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Summary

Nonparametric smoothing methods are used to model longitudinal data, but the challenge remains
to incorporate correlation into nonparametric estimation procedures. In this paper, we propose an
efficient estimation procedure for varying coefficient models for longitudinal data. The proposed
procedure can easily take into account correlation within subjects and directly deal with both
continuous and discrete response longitudinal data under the framework of generalized linear models.
Unlike the generalized estimation equation approach, the newly proposed procedure is more efficient
when the working correlation is misspecified. For varying-coefficient models, it is often of interest
to test whether coefficient functions are time-varying or time-invariant. We propose a unified and
efficient nonparametric hypothesis testing procedure, and further demonstrate that the resulting test
statistics have an asymptotic chi-squared distribution. In addition, the goodness-of-fit test is applied
to test whether the model assumption is satisfied. The corresponding test is also useful for choosing
basis functions and the number of knots for regression spline models in conjunction with the model
selection criterion. We evaluate the finite sample performance of the proposed procedures with Monte
Carlo simulation studies. The proposed methodology is illustrated by an analysis of a AIDS data set.
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1. Introduction

Longitudinal data occur often in biomedical research, where data are collected at irregular and
possibly subject-specific time points. Due to their unbalanced nature, it is difficult to directly
apply traditional multivariate regression techniques. To explore possible time-dependent
effects, time-varying coefficient models and their extensions have been proposed for
longitudinal data analysis. See, for example, Hoover, et al. (1998), Wu, et al. (1998), Fan and
Zhang (2000), Martinussen and Scheike (2001), Chiang, et al. (2001), Huang, et al. (2002) and
references therein. These authors propose various estimation procedures for varying-
coefficient models under the settings of longitudinal data, but they have not discussed how to
incorporate information on the correlation structure within subjects into their estimation
procedures. Furthermore, the aforementioned works only discuss continuous responses under
a linear model framework. In this paper, we are interested in developing a general approach
for both continuous and discrete responses under the generalized linear model framework.
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There are vast nonparametric approaches for correlated errors (Wang, 1998a and 1998b;
Opsomer et al., 2001 and references therein), but most of nonparametric literature focus on
consistent and efficient estimation including recent series of kernel and spline approaches by
Lin and Carroll (2000), Wang (2003), Lin et al. (2004) and Wang et al. (2005). Hart (1997)
and references therein provides nonparametric goodness-of-fit tests, however, most of these
approaches treated response variables as normal outcomes. More recently, Zhang (2004)
proposed generalized linear mixed models on hypothesis testing for varying coefficients model,
the response variables could be non-normal such as binary or poisson, however, there is a strong
parametric assumption for random effects, and typically the random effects are assumed to be
normal. Since the high dimensional likelihood for correlated discrete data usually does not
have a closed form and numerical approximations such as Laplace method might be required.
In addition, since Zhang’s approach is to transform testing varying coefficient to variance
component testing problem, and the variance component has non-negative constraint, therefore
Zhang’s test is a mixture of chi-squared asymptotically. However, the large sample
approximation of mixture chi-squared often performs poor in simulation studies (Crainiceanu
and Ruppert, 2004). Testing for more than one variance component could be even more
complicated.

Our research is motivated by an analysis of a subset of longitudinal data from the Multi-Center
AIDS Cohort study. The data set contains the HIV status of 283 homosexual men who were
infected with HIV during the follow-up period between 1984 and 1991. The number and time
of measurements vary between individuals, with at least one, to a maximum of 14,
measurements. Huang, et al. (2002) analyzed this data set by taking CD4 cell counts as the
response variable, and demonstrated that the effects on baseline intercept, smoking status, age
and pre-CD4 counts might be time varying. However, their analysis ignored within subject
correlation. It is important to incorporate correlation structures in nonparametric local
modeling for longitudinal data, as Wang (2003), Lin et al. (2004) demonstrated that the kernel
and smoothing spline estimators using the true covariance is more efficient than the
independent structure. However, in practice, the true covariance is often unknown.

Empirically, it is also difficult to estimate an unstructured covariance matrix for the following
reasons: (1) the covariance matrix has to be positive definite; however, the estimator of the
unstructured covariance matrix is often non-positive definite for unbalanced longitudinal data
(Lipsitz, et al. 2000); (2) high dimensional nuisance parameters could be involved if the data
are measured over a long period of time; (3) the inverse of the covariance is needed and
essential, therefore the smallest eigenvalues of the covariance matrix are the most important;
but these are poorly estimated when the dimension of the covariance matrix is large (Qu and
Lindsay, 2003). Even if the correlation matrix is assumed to possess a simplified working
structure as in generalized estimating equations (Liang and Zeger, 1986), the estimation of the
correlation matrix could still be non-positive definite (Crowder, 1995).

Our goal in this paper is to develop a unified approach which enables us to handle high
dimensional problems without losing efficiency. We propose an estimation procedure for
varying coefficient models using the penalized spline (Ruppert and Carroll, 2000) and
quadratic inference function approaches (Qu, et al. 2000). The proposed method allows us to
directly incorporate correlations into model building, but does not require us to estimate the
nuisance parameters associated with correlations. Under certain regularity conditions, we
establish the asymptotic normality of the resulting estimator and show that our estimator is
asymptotically efficient within the class where the moment conditions are satisfied.

Another goal of interest is to examine whether coefficient functions are time-varying or are
invariant. In general, this is still challenging as we mention earlier that the likelihood functions
are intractable when data are correlated and discrete; in addition, a specific parametric
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alternative is not desirable in nonparametric models, and therefore a typical likelihood ratio
test might not be applicable. Huang et al. (2002) constructed test statistics based on the
difference of the residual sum of squares under the null and alternative. Their approach does
not require likelihood functions; however, the asymptotic properties of their test have not been
developed and they proposed bootstrap sampling strategies to determine a critical value.

This leads us to consider nonparametric goodness-of-fit tests for large samples. We propose a
simple and efficient statistical inference procedure which does not require likelihood functions.
The proposed test statistics have a chi-squared limiting distribution under the null hypothesis.
In addition, we are able to perform a goodness-of-fit test for the model assumption. This
provides an objective criterion for choosing basis functions in regression spline models and
determining the number of knots in penalized spline approaches. A goodness-of-fit test has not
been developed in the nonparametric literature when the likelihood function is not available.
In addition, we also apply Andrews’ (1999) generalized method of moments Bayesian
information criterion (BIC) which allows us to select between models when the goodness-of-
fit tests fail to reject.

This paper is organized as follows: In Section 2, we propose an estimation procedure under
the varying coefficient model, and further establish the strong consistency and asymptotic
normality of the proposed estimator. In Section 3, we discuss some practical issues to
implement the proposed estimation procedures. In Section 4, a nonparametric goodness-of-fit
test and a model selection procedure are illustrated. We assess the finite sample performance
of the proposed procedure with Monte Carlo simulation and illustrate the proposed
methodology by an analysis of an AIDS data set in Section 5. Discussion is given in Section
6. Technical conditions and proofs are provided in the Appendix.

2. A new estimation procedure

In this section, we will illustrate how to estimate coefficient functions using the penalized
spline, and how to incorporate correlation structures using quadratic inference functions. We
start with a brief introduction to quadratic inference functions.

2.1 Quadratic inference functions

For longitudinal data, let yi(t) be a response variable and xi(t) be a p×1 vector of covariates,
measured at time t = t1, …, tni

 for subjects i = 1, …, N. We assume that the model satisfies the
first moment model assumption:

where μ(·) is a known inverse link function and β is p-dimensional parameter vector. The quasi-
likelihood equation (Wedderburn, 1974) for longitudinal data is

where Vi = var(yi), yi = (yi(t1), ···, yi(tni
))′, μi = (μit1, ···, μitni)′, and μ ̇i = ∂μi/∂β. In practice, Vi is

often unknown, and the empirical estimator of Vi based on sample variance could be unreliable,
especially when there is a small number of replications relative to a large number of variance
components. Liang and Zeger (1986) introduced generalized estimating equations to simplify
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Vi by assuming , where Ai is a diagonal marginal variance matrix and R is a
common working correlation which involves a small number of nuisance parameters. If the
working correlation R is misspecified, the estimator of the regression parameter is still
consistent, but is not efficient within the same class of estimating functions.

Qu et al. (2000) introduced the quadratic inference function by assuming that the inverse of
the working correlation can be approximated by a linear combination of several basis matrices,
that is,

(1)

where I is the identity matrix and Mi are symmetric matrices. The advantage of this approach
is that it does not require estimation of linear coefficients ai’s which can be viewed as nuisance
parameters, since the generalized estimating equation is a linear combination of elements of
the estimating functions

(2)

Because the dimension of the above estimating equations is greater than the number of
unknown parameters, we cannot set each component in (2) to be zero to solve for β. Instead
we estimate β by setting ḡN as close to zero as possible, in the sense of minimizing the quadratic
function:

(3)

where Ω = var(gi), here we assume N subjects are independent and identically distributed. The
estimator in (3) is also called generalized method of moments estimator in econometrics
literature (Hansen, 1982). The covariance Ω is invertiable if estimating equations in gi are not
linearly dependent. The covariance Ω in (3) is often unknown, but it can be estimated

consistently by . Note the additional requirement for C̄N being invertible is that
N ≥ dim(gi). The quadratic function

(4)

is called the quadratic inference function (Qu et al., 2000), because it provides an inference
function for testing of β. This approach also provides an optimal linear combination of given
estimating functions such that the asymptotic variance of the estimator attains the minimum
in the sense of Löwner ordering (e.g., Pukelsheim, 1993, p. 12).
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2.2 An effective estimation procedure via penalized quadratic inference functions

Under the settings of generalized linear models, varying coefficient models assume that the
following mean structure

(5)

where h(·) is a known inverse link function. Varying coefficient models were systematically
introduced by Hastie and Tibshirani (1993). Here we are interested in the setting of longitudinal
data where data are correlated within the same subject. Suppose Buv(t) is a set of basis functions
of the functional space to which βu(·) belongs, and βu(t) can be approximated by a linear
combination of the basis functions. Specifically,

where γuv’s are constants, and Vu is associated with the number of basis functions for the uth
coefficient. Substituting the approximation of βu(t) into (5), the mean function in (5) can be
approximated by

The basis functions can be selected as polynomials, Fourier basis functions or splines. Our
approach is not restricted to one specific choice of basis functions, but here we consider only
the q-degree truncated power spline basis with knots κ1, ···, κKu

where . In Section 4, we will discuss how to choose q and the number of knots
using a goodness-of-fit test, and generalized method of moments model selection criterion.
With the truncated power spline basis, the coefficient function can be modeled by

(6)

To incorporate correlation into the model, we apply the idea of the quadratic inference function
in Section 2.1 and construct estimating functions as follows. We create ḡN as in (2) with the
mean of response μi in (5) approximated by using the basis in (6). We can further derive a
quadratic inference function QN (γ) in (4), which is a function of parameters γ = {γuv, u = 1,
…, p; v = 0, …, Vu}. Minimizing QN (γ) yields an estimator for γ. Plugging the estimator of
γuv into the basis expansion (6), we obtain an estimator for βu(t). However, it is well known
that the model in (6) usually over-parameterizes the coefficient function, and therefore the
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resulting estimator is undersmoothed and has a large variance. To overcome this drawback,
we borrow the idea of the penalized spline (Ruppert and Carroll, 2000) and propose a penalized
quadratic inference function:

(7)

where D is a diagonal matrix with 1 if γuv is the coefficient of the truncated power function
associated with the knots in (6), and 0 otherwise, and λ is a smoothing parameter which can be
chosen by data-driven methods such as cross-validation and generalized cross-validation. If
λ is large, it has more shrinkage towards a polynomial fit, less weights on selected knots, and
it is oversmoothed. On the other hand, if λN is small, it is undersmoothed. See Wand
(1999),Ruppert (2002),Yu and Ruppert (2002),Kim, et al. (2003),Jarrow et al. (2004) and Yu
and Ruppert (2004) on the penalized spline approach.

2.3 Asymptotic properties of estimators

In this section, we will study the asymptotic properties of the penalized quadratic inference
function estimator. Here we focus only on fixed-knot asymptotics, since fixed knots spline
regression might be more useful for developing a practical statistical methodology, as argued
by Yu and Ruppert (2002). We first establish the asymptotic properties of the penalized
quadratic inference function estimator when the smoothing parameter λN goes to 0 as sample
size N goes to infinity. Theorem 1 shows the strong consistency of the resulting estimator of
the penalized quadratic inference function, and Theorem 2 establishes the root N consistency
and asymptotic normality of the resulting estimator.

Theorem 1—Under Conditions A–D in the Appendix, if the smoothing parameter λN = o(1),
then the spline regression parameter estimator γ̂ by minimizing (7) exists and converges to γ0
almost surely.

Theorem 2—Under Conditions A–E in the Appendix, if the smoothing parameter λN = o
(N−1/2), then the spline regression parameter estimator γ ̂ by minimizing (7) is asymptotically
normal and efficient (i.e., the asymptotic variance of the estimator reaches lower bound). That
is

where γ0 is the parameter satifying Eγ0gi = 0, , J0 and C0 are given by 

converges to J0 in probability and  converges to C0 in probability.

(How to compare GEE? Could you please add some arguments on QIF is more efficient than
GEE when working correlation structure is misspecified. I think, it will more convince the
referees and AE why people should use QIF rather than GEE.)

Next, we establish the asymptotic distribution when λ is treated as fixed. Notice that γ̂ by
minimizing (7) is asymptotically equivalent to solving
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Let , then γ ̂(λ) solves . If we assume that E[s1{γ(λ), λ}] =
0 for a fixed λ, then we are solving unbiased estimating equations. The following asymptotic
distribution of γ ̂(λ) can be derived based on estimating function theory (e.g. Heyde, 1997, Chap.
2):

where  and .

3. Practical implementation issues

In practical implementation, one has to choose the basis for the inverse of the correlation matrix,
determine the magnitude of λ, and calculate the standard error and confidence interval of the
resulting estimator. In this section, we address these practical issues.

3.1 Choice of the basis for the inverse of the correlation matrix

We discuss the choice of basis matrices Mi in (1) in this section. If the working correlation is
exchangeable, we can choose a basis matrix M1 with 0 on the diagonal and 1 off-diagonal. If

the working correlation is AR-1, then  can be 1 on the sub-diagonal and 0 elsewhere, and

 can be 1 on (1, 1) and (N, N) components and 0 elsewhere. However,  can often be

dropped out of the model, as removing  does not affect the efficiency of the estimator too

much, but could simplify the estimation procedure. If we use both M1 and , then they are
effective for modeling either the exchangeable or AR-1 working correlation. This is useful
when there is uncertainty as to which working correlation structure is appropriate. Our
simulation also confirms this finding. If there is no prior information on working correlation,
Qu and Lindsay (2003) provide an adaptive estimation equation approach to approximate the
true correlation empirically, their approach does not require to invert large dimensional
unstructured correlation matrix.

3.2 Choice of smoothing parameter

Selection of the smoothing parameter is crucial in model fitting. It is desirable to have an
automatic and data-driven method to select the smoothing parameter. Here we extend
generalized cross-validation to the penalized quadratic inference function. Following the
conventional technique of penalized least squares (e.g., Ruppert, 2002), we define the effective
degrees of freedom as

where Q ̈
N is the second derivative of QN with respect to γ. Thus, a generalized cross-validation

statistic is defined as

(8)

and further λ ̂ = argminλGCV(λ). In practice, the above minimization can be carried out by
searching over a grid of λ values.
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3.3 Standard error formula

We can derive the standard error formula for the resulting estimator using the sandwich
formula,

which can be shown to be a consistent estimator of cov(γ ̂) as given in Theorem 2. Denote
Bu(t) = [Bu1(t), ···, BuVu

(t)]′ and γ ̂u = [γ ̂u1, ···, γ̂uVu
]′. Then an estimator for βu(t) is

 and its covariance can be estimated by .

Ignoring the approximation error in (6), a 100(1− α)% pointwise confidence interval of βu(t)
is given by

(9)

where zα/2 is the 100(1 − α/2)th percentile of the standard normal distribution, since the resulting
estimator follows an asymptotic normal distribution by Theorem 2.

4. Nonparametric goodness-of-fit tests and model selection

In practice, parsimonious models are always desirable to enhance model predictability. It is of
interest to test whether parsimonious parametric models can be used to approximate coefficient
functions from the shape of their estimators. For varying coefficient models, it is of particular
interest to test whether some coefficients are time-varying or time-invariant. In other words,
we are interested in testing

(10)

for some u, where βu0 is an unknown constant. This problem can be handled using truncated
power splines regression as in (6). Based on (6), we can test the following null hypothesis:

(11)

Let γ̃ denote the estimator under H0 and γ ̂ be the estimator under H1. Since the quadratic
inference function plays a similar role of the least-square function, Q(γ̃) and Q(γ ̂) measure how
well the model fits the data under H0 and H1, respectively. Intuitively, under H0 the difference
between Q(γ̃) and Q(γ ̂) should be very small. However, under H1, Q(γ̃) should be systematically
larger than Q(γ ̂). Thus, an appropriate test statistic to test H0 against H1 would be

(12)

Alternatively, if we apply the penalized quadratic inference function, we may also consider
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We next demonstrate that under certain regularity conditions and under H0, T and Ta have the
same limiting distribution, and both of them have a chi-squared distribution.

Theorem 3

Under conditions A–E in the Appendix, if the smoothing parameter λN = o(N−1/2), then T and
Ta asymptotically follow chi-squared with degrees of freedom equal to Vu under the null
hypothesis in (11).

An important issue arises here as to how we decide the varying coefficient function in (6) is
adequately modeled. To assess whether there is a sufficient number of basis functions in (6)
such that the model assumption E(g) = 0 is satisfied, where g is the estimating function in (2)
for a single observation, we apply the goodness-of-fit test (Hansen, 1982). Namely,

where γ ̂ is the estimator by minimizing the quadratic inference function when given basis
functions are applied in the model, and r is the dimension of ḡN in (2), and k is the dimension
of γ. This test can also be useful to determine the number of knots to be selected in (6), as too
many knots in the model might overfit the data and degrade the performance of spline
estimators (Ruppert, 2002). Notice that the above goodness-of-fit test is only applicable where
there are more estimating functions than unknown parameters. So it works for our situation as
the dimension of estimating functions in (2) is greater than the dimension of parameters.

It is also possible that the goodness-of-fit tests fail to reject several different models. How can
we assess which model is better? Notice that most of these models are not nested since different
models likely have different knots, here we let knots be equally spaced. Andrews (1999)
proposed model selection or moment selection criterion in the generalized method of moments
framework, which can also be applied here. The main idea is to penalize the objective function
Q(γ̂) for the difference of the numbers of estimating equations and parameters. For example,
Andrew’s selection criterion for a model with r estimating equations and k parameters is

(13)

where cN is ln N for BIC and 2 for AIC, which are commonly used in traditional BIC and AIC
model selection criterion. A model with a smaller value in (13) is better. The BIC in general
is better than the AIC as the latter is not consistent for different sample size. Intuitively, the

penalty term associated with r − k can be explained that Q(γ ̂) follows asymptotically , and
the mean of the chi-squared is its degrees of freedom. In our setting, if we choose m + 1 bases
matrices as in (2), then r − k = (m + 1)k − k = mk, that is, we penalize models with too many
parameters associated with high degree of polynomial functions and large number of knots.

For the multivariate model with several varying coefficients, we could set the upper limit of
knots as 20 (Ruppert, 2002), and q as 5. ( t) In practice, these numbers could be reduced to be
10 for the number of knots and 3-degree polynomial basis functions. This is because that in
principle, choice of basis functions does not affect the fit very much, although some bases
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functions are more numerically stable with simpler computation (Ruppert et al., 2003, p. 69).
After we determine these, we could choose the optimal combination of knots and basis
functions where the BIC is the minimum. The selected model with the minimum BIC provides
the best fit of the data within a class where upper limit number of knots and the degrees of
polynomial basis functions are determined. The model selection procedure could be
computationally intensive (Ruppert et al., 2003, p. 64) as it is possible that the total number of
combination is very high. Wand (2000) provides review and comparison for some recent model
selection approaches.

It is important to point out that model selection should be done at the begining stage since the
hypothesis testing for whether the coeficient is time varying or not depends on how we choose
the full model. If the full models under the alternative are different, then test statistics and
corresponding p-values could be different, although it might not affect statistical significance
of our tests dramatically.

5. Simulation and application

In this section, we assess the finite sample performance of the proposed procedures in Sections
2 and 3 with Monte Carlo simulation studies. We also demonstrate the proposed method by an
analysis of an AIDS data set.

5.1 Simulation studies

Example 1 (Binary response)—We generate 200 subjects for each simulation. Each
subject is supposed to have 31 repeated measurements at centered scheduled time points {−15,
−14, …, 15}, but in reality each subject has a 60% chance of missing the scheduled time except
at the beginning time. The true time also varies around the unskipped schedule time following
the uniform (−0.5, 0.5) distribution. The response variable yij has the marginal distribution

where i = 1, …, 200 and j = 1, …, ni. We simplify this simulation by assuming that covariates
are constant 1. We model 4 kinds of varying coefficients β(t) as follows:

To create correlated responses, we apply the algorithm following Park et al. (1996) under
exchangeable correlation structure with the correlation parameter as 0.5.

We first perform the goodness-of-fit test in Section 4 to select the degree of truncated power
polynomial splines and the number of knots which are evenly distributed over the ranges of
tij. The results are summarized as follows. For basis function in (6), the goodness-of-fit test
yields q = 3 for β0(t), β1(t) and β3(t), and q = 2 for β2(t); for number of knots, the test also
chooses 5 knots for β1(t), and no knots for β0(t), β2(t) and β3(t). With the selected degrees and
the number of knots, we calculate the quadratic inference function estimators by minimizing
(7). Here we assume exchangeable working correlation for estimating equations in (2), that is,
the basis matrix M1 is 0 on the diagonal and 1 off-diagonal. The result by assuming AR-1
working correlation is similar to that under exchangeable correlation, and is not presented here.
We define the mean absolute deviation of errors by minimizing (7)
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where tj = (−15, …, 15). Figure 1 provides fitted varying coefficient curves corresponding to
nine deciles of mean absolute deviation of errors from 1000 simulations. Figure 1 demonstrates
that the quadratic inference function approach applying the penalized spline works well in
settings where coefficients have linear, cubic, sine and cosine relationships of time.

We apply the test result in (12) to illustrate how the quadratic inference function performs for
testing whether coefficients vary over time in finite samples. We simulate data such that β1(t)
= 0.5. The null hypothesis H0: β1 is constant over time. We let the basis functions for β1(t)
under H0 be 1 and basis functions for β1(t) under the alternative be 1, t, t2, t3,

. We calculate γ̃1 and γ ̂1 by minimizing (4), where ḡN is constructed by
assuming either exchangeable or AR-1 working correlation structures. Since the difference of
the numbers for the basis functions under H1 and H0 is 6, the test statistic Q(γ̃) − Q(γ ̂)
asymptotically follows . Figure 2 provides quantile-quantile plots under both exchangeable
and AR-1 working correlations and illustrates that under H0 the empirical quantiles of Q(γ̃) −
Q(γ ̂) follow the theoretical chi-squared quantile rather well.

We next examine the power of the quadratic inference function approach when β1(t) deviates
from the constant. Let

where 0 ≤ η ≤ 1. We calculate test statistics Q(γ̃) − Q(γ ̂) from 1000 simulations for various η,
and find the percentage of test statistics greater to or equal to 12.59, the 95% quantile of .
Figure 3 illustrates the power function curve. Notice that when η is close to 0, the test size is
approximately 0.05; and when η reaches 0.25, the probability of rejection reaches 1.

Example 2 (Continuous response)—In this example, we generate 200 subjects, and each
subject is supposed to have repeated measurements at scheduled time points {0, 1 …, 30}, but
has a 60% chance of missing the scheduled time except at time 0. The true time also varies
around the unskipped schedule time following the uniform (−0.5, 0.5) distribution. The
response variable yij is modeled as

where i = 1, …, 200 and j = 1, …, ni. The time-varying coefficients satisfy:
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The covariates are generated as follows:  has a uniform (t/10, 2 + t/10) distribution;

conditioning on  has a normal distribution with mean 0 and variance

; and  has a Bernoulli(0.6) distribution. The error εi follows a multivariate
normal distribution with mean 0 and the marginal variance matrix 2I, I is an identity matrix,
and the correlation is exchangeable with correlation 0.8.

We select the degrees q and the number of knots using the goodness-of-fit test in Section 4.
The test provides q = 3 for all coefficients, 5 knots for β1(t) and no knots for β0(t), β2(t) and
β3(t). With the selected degrees and the number of knots, we calculate the quadratic inference
function estimators by minimizing (7) with exchangeable working correlation structure.

As in Example 1, Figure 4 provides fitted varying coefficient curves corresponding to nine
deciles of mean absolute deviation of errors from 1000 simulations. Figure 4 clearly shows
that the quadratic inference function approach applying the penalized spline works well in
settings where coefficients have linear, cubic, sine and cosine relationships of time.

We also use this simulation to illustrate how different working correlation could affect our
estimations. The true correlation is exchangeable here, we calculate the quadratic inference
function estimators by minimizing (7) using AR-1 working correlation and independent
structures in addition to above exchangeable correlation structure, we caculate the median of
absolute deviation of errors between the fitted and true values of β0, β1, β2 and β3, and plot
them against time t = 0, 1, …, 30. Figure 6 shows that the estimation based on independent
structure has the largest median of absolute deviation of errors for every time point. Estimations
using AR-1 and exchangeable have similar errors, though using the true exchangeable
correlation structure produces least median of absolute deviation of errors.

To illustrate how the quadratic inference function performs for testing whether coefficients
vary over time in finite samples, we simulate the same data as above, except let β1(t) = 2 such
that under the null hypothesis H0: β1 is constant over time. We let the basis functions for β1

under H0 be 1, and the basis functions for β1(t) under the alternative be 1, t, t2, t3,

. We calculate γ̃1 = γ̃10 and γ ̂1 = (γ ̂10, γ ̂11, …, γ̂18)
by minimizing (4), where ḡN is constructed by assuming either exchangeable or AR-1 working
correlation structures. Since the difference of the numbers for the basis functions under H1 and

H0 is 8, the test statistic Q(γ̃) − Q(γ ̂) asymptotically follows . Figure 5 provides quantile-
quantile plots under exchangeable and AR-1 working correlation and illustrates that under
H0 the empirical quantiles of Q(γ̃) − Q(γ ̂) follow the theoretical chi-squared quantile rather
well.

We also examine the power of the quadratic inference function approach when β1(t) deviates
from the constant. Let

where 0 ≤ η ≤ 1. We calculate test statistics Q(γ̃) − Q(γ ̂) from 1000 simulations for various η
using exchangeable, AR-1 correlation and independent structures, and find the percentage of

test statistics greater or equal to 15.51, the 95% quantile of . Figure 7 illustrates power
function curves for three correlation structures. Notice that when η is close to 0, the test sizes
are all approximately 0.05; and when η reaches 0.06, the probabilities of rejection reach 1. In
addition, the power function using true exchangeable correlation structure is much higher than
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the power using AR-1 and independent structures when η < 0.06. The test power using AR-1
and independent structures are close, however, the test power by assuming independent
structure is the worst.

5.2 Application to AIDS data

We apply AIDs data (Huang et al., 2002) to illustrate how the penalized quadratic inference
function approach works for real data. This data set consists of 283 homosexual males who
were HIV positive between 1984 and 1991. Each patient was supposed to have measurements
taken every 6 months, but it often happened that patients missed appointments or rescheduled
their appointments. Therefore each patient had a different number of repeated measurements
and the true observation times were not equally spaced. Here time t is defined as the time (in
years) when subjects had their visits after their HIV infection. We observe that each patient
has minimum 1 and maximum 14 measurements for this data. It is known that HIV destroys
CD4 cells, so by measuring CD4 cell counts and percentages in the blood, doctors are able to
monitor progression of the disease. The response variable is the CD4 percentage over time.
Three covariates were also collected: patient’s age, smoking status with 1 as smoker and 0 as
nonsmoker, and the CD4 cell percentage before their infection. We model it as

We perform the goodness-of-fit test and choose q = 3 in the basis functions of (6) for all
coefficients, and the number of knots to be 0, 5, 1, and 3 for βu(t), u = 0, 1, 2, 3 respectively.

Figure 8 provides fitted curves (the solid line) for coefficients of intercept, smoking, age and
pre-infection CD4 effects. We also provide 95% pointwise confidence intervals (dotted lines)
for four varying coefficients. Figure 8 also implies that the intercept decreases over time, though
the rate of decreasing drops; smoking and age effects are not significant; and the pre-infection
CD4 percentage appears to have a positive relationship with the post-infection CD4 percentage.
These findings are consistent with Wu and Chiang (2000),Fan and Zhang (2000) and Huang
et al. (2002).

To quantify these findings, we apply the quadratic inference function test in (12) to test whether
smoking and age effects are statistically significant. For intercept and pre-infection CD4
effects, we also test whether they are time-invariant or not. We fit the model with a 3-degree
polynomial function of t for all varying coefficients, a total of 25 parameters with 4 (0 knots)
for intercept, 9 (5 knots) for smoking, 5 (1 knot) for age and 7 (3 knots) for pre-infection CD4.
We assume an exchangeable working correlation, therefore the number of estimating equations
r = 25 × 2 = 50. The goodness-of-fit test statistic Q(γ̃) = 23.1. By Section 4, with r − k = 25
degrees of freedom, the asymptotic p-value from the chi-squared test is 0.57. This indicates
that the model fits the data reasonably well based on the asymptotic results in Section 4. For
testing whether smoking is significant, we set all 9 parameters for the smoking coefficient to
be 0, and estimate the rest of the 16 parameters by minimizing the quadratic inference function
in (7). The test statistic under H0 is 36.1, the difference between the two test statistics under
H1 and H0 is then 13.0, and the corresponding p-value is 0.163 based on chi-squared with 25
−16 = 9 degrees of freedom. Similarly, we obtain the p-value for age as 0.172. None of these
are statistically significant.

To test whether the intercept effect is time-varying, we set the 3 parameters associated with
time t to be 0 (the intercept coefficient has no knots, so there is a total of 4 parameters). The
test statistic under H0 is 105.0, the difference between the test statistics under H0 and H1 is

81.9, and the corresponding p-value is close to 0 based on the  test, where the degrees of
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freedom is calculated by 25 − 22 = 3. Similarly, we find the p-value for constant pre-infection
CD4 effects is 0.045, which is statistically significant. The final result for pre-infection CD4
effects differs from that in Huang et al.’s (2002) bootstrap approach, where their bootstrap
approximate p-value is 0.059. Examination of Figure 8 on pre-infection CD4 effects favors
our conclusion. Table 1 provides comparisons of p-values based on Huang et al.’s (2002)
approach and our method. From Table 1, our p-values calculated from quadratic inference
function test statistics are consistently smaller than Huang et al.’s results, this might be
explained by that the quadratic inference function test takes into account the correlation
information and thus may be more powerful.

6. Discussion

We propose nonparametric modeling using the penalized quadratic inference function to
incorporate correlation for longitudinal data. Our approach works for continuous and discrete
cases as it only requires correct specification of the mean structure which is modeled
nonparametrically, and we do not require any likelihood or an approximation of the likelihood
function for estimations and hypothesis testings such as in generalized linear mixed model
approach. The quadratic inference function approach is relatively simple and numerically
feasible since it does not involve any nuisance parameters associated with the working
correlation. This advantage becomes more important in nonparametric settings as there are
many more parameters involved in nonparametric modeling than in parametric or
semiparametric modeling. Existing smoothing spline methods is mainly on correlated
continuous responses. For correlated discrete data, existing nonparametric approaches either
ignore correlation and treat data as independent, or could be computationally intensive and
complex. For example, the generalized linear mixed effects model typically has parametric
model assumption on random effect, and it requires numerical approximation to compute high
dimensional likelihood functions even under the assumption that the random effests are normal.
Estimation and hypotheses testing for variance components in generalized linear mixed effects
are even more complicated if the random effects are not normal.

Another advantage of the quadratic inference function approach is that the inference function
has an explicit asymptotic form, which allows us to test whether coefficients are time-varying
or time-invariant for varying coefficient models. Further, it also enables us to do goodness-of-
fit tests for checking model assumptions, and provides an objective criterion for choosing a
sufficient number of basis functions and knots for varying coefficients. An important issue
arised here is how to select basis functions and number of knots when candidate models are
not nested to each other. This could be done using cross-validation and Mallows’ (1973) Cp

criterion if the response is continuous normal (e.g., Ruppert et al., 2003). In the setting where
there are more estimating equations than parameters such as in our case, we apply Andrew’s
(1999) generalized method of moments BIC criterion for selecting nonparametric basis
functions and knots. This model selection criterion can be applied for both continuous and
discrete responses.
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Appendix

Regularity conditions

To establish the root n consistency and asymptotic normality for the penalized quadratic
inference function estimator, we need the following regularity conditions. Similar conditions
are also given in Hansen (1982).

A.
The weighting matrix  converges almost surely to a constant matrix
C0, where C0 is invertible. This condition holds based on the weak law of large number
when N goes to infinity and the maximum cluster size is fixed.

B. The spline regression parameter γ is identified, that is, there is a unique γ0 ∈ S
satisfying mean zero model assumption

(14)

where S is the parameter space.

C. The parameter space S is compact, and γ0 is an interior point of S.

D. We require that E{g(γ)} is continuous in γ.

E. The first derivative of ḡN exists and is continuous, and  converges in probability

to  when γ ̂ converges in probability to γ0.

Proof of Theorem 1

First, the estimator γ ̂ by minimizing (7) exists since (7) has 0 as a lower bound and the global
minimum exists. Second, we will show that it is impossible that γ̂ remains outside of U, where
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U is any neighborhood of γ0. First, Uc is compact and  is continuous, where |

·|2 is the inner product of a vector. Following Conditions C and D,  achieves a
minimum in Uc, and let γ* be its minimum in Uc. Second, using identification of γ from

Condition B, we have . Hence, if we show , then
eventually γ ̂ ∈ U.

Since γ ̂ is the minimizer of (7), then

(15)

The right hand side of (15) converges to zero almost surely since λN = o(1), and by the strong
law of large numbers and Condition A, that is,

Since S is compact, we apply the uniform law of large numbers or Glivenko-Cantelli Theorem
(Billingsley, 1995, p. 269),

Then by Condition A and the continuity mapping theorem,

From (15), it follows that

as was to be shown.

Proof of Theorem 2

We denote Q ̇ and Q ̈ to be the first and second derivative of the quadratic inference function
Q with respect to γ. Using the Central Limit Theorem,

Qu and Li Page 17

Biometrics. Author manuscript; available in PMC 2009 May 11.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(16)

Since γ ̂ is obtained by minimizing (7), γ ̂ satisfies

(17)

By Taylor’s expansion,

where γ̃ is between γ0 and γ ̂. Therefore

(18)

Notice that N−1Q ̈(γ̃) converges in probability to  since γ̃ is between
γ0 and γ ̂, where γ ̂ converges to γ0 in probability by Theorem 1, and by Conditions A and E. In
addition, using the fact that 2λN D = o(N−1/2), therefore

. Similarly,

. Therefore equation (18) becomes

Then using (16),

Next we will show that  reaches minimum in Löwner ordering. Suppose we

minimize , where C is any arbitrary symmetric invertible matrix. Again, using the

above arguments, the asymptotic .

Let ,
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Since DD′ is nonegative definite matrix,

 where ≥ stands for Löwner ordering)
and the equality holds if and only if D = 0, and this occurs when C = C0, the true variance of
gi when E(gi) = 0. The efficiency proof here is a standard result as in estimating function theory
(Godambe, 1960) and generalized method of moments (Hansen, 1982). This argument can also
explain why it is important to incorporate correlation for estimation instead of assuming
independence structure.

Proof of Theorem 3

This proof is similar to the proof of Theorem 1 in Qu et al. (2000).
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Figure 1.

For binary responses, fitted varying coefficient curves corresponding to 9 deciles of mean
absolute deviation of errors, from 1000 simulations. The solid lines are true coefficient curves.
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Figure 2.

For binary responses, quantile-quantile plots for test statistics Q(β̃) −Q(β ̂) versus  under
H0: β1 is constant over time, from 1000 simulations: (a) assume exchangeable working
correlation; (b) assume AR-1 working correlation.
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Figure 3.

For binary responses, power of quadratic inference function against η for testing H0: β1 is
constant over time, from 1000 simulations.
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Figure 4.

For continuous responses, fitted varying coefficient curves corresponding to 9 deciles of mean
absolute deviation of errors from 1000 simulations. The solid lines are true coefficient curves.
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Figure 5.

For continuous responses, quantile-quantile plots for test statistics Q(β̃) − Q(β ̂) versus  under
H0: β1 is constant over time from 1000 simulations: (a) assume exchangeable working
correlation; (b) assume AR-1 working correlation.
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Figure 6.

For continuous responses, the median of absolute deviation of errors between fitted and true
values from 1000 simulations for three different working correlation structures. The bold dotted
line is from exchangeable correlation, the dotted line is from AR-1 correlation and the dash
line is from independent structure
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Figure 7.

For continuous responses, power of quadratic inference function against η for testing H0: β1 is
constant over time from 1000 simulations. The solid line is the power using exchangeable
correlation, the dotted line is the power using AR-1 correlation and the dash line is the power
using independent structure. The true correlation structure is exchangeable.
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Figure 8.

Fitted varying coefficients for AIDs data, where solid lines are fitted curves and dotted lines
are 95% pointwise confidence intervals.
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Table 1

Hypothesis testing for AIDs data, comparisons between Huang et al.’s (2002) bootstrap approach and the quadratic
inference function approach

Bootstrap
(Independent) Quadratic inference function (Exchangeable)

Null hypothesis p-value T d.f p-value

Constant baseline 0.000 81.9 3 0.000

Smoking has no effect 0.176 13.0 9 0.163

Age has no effect 0.301 7.7 5 0.172

Constant Pre-CD4 0.059 12.9 6 0.045*

T: test statistic defined in (12)

d.f.: degrees of freedom

Biometrics. Author manuscript; available in PMC 2009 May 11.


