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Abstract—This paper studies the decentralized quadratic
cheap talk and signaling game problems when an en-
coder and a decoder, viewed as two decision makers, have
misaligned objective functions. The main contributions
of this study are the extension of Crawford and Sobel’s
cheap talk formulation to multi-dimensional sources and
to noisy channel setups. We consider both (simultaneous)
Nash equilibria and (sequential) Stackelberg equilibria. We
show that for arbitrary scalar sources, in the presence
of misalignment, the quantized nature of all equilibrium
policies holds for Nash equilibria in the sense that all Nash
equilibria are equivalent to those achieved by quantized
encoder policies. On the other hand, all Stackelberg equi-
libria policies are fully informative. For multi-dimensional
setups, unlike the scalar case, Nash equilibrium policies
may be of non-quantized nature, and even linear. In the
noisy setup, a Gaussian source is to be transmitted over
an additive Gaussian channel. The goals of the encoder
and the decoder are misaligned by a bias term and en-
coder’s cost also includes a penalty term on signal power.
Conditions for the existence of affine Nash equilibria as
well as general informative equilibria are presented. For the
noisy setup, the only Stackelberg equilibrium is the linear
equilibrium when the variables are scalar. Our findings
provide further conditions on when affine policies may be
optimal in decentralized multi-criteria control problems and
lead to conditions for the presence of active information
transmission in strategic environments.

Index Terms—Cheap talk, game theory, information
theory, quantization, signaling games.

I. INTRODUCTION

T EAM theory is concerned with the interaction dynamics
among decentralized decision makers with identical ob-

jective functions. On the other hand, game theory deals with
setups with misaligned objective functions, where each player
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chooses a strategy to maximize its own utility which is deter-
mined by the joint strategies chosen by all players. Information
transmission in team problems is well-understood with exten-
sive publications present in the literature; for a detailed account,
we refer the reader to [1]. Despite the difficulty to obtain solu-
tions under general information structures, it is evident in team
problems that more information provided to any of the decision
makers does not hurt the system performance and there is a well-
defined partial order of information structures as studied by
Blackwell [2] and others. However, for general non-zero sum
game problems, informational aspects are very challenging to ad-
dress; more information can hurt some or even all of the players
in a system, see, e.g., [3]. Further intricacies on informational
aspects in competitive setups have been discussed in [4]–[6].

Signaling games and cheap talk are concerned with a class of
Bayesian games where an informed decision maker transmits
information to another decision maker. Unlike a team setup,
however, the goals of the agents are misaligned. Such a study
has been initiated by Crawford and Sobel [7], who obtained the
striking result that under some technical conditions on the
utility functions of the decision makers, the cheap talk problem
only admits equilibrium policies that are essentially quantiza-
tion policies. This is in significant contrast with the case where
the utility functions are aligned.

The cheap talk and signaling game problems find applica-
tions in networked control systems when a communication
channel/network is present among competitive and non-
cooperative decision makers [8]. For example, in a smart grid
application, there may be strategic sensors in the system [9] that
wish to alter the equilibrium decisions at a controller receiving
data from the sensors to lead to a more desirable equilibrium,
for example, by enforcing an outcome to enhance its prolonged
use in the system. One may also consider a utility company
which wishes to inform users regarding pricing information; if
the utility company and the users engage in selfish behavior,
it may be beneficial for the utility company to hide certain
information and the users to be strategic about how they in-
terpret the given information. One further area of application
is recommender systems (as in rating agencies) [10]. All of
these applications lead to a drastically new framework where
the value of information and its utilization are very fragile to
the system under consideration and our study here is an initiator
for such a general setup.

Even though, in this paper, we only consider quadratic crite-
ria under a bias term leading to a misalignment, the contrast
with the case where there is no bias (that has been heavily
studied in the information theory literature) raises a number of
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sharp conclusions for system designers working on networked
systems under competitive environments.

Identifying when optimal policies are linear or affine for
decentralized systems involving Gaussian variables under
quadratic criteria is a recurring problem in control theory,
starting perhaps from the seminal work of Witsenhausen [11],
where suboptimality of linear policies for such problems under
non-classical information structures is presented. The reader is
referred to Chapters 3 and 11 of [1] for a detailed discussion on
when affine policies are and are not optimal. These include the
problem of communicating a Gaussian source over a Gaussian
channel, variations of Witsenhausen’s counterexample [12]; and
game theoretic variations of such problems. For example, if the
noise variable is viewed as the maximizer and the encoders/
decoders (or the controllers) act as the minimizer, then affine
policies may be optimal for a class of settings, see [13]–[17].
Reference [17] also provides a review on Linear Quadratic
Gaussian (LQG) problems under nonclassical information in-
cluding Witsenhausen’s counterexample. Our study provides
further conditions on when affine policies may constitute equi-
libria for such decentralized quadratic Gaussian optimization
problems.

There have been a number of related contributions in the eco-
nomics literature in addition to the seminal work by Crawford
and Sobel, which we briefly review in the following: Reference
[18] shows that even if the sender and the receiver have identical
preferences, perfect communication may not be possible in an
equilibrium because information transmission may be costly.
Reference [19] studies the setup in [7] with two senders and
shows that if senders transmit the messages sequentially once,
then the equilibrium is always quantized and if senders transmit
the messages simultaneously and their biases are either both
positive or both negative, then a fully revealed equilibrium is
possible. Reference [20] studies a scalar setup and proves that
if multiple senders transmit the messages sequentially and their
biases have opposite signs, then a fully revealed equilibrium is
possible; this study also considers two-dimensional real valued
sources, and shows that a fully revealed equilibrium occurs if
and only if the multiple senders have perfectly opposing biases.
Moreover, multidimensional cheap talk with multiple senders
is analyzed in [21] and [22] with unbounded and bounded state
spaces, respectively. The study in [23] considers a special noisy
channel setup between the sender and receiver, and shows that
there may be infinitely many actions (countable or uncount-
able) induced in an equilibrium even though all equilibria are
interval partitions in the noiseless case [7]. Conditions for Nash
equilibria are investigated in [24] for a scenario in which there
exists a discrete noisy channel between an informed sender
and an uninformed receiver, and the source is finitely valued.
Furthermore, there are some contributions which modify the
information structure given in Crawford and Sobel’s setup: In
[25], the sender knows that the receiver has partial information
about his/her private information; whereas the sender does not
know this in [26], [27]. Reference [28] studies Crawford and
Sobel’s setup in a finite horizon environment where, in each
period, a privately informed sender transmits a message and
a receiver takes an action. For a detailed literature review
on communication between informed experts and uninformed

decision makers, we refer the reader to [29]. We note also that
in the area of information theory, there exists a vast literature
on security aspects of information transmission, see, e.g., [30],
[31]. Game theoretic analysis is also useful in various contexts
involving security problems. For example, the security of the
smart-grid infrastructure can be analyzed by considering the
adversarial nature of the interaction between an attacker and a
defender [32], [33], and a game theoretic setup would be appro-
priate to analyze such interactions. For an overview of security
and privacy problems in computer networks that are analyzed
within a game-theoretic framework, [34] can be referred.

In the control community, recently, there have been few stud-
ies: [35] considered a Gaussian cheap talk game with quadratic
cost functions where the analysis considers Stackelberg equilib-
ria, for a class of single and multiterminal setups and where linear
equilibria have been studied. For the setup of Crawford and
Sobel, but when the source admits an exponentially distributed
real random variable, [36] establishes the discrete-nature of equi-
libria, and obtains the equilibrium bins with finite upper bounds
on the number of bins under any equilibrium in addition to some
structural results on informative equilibria for general sources.

A. Contributions

The main contributions of this study are as follows. We
prove that for any scalar source, all Nash equilibrium policies
at the encoder are equivalent to some quantized policy, but
all Stackelberg equilibrium policies are fully informative. That
is, there is some information hiding for the Nash setup, as
opposed to the Stackelberg setup. We show that for multi-
dimensional setups, however, unlike the scalar case, Nash
equilibrium policies may be non-quantized and can in fact be
linear. In the noisy setup, a Gaussian source is to be transmitted
over an additive Gaussian channel. The goals of the encoder
and the decoder are misaligned by a bias term and encoder’s
cost also includes a penalty term of the transmitted signal.
Conditions for the existence of affine equilibrium policies as
well as general informative Nash equilibria are presented for
both the scalar and multidimensional setups. We compare the
results with socially optimal costs and information theoretic
lower bounds, and discuss the effects of the bias term on
equilibria. Furthermore, we prove that the only equilibrium in
the Stackelberg noisy setup is the linear equilibrium for the
scalar case.

II. PROBLEM DEFINITION

Let there be two decision makers (DMs): An encoder (DM
1) and a decoder (DM 2), as shown in Fig. 1. DM 1 wishes
to encode the M-valued random variable M to DM 2. Let X
denote the X-valued random variable which is transmitted to
DM 2. DM 2, upon receiving X , generates its optimal decision
U which we also take to be M-valued. We allow for randomized
decisions, therefore, we let the policy space of DM 1 be the set
of all stochastic kernels from M to X.1 Let Γe denote the set of

1Recall that P is a stochastic kernel from M to X if P (·|m) is a probability
measure on B(X) for every m ∈ M and for every Borel A ∈ B(X), P (A|·) is
a Borel measurable function of m.
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Fig. 1. General system model for noiseless case.

all such policies. We let the policy space of DM 2 be the set of
all stochastic kernels from X to M. Let Γd denote the set of all
such stochastic kernels.

Given γe ∈ Γe and γd ∈ Γd, the goal in the classical com-
munications theory is to minimize the expectation

J(γe, γd) =

∫
c(m,u)γe(dx|m)γd(du|x)P (dm)

where c is some cost function. One very common case is the
setup with c(m,u) = |m− u|2.

Recall that a collection of decision makers who have an
agreement on the probabilistic description of a system and a
cost function to be minimized, but who may have different on-
line information is said to be a team (see, e.g., [1]). Hence, the
classical communications setup may be viewed as a team of an
encoder and a decoder.

In many applications (in networked systems, recommenda-
tion systems, and applications in economics) the objectives of
the encoder and the decoder may not be aligned. For example,
DM 1 may aim to minimize

Je(γe, γd) =

∫
ce(m,u)γe(dx|m)γd(du|x)P (dm)

whereas DM 2 may aim to minimize

Jd(γe, γd) =

∫
cd(m,u)γe(dx|m)γd(du|x)P (dm).

In this study, the problems are investigated where the encoder
and the decoder are deterministic rather than randomized; i.e.,
γe(dx|m) = 1{fe(m)∈dx} and γd(du|x) = 1{fd(x)∈du} where
1{D} denotes the indicator function of an event D, and fe(m)

and fd(x) are some deterministic functions of the encoder
and decoder, respectively. Such a problem is known in the
economics literature as cheap talk (the transmitted signal does
not affect the cost, that is why the game is named as cheap
talk). A more general formulation would be the case when the
transmitted signal is also an explicit part of the cost function ce

or cd; in that case, the setup is called a signaling game. We will
consider a noisy communication setup, where the problem may
be viewed as a signaling game, rather than cheap talk, later in
this study.

Since the goals are not aligned, such a problem is studied
under the tools and concepts provided by game theory. A pair
of policies γ∗,e, γ∗,d is said to be a Nash equilibrium if

Je(γ∗,e, γ∗,d) ≤Je(γe, γ∗,d) ∀ γe ∈ Γe

Jd(γ∗,e, γ∗,d) ≤Jd(γ∗,e, γd) ∀ γd ∈ Γd.

We note that when ce = cd the setup is a traditional commu-
nication theoretic setup. If ce = −cd, that is, if the setup is a
zero-sum game, then an equilibrium is achieved when γe is
non-informative (e.g., a kernel with actions statistically inde-
pendent of the source) and γd uses only the prior information
(since the received information is non-informative). We call
such an equilibrium a non-informative (babbling) equilibrium.
The following is a useful observation, which follows from [7]:

Proposition 2.1: A non-informative (babbling) equilibrium
always exists for the cheap talk game.

In the discussion so far, a simultaneous game-play is assumed
and thus equilibrium refers to a Nash equilibrium. Besides the
simultaneous game-play, one can also consider a sequential
game-play; i.e., first the encoder sends the message, then the
decoder receives it and takes an action sequentially while first
the encoder’s policy is announced. Stackelberg equilibria arise
in this case. In the Stackelberg game, the encoder announces
his coding strategy and since the decoder takes an action after
receiving the message, the encoder knows the optimal action
which will be taken by the decoder and chooses the message to
be transmitted accordingly. A pair of policies γ∗,e, γ∗,d is said
to be a Stackelberg equilibrium if

Je
(
γ∗,e, γ∗,d(γ∗,e)

)
≤ Je

(
γe, γ∗,d(γe)

)
∀ γe ∈ Γe

where γ∗,d(γe) satisfies

Jd
(
γe, γ∗,d(γe)

)
≤ Jd

(
γe, γd(γe)

)
∀ γd ∈ Γd.

Throughout the paper, all equilibrium terms refer to the Nash
equilibrium unless otherwise stated; it will be separately indi-
cated for the Stackelberg game setup and equilibrium.

Crawford and Sobel [7] have made foundational contribu-
tions to the study of cheap talk with misaligned objectives
where the cost functions ce and cd satisfy certain monotonicity
and differentiability properties but there is a bias term in the
cost functions. Their result is that the number of bins in an
equilibrium is upper bounded by a function which is negatively
correlated to the bias.

We will first consider the scalar setting by taking the cost
functions as ce(m,u)=(m−u−b)2 and cd(m,u) = (m− u)2

where b denotes the bias term. The motivation for such func-
tions stems from the fields of information theory, communica-
tion theory, and LQG control; for these fields quadratic criteria
are extremely important. Recall that for the case with b = 0,
the cost functions simply reduce to those for a minimum mean-
square estimation (MMSE) problem.

III. QUADRATIC CHEAP TALK

A. Nash Equilibria in the Scalar Case

As before, let the cost functions be defined as cd(m,u) =
(m− u)2 and ce(m,u) = (m− u− b)2 where b is the bias
term. Some existence and deterministic properties of the equi-
librium policies of the encoder and the decoder are stated in
[36] and [1, Chp.4].

Theorem 3.1 [36]: (i) For any γe, there exists an optimal
γd, which is deterministic. (ii) For any γd, any randomized
encoding policy can be replaced with a deterministic γe without
any loss to DM 1. (iii) Suppose γe is an M -cell quantizer, then
there exists an optimal γd, which is the conditional expectation
of the respective bin.

The following builds on [7, Lem.1], which considers sources
on [0,1] that admit densities. We note that the analysis here
applies to arbitrary scalar valued random variables. The proofs
essentially follow from [7].
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Theorem 3.2: Let m be a real-valued random variable
with an arbitrary probability measure. Let the strategy set of
the encoder (DM 1) consists of the set of all measurable
(deterministic) functions from M to X. Then, an equilibrium
encoder policy has to be quantized almost surely, that is, it is
equivalent to a quantized policy for the encoder in the sense that
the performance of any equilibrium encoder policy is equivalent
to the performance of a quantized encoder policy. Furthermore,
the quantization bins are convex.

Proof: Let there be an equilibrium in the game (with
possibly uncountably infinitely many bins, countably many bins
or finitely many bins). Let two bins be Bα and Bβ. Also let
mα indicate any point in Bα; i.e., mα ∈ Bα. Similarly, let mβ

represent any point in Bβ; i.e., mβ ∈ Bβ. The decoder chooses
action uα = E[m|m ∈ Bα] when the encoder sends mα ∈ Bα

and action uβ = E[m|m ∈ Bβ] when the encoder sends mβ ∈
Bβ in order to minimize its total cost. Without loss of gen-
erality, we can assume that uα < uβ . Let F (m,u) � (m−
u− b)2. Because of the equilibrium definitions from the view
of the encoder; F (mα, uα) < F (mα, uβ) and F (mβ , uβ) <
F (mβ , uα). Hence, ∃ m that satisfies F (m,uα) = F (m,uβ)
which reduces to

m =
uα + uβ

2
+ b ⇐⇒ (m− uα) = (uβ −m) + 2b (1)

Since F (m+Δ, uα) > F (m+Δ, uβ) for any Δ > 0, Bβ and
{m|m < m} are disjoint sets. Similarly, Bα and {m|m > m}
are disjoint sets, too. Thus, from the definitions of uα and uβ ,
we have uα < m < uβ which implies m− uα > 0 and uβ −
m > 0. Then, from (1)

uβ − uα =(uβ −m)+(m− uα)=2(uβ −m)+2b>2b

uβ − uα =(uβ −m)+(m− uα)=2(m− uα)−2b> −2b

are obtained. Hence, uβ − uα > 2|b|, which implies that there
must be at least 2|b| distance between the equilibrium points
(decoder’s actions, centroids of the bins). Further, from the
encoder’s point of view, given any two bins Bα and Bβ , there
exists a point m which lies between these two bins. This assures
that each bin must be a single interval; i.e., convex cell except
for a possible insignificant set of points with measure zero.
Since there is an injective and monotonic relation between
the convex cells of the encoder and decoder’s actions, the
equilibrium policy must be quantized almost surely. �

Recall again that for the case when the source admits density
on [0,1], Crawford and Sobel established the discrete nature
of the equilibrium policies. For the case when the source is
exponential, [36] established the discrete-nature, and obtained
the equilibrium bins with finite upper bounds on the number of
bins in any equilibrium.

B. Stackelberg Equilibria in the Scalar Case

We will now observe that the Stackelberg setup is less
interesting.

Theorem 3.3: The Stackelberg equilibrium is unique and cor-
responds to a fully revealing (fully informative) encoder policy.

Proof: Due to the Stackelberg assumption, the encoder
knows that the decoder will use γd(x) = u = E[m|x] as an

Fig. 2. There is one quantization level on the x-dimension and 200
quantization levels on the y-dimension. The number of quantization lev-
els on the y-dimension can be arbitrarily chosen (since�b is orthogonal to
that dimension). As the number of levels goes to infinity, this construction
converges to the structure of a linear equilibrium.

optimal decoder policy to minimize its cost. Then, the goal of
the encoder is to minimize the following:

min
x=γe(m)

E
[
(m− u− b)2

]
= min

x=γe(m)
E

[
(m− E[m|x] − b)2

]
= min

x=γe(m)
E

[
(m−E[m|x])2

]
+b2

= min
x=γe(m)

E
[
(m− u)2

]
+ b2.

Here, the second equality follows from the law of the iterated
expectations. Since the goal of the decoder is to minimize
minu=γd(x) E[(m − u)2], the goals of the encoder and the
decoder become essentially the same in the Stackelberg game
setup, which effectively reduces the game setup to a team setup.
In the team setup, the equilibrium is fully informative; i.e., the
encoder reveals all of its information. �

C. Multidimensional Cheap Talk: Nash Equilibria

Our goal in this subsection is to show that it is possible to
have linear equilibria in a multidimensional quadratic cheap
talk, unlike the scalar setup. Let the source be uniform on
[0, 1]× [0, 1] and the cost function of the encoder be defined by
ce(�m, �u) = ‖�m− �u−�b‖2 and the cost function of the decoder
be defined by cd(�m, �u) = ‖�m− �u‖2 where the lengths of the
vectors are defined in L2 norm and�b is the bias vector. For such
a scenario, we have the following result.

Theorem 3.4: An equilibrium policy can be non-discrete and
even linear.

Proof: It suffices to provide an example. Consider �b =
[0.3 0]. Then, as a (properly interpreted) limit case of the equi-
librium in Fig. 2, the following encoder and decoder policies
form an equilibrium:

γe(m1,m2) = (x1, x2) = (0,m2)

γd(x1, x2) = (u1, u2) = (0.5,m2).
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Fig. 3. Sample equilibria in 2D with �bx = 0.1 and �by = 0.2 where the
crosses indicate the centroids of the bins, the star indicates the middle
point and the square indicates the shifted middle point.

Here, the scalar setup is applied on the x-dimension with
one quantization bin (recall that u1 = E[m1|x1]), and a fully-
informative equilibrium exists on the y-dimension since there is
no bias on that dimension. It is observed that the encoder policy
is linear due to the unbiased property of the y-dimension. �

Besides linear equilibria, there may be multiple (hence, non-
unique) quantized equilibria with finite regions in the multidi-
mensional case as illustrated in Fig. 3.

From the discussion above, it can be deduced that if �b is
orthogonal to the basis vectors or satisfies certain symmetry
conditions, then non-discrete or linear equilibria exist. This
approach applies also to the n-dimensional setup for any n ∈ N.
For example, if the bias vector involves only one nonzero coor-
dinate component and if the source distribution is uniform over
an n-dimensional unit cube, then full information revelation in
all the other coordinates will lead to a non-discrete equilibrium.
In particular, if nonzero component of the bias is greater than
0.25, then there is only one bin in that coordinate and the full
information is sent in other coordinates. Furthermore, if the
encoder only sends the 0 variable for the value of the only bin in
the coordinate for which the bias has nonzero component, then
what we have is indeed a linear policy.

D. Multidimensional Cheap Talk: Stackelberg Equilibria

The Stackelberg equilibria in the multidimensional cheap
talk can be obtained by extending its scalar case; i.e., it is unique
and corresponds to a fully revealing (fully informative) encoder
policy as in the scalar case. Thus, Theorem 3.3 holds for the
multidimensional case as well.

IV. QUADRATIC SIGNALING GAME: SCALAR CASE

The noisy game setup is similar to the noiseless case except
that there exists an additive Gaussian noise channel between the
encoder and decoder, as shown in Fig. 4, and the encoder has a
soft power constraint.

The encoder (DM 1) encodes a zero-mean Gaussian random
variable M and sends the real-valued random variable X .

Fig. 4. General system model for noisy case.

During the transmission, the zero mean Gaussian noise with
a variance of σ2 is added to X ; hence, the decoder (DM 2)
receives Y = X +W . The policy space of DM 1, Γe, is
similarly defined as the policy space in the noiseless case: the
set of stochastic kernels from R to R (this can be viewed as
the measurable subset of the space of all product measures on
R

2 with a fixed input marginal, under the weak topology). The
policy space of DM 2, Γd, is the set of stochastic kernels from
R to R. The cost functions of the encoder and the decoder are
also slightly modified as follows: DM 1 aims to minimize

Je(γe, γd)=

∫
ce(m,x, u)γe(dx|m)γd(du|y)P (dy|x)P (dm)

whereas DM 2 aims to minimize

Jd(γe, γd) =

∫
cd(m,u)γe(dx|m)γd(du|y)P (dy|x)P (dm)

where P (dy|x) = P (W ∈ dy − x) with W ∼ N (0, σ2). The
cost functions are modified as ce(m,x, u) = (m− u− b)2 +
λx2 and cd(m,u) = (m− u)2. Note that a power constraint
with an associated multiplier is appended to the cost function
of the encoder, which corresponds to power limitation for
transmitters in practice. If λ = 0, this corresponds to the setup
with no power constraint at the encoder. Here, as earlier, the
signaling game problem is investigated where the encoder and
the decoder are deterministic; i.e., γe(dx|m)=1{fe(m)∈dx} and
γd(du|y) = 1{fd(y)∈du} where fe(m) and fd(y) are some de-
terministic functions of the encoder and decoder, respectively.

A. A Supporting Result

Suppose that there is an equilibrium with an arbitrary policy
leading to finite (at least two), countably infinite or uncountably
infinite equilibrium bins. Let two of these bins be Bα and Bβ .
Also let mα indicate any point in Bα; i.e., mα ∈ Bα; and the
encoder encodes mα to xα and sends to the decoder. Similarly,
let mβ represent any point in Bβ; i.e., mβ ∈ Bβ; and the en-
coder encodes mβ to xβ and sends to the decoder. Without any
loss of generality, we can assume that mα < mβ . The decoder
chooses the action u = E[m|y] (MMSE rule). Let F (m,x) be
the encoder cost when message m is encoded as x; i.e.,

F (m,x) =

∫
y

p
(
γd(y) = u|γe(m) = x

)

×
(
(m− u− b)2 + λx2

)
dy.

Then, the equilibrium definitions from the view of the
encoder requires F (mα, xα) ≤ F (mα, xβ) and F (mβ , xβ) ≤
F (mβ , xα). Now, let G(m) = F (m,xα)− F (m,xβ). If it
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can be shown that G(m) is a continuous function of m on the
interval [mα,mβ], then it can be deduced that ∃m ∈ [mα,mβ]
such that G(m) = 0 by the Mean Value Theorem since
G(mα) ≤ 0 and G(mβ) ≥ 0.

Proposition 4.1: G(m) is a continuous function of m on
the interval [mα,mβ ].

Proof: It suffices to show that F (m,x) is continuous
in m. Let {mn} be a sequence which converges to m. Re-
call that (mn − u− b)2 ≤ 2m2

n + 2(u+ b)2 < ∞ since m is
bounded from above and below (m ∈ [mα,mβ ]), b is a finite
bias and E[u2] = E[(γd(y))2] < ∞ (note that any finite cost
E[(m− u2)] inevitably leads to a finite E[u2] since E[u2] =
E[(m+ u−m)2] ≤ 2E[m2] + 2E[(m− u2)] < ∞). Then, by
the dominated convergence theorem

lim
n→∞

F (mn, x) = lim
n→∞

∫
y

p
(
γd(y) = u|γe(mn) = x

)

×
(
(mn − u− b)2 + λx2

)
dy

=

∫
y

p
(
γd(y) = u|γe(m) = x

)

×
(
(m− u− b)2 + λx2

)
dy = F (m,x)

which shows the continuity of F (·, x) in the interval (mα,mβ).
�

From Proposition 4.1, ∃m ∈ [mα,mβ] such that G(m) = 0
which implies F (m,xα) = F (m,xβ). Then

∫
y

p
(
γd(y)=u|γe(m)=xα

) (
(m−u−b)2+λ(xα)2

)
dy

=

∫
y

p
(
γd(y)=u|γe(m)=xβ

) (
(m−u−b)2+λ(xβ)

2
)
dy.

As a result

m =
E

[(
γd(y)

)2 |xβ
]
− E

[(
γd(y)

)2 |xα
]

2 (E [γd(y)|xβ ]− E [γd(y)|xα])

+
λ
(
(xβ)

2 − (xα)2
)

2 (E [γd(y)|xβ ]− E [γd(y)|xα])
+ b (2)

is obtained. Recall that the arguments in Theorem 3.2 cannot be
applied here because of the presence of noise. However, when
there is noise in a communication channel, the relation between
E[u|x], E[u2|x] and m can be constructed as in (2).

B. Existence and Uniqueness of Informative Equilibria
and Affine Equilibria

We first note that Proposition 2.1 is valid also in the noisy
formulation; i.e., a non-informative (babbling) equilibrium is
an equilibrium for the noisy signaling game, since the appended

power constraint is always positive. The following holds:
Theorem 4.1:

1) Let 0 < λ < E[m2]/E[w2]. For any b ∈ R, there exists a
unique informative affine equilibrium.

2) If λ ≥ E[m2]/E[w2], there does not exist an informative
(affine or non-linear or even randomized) equilibrium.
The only equilibrium is the non-informative one.

3) If λ = 0, there exists no informative equilibrium with
affine policies.

Before presenting the proof, we make the following remark.
Remark 4.1: The expressionE[m2]/E[w2] defines a quantity

which determines the Shannon-theoretic capacity of the chan-
nel given a signal energy constraint at the encoder. This can
be interpreted as Signal-to-Noise Ratio (SNR) of the received
signal, which is related to the channel attenuation coefficient. If
the multiplier of the signal λ in the cost function is greater than
E[m2]/E[w2], it will not be rational for the encoder to send any
signal at all under any equilibrium.

Proof:

1) If the encoder is linear (affine), the decoder, as an MMSE
decoder for a Gaussian source over a Gaussian chan-
nel, is linear (affine); this follows from the property of
the conditional expectation for jointly Gaussian random
variables. Suppose on the other hand that the decoder
is affine so that u = γd(y) = Ky + L and the encoder
policy is x = γe(m). We will show that the encoder is
also affine in this case: With y = γe(m) + w, it follows
that u = Kγe(m) +Kw + L. By completing the square,
the optimal cost of the encoder can be written as

J∗,e = min
x=γe(m)

E
[
(m− u− b)2 + λx2

]

= min
γe(m)

(K2+λ)E

[(
γe(m)− (m− L− b)K

K2 + λ

)2
]

+
λ

K2 + λ

(
E[m2] + (L+ b)2

)
+K2

E[w2].

Hence, the optimal γe(m) can be chosen as

γ∗,e(m) =
(m− L− b)K

K2 + λ
=

(m− L− b)

K + λ/K
(3)

and the minimum encoder cost is obtained as

J∗,e =
λ

K2 + λ

(
E[m2] + (L+ b)2

)
+K2

E[w2]. (4)

Recall that (3) implies that an optimal encoder policy for
a Gaussian source over a Gaussian channel is an affine
policy if the decoder policy is chosen as affine. We now
wish to see if these sets of policies satisfy a fixed point
equation. If the decoder has an affine policy, it is proved
that the optimal policy of the encoder is also affine

γe(m) = Am+C=

(
1

K + λ/K

)
m+

(
−L− b

K + λ/K

)
.

(5)
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On the other hand, with the given affine encoding pol-
icy x = γe(m) = Am+ C, the optimal decoder policy
would be

γd(y) = Ky + L =
AE[m2]

A2E[m2] + E[w2]
(y − C). (6)

By combining these, we obtain (K2 + λ)
2
E[w2] =

λE[m2] by assuming A �= 0; which implies K2 =√
(λE[m2]/E[w2])− λ. If we combine the equations

above by using A, and define the resulting mapping as
T (A), we obtain

A =

A
A2+E[w2]/E[m2](

A
A2+E[w2]/E[m2]

)2
+ λ

� T (A). (7)

Note now that

A ≥ 1 ⇒ A

A2 + E[w2]
E[m2]

< 1 ⇒ T (A) <
1

λ

A < 1 ⇒ A

A2 + E[w2]
E[m2]

<
E[m2]

E[w2]
⇒ T (A) <

E[m2]
E[w2]

λ

which implies that the mapping defined by T (A) = A
can be viewed as a continuous function mapping the
compact convex set [0,max(E[m2]/E[w2], 1)/λ] to it-
self. Therefore, by Brouwer’s fixed point theorem [37],
there exists A = T (A). Indeed, we can find nonzero A
for every 0 < λ < (E[m2]/E[w2]).2 After finding A, the
values for K , C and L can also be obtained based on the
equilibrium equations in (5) and (6). For the uniqueness
of an informative fixed point, suppose that there are two
different nonzero fixed points: A1 = T (A1) and A2 =
T (A2) and let γ = E[w2]/E[m2] for simplicity. Then,
A1/T (A1) = A2/T (A2) implies

A2
1

A2
1 + γ

+ λ
(
A2

1 + γ
)
=

A2
2

A2
2 + γ

+ λ
(
A2

2 + γ
)

⇒
(
A2

1 −A2
2

)( γ

(A2
1 + γ) (A2

2 + γ)
+ λ

)
= 0.

Hence, |A1| = |A2| is obtained, and since the mapping
is defined from [0,max(E[m2]/E[w2], 1)/λ] to itself, the
nonzero fixed point is unique. Then the encoder may
choose the nonzero fixed point for the informative equili-
birum if it results in a lower cost than the non-informative
equilibrium (due to the cost of communication, an infor-
mative equilibrium is not always beneficial to the encoder
compared to the non-informative one).

2) Let λ ≥ E[m2]/E[w2] and suppose that we are in an
equilibrium. Then, the encoder cost Je = E[(m− u−
b)2 + λx2] reduces to Je = E[(m− u)2] + λE[x2] + b2

since the decoder in an equilibrium always chooses u =

2Recall that if A �= 0 and 0 < λ < (E[m2]/E[w2]), we have
K2 =

√
(λE[m2]/E[w2])− λ, which implies A = 1/(K + λ/K) =

±
√√

(E[w2]/λE[m2])− (E[w2]/E[m2]).

E[m|y]. ThroughP = E[x2], the following analysis leads
to a lower bound on the encoder cost:

Je = b2 + λE[x2] + E
[
(m− u)2

]
(a)

≥ b2 + λP + E[m2]e−2 sup I(X;Y )

= b2 + λP + E[m2]e
−2 1

2 log
(
1+ P

E[w2]

)

= b2 + λP +
E[m2]

1 + P/E[w2]
. (8)

Here, (a) follows from a rate-distortion theoretic bound
through the data-processing inequality (see for example
p. 96 of [1]). However, it follows that when λ ≥ E[m2]/
E[w2], (8) is minimized at P = 0; that is, the encoder
does not signal any output. Hence, the encoder engages
in a non-informative equilibrium and the minimum cost
becomes E[m2] + b2 at this non-informative equilibrium.

3) It is proved that an optimal encoder is affine such that x =
γe(m) = Am+ C when the decoder is affine, that is,
u = γd(y) = Ky + L. Then, by inserting λ = 0 to (2),m
is obtained as m = KA((mα +mβ)/2) +KC + L+ b.
This holds for allmα andmβ withmα ≤ m ≤ mβ . Thus,
if the distance between mα and mβ is made arbitrarily
small, then it must be that KA = 1 and KC + L+ b =
0. On the other hand, it was shown that an optimal
decoder policy is affine if an encoder is affine in (6). By
combining KA = 1 and K = (AE[m2])/(A2

E[m2] +
E[w2]), it follows that a real-valued solution does not
exist for any given affine coding parameter.

�
Remark 4.2: Note that, from (5) and (6), we have A=1/

(K+λ/K), K = (AE[m2])/(A2
E[m2]+E[w2]), L = −KC

and Ab = (AK − 1)C. From these equalities, we observe the
following:

1) when λ = 0, it is shown in Theorem 4.1 that there is not
any fixed point solution to (7). However, if there is not
a noisy channel between the encoder and the decoder;
i.e., the noise variance is zero (E[w2] = 0), then (7) has
a fixed point solution. Even when (7) has a fixed point
solution A, (5) and (6) cannot hold together unless b = 0.

2) when the noise variance is zero (E[w2] = 0), there is not
any fixed point solution to (7) unless λ = 0. Even when
(7) has a fixed point solution A, (5) and (6) cannot hold
together unless b = 0.

3) when λ=0 and the noise variance is zero (E[w2]=0); the
consistency of (5) and (6) can be satisfied if only if b=0.
Hence, if b �= 0, there cannot be a affine equilibrium; the
equilibrium has to be discrete due to Theorem 3.2.

Thus, if either λ or E[w2] is 0, an affine equilibrium exists
only if λ, E[w2] and b are all 0.

C. Price of Anarchy and Comparison With Socially
Optimal Cost

In a game theoretic setup, the encoder and the decoder try
to minimize their individual costs, thus the game theoretic cost
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can be found as minγe Je +minγd Jd. If the encoder and the
decoder work together to minimize the total cost, then the
problem can be regarded as a team problem and the resulting
cost is a socially optimal cost, which is minγe,γd(Je + Jd). In
the game theoretic setup, because of the selfish behavior of the
players, there is some loss from the socially optimal cost, and
this loss is measured by the ratio between the game theoretic
cost and the socially optimal cost, which was proposed as a
price of anarchy [38]. In this part, it will be shown that the
game theoretic cost is higher than the socially optimal cost as
expected, and the information theoretic lower bounds on the
costs and their achievability will be discussed.

Theorem 4.2:

1) Let gi and gu represent the informative and the non-
informative equilibrium game costs, respectively. Then,
gi=3

√
λE[m2]E[w2]+b2

√
(E[m2]/λE[w2])− λE[w2]

and gu = 2E[m2] + b2. Further, the total cost in the
game equilibrium is the following:

J∗,g =

{
min{gi, gu} λ < E[m2]/E[w2]

gu λ ≥ E[m2]/E[w2].

2) Let ti and tu represent the informative and the non-
informative team costs, respectively. Then, ti =
2
√
2λE[m2]E[w2]+(b2/2)−λE[w2] and tu= 2E[m2]+

(b2/2). Further, the socially optimal cost (the total cost
in the team setup) is the following:

J∗,t =

{
min{ti, tu} λ < 2E[m2]

E[w2]

tu λ ≥ 2E[m2]
E[w2] .

Proof:

1) Note from (5) and (6) that we have A = 1/(K + λ/K),
K = (AE[m2])/(A2

E[m2] + E[w2]), L = −KC and
Ab = C(AK − 1). Also, we have (K2 + λ)

2
E[w2] =

λE[m2] which implies K2=
√
(λE[m2]/E[w2])−λ and

λ < E[m2]/E[w2] for nonzero A. Recall that if λ≥
E[m2]/E[w2], then A=C=K=L=0, which implies
the non-existence of the informative linear (also affine)
equilibrium. Thus, for λ < E[m2]/E[w2], by using
K2 =

√
(λE[m2]/E[w2])− λ, A=1/(K + λ/K), C =

Ab/(AK − 1) and L+ b = −(C/A) in (4), we have

J∗,e = 2
√
λE[m2]E[w2] + b2

√
E[m2]

λE[w2]
− λE[w2].

Now recall that the optimal decoder policy is u∗ = E[m|
(y=Am+C+w)]=(AE[m2]/(A2

E[m2]+E[w2]))(y−C),
and we haveσ2

e = σ2
x − (σ2

xy/σ
2
y) where e = x− E[x|y].

In this case, x → m, y → y, σ2
x → E[m2], σxy →

AE[m2] and σ2
y → A2

E[m2] + E[w2]. Thus, we have

J∗,d = min
u=γd(y)

E
[
(m− u)2

]
= E

[
(m− E[m|y])2

]

= σ2
m −

σ2
my

σ2
y

= E[m2]−
A2
(
E[m2]

)2
A2E[m2] + E[w2]

=
√
λE[m2]E[w2].

As a result, the game theoretic cost at the equilibrium is
found as

J∗,g = 3
√
λE[m2]E[w2] + b2

√
E[m2]

λE[w2]
− λE[w2].

(9)

Recall that, if λ ≥ E[m2]/E[w2], then J∗,e = E[m2] +
b2 and J∗,d = E[m2]; hence, J∗,g = 2E[m2] + b2. If
there were no cost of communication (consider the
cheap talk; i.e., remove λx2 from the encoder cost func-
tion), then one could say that the informative equilibria
would always be beneficial to both the encoder and the
decoder; however, due to the cost of communication,
an informative equilibrium is not always beneficial to
the encoder when compared with the non-informative
one (i.e., for λ < E[m2]/E[w2], it does not always
hold that 2

√
λE[m2]E[w2] + b2

√
(E[m2]/λE[w2])−

λE[w2] < E[m2] + b2). For the receiver, however, in-
formation never hurts the performance and the in-
formative equilibria are more desirable (i.e., for λ <
E[m2]/E[w2], the inequality

√
λE[m2]E[w2] < E[m2]

always holds). As a result, one can expect a non-
informative equilibrium even if λ < E[m2]/E[w2].

2) The part below aims to construct the socially optimal
affine setup. In this part, Je,t represents the team cost
minimized over the encoder policies for a given decoder
policy, Jd,t represents the team cost minimized over the
decoder policies for a given encoder policy, and J∗,t

represents the optimum team cost; i.e., minimization over
all affine encoding and decoding policies as follows:

J∗,t= min
x=γe(m), u=γd(y)

E
[
(m−u−b)2+λx2+(m−u)2

]
.

Similar to the game theoretic analysis above, with
the given affine encoding policy x = γe(m) = Am+
C (then y = x+ w = Am+ C + w), the optimal de-
coder policy can be found as follows (by completing the
square):

Jd,t = min
u=γd(y)

E
[
(m− u− b)2 + λx2 + (m− u)2

]

= min
u=γd(y)

2E

[(
m− u− b

2

)2

+
b2

4
+ λ

x2

2

]
.

Hence, the optimal decoder policy can be chosen as
γd,t(y) = E[m− (b/2)|y]. Due to the joint Gaussanity of
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m and y, the minimizer decoder policy is affine

γd,t(y) = Ky + L =
AE[m2]

A2E[m2] + E[w2]
(y − C)− b

2
.

(10)

Similar to the game theoretic analysis above, for
any affine decoder policy γd(y) = Ky + L with y =
γe(m) + w, the optimal encoder policy for the team setup
can be obtained as follows (by completing the square):

Je,t = min
x=γe(m)

E
[
(m− u− b)2 + λx2 + (m− u)2

]

= min
γe(m)

(2K2+λ)E

[(
γe(m)− (2m−2L−b)K

2K2 + λ

)2
]

+
b2K2+λ

(
2E[m2]+(L+b)2+L2

)
2K2 + λ

+2K2
E[w2].

Hence, the optimal encoder γe(m) is

γe,t(m) = Am+ C =
(2m− 2L− b)

2K + λ/K
(11)

and the minimum team cost is obtained as

J∗,t =
b2K2 + λ

(
2E[m2] + (L + b)2 + L2

)
2K2 + λ

+ 2K2
E[w2]. (12)

This implies that, in the team setup, an optimal encoder
policy for a Gaussian source over a Gaussian channel is a
affine policy if the decoder policy is chosen as affine.

In order to achieve the socially optimal cost J∗,t, the
optimal encoder policy γe∗,t(m) and the optimal decoder
policy γd∗,t(y) must satisfy the following equalities by
(10) and (11):

A =
2

2K + λ/K
, K =

AE[m2]

A2E[m2] + E[w2]

C =
A

2
(−2L− b) = −AL− Ab

2
, L = −KC − b

2

⇒ C = −A

(
−KC − b

2

)
− Ab

2
= AKC.

Here, eitherAK = 1 orC = 0. IfAK = 1, thenE[w2] =
0 which contradicts with the noise assumption. Then,
C = 0 and L = −b/2. By using the equalities for A
and K above, one can obtain 2(K2 + λ/2)2E[w2] =
λE[m2] by assuming A �= 0; which implies K2 =√
(λE[m2]/2E[w2])− (λ/2). Since K2 is positive, λ

cannot be greater than 2E[m2]/E[w2]; otherwise, because
of our assumption, A must be equal to 0 which implies
that K = 0, and there does not exist an informative affine
team setup. Then K2 =

√
(λE[m2]/2E[w2])− (λ/2)

and λ < 2E[m2]/E[w2] for nonzero A. Thus, for λ <
2E[m2]/E[w2], by using K2 =

√
(λE[m2]/2E[w2])−

(λ/2), A = 2K/(2K2 + λ), C = 0 and L = −(b/2) in
(12), we have

J∗,t = 2
√
2λE[m2]E[w2] +

b2

2
− λE[w2]m. (13)

Recall that, if λ ≥ 2E[m2]/E[w2], then J∗,t = 2E[m2] +
(b2/2). Similar to the game theoretic setup, due to the cost
of the communication, the encoder and the decoder may
prefer the non-informative equilibrium over the infor-
mative one (if 2

√
2λE[m2]E[w2] + (b2/2)− λE[w2] >

2E[m2] + (b2/2)).

�
Theorem 4.3: The price of anarchy is always larger than 1,

i.e., the sum of the costs under any Nash equilibria is always
larger than the socially optimal cost.

Proof: By Theorem 4.2, we have the following:

J∗,g =

{
min{gi, gu} λ < E[m2]/E[w2]

gu λ ≥ E[m2]/E[w2]

J∗,t =

{
min{ti, tu} λ < 2E[m2]/E[w2]

tu λ ≥ 2E[m2]/E[w2].

Notice that we have ti < gi for λ < E[m2]/E[w2] and tu < gu
always. Consider the following cases:

1) 0 < λ < E[m2]/E[w2]: There are four cases to be con-
sidered:

a) min{gi, gu} = gi and min{ti, tu} = ti: Since ti <
gi, J∗,t < J∗,g is satisfied.

b) min{gi, gu} = gi and min{ti, tu} = tu: Since tu <
ti < gi, J∗,t < J∗,g is satisfied.

c) min{gi, gu} = gu and min{ti, tu} = ti: Since ti <
tu < gu < gi, J∗,t < J∗,g is satisfied.

d) min{gi, gu} = gu and min{ti, tu} = tu: Since tu <
gu, J∗,t < J∗,g is satisfied.

2) E[m2]/E[w2] ≤ λ < 2E[m2]/E[w2]: There are two
cases to be considered:

a) min{ti, tu} = ti: Since ti < tu < gu, J∗,t < J∗,g is
satisfied.

b) min{ti, tu} = tu: Since tu < gu, J∗,t < J∗,g is
satisfied.

3) λ≥2E[m2]/E[w2]: Since tu<gu, J∗,t<J∗,g is satisfied.

Hence, one can observe that J∗,g > J∗,t always holds, which
shows that the price of anarchy is greater than 1, i.e., the game
theoretic cost is always larger than the socially optimal cost.

�
In the following, we discuss information theoretic lower

bounds on the performance of equilibria and socially optimal
strategies.

Theorem 4.4:

1) For the game setup, if λ ≥ E[m2]/E[w2] (i.e., non-
informative equilibria), the information theoretic lower
bounds on the costs are achievable.
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2) For the game setup, if λ < E[m2]/E[w2] and b = 0, then
the information theoretic lower bounds on the costs are
achievable by linear policies.

3) For the game setup, if λ < E[m2]/E[w2] and b �= 0, the
information theoretic lower bounds on the costs are not
achievable by affine policies.

4) For the team setup, the information theoretic lower bounds
on the costs are always (both in the informative and non-
informative equilibria) achievable by affine policies.

Proof:

1) Recall that the encoder cost is Je=E[(m−u−b)2+λx2]
and we know that this reduces to Je=E[(m−u)2] +
λE[x2]+b2 since the decoder always chooses u=E[m|y].
From (8), we have a bound on the encoder cost Je ≥ b2 +
λP + (E[m2]/(1 + P/E[w2])) where P = E[x2] repre-
sents the power. This bound is tight when the encoder
and the decoder use linear policies leading to jointly
Gaussian random variables. For λ < E[m2]/E[w2], a
minimizer of this cost is P ∗ =

√
(E[m2]E[w2]/λ)−

E[w2]. If we insert this value into (8), we have Je ≥
2
√
λE[m2]E[w2] + b2 − λE[w2]. By the same reasoning

above, we also have Jd = E[(m− u)2] ≥ E[m2]/(1 +

(P/E[w2])) ≥
√
λE[m2]E[w2]. Hence, the information

theoretic lower bound on the game cost Jg = Je + Jd is
found as

Jg ≥ 3
√
λE[m2]E[w2] + b2 − λE[w2]. (14)

Through an analysis similar to the one in [1], one can see
that when λ ≥ E[m2]/E[w2], (8) is minimized at P = 0
(the encoder does not signal any output); thus we obtain
a non-informative equilibrium: The encoder and the de-
coder do not engage in communications; i.e., A = 0 and
K = 0 is an equilibrium. In this case, the encoder may be
considered to be linear, but this is a degenerate coding
policy. This implies Jg ≥ 2E[m2] + b2, and remember
that J∗,g = 2E[m2] + b2 when λ ≥ E[m2]/E[w2], hence
the information theoretic lower bound is achievable in the
non-informative equilibria.

2) From (9) and (14), it can be deduced that when b = 0, the
lower bound of the encoder cost is achievable by linear
policies; i.e., C = 0 and L = 0. When b = 0, the problem
corresponds to what is known as a soft-constrained ver-
sion of the quadratic signaling problem where we append
the constraint to the cost functional (see page 96 of [1]).

3) If b �= 0, then, from (9) and (14), one can observe
that the lower bound becomes unachievable by affine
policies since the power constraint related part of the
cost function, λx2, contains b2 related parameters (re-
call C = Ab/(AK − 1)). In this case, by modifying the
power from P to P − C2 (which must be positive) in
the information theoretic inequalities; i.e., Je ≥ b2 +
λP + (E[m2]/(1 + (P − C2)/E[w2])), then the mini-
mum game cost is obtained as Jg ≥ 3

√
λE[m2]E[w2] +

b2
√
(E[m2]/λE[w2])− λE[w2] which is the same cost

that is achieved by affine policies.

4) By following a similar approach to (8) for finding the
lower bound on the socially optimal cost, we can obtain:

J t =E
[
(m− u− b)2 + λx2 + (m− u)2

]
=

b2

2
+ λE[x2] + 2E

[(
m− u− b

2

)2
]

(a)

≥ b2

2
+ λP +

2E[m2]

1 + P/E[w2]
.

Here, (a) holds since the decoder chooses u = E[m−
(b/2)|y] and shifting does not affect the differential en-
tropy. Similar to the previous analysis, a minimizer of
this cost is P ∗ =

√
(2E[m2]E[w2]/λ)− E[w2] for λ <

2E[m2]/E[w2]. If we insert this value into the total cost,
we have

J t ≥ 2
√
2λE[m2]E[w2] +

b2

2
− λE[w2]. (15)

Recall that, if λ ≥ 2E[m2]/E[w2], then P = 0 be-
comes the minimizer, hence J t ≥ 2E[m2] + (b2/2) in
the non-informative equilibrium. Remember that J∗,t =
2E[m2] + (b2/2) in this case, thus the information the-
oretic lower bound is achievable in the non-informative
equilibria. In addition, from (13) and (15), for λ <
2E[m2]/E[w2] (which implies the informative equilib-
ria), it can easily be seen that the information theoretic
lower bound is achievable by affine policies (actually the
encoder policy is linear and the decoder policy is affine).

�
We state the following summary.

1) If λ < E[m2]/E[w2] and b = 0, then the information
theoretic lower bound on the game cost is achievable by
the linear policies.

2) If λ < E[m2]/E[w2] and b �= 0, then the information
theoretic lower bounds on the game cost are not achiev-
able by the affine policies; but they become achievable
after slight modification on the power parameter in the
information theoretic inequality.

3) The team cost J∗,t in the affine equilibrium is always
equal to the information theoretic lower bound on the
team cost.

4) The price of anarchy is always greater than 1: The so-
cially optimal cost is always lower than the cost in any
equilibrium.

5) In the game setup, the non-informative equilibrium may
be preferred over the informative equilibrium by the
encoder due to the cost of the signal λx2.

D. Stackelberg Setup

If we consider the Stackelberg setup of the signaling game
problem studied in this section; i.e., the encoder knows the
policy of the decoder, then it can be shown that the only
equilibrium is the linear equilibrium.

Theorem 4.5: The only equilibrium in the Stackelberg setup
of the signaling game is the linear equilibrium.
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Proof: In the proof, first we assume the linear encoding
policy and show that the information theoretic lower bound
is achieved, then we conclude that the encoder policy must
be linear. Let the encoder policy be x = γe(m) = Am+
C. Due to the Stackelberg assumption, the encoder knows
that the decoder will use γd(y) = u = E[m|y] as an opti-
mal decoder policy to minimize the decoder cost, thus u =
γd(y) = (AE[m2]/(A2

E[m2] + E[w2]))(y − C) where y =
Am+ C + w. Then, the goal of the encoder is to minimize the
following:

J∗,e = min
x=γe(m)=Am+C

E
[
(m− u− b)2 + λx2

]

= min
A,C

E

[(
mE[w2]−AE[m2]w

A2E[m2] + E[w2]
− b

)2

+λ(Am+ C)2

]

= min
A,C

E[m2]
(
E[w2]

)2
+A2

(
E[m2]

)2
E[w2]

(A2E[m2] + E[w2])2
+ b2

+ λA2
E[m2] + λC2

= min
A,C

E[m2]E[w2]

A2E[m2] + E[w2]
+ b2 + λA2

E[m2] + λC2.

(16)

The optimal encoder cost in (16) is achieved for
C∗ = 0, and A∗ = 0 for λ ≥ E[m2]/E[w2] and A∗ =√√

(E[w2]/λE[m2])−(E[w2]/E[m2]) for λ < E[m2]/E[w2].

Then, the optimal encoder cost is obtained as J∗,e = E[m2] +
b2 for λ ≥ E[m2]/E[w2] and J∗,e = 2

√
λE[m2]E[w2] +

b2 − λE[w2] for λ < E[m2]/E[w2]. Note that these are the
information theoretic lower bounds in the proof of the first part
of Theorem 4.4 and these lower bounds are achieved when the
encoder and the decoder use linear policies jointly, which is
valid for the current case. �

V. QUADRATIC SIGNALING GAME: MULTIDIMENSIONAL

GAUSSIAN NOISY CASE

The scalar setup considered in Section IV can be ex-
tended to the multidimensional Gaussian noisy signaling game
problem setup as follows. The encoder (DM 1) encodes an
n-dimensional zero-mean Gaussian random variable �M with the
covariance matrix Σ �M and sends the real-valued n-dimensional

random variable �X . During the transmission, the n-dimensional
zero-mean Gaussian noise with the covariance matrix Σ �W is

added to �X and the decoder (DM 2) receives �Y = �X + �W . The
policy space of DM 1, Γe, and the policy space of DM 2, Γd, are
the set of stochastic kernels from R

n to R
n. The cost functions

of the encoder and the decoder are as follows: DM 1 aims to
minimize

Je(γe, γd)=

∫
ce(�m, �x, �u)γe(d�x|�m)γd(d�u|�y)P (d�y|�x)P (d�m)

whereas DM 2 aims to minimize

Jd(γe, γd) =

∫
cd(�m, �u)γe(d�x|�m)γd(d�u|�y)P (d�y|�x)P (d�m)

where P (d�y|�x) = P ( �W ∈ d�y − �x) with �W ∼ N (0,Σ �W ). The

cost functions are ce(�m, �x, �u) = ‖�m− �u−�b‖2 + λ‖�x‖2 and
cd(�m, �u) = ‖�m− �u‖2 where the lengths of the vectors are
defined in L2 norm and �b is the bias vector. Note that we have
appended a power constraint and an associated multiplier. If
λ = 0, this corresponds to the setup with no power constraint
at the encoder.

A. Affine Equilibria

Theorem 5.1:

1) If the encoder is linear (affine), the decoder, as an MMSE
decoder for a Gaussian source over a Gaussian channel,
is linear (affine).

2) If the decoder is linear (affine), then an optimal encoder
policy for a multidimensional Gaussian source over a
multidimensional Gaussian channel is an affine policy.

3) An equilibrium encoder policy γe(�m) = A�m+ �C sat-
isfies the equation A = T (A) where T (A) = (FFT +
λI)−1F and F = (AΣ �MAT +Σ �W )−1AΣ �M .

4) There exists at least one equilibrium.

Proof:

1) Let the affine encoding policy be �x = γe(�m) = A�m+ �C

where A is an n× n matrix and �C is an n× 1 vector.
Then, �y = �x+ �w = A�m+ �C + �w. The optimal cost of
the decoder, by the law of the iterated expectations, can be
expressed as J∗,d = min�u=γd(�y) E[‖�m− �u‖2|�y]. Hence,
a minimizer policy of the decoder is �u = γ∗,d(�y) =
E[�m|�y]. Since both �m and �y are Gaussian, then the
optimal decoder is

E[�m|�y] =E[�m] + Σ �M�Y Σ
−1
�Y �Y

(�y − E[�y])

=Σ �MAT (AΣ �MAT +Σ �W )−1(�y − �C). (17)

2) Let the affine decoding policy be �u = γd(�y) = K�y + �L

where K is an n× n matrix and �L is an n× 1 vector.
Then, �u=K�y+�L=K(�x+ �w) + �L = Kγe(�m) +K�w +
�L. By using the completion of the squares method, the
optimal cost is

J∗,e = min
�x=γe(�m)

E

[
‖�m− �u−�b‖2 + λ‖x‖2

]

=E

[
min

�x=γe(�m)
E

[
‖�m− �u−�b‖2 + λ‖x‖2

∣∣∣ �m]]

=E

[
min
γe(�m)

E

[(
(KTK+λI)γe(�m)−KT ×(�m−�L−�b)

)T
× (KTK + λI)−1

×
(
(KTK+λI)γe(�m)−KT (�m−�L−�b)

)
+
(
�m−�L−�b

)T(
I−K(KTK+λI)−1KT

)
×
(
�m− �L−�b

)∣∣∣ �m] ]+ E
[
�wTKTK�w

]
.
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Hence, the optimal γe(m) can be chosen as follows:

γ∗,e(�m)=A�m+ �C=(KTK+λI)
−1
KT (�m−�L−�b).

(18)

3) We have K = Σ �MAT (AΣ �MAT +Σ �W )
−1

and A =

(KTK + λI)
−1
KT from (17) and (18). By combining

these, A = T (A) = (FFT + λI)
−1
F can be obtained.

4) Since FFT is a real and symmetric matrix, it is diag-
onalizable and can be written as FFT = QΥQ−1 for
a diagonal Υ. Now consider ‖T (A)‖F , where ‖ · ‖F
denotes the Frobenius norm:

‖T (A)‖F =tr

((
(FFT +λI)

−1
F
)(

(FFT+λI)
−1
F
)T)

=tr
(
(Υ + λI)−1Υ(Υ + λI)−1

)
=

n∑
i=1

υi
(υi + λ)2

(19)

where υi, i = 1, . . . , n are the eigenvalues of FFT and
since FFT is positive semi-definite, all these eigenvalues
are non-negative. Since λ > 0, we observe the following:

υi ∈ [0, 1] ⇒ υi
(υi + λ)2

<
1

λ2

υi ∈ (1,∞) ⇒ υi
(υi + λ)2

<
υi
υ2
i

=
1

υi
< 1.

Hence, υi/(υi + λ)2 < max(1, 1/λ2) always holds.
Then, by (19), we have ‖T (A)‖F < nmax(1, 1/λ2),
which implies that T (A) can be viewed as a continu-
ous function mapping the compact convex set ‖A‖F ∈
[0, nmax(1, 1/λ2)] to itself. Therefore, by Brouwer’s
fixed point theorem [37], there exists A = T (A). �

We note, however, that there always exist a non-informative
equilibrium (see Proposition 2.1, which also applies to the
signaling game discussed in this section). However, there exist
games with informative affine equilibria as we state in the
following (see Theorem 5.2).

Proposition 5.1: If either λ or Σ �W is zero, an informative

affine equilibrium exists only if λ, Σ �W and�b are all zero.
Proof: Note that, from (17) and (18), we have A =

(KTK + λI)
−1
KT , K = Σ �MAT (AΣ �MAT +Σ �W )

−1
, �L =

−K �C and A�b = (AK − I)�C . From these equalities, we can
analyze the equilibrium as in the scalar case:

1) when λ = 0 and the noise is zero (Σ �W = 0), then A =

K−1 and K = A−1 are obtained. Then, A�b = (AK −
I)�C = 0, thus the consistency of the equalities can be
satisfied if only if �b = 0. Hence, if �b �= 0, there cannot
exist an informative affine equilibrium. Recall that in the
multidimensional noiseless cheap talk, the linearity of
the equilibrium is shown for the uniform source; here the
source is Gaussian.

2) when λ = 0, then A = K−1 and AΣ �MAT +Σ �W =
K−1Σ �MAT are obtained. There does not exist a solution
to (7) unless the noise is zero (Σ �W = 0). Even when
(7) has a fixed point solution A, (5) and (6) cannot hold
together unless�b = 0.

3) when the noise is zero (Σ �W = 0), then K = A−1 and
KTK + λI = KTA−1 are obtained. There does not exist
a solution to (7) unless λ = 0. Even when (7) has a fixed
point solution A, (5) and (6) cannot hold together unless
�b = 0. �

Remark 5.1: In the multidimensional case, fixed points may
not be unique: with λ = 1.0311 and

Σ �M =

⎡
⎢⎢⎣
1.6421 0.1299 0.5713 0.2305
0.1299 1.4803 0.6810 0.4749
0.5713 0.6810 1.7312 0.4292
0.2305 0.4749 0.4292 1.3515

⎤
⎥⎥⎦

Σ �W =

⎡
⎢⎢⎣
1.2742 0.1868 0.2318 0.0559
0.1868 1.8266 0.5955 0.3091
0.2318 0.5955 1.2377 0.4951
0.0559 0.3091 0.4951 1.5336

⎤
⎥⎥⎦

we can obtain two fixed points with different absolute-valued
elements as follows (recall that if A is a fixed point, −A is also
a fixed point):

A =

⎡
⎢⎢⎣
−0.1543 0.1762 0.0606 0.1117
0.1602 0.0159 0.1036 0.0279
−0.2000 −0.1879 −0.2700 −0.1565
0.0603 0.1052 0.1221 0.0824

⎤
⎥⎥⎦

A =

⎡
⎢⎢⎣
−0.2431 0.0738 −0.0752 0.0285
0.0293 −0.1351 −0.0966 −0.0948
0.1520 0.2181 0.2682 0.1735
−0.1003 −0.0801 −0.1236 −0.0683

⎤
⎥⎥⎦ .

Theorem 5.2: Let source �M be a zero-mean n-
dimensional Gaussian random variable with covariance ma-
trix Σ �M = diag{σ2

m1
, . . . , σ2

mn
} where diag indicates a di-

agonal matrix, and noise �W be a zero-mean n-dimensional
Gaussian random variable with covariance matrix Σ �W =
diag{σ2

w1
, . . . , σ2

wn
}. Then, an informative affine equilibrium

exists if λ < max{σ2
m1

/σ2
w1

, . . . , σ2
mn

/σ2
wn

}.
Proof: Since the source components are independent and

the noise components are independent, the n-dimensional noisy
signaling game problem turns into n independent scalar noisy
signaling game problems as follows:

1) If the decoder uses the channels independently; i.e., ui =
γd
i (yi) for i = 1, . . . , n, then the optimal cost of the

encoder will be

J∗,e = min
�x=γe(�m)

E

[
‖�m− �u−�b‖2 + λ‖x‖2

]

= min
�x=γe(�m)

n∑
i=1

E

[(
mi − γd

i (yi)− bi
)2

+ λx2
i

]

=

n∑
i=1

min
�x=γe(�m)

E

[(
mi − γd

i (yi)− bi
)2

+ λx2
i

]
.

Since, yi = xi + wi for each i = 1, . . . , n, the optimal
encoder also uses the channels independently; i.e., xi =
γe
i (mi) for i = 1, . . . , n.
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2) Similarly, if the encoder uses the channels independently;
i.e., xi = γe

i (mi) for i = 1, . . . , n, then the optimal cost
of the decoder will be

J∗,d = min
�u=γd(�y)

E
[
‖�m− �u‖2

]

=

n∑
i=1

min
�u=γd(�y)

E
[
(mi − ui)

2
]
.

Since, yi = γe
i (mi) + wi for each i = 1, . . . , n, the op-

timal decoder will also use channels independently; i.e.,
ui = γd

i (yi) for i = 1, . . . , n.

Thus, we have, in each dimension i (i = 1, . . . , n);

• the sourceMi is a zero-mean Gaussian with variance σ2
mi

,
• the channel has the Gaussian noise Wi with zero-mean

and variance σ2
wi

,
• the encoder’s goal is to find the optimal policy which min-

imizes its cost minxi=γe(mi) E[(mi − ui − bi)
2 + λx2

i ],
• the decoder’s goal is to find the optimal policy which

minimizes its cost minui=γd(yi) E[(mi − ui)
2].

For each dimension, the informative affine equilibrium exists
if λ < σ2

mi
/σ2

wi
. For the multidimensional setup, the existence

of the informative equilibrium in at least one dimension implies
the existence of the informative equilibrium for the whole
sytem. Hence, it is sufficient that the inequality λ < σ2

mi
/σ2

wi

is valid for at least one dimension. As a result, the condition
for the existence of the informative affine equilibrium becomes
λ < max{σ2

m1
/σ2

w1
, . . . , σ2

mn
/σ2

wn
}. �

Note that, from (17) and (18), by assuming |A| �= 0, we have
λAΣ �MAT = KTKΣ �W which is equivalent to

λ(AT )
−1
Σ �MAT = (KTK + λI)(KTK + λI)Σ �W . (20)

Remark 5.2: Assuming all channels are informative, i.e.,
|A| �= 0, we make the following observations.

• If the source is i.i.d.; i.e., Σ �M = σ2
mI , then (20) becomes

λ(AT )
−1
σ2
mIAT = (KTK + λI)(KTK + λI)Σ �W

⇒ λσ2
m(Σ �W )−1 = (KTK + λI)(KTK + λI)

⇒ λσ2
m(Σ �W )−1 ≥ λ2I

⇒ λI ≤ σ2
m(Σ �W )−1.

This result implies that λ must satisfy the inequality λI ≤
σ2
m(Σ �W )−1 for the i.i.d. source; otherwise, there must be

at least one non-informative channel; i.e., |A| must be 0.
• If the channel noise is i.i.d.; i.e., Σ �W = σ2

wI , (since Σ �M
is real-symmetric, it has the eigenvalue decomposition as
Σ �M = QΛQT ), then (20) becomes

λ(AT )
−1
Σ �MAT = (KTK+λI)(KTK+λI)σ2

wI

⇒ λ

σ2
w

(AT )
−1
QΛQTAT = (KTK+λI)(KTK + λI)

⇒ (AT )
−1
QΛQTAT ≥ λσ2

w.

This result implies that for each eigenvalue λ �M of Σ �M ,
λ must satisfy λ ≤ λ �M/σ2

w for the i.i.d. channel noise;
otherwise, there must be at least one non-informative
channel; i.e., |A| must be 0.

• For the general case, recall the Minkowski determinant
theorem, |A+B|1/n ≥ |A|1/n + |B|1/n which holds for
any non-negative n× n Hermitian matrix A and B. This
implies |A+B| ≥ |A|+ |B|. By using this inequality
and (18)

|A| = |K|
|KTK + λI| ≤

|K|
|K|2 + λn

.

Assuming |A| �= 0, recall the equality λAΣ �MAT =
KTKΣ �W . Taking the determinant of both sides

|K|2|Σ �W | =λn|A|2|Σ �M | ≤ λn

(
|K|

|K|2 + λn

)2

|Σ �M |

≤λn |K|2
λ2n

|Σ �M | ⇒ λn ≤
|Σ �M |
|Σ �W | .

The result can be interpreted as follows: If λ > (|Σ �M |/
|Σ �W |)1/n, then |A| = |K| = 0 in the equilibrium; i.e.,
there must be at least one non-informative channel.

B. An Information Theoretic Lower Bound on the
Encoder Cost and the Existence of Informative Equilibria

We end the section with an information theoretic lower
bound for the encoder cost; this serves us also to obtain con-
dition for the existence of an informative equilibrium. Let �e =
�m− �u = �m− E[�m|�y], then we have Σ�e = E[�e�eT ] = E[(�m−
E[�m|�y])(�m − E[�m|�y])T ]. From the information theoretic
inequalities;

I(�m; �y) =h(�m)− h(�m|�y) = h(�m)− h (�m− E [�m|�y] |�y )

≥h(�m)− h (�m− E[�m|�y ])

≥h(�m)− 1

2
log2 ((2πe)

n|Σ�e|)

=
1

2
log2 ((2πe)

n|Σ�m|)− 1

2
log2 ((2πe)

n|Σ�e|)

=
1

2
log2

(
|Σ�m|
|Σ�e|

)
.

Also from the rate-distortion theorem, the data processing
theorem and the channel capacity theorem

R(D) ≤ min
f(�u|�m):E[‖�m−�u‖2]≤D

I(�m; �u) ≤ I(�m; �u)

≤ I(�x; �y) ≤ max
f(�x):E[‖�x‖2]≤P

I(�x; �y) ≤ C(P ).

If we combine these, we obtain the following:

|Σ�e| ≥ |Σ�m|2−2R(D) ≥ |Σ�m|2−2I(�m;�u)

≥ |Σ�m|2−2I(�x;�y) ≥ |Σ�m|2−2C(P ). (21)



618 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 2, FEBRUARY 2017

Now consider the following:

E
[
‖�m− �u‖2

]
=E
[
‖�e ‖2
]
= trΣ�e

(a)

≥ n

(
n∏

i=1

Σ�e(i, i)

) 1
n

(b)

≥ n (|Σ�e|)
1
n

(c)

≥ n
(
|Σ�m|2−2C(P )

) 1
n

. (22)

Here, (a) follows from the inequality for the arithmetic and
geometric mean where Σ�e(i, i) stands for ith diagonal element
of Σ�e, (b) follows from the Hadamard inequality (since Σ�e

is a positive semi-definite matrix), and (c) follows from (21).
Now we will rewrite [39, Eq. (9.116)] which presents the
capacity of the additive colored Gaussian noise channel with
typo corrected

C(P ) =
1

n

n∑
i=1

1

2
log2

(
1 +

max(ν − λi, 0)

λi

)

where P = E[‖�x‖2], λ1, λ2, . . . , λn are the eigenvalues of Σ�w

and ν is chosen so that
∑n

i=1 max(ν − λi, 0) = nP . Then we
can obtain the following:

2−2C(P ) =2
−2 1

n

∑n
i=1 2 log2

(
1+

max(ν−λi,0)
λi

)

=

n∏
i=1

(
1 +

max(ν − λi, 0)

λi

)−1
n

=
n∏

i=1

(
max(ν, λi)

λi

)−1
n

=
(
∏n

i=1 λi)
1
n

(
∏n

i=1 max(ν, λi))
1
n

(a)

≥ (|Σ�w|)
1
n(

P +
∑n

i=1
λi

n

)
= (|Σ�w|)

1
n

(
P +

trΣ�w

n

)−1

. (23)

Here, (a) holds, since our assumption
∑n

i=1 max(ν −
λi, 0) = nP implies

∑n
i=1 max(ν, λi) = nP+

∑n
i=1 λi and

(
∏n

i=1max(ν, λi))
1/n≤

∑n
i=1 max(ν, λi)/n=P+

∑n
i=1 λi/n

holds by the inequality for the arithmetic and geometric mean.
If we insert (23) to (22)

E
[
‖�m− �u‖2

]
≥ n

(
|Σ�m| (|Σ�w|)

1
n

(
P +

trΣ�w

n

)−1
) 1

n

= n (|Σ�m|)
1
n (|Σ�w|)

1
n2

(
P +

trΣ�w

n

)−1/n

.

(24)

The encoder costs reduces to Je=E[‖�m− �u‖2] + λE[‖�x‖2] +
‖�b‖2 since the decoder always chooses �u=E[�m|�y]. Then,
by (24)

Je=‖�b‖2 + λE
[
‖�x‖2
]
+ E
[
‖�m− �u‖2

]
≥‖�b‖2 + λP + n (|Σ�m|)

1
n (|Σ�w|)

1
n2

(
P +

trΣ�w

n

)−1/n

.

(25)

The minimizer of this function can be found by the local
perturbation condition:

λ− (|Σ�m|)
1
n (|Σ�w|)

1
n2

(
P +

trΣ�w

n

)− 1
n−1

= 0

⇒ λ = (|Σ�m|)
1
n (|Σ�w|)

1
n2

(
P +

trΣ�w

n

)− 1
n−1

(a)

≤ (|Σ�m|)
1
n (|Σ�w|)

1
n2

(
(|Σ�w|)

1
n

)− 1
n−1

= (|Σ�m|)
1
n (|Σ�w|)−1/n .

Here, (a) follows from the nonnegativeness of P and
the inequality for the arithmetic and geometric mean and
the Hadamard inequality, similar to (22). Hence, if λ <
(|Σ�m|)1/n(|Σ�w|)−1/n, the lower bound is minimized at a
nonzero P value, but if λ ≥ (|Σ�m|)1/n(|Σ�w|)−1/n, the min-
imizer P becomes zero. Finally, if channels and source are
assumed to be i.i.d.; i.e., Σ�m = σ2

mI and Σ�w = σ2
wI where I

is n× n identity matrix, and the encoder and the decoder use
linear policies, then (25) becomes tight and can be interpreted
as follows: If λ > (|Σ�m|)1/n(|Σ�w|)−1/n = σ2

m/σ2
w, then (25)

is minimized at P = 0; that is, the encoder does not signal
any output. Hence, the encoder engages in an non-informative
equilibrium and the minimum cost becomesE[‖�m‖2] + ‖�b‖2 at
this non-informative equilibrium. Recall that this is analogous
to the analysis in the scalar setup (8).

VI. CONCLUDING REMARKS

For a strategic information transmission problem under
quadratic criteria with a non-zero bias term leading to a mis-
match in the encoder and the decoder objective functions, Nash
and Stackelberg equilibria have been investigated in a number
of setups. It has been proven that for any scalar source, the
quantized nature of Nash equilibrium policies hold, whereas all
Stackelberg equilibrium policies are fully informative. Further,
it has been shown that the Nash equilibrium policies may be
non-discrete and even linear for a multidimensional cheap talk
problem, unlike the scalar case. The additive noisy channel
setup with Gaussian statistics has also been studied, such a
case leads to a signaling game due to the communication
constraints in the transmission. Conditions for the existence of
affine Nash equilibrium policies as well as general informative
Nash equilibria are presented for both the scalar and multi-
dimensional setups. Lastly, we proved that the only equilibrium
in the Stackelberg noisy setup is the linear equilibrium. Our
findings provide further conditions on when affine policies
may be optimal in decentralized multi-criteria control problems
and lead to conditions for the presence of active information
transmission in strategic environments. Recently, we have ex-
tended our analysis in this paper to study dynamic signaling
games [40].
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