ3µ1Mµ4µ2 + ηµ2µ3Mµ1µ4 − ηµ4µ1Mµ3µ2 − ηµ2µ4Mµ1µ3) . (2.9)

We take the spin tensor to obey the so-called covariant spin supplementary condition,

pµS(p)µν = 0 . (2.10)

We define the Pauli-Lubanski spin vector by

Sα(p) = − 1
2mεαβγδpβSγδ(p) . (2.11)

Using the on-shell condition for the spinning particle p2 = m2 and eq. (2.10), we find

Sαβ(p) = − 1
m
εαβγδpγSδ(p) . (2.12)

– 6 –
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1 4

32

Figure 2. The tree-level amplitude that captures the O(G) spin interactions. The thick (thin)
straight line represents the spinning (scalar) particle, while the wiggly line corresponds to the
exchanged graviton.

For this choice of the spin vector we have

S(p)µ =
(

p · S
m

,S + p · S
m(E +m)p

)
, (2.13)

where S is the three-dimensional rest-frame spin of the particle and p = −(E,p). I.e. we
obtain the covariant spin vector by boosting its rest-frame counterpart. Finally, by writing
the polarization tensors as boosts of rest-frame coherent states [121], we have

ε(p̃) · ε(p) = exp
[
− Lq · S
m(E +m)

]
+ . . . , (2.14)

where Lq ≡ ip× q, and the ellipsis stand for terms that do not contribute to the classical
potential.

3 Full theory amplitudes

In this section we calculate the scattering amplitudes needed to construct the desired
Hamiltonian. Specifically, we obtain the relevant pieces of the tree-level and one-loop two-
to-two scattering amplitude between a scalar and a spinning particle. For the tree-level
amplitudes we use the Feynman rules derived in the previous section. We use the general-
ized unitarity method [112–114] for the one-loop amplitude. Anticipating the comparison
to the EFT amplitudes, we specialize our results to the center-of-mass frame.

3.1 Constructing the full-theory amplitudes

The information to determine the O(G) Hamiltonian is contained in the tree-level ampli-
tude shown in figure 2. We take the incoming momentum of the spinning (scalar) particle
to be −p1 (−p2) and its outgoing momentum to be p4 (p3). Using the Feynman rules
obtained above, we find

Mtree =− 4πG
q2 ε1 · ε4

(
α

(0)
1 + α

(1,1)
1 E1 + α

(2,4)
1 (q · S1)2

)
+ . . . , (3.1)

where E1 ≡ iεµνρσp1µp2νqρS1σ, and the labeling scheme for αAi follows that for cAi in
eq. (1.2). In the ellipsis we omit terms that do not contribute to the classical limit, along

– 7 –
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3 3

1 4

2 32

1 4

2 3

1 4
(a) (b) (c) (d)

Figure 3. The one-loop scalar box integrals I� (a) and I./ (b) and the corresponding triangle
integrals I4 (c) and I5 (d). The bottom (top) solid line corresponds to a massive propagator of
mass m1 (m2). The dashed lines denote massless propagators.

with pieces proportional to q2, since they cancel the propagator and do not yield long-range
contributions. The coefficients αA1 take the explicit form

α
(0)
1 = 4m4ν2(2σ2 − 1) , α

(1,1)
1 = 8m2νσ

m1
, α

(2,4)
1 = 2CES2m4ν2(2σ2 − 1)

m2
1

, (3.2)

where we use the variables

σ = p1 · p2
m1m2

, m = m1 +m2 , ν = m1m2
m2 . (3.3)

In order to construct the O(G2) Hamiltonian we further need the corresponding one-
loop amplitude. We may express any one-loop amplitude as a linear combination of scalar
box, triangle, bubble and tadpole integrals [124]. Refs. [16, 18] showed that the bubble
and tadpole integrals do not contribute to the classical limit. Dropping these pieces we
may write

iM1-loop = d� I� + d./ I./ + c4 I4 + c5 I5 , (3.4)

where the coefficients d�, d./, c4 and c5 are rational functions of external momenta and
polarization tensors. The integrals I�, I./, I4 and I5 are shown in figure 3. The triangle
integrals take the form [16]

I4,5 = − i

32m1,2

1√
−q2 + · · · . (3.5)

The box contributions do not contain any novel O(G2) information. They correspond to
infrared-divergent pieces that cancel out when we equate the full-theory and EFT ampli-
tudes [16, 18]. In this sense, the explicit values for the box coefficients serve only as a con-
sistency check of our calculation and we do not show them. Instead, we give the result for

iM4+5 ≡ c4 I4 + c5 I5 . (3.6)

We use the generalized-unitarity method [112–114, 125] to obtain the integral coeffi-
cients of eq. (3.4). We start by calculating the gravitational Compton amplitude for the
spinning particle, using the Feynman rules derived in the previous section. We depict the
relevant Feynman diagrams in figure 4. Subsequently, we construct the two-particle cut

– 8 –
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1 1 114 4 4 4

5 5 5 56 6 6 6

Figure 4. The Compton-amplitude Feynman diagrams. The straight line corresponds to the
spinning particle. The wiggly lines correspond to gravitons.

depicted in figure 5(a) by gluing the Compton amplitude for the spinning particle with
that for a scalar. The latter is a well-known amplitude. The residue of the two-particle
cut on the scalar-matter pole gives the triple cut in figure 5(b), while the one on the
spinning-matter pole gives the triple cut in figure 5(c). Localizing both matter poles gives
the quadruple cut in figure 5(d). Finally, following refs. [126–128], we obtain the box and
triangle coefficients from the quadruple and triple cuts respectively. Our result reads

M4+5= 2π2G2ε1 ·ε4√
−q2

[
α

(0)
2 +α(1,1)

2 E1+α(2,4)
2 (q ·S1)2+α(2,5)

2 q2S2
1 +α(2,6)

2 q2(p2 ·S1)2
]
+. . . ,

where the coefficients are given by

α
(0)
2 = 3m5ν2(5σ2 − 1) , α

(1,1)
2 = m2(4m1 + 3m2)(5σ2 − 3)νσ

m1(σ2 − 1) ,

α
(2,4)
2 = − m2

2
16(σ2 − 1)

[
− 4m2

(
− σ2 + 1 + CES2(30σ4 − 29σ2 + 3)

)
−m1

(
35σ4 − 30σ2 − 5 + CES2(155σ4 − 174σ2 + 35)

)]
,

α
(2,5)
2 = − m2

2
16(σ2 − 1)

[
4m2

(
15σ4 − 17σ2 + 2 + CES2(15σ4 − 13σ2 + 2)

)
+m1

(
95σ4 − 102σ2 + 7 + CES2(95σ4 − 102σ2 + 23)

)]
,

α
(2,6)
2 = − 1

8(σ2 − 1)2

[
2m2

(
15σ4 − 14σ2 − 1 + CES2(15σ4 − 10σ2 + 3)

)
+m1

(
65σ4 − 66σ2 + 1 + CES2(65σ4 − 66σ2 + 17)

)]
. (3.7)

We note here that the relation α
(2,4)
2 = −α(2,5)

2 , which was expected following a pattern
observed in refs. [1, 100], is broken for generic values of CES2 . We recover this relation for
CES2 = 1, which corresponds to the Kerr black hole [78]. This is in line with a recent obser-
vation in ref. [41], that this equality fails to hold in the presence of tidal finite-size effects.

3.2 The amplitudes in the center-of-mass frame

In preparation for the matching procedure in the following section, we specialize our ex-
pressions to the center-of-mass frame. In this frame, the independent four-momenta read

p1 = −(E1,p) , p2 = −(E2,−p) , q = (0, q) , p · q = q2/2 . (3.8)

– 9 –
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(a)

1

(b) (c) (d)

1 1 14

2 3

4 4 4

3 3 32 2 2

5 65 65 65 6

Figure 5. Appropriate residues of the two-particle cut (a) give the triple cuts (b) and (c), and the
quadruple cut (d). The thick straight line corresponds to the spinning particle, the thin straight
line to the scalar, and the wiggly lines to the exchanged gravitons. All exposed lines are taken
on-shell.

Using eq. (2.13), we have

q ·S1 = q ·S1−
q2p ·S1

2m1(E1 +m1) , iεµνρσp1µp2νqρS1σ =ELq ·S1 , p2 ·S1 =− E

m1
p ·S1 .

(3.9)

Furthermore, eq. (2.14) becomes

ε1 · ε4 = 1− Lq · S1
m1(E1 +m1) + (Lq · S1)2

2m2
1(E1 +m1)2 + . . . . (3.10)

Using the above expressions, our amplitudes take the form

Mtree

4E1E2
= 4πG

q2

[
a

(0)
1 + a

(1,1)
1 Lq · S1 + a

(2,4)
1 (q · S1)2

]
, (3.11)

M4+5

4E1E2
= 2π2G2

|q|

[
a

(0)
2 + a

(1,1)
2 Lq · S1 + a

(2,4)
2 (q · S1)2 + a

(2,5)
2 q2 S2

1 + a
(2,6)
2 q2 (p · S1)2

]
.

The coefficients aAi are given in terms of the αAi of eqs. (3.2) and (3.7) by3

a
(0)
i = α

(0)
i

4m2γ2ξ
, a

(1,1)
i = α

(1,1)
i

4mγξ −
1

m2
1(γ1 + 1)

α
(0)
i

4m2γ2ξ
,

a
(2,j)
i = α

(2,j)
i ζ̃(j)

4m2γ2ξ
− ζ(j)

m2
1(γ1 + 1)

α
(1,1)
i

4mγξ + ζ(j)

m4
1(γ1 + 1)2

α
(0)
i

8m2γ2ξ
, (3.12)

where i = 1, 2 and the structure-dependent coefficients are given by

ζ(4) = −ζ(5) = p2, ζ(6) = 1, ζ̃(4) = ζ̃(5) = 1, ζ̃(6) = −E
2

m2
1
. (3.13)

In addition to the definitions in eq. (3.3) we use

γ = E

m
, γ1 = E1

m1
, E = E1 + E2 , ξ = E1E2

E2 . (3.14)

3Note that unlike ref. [1] we do not introduce the coefficients acov. This means that factors of the spin
in eq. (3.11) appear both because we specialize in the center-of-mass frame and due to eq. (3.10).
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4 Hamiltonian from effective field theory

We now turn our attention to the task of translating the scattering amplitudes of higher-
spin fields to a two-body conservative Hamiltonian. We do this by matching the scattering
amplitude computed in the last section to the two-to-two amplitude of an EFT of the
positive-energy modes of higher-spin fields. Ref. [16] developed this matching procedure
for higher orders in G and all orders in velocity, while ref. [1] extended the formalism to
include spin degrees of freedom. We conclude this section by comparing our answer with
previous results in the literature.

4.1 EFT scattering amplitudes

The action of the effective field theory for the higher-spin fields ξ1 and ξ2 is given by

S=
∫

k

∑
a=1,2

ξ†a(−k)
(
i∂t−

√
k2+m2

a

)
ξa(k)−

∫
k,k′

ξ†1(k′)ξ†2(−k′)V (k′,k, Ŝ1)ξ1(k)ξ2(−k) ,

(4.1)

where
∫

k =
∫ dD−1k

(2π)D−1 , and the interaction potential V (k′,k, Ŝ1) is a function of the incom-
ing and outgoing momenta k and k′, and the spin operator Ŝ1. We consider kinematics in
the center-of-mass frame. As in the full theory side, we choose the field ξ2 to be a scalar,
while the asymptotic states of ξ1 are taken to be spin coherent states. We obtain the
classical rest-frame spin vector as the expectation value of the spin operator with respect
to these on-shell states.

We build the most general potential containing only long-range classical contributions,
up to quadratic order in spin. In momentum space, a minimal basis of interactions in the
on-shell scheme is given by the operators

Ô(0) = I , Ô(1,1) = Lq̂ ·Ŝ1 , Ô(2,4) =
(
q̂·Ŝ1

)2
, Ô(2,5) = q̂2 Ŝ2

1 , Ô(2,6) = q̂2(k·Ŝ1
)2
,

(4.2)
where4 q̂ ≡ k−k′ and Lq̂ ≡ ik× q̂. Their expectation values with respect to spin coherent
states are in one-to-one correspondence with the monomials in the full theory amplitude,
eq. (3.11). The labeling scheme for the operators follows the conventions of eq. (1.1). We
use the following ansatz for the potential operator

V (k′,k, Ŝ1) =
∑
A

V A(k′,k) ÔA , (4.3)

where A runs over the superscripts of the operators in eq. (4.2). V A(k′,k) are free coeffi-
cients with the same structure as the spin-independent potential of refs. [17, 18],

V A(k′,k) =4πG
q̂2 dA1

(
p̂2
)

+ 2π2G2

|q̂|
dA2

(
p̂2
)

+O(G3) , (4.4)

4The three-vectors q̂ and p̂ are not to be confused with unit-norm vectors.
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where p̂2 ≡ (k2 + k′2)/2. At the O(G) level, the operators containing a factor of q̂2 can be
ignored, as they lead to contact terms. Therefore we choose

d
(2,5)
1 = d

(2,6)
1 = 0 . (4.5)

However, the factor of q̂2 does not cancel out with the O(G2) denominator, so we need to
keep d(2,5)

2 and d(2,6)
2 .

We now evaluate the EFT two-to-two scattering amplitude. To this end we use the
Feynman rules derived from the EFT action (eq. (4.1)),

(E, k )
= i I
E −

√
k2 +m2 + iε

,

−k ′

k

−k

k ′

= −iV (k′,k, Ŝ1) . (4.6)

Using these rules we compute the amplitude up to O(G2) directly evaluating the relevant
Feynman diagrams, omitting terms that do not contribute to long range interactions. The
spin-dependent vertices must be treated as operators, and thus their ordering is important.
After carrying out the energy integration, we obtain an expression for the amplitude

MEFT =− V (p′,p,S1)−
∫

k

V (p′,k,S1)V (k,p,S1)

E1 + E2 −
√

k2 +m2
1 −

√
k2 +m2

2

. (4.7)

Similarly to the full theory, in order to extract the classical limit, one needs to first decom-
pose products of the spin vector into irreducible representations of the rotation group, by
repeated use of the SO(3) algebra.

AtO(G) the EFT amplitude receives a contribution only from the first term of eq. (4.7),

MEFT
1PM = 4πG

q2

[
a

(0)
1 + a

(1,1)
1 Lq · S1 + a

(2,4)
1 (q · S1)2

]
. (4.8)

The aA1 are given directly in terms of the momentum-space potential coefficients,

aA1 = −dA1 . (4.9)

The EFT amplitude at O(G2) receives contributions from both terms in eq. (4.7) and
can be written as

MEFT
2PM = 2π2G2

|q|

[
a

(0)
2 + a

(1,1)
2 Lq · S1 + a

(2,4)
2 (q · S1)2 + a

(2,5)
2 q2 S2

1 + a
(2,6)
2 q2 (p · S1)2

]
+ (4πG)2 aiter

∫
dD−1`

(2π)D−1
2ξE

`2(` + q)2(`2 + 2p · `) , (4.10)
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where ` = k−p and we only keep terms that are relevant in the classical limit. The above
coefficients are given by

a
(0)
2 = −d(0)

2 + 1
2ξE Ã0

[(
d

(0)
1

)2
]
, (4.11)

a
(1,1)
2 = −d(1,1)

2 + 1
2ξE Ã2

[
d

(0)
1 d

(1,1)
1

]
,

a
(2,4)
2 = −d(2,4)

2 + 3
8ξE Ã4/3

[
d

(0)
1 d

(2,4)
1

]
+ p2

16ξE Ã4

[(
d

(1,1)
1

)2
]

+ ξE

4 d
(1,1)
1 d

(2,4)
1 ,

a
(2,5)
2 = −d(2,5)

2 − 1
8ξE Ã4

[
d

(0)
1 d

(2,4)
1

]
− p2

8ξE Ã4

[ (
d

(1,1)
1

)2
]

+ ξE

4 d
(1,1)
1 d

(2,4)
1 ,

a
(2,6)
2 = −d(2,6)

2 + ξE

p4 d
(0)
1 d

(2,4)
1 + 1

8ξE Ã4

[ (
d

(1,1)
1

)2
]
− ξE

p2 d
(1,1)
1 d

(2,4)
1 ,

where we define the function

Ãj [X] =
[
(1− 3ξ) + jξ2E2

p2 + 2ξ2E2∂

]
X, (4.12)

and the derivative is taken with respect to the square of the center-of-mass momentum
∂ = ∂/∂p2. The second term in eq. (4.10) is infrared divergent and should cancel out when
we equate the full-theory and EFT amplitudes. We have explicitly verified this cancellation
at leading order in the classical expansion.

4.2 Conservative spin Hamiltonian

As mentioned in section 1, our final result is the position-space Hamiltonian,

H =
√

p2 +m2
1 +

√
p2 +m2

2 + V (0)(r2,p2) + V (1,1)(r2,p2)L · S1
r2

+ V (2,4)(r2,p2)(r · S1)2

r4 + V (2,5)(r2,p2)S2
1

r2 + V (2,6)(r2,p2)(p · S1)2

r2 + . . . . (4.13)

The potentials take the form

V A(r2,p2) = G

|r|
cA1 (p2) +

(
G

|r|

)2
cA2 (p2) +O(G3) . (4.14)

We obtain the position-space Hamiltonian by taking the Fourier transform of the
momentum-space Hamiltonian with respect to the momentum transfer q, which is the
conjugate of the separation between the particles r. In this way, we express the position-
space coefficients cAi in terms of the momentum-space coefficients dAi via linear relations
dictated by the q-dependence of the spin operators,

c
(0)
1 = d

(0)
1 , c

(1,1)
1 =−d(1,1)

1 , c
(2,4)
1 =−3d(2,4)

1 , c
(2,5)
1 = d

(2,4)
1 , c

(2,6)
1 = 0 ,

c
(0)
2 = d

(0)
2 , c

(1,1)
2 =−2d(1,1)

2 , c
(2,4)
2 =−8d(2,4)

2 , c
(2,5)
2 = 2d(2,4)

2 −2d(2,5)
2 , c

(2,6)
2 =−2d(2,6)

2 .

(4.15)
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We determine the momentum-space coefficients dAi in terms of the amplitudes coefficients
aAi by the relations in eqs. (4.9) and (4.11). We may now obtain aAi by demanding that
the EFT amplitude matches the full-theory one,

MEFT
1PM = M

tree

4E1E2
, MEFT

2PM = M
1-loop

4E1E2
, (4.16)

where the factors of the energy account for the non-relativistic normalization of the EFT
amplitude. Using eq. (3.12) we relate aAi to αAi , which are explicitly shown in eqs. (3.2)
and (3.7). Putting everything together, we obtain novel expressions for the position-space
coefficients cAi which are lengthy, and so we only provide them in the supplementary ma-
terial coefficients.m.

4.3 Comparison to the literature

In order to ensure the validity of our result, we compare it with existing Hamiltonians
in the General Relativity literature. Specifically, we compare with overlapping results in
ref. [115], which obtained the next-to-next-to-leading order post-Newtonian Hamiltonian,
and in ref. [116], which calculated the test-body Hamiltonian. Both references included
interactions of up to quadratic order in the spins.

One way to establish the equivalence of two Hamiltonians is to construct a canonical
transformation that extrapolates between them. Alternatively, we may compare the gauge
invariant scattering amplitudes calculated from the two Hamiltonians by means of the EFT.
We take the latter approach here. To do so, we promote the spin vector in the classical
Hamiltonians to the spin operator, and we account for the non-isotropic terms according
to the conventions of [16–18].

In this way we obtain EFT amplitudes in the form of eqs. (4.8) and (4.10). The relevant
coefficients for our purposes obtained using the Hamiltonian of ref. [115] read

a
(2,4)
1 = m2CES2

2m1
− 8m1m2 + 7m2

2 − CES2
(
6m2

1 + 16m1m2 + 6m2
2
)

8m3
1m2

p2 (4.17)

− 3m2
2(7m2

1 + 4m1m2 − 2m2
2) + CES2(5m4

1 − 18m2
1m

2
2 + 5m4

2)
16m5

1m
3
2

p4 + . . . ,

and

a
(2,4)
2 = m1m

3
2CES2

4(m1 +m2)p2 +
m2
(
10m2

1 − 7m1m2 − 13m2
2 + CES2(32m2

1 + 61m1m2 + 29m2
2)
)

16m1(m1 +m2)

+ 15m4
1 − 73m3

1m2 − 361m2
1m

2
2 − 343m1m

3
2 − 82m4

2
64m3

1m2(m1 +m2)
p2

+ CES2(93m4
1 + 467m3

1m2 + 707m2
1m

2
2 + 397m1m

3
2 + 64m4

2)
64m3

1m2(m1 +m2)
p2 + . . . ,

a
(2,5)
2 = − m1m

3
2CES2

4(m1 +m2)p2 −
m2
(
22m2

1 + 19m1m2 +m2
2 + CES2(20m2

1 + 35m1m2 + 15m2
2)
)

16m1(m1 +m2)

− 51m4
1 + 115m3

1m2 − 53m2
1m

2
2 − 155m1m

3
2 − 50m4

2
64m3

1m2(m1 +m2)
p2

− CES2(57m4
1 + 279m3

1m2 + 399m2
1m

2
2 + 209m1m

3
2 + 32m4

2)
64m3

1m2(m1 +m2)
p2 + . . . ,
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a
(2,6)
2 = m1m

3
2CES2

2(m1 +m2)p4 +
m2
(
8m2

1 + 8m1m2 +m2
2 + CES2(7m2

1 + 11m1m2 + 4m2
2)
)

4m1(m1 +m2)p2

+ 33m4
1 + 97m3

1m2 + 13m2
1m

2
2 − 73m1m

3
2 − 28m4

2
32m3

1m2(m1 +m2)

+ CES2(39m4
1 + 185m3

1m2 + 245m2
1m

2
2 + 115m1m

3
2 + 16m4

2)
32m3

1m2(m1 +m2)
+ . . . ,

(4.18)

where the ellipsis stands for higher orders in p. These coefficients are in complete agreement
with the velocity expansion of our amplitudes. The Hamiltonian of ref. [116] produces the
coefficients

a
(2,4)
1 = m2

(
CES2

(
2γ1

3 + 2γ1
2 − γ1 − 1

)
− 2γ1

3 − 2γ1
2 + 3γ1 + 1

)
2γ1(γ1 + 1)m1

, (4.19)

and

a
(2,4)
2 = m2

2 (CES2
(
30γ1

4 − 29γ1
2 + 3

)
− 30γ1

4 + 59γ1
2 − 24γ1 − 5

)
16γ1 (γ12 − 1)m1

,

a
(2,5)
2 = −m2

2 (CES2
(
15γ1

4 − 13γ1
2 + 2

)
− 15γ1

4 + 43γ1
2 − 24γ1 − 4

)
16γ1 (γ12 − 1)m1

,

a
(2,6)
2 = m2

2 (CES2
(
15γ1

4 − 10γ1
2 + 3

)
− 15γ1

4 + 46γ1
2 − 24γ1 − 7

)
16γ1 (γ12 − 1)2m13

, (4.20)

a
(2,4̃)
2 =

(
95γ1

4 − 102γ1
2 + 15

)
m1

32γ1 (γ12 − 1) , a
(2,5̃)
2 = 95γ1

4m1 − 102γ1
2m1 + 15m1

32γ1 − 32γ13 ,

a
(2,6̃)
2 = 65γ1

4 − 66γ1
2 + 9

16γ1 (γ12 − 1)2m1
,

where the coefficients a(2,)
2 correspond to the spinning particle as the test body, while a(2,̃)

2
correspond to the scalar particle as the test body. These coefficients exactly reproduce the
test body expansion of our amplitudes.

5 Observables from the eikonal phase

The conservative Hamiltonian we obtained in the previous section enables the calculation
of physical observables for a binary of compact objects interacting through gravity. On the
one hand, one may calculate quantities that describe bound trajectories of the binary, as
the bound-state energy. On the other hand, observables pertaining to unbound orbits have
received a surge of attention. The main reason for this is that these observables serve as
input to important phenomenological models, as the effective one-body Hamiltonian [129–
134]. Recently, there has been great progress in obtaining these observables directly from
the scattering amplitude [9, 22, 25, 88]. Moreover, in the non-spinning case, refs. [26, 27]
developed a dictionary between observables for unbound and bound orbits.

One prominent connection between physical observables and the scattering amplitude
is made via the eikonal phase [102–104]. There are several studies of this connection, espe-
cially in the non-spinning case [32, 33, 102–111]. Refs. [79, 80, 86] verified the applicability
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of this approach for spinning particles in the special configuration where the spins of the
particles are orthogonal to the scattering plane. More recently, ref. [1] conjectured a for-
mula that expresses physical observables in terms of derivatives of the eikonal phase for
arbitrary orientation of the spin vectors.

In this section we extend the analysis of refs. [79, 80, 86] and [1]. Specifically, we start
by obtaining the eikonal phase via a fourier transform of our amplitudes. By restricting to
the aligned-spin configuration we obtain a scattering angle which matches that of refs. [79,
80, 86] when we specialize to the black-hole case. Then, we verify the conjecture of ref. [1] by
solving Hamilton’s equations for the impulse and spin kick, and relating them to derivatives
of the eikonal phase.

The eikonal phase χ = χ1 + χ2 +O(G3) is given by

χ1 = 1
4m1m2

√
σ2 − 1

∫
d2q

(2π)2 e
−iq·bMtree(q) ,

χ2 = 1
4m1m2

√
σ2 − 1

∫
d2q

(2π)2 e
−iq·bM4+5(q) . (5.1)

Using our amplitudes expressed in the center-of-mass frame (see eq. (3.11)) we find

χ1 = ξEG

|p|

[
−a(0)

1 ln b2 − 2a(1,1)
1
b2 (p× S1) · b + a

(2,4)
1

(
2
b2 S2

1⊥ − 4(S1⊥ · b)2

b4

)]
,

χ2 = πξEG2

|p|

[
a

(0)
2
|b|
− a

(1,1)
2
|b|3

(p× S1) · b + a
(2,4)
2

(
1
|b|3

S2
1⊥ − 3(S1⊥ · b)2

|b|5

)
(5.2)

−
(
a

(2,5)
2 S2

1 + a
(2,6)
2 (p · S1)2

) 1
|b|3

]
,

where we define S⊥1 ≡ S1 − S1·p
p2 p.

We may now use the eikonal phase to obtain certain classical observables. We start by
considering the aligned-spin kinematics of refs. [79, 80, 86]. Specifically, we take the spin
to be parallel to the orbital angular momentum, and hence orthogonal to the scattering
plane. This implies the relations

S1 · b = S1 · p = 0. (5.3)

Since the scattering process is confined to a plane, it can be described by one scattering
angle θ = θ1 + θ2 +O(G3), which we obtain as a derivative of the eikonal phase [102–104]

θi = − E

m1m2
√
σ2 − 1

∂bχi , i = 1, 2 , (5.4)

where b = |b|. The novel piece of the 2PM angle we obtain is quadratic in spin and given by

θ2,S2
1

= 3EπG2S2
1

32m2
1b

4(σ2 − 1)2

{
m2

(
6(5σ4 − 6σ2 + 1) + 2CES2(45σ4 − 42σ2 + 5)

)
+m1

(
(65σ4 − 66σ2 + 1) + CES2(125σ4 − 138σ2 + 29)

)}
. (5.5)

By specializing to the black-hole case (CES2 = 1) we reproduce the result of ref. [86].
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Ref. [1] conjectured a formula that directly relates observables in a scattering event
with arbitrary spin orientations to the eikonal phase. The observables in question are the
impulse ∆p and spin kick ∆S1, where

p(t =∞) = p + ∆p , p(t = −∞) = p ,

S1(t =∞) = S1 + ∆S1 , S1(t = −∞) = S1 . (5.6)

Specifically, by obtaining the impulse and spin kick through O(G2) using Hamilton’s equa-
tions, we find that they may be written as

∆p⊥ = −{p⊥, χ} −
1
2 {χ, {p⊥, χ}} − DSL (χ, {p⊥, χ}) + 1

2 {p⊥,DSL (χ, χ)} ,

∆S1 = −{S1, χ} −
1
2 {χ, {S1, χ}} − DSL (χ, {S1, χ}) + 1

2 {S1,DSL (χ, χ)} . (5.7)

In eq. (5.7) we use the definitions

{p⊥, f} ≡ −
∂f

∂b
, {S1, f} ≡

∂f

∂S1
× S1 , DSL (f, g) ≡ −S1 ·

(
∂f

∂S1
× ∂g

∂Lb

)
, (5.8)

where Lb ≡ b× p. In the above we decompose the impulse as

∆p = ∆p‖
p

|p|
+ ∆p⊥ . (5.9)

Eq. (5.7) does not give ∆p‖. Instead, we obtain ∆p‖ from the on-shell condition
(p + ∆p)2 = p2.

Our calculation establishes the conjecture of ref. [1] at the quadratic-in-spin level. The
fact that the relation holds without modification when we include these higher-in-spin terms
is strong indication for its validity in general. Our calculation further serves as evidence in
favor of the surprisingly compact all-order formula that relates the scattering observables
to the eikonal phase,

∆O = ie−iχD{O, eiχD} , (5.10)

where for our case O = p⊥ or S1, and χDg ≡ χg + iDSL(χ, g).

6 Conclusions

In this paper we obtained the 2PM-order Hamiltonian that describes the conservative dy-
namics of two spinning compact objects in General Relativity up to interactions quadratic
in the spin of one of the objects. We followed the approach of refs. [1, 16] which was based
on scattering amplitudes and EFT. Along with the results of [1] for the bilinear-in-the-spins
interactions, this completes the O(G2) analysis of quadratic-in-spin effects not including
tidal effects.

To construct the Hamiltonian we followed a matching procedure. Ref. [16] developed
this procedure for non-spinning particles, while ref. [1] extended it to the spinning case.
Specifically, we calculated and matched two amplitudes, one in our full theory and one
in an EFT. Ref. [1] introduced the full theory to describe the minimal and non-minimal
coupling of particles of arbitrary spin to gravity. The Lagrangian contains operators that
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are in one-to-one correspondence with those of the worldline EFT of [119]. The EFT we
used captures the dynamics of non-relativistic spinning particles interacting via a potential
with unfixed coefficients. This EFT extended the one of [1] to include operators quadratic
in the spin of one of the particles. By matching the amplitudes computed in these two
theories, we fixed these coefficients and hence determined the desired Hamiltonian.

In our calculation we considered effects up to quadratic in the spin of one of the par-
ticles, while we took the other particle to be non-spinning. In terms of our full theory,
we included the first non-minimal-coupling operator along with the corresponding arbi-
trary Wilson coefficient CES2 . Unlike the linear-in-spin results, the effects of this operator
are not universal and generic bodies are described by different values of CES2 . As a spe-
cific example, CES2 = 1 describes the Kerr black hole. For arbitrary values of CES2 , we
found that the amplitude depends on q2S2

1 and (q · S1)2 independently, rather than on
the linear combination q2S2

1 − (q · S1)2. The latter was expected based on an observation
in refs. [1, 100]. Recently, ref. [41] also remarked that finite-size effects spoil the above
expectation. Interestingly, for the Kerr black-hole case (CES2 = 1) the amplitude indeed
depends on the linear combination q2S2

1 − (q · S1)2.
The produced conservative Hamiltonian enables the calculation of observables per-

taining to binary systems of spinning black holes or neutron stars. For example, one may
study bound states of the binary by choosing suitable initial conditions. In this paper we
chose to compute scattering observables instead, which may be used in the construction
of important phenomenological models as the effective one-body Hamiltonian [129–134].
Specifically, by solving Hamilton’s equations we obtained the relevant impulse and spin
kick. In this way we verified the conjecture of ref. [1], which expresses these observables
in terms of the eikonal phase via the simple compact formula in eq. (5.10). The existence
of such a formula has intriguing implications in classical mechanics. Specifically, it hints
towards a formalism that bypasses using Hamilton’s equations, and directly expresses the
observables in terms of derivatives of a single function of the kinematics.

In order to establish the validity of our result for the quadratic-in-spin two-body Hamil-
tonian, we performed several checks against the literature. We did this by comparing at
the level of the gauge-invariant amplitudes in the regime where they overlap. Firstly, we
verified that our amplitude expanded in velocity matches the one calculated using the
Hamiltonian of ref. [115], which was obtained in the PN approximation. Secondly, by
expanding our amplitude in the test-body limit we found agreement with the amplitude
obtained by the Hamiltonian of ref. [116]. As a third check, we computed the scattering
angle for the kinematic configuration where the spin vector is aligned with the orbital an-
gular momentum of the system and confirmed that it reproduces the one of ref. [86] for
the BH case, CES2 = 1. Finally, we compared the impulse in eq. (5.7) with the one given
in ref. [117] in covariant form and found agreement.

Our calculation serves as evidence that the formalism of ref. [1] can capture the effects
of non-minimal coupling to gravity. Therefore, an obvious future direction is to extend this
analysis to include more powers of spin. Moreover, a number of pressing questions remain
interesting and unanswered. These include the extension of these methods to higher PM
orders, the proof of the relation between classical scattering observables and the eikonal
phase, along with potential extensions of this relation to bound-orbit observables.
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