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QUADRATIC OPTIMAL CONTROL

OF STABLE WELL-POSED LINEAR SYSTEMS

OLOF J. STAFFANS

Abstract. We consider the infinite horizon quadratic cost minimization prob-
lem for a stable time-invariant well-posed linear system in the sense of Salamon
and Weiss, and show that it can be reduced to a spectral factorization prob-
lem in the control space. More precisely, we show that the optimal solution
of the quadratic cost minimization problem is of static state feedback type if
and only if a certain spectral factorization problem has a solution. If both
the system and the spectral factor are regular, then the feedback operator
can be expressed in terms of the Riccati operator, and the Riccati operator
is a positive self-adjoint solution of an algebraic Riccati equation. This Ric-
cati equation is similar to the usual algebraic Riccati equation, but one of its
coefficients varies depending on the subspace in which the equation is posed.
Similar results are true for unstable systems, as we have proved elsewhere.

1. Introduction

This work treats the infinite horizon quadratic cost minimization problem for
a time-invariant well-posed linear system in the sense of Salamon and Weiss, and
extends the results presented in [37] to externally stable Salamon-Weiss systems
(the unstable case is discussed in [40]). The main idea behind this work is the same
as in [37], and it can be described briefly as follows.

It is well-known that it is possible to solve a certain canonical Wiener-Hopf
factorization problem by a state space method. The problem is to factor D∗D,
where D is a stable input/output map and D∗ is its adjoint, in the form

X ∗X = D∗D,
where X is a stable input/output map from the control space U into itself with a
stable inverse X−1. The solution X is called a spectral factor of D∗D. In the state
space approach we first construct a realization Ψ of D (or alternatively, we assume
that a system Ψ is given whose input/output map is D). Then we pose an infinite
horizon quadratic cost minimization problem in the state space H of Ψ, and solve
the algebraic Riccati equation to get the Riccati operator Π describing the optimal
cost. From the Riccati operator we get the feedback operator K, and this feedback
operator is then used to construct the spectral factor X .

Although the state space solution of the factorization problem is the most com-
mon one today, it is not the only one available, and it is not universally applicable.
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In particular, it requires a certain smoothness of the symbol of the input/output
map D. Without this smoothness every possible realization of D must have both
an unbounded control operator B and an unbounded observation operator C (with
respect to the same space), and there has been no general Riccati equation theory
available for that case.

The spectral factorization problem always has a solution (see Lemma 18 below),
even though it has not been known how to compute this factorization in general by a
state space method. Furthermore, there exist some independent ways of computing
the factorization; see, e.g., [16] and [51]. We take advantage of this fact and study
the converse of the problem presented above, i.e., we use the spectral factorization to
solve the quadratic cost minimization problem in feedback form. More specifically,
in Theorem 27 we show that these two problems are equivalent in the sense that
the factorization problem has a solution if and only if the solution of the quadratic
cost minimization problem is of static state feedback type. Moreover, there is a
simple relation between the spectral factor and the feedback solution, which means
that they can easily be computed from each other.

In order to derive the Riccati equation solution to the optimal feedback problem
we have to make one additional assumption, namely that both the input/output
map D and the spectral factor X are regular together with their adjoints in the
sense of [45] (a much stronger version of this assumption holds in the classical case).
We show that in this case the Riccati operator of an arbitrary realization Ψ of D
satisfies a certain algebraic Riccati equation, and that the feedback operator K
can be computed from Π. However, this Riccati equation contains one unexpected
feature (first discovered in [37]): the positive self-adjoint weighting operator in the
quadratic term in the Riccati equation is (X∗X)−1, where X is the feed-through
operator of the spectral factor X , instead of the expected (D∗D)−1, where D is the
feed-through operator of the input/output map D. If the control and observation
operators are bounded then X∗X = D∗D, so the new theory agrees with the old
one in this respect. However, it is not true in general that X∗X = D∗D, and the
computation of X is a nontrivial task. In some cases X can be computed from
a discrete time Riccati equation [41], and there is also a fairly general method
available for the case of a scalar control (see [18, Chapter VII]). An alternative
formula for X∗X is given in [40].

As explained above, under certain regularity assumptions we prove that the
Riccati operator (the optimal cost operator) necessarily satisfies a certain Riccati
equation. In the finite dimensional case this is the “difficult” direction to prove, the
converse direction being almost trivial. In our case the converse direction is still
open, partly due to the fact that the Riccati equation that we get is much more
complicated than the classical one. In some sense it resembles the discrete time
Riccati equation; cf. [41]. Moreover, because of the required regularity hypothesis,
it is still an unsettled question what the appropriate conditions are for our results
to apply to boundary control problems for partial differential equations. For time
delay systems the regularity problem is less severe; see the examples in [38].

We work formally in the time domain the whole time, but some of our proofs
are adapted frequency domain proofs, with some added state space features. The
key addition is the facorization of the Hankel operator induced by the input/output
map as the product of the controllability and observability maps. This makes it
possible to connect the state space and the frequency domain theories to each other.
See Definition 1 and the paragraph following Definition 4.
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The first preprints of this paper and [40] were circulated in the spring of 1995, and
a preliminary version was presented in the summer of 1995 at the conference [36]. In
the spring of 1996 we received the preprint [50] where some of the results presented
here and in [40] are also found. That preprint uses quite different notations, it deals
with weakly regular systems, it contains some additional examples (one of which is
essentially the same as the one in [41]), and it carries the analysis further than we
do before resorting to spectral factorization. In particular, [50, Proposition 10.5]
contains one additional Riccati equation valid on the domain of the closed loop
generator in the case where the observation operator is bounded.

There is a significant overlap between some of the results presented here (those
that are not related to spectral factorization) and those in [17]. In that paper the
output operator C is bounded, but the system need not be stable, and no regularity
assumptions are imposed on the spectral factor (the spectral factor is not even
mentioned). The well-posedness of the closed loop system (our first main result,
presented in Theorem 27) is not studied in [17]. The Riccati equation given in
[17, Theorem 2.2] looks different from our Riccati equation (it does not contain the
nonstandard term), due to the fact that [17, Corollary 4.9] extends the operator
B∗Π in a different way than our Proposition 36. An example highlighting this
difference is given in [47].

For a further discussion of the existing literature we refer the reader to [38], [40].
The recent literature includes (but is certainly not restricted to) [1], [2], [4], [5], [6],
[7], [9], [12] [13], [14], [20], [21], [23], [24], [25], [26], [27], [28], [30], [31], [42], [48],
[49], [51], and the other papers in our list of references.

We use the following notation:

L(U ;Y ), L(U): The set of bounded linear operators from U into Y or from U
into itself, respectively.

I: The identity operator.

A∗: The (Hilbert space) adjoint of the operator A.

dom(A): The domain of the (unbounded) operator A.

range(A): The range of the operator A.

R, R+, R−: R = (−∞,∞), R+ = [0,∞), and R− = (−∞, 0].

L2(J ;U): The set of U -valued L2-functions on J .

W 1,2(J ;U): The set of functions in L2(J ;U) with a (distribution) derivative in
L2(J ;U).

C(J ;U), C1(J ;U): C(J ;U) is the set of U -valued continuous functions on J , and
C1(J ;U) is the set of U -valued continuously differentiable functions
on J .

BC(J ;U), BC1(J ;U): BC(J ;U) is the set of U -valued bounded continuous func-
tions on J , and BC1(J ;U) is the set of U -valued bounded continuously
differentiable functions on J with a bounded derivative.

〈·, ·〉H : The inner product in the Hilbert space H .

τ(t): The bilateral time shift operator τ(t)u(s) = u(t+s) (this is a left-shift
when t > 0 and a right-shift when t < 0).

πJ : (πJu)(s) = u(s) if s ∈ J and (πJu)(s) = 0 if s /∈ J . Here J is
a subset of R. This operator is used both as a projection operator
L2(R) → L2(R) and as an embedding operator L2(J) → L2(R).

π+, π−: π+ = πR+ and π− = πR− .
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We extend an L2-function u defined on a subinterval J of R to the whole real line
by requiring u to be zero outside of J , and we denote the extended function by πJu.
Thus, we use the same symbol πJ both for the embedding operator L2(J) → L2(R)
and for the corresponding orthogonal projection operator L2(R) → range(πJ ).
With this interpretation, π+L

2(R;U) = L2(R+;U) ⊂ L2(R;U) and π−L2(R;U) =
L2(R−;U) ⊂ L2(R;U).

2. Well-Posed Linear Systems and Time-Invariant Operators

In order to fix the notation and describe the basic setting we first give a brief
presentation of the Salamon-Weiss class of time-invariant well-posed linear systems,
including only those parts of the theory that we need. This theory has been devel-
oped in [33], [34], [35], [8], [11], and [43], [44], [45], [46] (and many other papers),
and we refer the reader to these sources for additional reading. (Salamon calls these
systems “well-posed semigroup control systems” and Weiss calls them “abstract lin-
ear systems”.) Since we need only externally stable systems here, we restrict our
discussion to this class of systems.

In the externally stable case it is possible to define a well-posed linear system in
a slightly nonstandard way that turns out to be very convenient for our purposes.
Usually the axioms of the system are formulated in terms of operators defined on
local L2-spaces, but in the stable case it is much more convenient to work with
global L2-spaces. We shall do so throughout, since it simplifies the formulation
significantly; in particular, it leads to a much simpler dual theory. This setting is
also the best one for H∞-related work. Parts of this setting are found in [35].

In order to formulate the axioms satisfied by a well-posed linear system we need
the “past time” projection operator π−, the “future time” projection operator π+,
and the bilateral “time shift” group τ(t). These operate on functions u defined on
R = (−∞,∞) in the following way:

(π−u)(s) =

{
u(s), s ∈ R−,
0, s ∈ R+,

(π+u)(s) =

{
u(s), s ∈ R+,

0, s ∈ R−,

(τ(t)u)(s) = u(t+ s), t, s ∈ R.

Definition 1. Let U , H , and Y be Hilbert spaces. A (causal) externally stable
(time-invariant) well-posed linear system on (U,H, Y ) is a quadruple Ψ = [A B

C D ],
where A, B, C, and D are bounded linear operators of the following type:

(i) A is a strongly continuous semigroup on H ;
(ii) B : L2(R;U) → H satisfies A(t)Bu = Bτ(t)π−u for all u ∈ L2(R;U) and

t ∈ R+;
(iii) C : H → L2(R;Y ) satisfies CA(t)x = π+τ(t)Cx for all x ∈ H and t ∈ R+;
(iv) D : L2(R;U) → L2(R;Y ) satisfies τ(t)Du = Dτ(t)u, π−Dπ+u = 0, and

π+Dπ−u = CBu for all u ∈ L2(R;U) and t ∈ R.

If, furthermore, supt∈R+‖A(t)‖ <∞, then Ψ is called stable rather than externally
stable, and if A(t)x→ 0 as t→∞ for all x ∈ H , then Ψ is called strongly stable.
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QUADRATIC OPTIMAL CONTROL OF LINEAR SYSTEMS 3683

The different components of Ψ are named as follows: U is the input space, H the
state space, Y the output space, A the semigroup, B the controllability (or reachabil-
ity) map, C the observability map, D the input/output map, BB∗ the controllability
gramian, and C∗C the observability gramian of Ψ.

Remark 2. The same axioms can be used to define an arbitrary (unstable) well-
posed linear system. We simply replace all the L2-spaces by the corresponding
weighted L2-spaces L2

ω =
{
f ∈ L2

loc

∣∣ (t 7→ e−ωtf(t)) ∈ L2
}
. Here ω is an arbitrary

number larger than the exponential growth rate of A. See [39, Section 2] for details.

The axioms listed above describe standard properties of the corresponding maps
induced by exponentially stable systems with bounded control and observation
operators. Whenever we refer to a stable “classical” system, we mean a system of
the following type: we let A be the generator of an exponentially stable semigroupA
on a Hilbert spaceH , let U and Y be Hilbert spaces, let B ∈ L(U ;H), C ∈ L(H ;Y ),
and D ∈ L(U ;Y ), and consider the system

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), t ≥ T,

x(T ) = xT ,

(1)

where T is a given initial time and xT a given initial value. We call u the control, x
the state, y the output (or observation), A the generator, B the control operator, C
the observation operator, and D the feed-through operator of this classical system.
The state x is required to be a strong solution of (1), i.e., the state x and output y
are given by

x(t) = A(t− T )xT +

∫ t

T

A(t− s)Bu(s) ds, t ≥ T,

y(t) = CA(t− T )xT +

∫ t

T

CA(t− s)Bu(s) ds+Du(t), t ≥ T.

(2)

In this case we define B, C, and D by

Bu =

∫ 0

−∞
A(−s)Bu(s) ds,(3)

Cx =
(
t 7→ CA(t)x, t ∈ R+

)
,(4)

Du =

(
t 7→

∫ t

−∞
CA(t− s)Bu(s) ds+Du(t), t ∈ R

)
.(5)

Thus, B is the mapping from the control u ∈ L2(R−;U) to the final state x(0) ∈ H
(take T = −∞, xT = 0, and t = 0), C is the mapping from the initial state x0 ∈ H
to the output y ∈ L2(R+;Y ) (take T = 0 and u = 0), and D is the mapping from
the control u ∈ L2(R;U) to the output y ∈ L2(R;Y ) (take T = −∞ and xT = 0).

We shall also need the concept of an input/output map D without knowing
that it is a part of a well-posed linear system. In this case we apply the following
definition:

Definition 3. Let U and Y be two Hilbert spaces. A bounded linear operator
D : L2(R;U) → L2(R;Y ) is called time-invariant iff it commutes with bilateral
time shifts, i.e., τ(t)Du = Dτ(t)u for all u ∈ L2(R;U) and all t ∈ R. The Hankel
operator induced by D is the operator π+Dπ−, and the anti-Hankel operator induced
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by D is the operator π−Dπ+. The Toeplitz operator induced by D is the operator
π+Dπ+, and the anti-Toeplitz operator induced by D is the operator π−Dπ−.

The word “causal” that we have included in the definition of a well-posed linear
system relates to the fact that all the components of Ψ in Definition 1 are causal:

Definition 4. An operator B : L2(R;U) → H is causal [anti-causal ] if Bπ+ = 0
[Bπ− = 0]. An operator C : H → L2(R;Y ) is causal [anti-causal ] if π−C = 0
[π+C = 0]. An time-invariant operator D : L2(R;U) → L2(R;Y ) is causal [anti-
causal ] if π−Dπ+ = 0 [π+Dπ− = 0], and it is static (or memoryless) if it is both
causal and anti-causal.

Thus, a time-invariant operator is causal iff its anti-Hankel operator vanishes,
it is anti-causal iff its Hankel operator vanishes, and it is static if both its Hankel
operator and its anti-Hankel operator vanish. The condition imposed on the in-
put/output map D in Definition 1 requires D to be a causal time-invariant operator
whose Hankel operator is equal to CB. Intuitively, a causal controllability map B
maps past inputs into the present state, a causal observability map C maps the
present state into future outputs, and future inputs to a causal input/output map
D have no effect on past outputs.

The following result is immediate:

Lemma 5. Let D : L2(R;U) → L2(R;Y ) be time-invariant.

(i) The adjoint D∗ : L2(R;Y ) → L2(R;U) of D is time-invariant.
(ii) If D is invertible, then the inverse D−1 is time-invariant (but the causality of

D does not imply the causality of D−1).
(iii) If D is causal then Dπ+ = π+Dπ+ and π−D = π−Dπ−, and if D is anti-causal

then Dπ− = π−Dπ− and π+D = π+Dπ+.

Below we use this lemma repeatedly without explicit reference.
(Different authors use different names for the same concepts. For example, [32]

use the names “S-analytic” for a causal time-invariant operator and “S-constant”
for a static time-invariant operator, and they identify the class of anti-causal time-
invariant operators with the class of operators whose adjoints are S-analytic. Here
S stands for the (unilateral) Laguerre shift on L2(R+;U); see [32, p. 16].)

Static time-invariant operators have a very simple characterization:

Lemma 6. The set of bounded linear static time-invariant operators
D : L2(R;U) → L2(R;Y ) can be identified with the set of bounded linear opera-
tors M ∈ L(U ;Y ) in the following sense: For every M ∈ L(U ;Y ) the multiplica-
tion operator u 7→ Mu induced by M is a static time-invariant operator mapping
L2(R;U) into L2(R;Y ), and conversely, every static time-invariant operator D has
a representation of this type.

This well-known result can be derived from, e.g., [32, Theorem 5.2C, p. 96] or
[15, Chapter 1].

Corollary 7. The Hankel operator of a causal [the anti-Hankel operator of an anti-
causal] time-invariant operator D : L2(R;U) → L2(R;Y ) determines D uniquely,
modulo a multiplication operator u 7→Mu, where M ∈ L(U ;Y ).

Proof. If two different causal time-invariant operators have the same Hankel oper-
ator, then their difference is static.
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Thus, the control and observation operators B and C of a well-posed linear sys-
tem determine the input/output map D uniquely, except for an undetermined mul-
tiplication operator (which in the classical case is represented by the feed-through
operator D in (1)). We remark that every bounded causal time-invariant operator
D can be represented as the input/output map of a strongly stable well-posed linear
system Ψ; see [35, Theorem 4.3] or [39, Definition 2.10]. Such a system Ψ is called
a realization of D.

The adjoint of the system Ψ can be defined in two different ways, that differ
from each other through a reflection of the time axis. We shall follow the classical
tradition and let the adjoint system evolve in the backward time direction. To get
this system we use the standard inner products in L2(R;U) and L2(R;Y ) (instead
of inner products that reflect the time axis), replace all the operators in Definition 1
by their adjoints, and finally interchange B∗ and C∗. Doing so we get a system of
the following type:

Definition 8. Let Y , H , and U be Hilbert spaces. An anti-causal externally stable
well-posed linear system on (Y,H,U) is a quadruple Ψ∗ =

[A∗ C∗
B∗ D∗

]
, where A∗, C∗,

B∗, and D∗ are bounded linear operators of the following type:

(i) A∗ is a strongly continuous semigroup on H ;
(ii) C∗ : L2(R;Y ) → H satisfies A∗(−s)C∗y∗ = C∗τ(s)π+y

∗ for all y∗ ∈ L2(R;Y )
and s ∈ R−;

(iii) B∗ : H → L2(R;U) satisfies B∗A∗(−s)x∗ = π−τ(s)B∗x∗ for all x∗ ∈ H and
s ∈ R−;

(iv) D∗ : L2(R;Y ) → L2(R;U) satisfies τ(s)D∗y∗ = D∗τ(s)y∗, π+D∗π−y∗ = 0,
and π−D∗π+y

∗ = B∗C∗y∗ for all y∗ ∈ L2(R;Y ) and s ∈ R.

If, furthermore, supt∈R+‖A∗(t)‖ < ∞, then Ψ∗ is called stable rather than exter-
nally stable, and if A∗(t)x∗ → 0 as t→∞ for all x∗ ∈ H , then Ψ∗ is called strongly
stable.

The different components of Ψ∗ are named as follows: Y is the input space, H
the state space, U the output space, A∗ the semigroup, C∗ the controllability map,
B∗ the observability map, D∗ the input/output map, C∗C the controllability gramian,
and BB∗ the observability gramian of Ψ∗.

It is easy to see that the adjoint of the causal system Ψ in Definition 1 is an anti-
causal system Ψ∗ of the type described in Definition 8. The two key observations
are that π+ and π− are self-adjoint, and that the adjoint of the left-shift τ(t) is the
right-shift τ(−t). The reason for the name “anti-causal” is obvious: all the parts of
the anti-causal system are anti-causal according to Definition 4. By reversing the
time direction in which Ψ∗ evolves we get a causal system of the type described
in Definition 1 (i.e., let R be the reflection operator Ru(t) = u(−t), and replace
C∗, B∗, and D∗ by C∗R, RB∗, and RD∗R, respectively). Thus, all results proved
for causal systems can be applied to anti-causal systems, too (with some trivial
modifications due to the reflection of the time direction).

In the classical stable case (1) the adjoint system Ψ∗ is induced by the (anti-
stable) system

(x∗)′(s) = −A∗x∗(s)− C∗y∗(s),

u∗(s) = B∗x∗(s) +D∗y∗(s), s ≤ S,

x∗(S) = x∗S ,
(6)
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whose strong solution x and output y are given by

x∗(s) = A∗(S − s)x∗S +

∫ S

s

A∗(t− s)C∗y∗(t) dt, s ≤ S,

u∗(s) = B∗A∗(S − s)x∗S +

∫ S

s

B∗A∗(t− s)C∗y∗(t) dt+D∗y∗(s), s ≤ S.

(7)

The different maps of Ψ∗ are now given by

C∗y∗ =

∫ ∞

0

A∗(t)C∗y∗(t) dt,(8)

B∗x∗ =
(
s 7→ B∗A∗(−s)x∗, s ∈ R−) ,(9)

D∗y∗ =

(
s 7→

∫ ∞

s

B∗A∗(t− s)C∗y∗(t) dt+D∗y∗(s), s ∈ R

)
.(10)

Two of the central notions of a well-posed linear system are still missing, namely
the notions of the controlled state and the output :

Definition 9. Let Ψ = [A B
C D ] be a causal externally stable well-posed linear system

on (U,H, Y ), and let Ψ∗ =
[A∗ C∗
B∗ D∗

]
be its anti-causal adjoint system on (Y,H,U).

Let x0 ∈ H , x∗0 ∈ H , u ∈ L2(R;U), and y∗ ∈ L2(R;Y ). In the time-invariant
setting the controlled state x(t) at time t ∈ R and the output y of Ψ with control
u are given by (

x(t)
y

)
=

(Bτ(t)u
Du

)
,

and the controlled state x∗(s) at time s ∈ R and the output u∗ of Ψ∗ with control
y∗ are given by (

x∗(s)
u∗

)
=

(C∗τ(s)y∗
D∗y∗

)
.

In the initial value setting with initial time zero, the controlled state x(t) at time
t ∈ R+ and the output y of Ψ with initial value x0 and control u are given by(

x(t)
y

)
=

(A(t) Bτ(t)
C D

)(
x0

π+u

)
=

(A(t)x0 + Bτ(t)π+u
Cx0 +Dπ+u

)
,

and the controlled state x∗(s) at time s ∈ R− and the output u∗ of Ψ∗ with initial
value x∗0 and control y∗ are given by(

x∗(s)
u∗

)
=

(A∗(−s) C∗τ(s)
B∗ D∗

)(
x∗0
π−y∗

)
=

(A∗(−s)x∗0 + C∗τ(s)π−y∗
B∗x∗0 +D∗π−y∗

)
.

Let us remark that the most common problem is the initial value problem for
Ψ with initial time zero, and in many papers this is the only one that is treated.
Frequently the adjoint system Ψ∗ is also studied in an initial value setting with a
positive initial time S; see, e.g., [34, Section 5]. This is in particular true in studies
of the finite horizon quadratic cost minimization problem. See [39, Section 2] for
the appropriate definition.
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A Bτ
C D

?

x0

� x

� y

6 π+u

Figure 1. Input/State/Output Diagram of Ψ

In the case of the stable classical system (1) and its anti-stable adjoint (6), in
the time-invariant setting the states of Ψ and Ψ∗ are given by

x(t) =

∫ t

−∞
A(t− s)Bu(s) ds, t ∈ R,(11)

x∗(s) =

∫ ∞

s

A∗(t− s)C∗y∗(t) dt, s ∈ R,(12)

and the outputs are given by (5) and (10). In the initial value setting with initial
time zero the states and outputs of the same systems are given by

x(t) = A(t)x0 +

∫ t

0

A(t− s)Bu(s) ds, t ∈ R+,(13)

y(t) = CA(t)x0 +

∫ t

0

CA(t − s)Bu(s) ds+Du(t), t ∈ R+,(14)

x∗(s) = A∗(−s)x∗0 +

∫ 0

s

A∗(t− s)C∗y∗(t) dt, s ∈ R−,(15)

u∗(s) = B∗A∗(−s)x∗0 +

∫ 0

s

B∗A∗(t− s)C∗y∗(t) dt+D∗y∗(s), s ∈ R−.(16)

Compare these formulas to (2) and (7).
An important property of the two different settings is that if we “restrict the

causal time-invariant problem to R+,” then we get an initial value problem, or more
precisely, on R+ the state and the output of the causal time-invariant problem are
identical to the state and the output of the initial value problem with x0 replaced
by x(0) = Bu. A similar statement is true in the anti-causal case (replace R+ by
R− and x∗0 by C∗y∗).
Remark 10. Because of Definition 9, we also use the alternative notation [A Bτ

C D ] for
the system [A B

C D ].

We use diagrams of the type drawn in Figure 1 to represent the relation between
the state x, the output y, the initial value x0, and the control u of Ψ in the initial
value setting. In our diagrams we use the following conventions throughout:

(i) Initial states and controls enter at the top or bottom, and they are acted on
by all the operators located in the column to which they are attached. In
particular, note that x0 is attached to the first column and u to the second.

(ii) Final states and outputs leave to the left or right, and they are the sums of
all the elements in the row to which they are attached. In particular, note
that x is attached to the top row, and y to the bottom row.

A similar diagram is used to describe the adjoint system Ψ∗. In the time-invariant
setting we use the same diagram without the initial vector x0 and the projection
π+.
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3. Quadratic Cost Minimization

This study centers around four problems that are closely connected to each other,
namely quadratic cost minimization, spectral factorization, inner-outer factoriza-
tion, and various types of feedback. The first of these problems is presented here,
the next two are presented in Section 4, and the feedback configurations in Section
5.

We formulate the quadratic cost minimization problem for a causal well-posed
linear system Ψ in the initial value setting with initial time zero:

Definition 11. Let Ψ = [A B
C D ] be an externally stable causal well-posed linear

system on (U,H, Y ). The quadratic cost minimization problem for Ψ consists of
finding, for each x0 ∈ H , the infimum over all u ∈ L2(R+;U) of the cost

Q(x0, u) = ‖y‖2
L2(R+;Y ) ,

where y = Cx0 +Dπ+u is the output of Ψ with initial value x0 and control u.

As is well-known, the existence of a unique minimizing solution uopt of the qua-
dratic cost minimization problem is guaranteed if the input/output map D of Ψ is
coercive:

Definition 12. A bounded linear operator D : L2(R;U) → L2(R;Y ) is coercive
(or bounded from below) iff there exists some ε > 0 such that

‖Du‖2L2(R;Y ) ≥ ε ‖u‖2L2(R;U)

for all u ∈ L2(R;U). Equivalently, D is coercive iff

D∗D ≥ εI

for some ε > 0. Equivalently (by the closed graph theorem), D is coercive iff D is
one-to-one and has a closed range.

Lemma 13. Let Ψ = [A B
C D ] be an externally stable well-posed linear system on

(U,H, Y ).

(i) D is coercive if and only if the Toeplitz operator π+D∗Dπ+, regarded as an
operator mapping L2(R+;U) into itself, has a bounded inverse. We denote
this inverse by (π+D∗Dπ+)−1.

(ii) Suppose that D is coercive. Then, for each x0 ∈ H, there is a unique control
uopt ∈ L2(R+;U) that minimizes the cost function Q(x0, u) in Definition 11,
namely

uopt = −(π+D∗Dπ+)−1π+D∗Cx0.(17)

The corresponding state xopt, the output yopt, and the minimal value of the
cost function Q are given by

xopt = Ax0 − Bτπ+(π+D∗Dπ+)−1π+D∗Cx0,(18)

yopt = (I − P ) Cx0,(19)

Q(x0, uopt) = 〈x0, C∗ (I − P ) Cx0〉H ,(20)

where P = Dπ+(π+D∗Dπ+)−1π+D∗ is the orthogonal projection in L2(R;Y )
onto the range of Dπ+. Moreover,

π+D∗yopt = π+D∗ (Cx0 +Dπ+uopt) = 0,(21)

that is, yopt is orthogonal to the range of Dπ+.
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Proof. (i) By definition, if D is coercive, then ‖Du‖2
L2(R;Y ) ≥ ε‖u‖2

L2(R;U) for some

ε > 0 and all u ∈ L2(R;U). In particular, this implies that ‖Dπ+u‖2
L2(R;Y ) ≥

ε‖π+u‖2
L2(R;U), and thus π+D∗Dπ+ is positive and bounded away from zero on

L2(R+;U), hence invertible.
Conversely, if π+D∗Dπ+ is invertible on L2(R+;U), then it is strictly positive,

and by the time-invariance of D, there is some ε > 0 such that for for all u ∈
L2(R;U),

‖Dπ[t,∞)u‖2
L2(R;Y ) = ‖Dτ(−t)π+τ(t)u‖2

L2(R;Y )

= ‖τ(−t)Dπ+τ(t)u‖2
L2(R;Y )

= ‖Dπ+τ(t)u‖2
L2(R;Y )

≥ ε‖π+τ(t)u‖2
L2(R;U)

= ε‖u‖2
L2([t,∞);U).

Let t→ −∞ to conclude that D∗D ≥ εI.
(ii) If D is coercive, then the cost function Q(x0, u) is convex and coercive with

respect to u ∈ L2(R+;U); hence there is a unique minimizing control uopt ∈
L2(R+;U). To show that the corresponding output yopt satisfies (21) we argue
as follows. Without loss of generality, let us suppose that U is a real Hilbert space
(if not, then we replace the inner product in U by the real inner product <〈·, ·〉),
and let us compute the Fréchet derivative of the cost function Q(x0, u) with respect
to u at the optimal uopt. For each variation η ∈ L2(R+;U), we have

dQ(x0, uopt)η = 2 〈Cx0 +Dπ+uopt,Dπ+η〉L2(R+;U)

= 2 〈yopt,Dπ+η〉L2(R+;U)

= 2 〈D∗yopt, η〉L2(R+;U) .

This is zero for all η ∈ L2(R+;U) iff (21) holds. Clearly, (17) follows from part
(i) and (21). By substituting this value for uopt into xopt = Ax0 + Bτπ+uopt,
yopt = Cx0+Dπ+uopt, and Q(x0, uopt) (and making a straightforward computation)
we get (18), (19), and (20).

Definition 14. Under the hypotheses of part (ii) of Lemma 13, define

A	 = A− Bτπ+(π+D∗Dπ+)−1π+D∗C,
C	 =

(
I −Dπ+(π+D∗Dπ+)−1π+D∗

) C,
K	 = −(π+D∗Dπ+)−1π+D∗C,

Π = C∗ (I −Dπ+(π+D∗Dπ+)−1π+D∗
) C.

We call Π the Riccati operator of Ψ.

Thus, according to Lemma 13, xopt = A	x0, yopt = C	x0, uopt = K	x0, and
Q(x0, uopt) = 〈x0,Πx0〉H .

Lemma 15. Make the same assumption as in part (ii) of Lemma 13, and introduce
the same notation as in Definition 14. Then the following claims are true:
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(i) The operators A	, C	, K	, and Π satisfy

A	 = A+ BτK	,

C	 = C +DK	,

Π = C∗	C	 = C∗C	 = C∗	C.

(ii) A	 is a strongly continuous semigroup on H, and C	 and K	 are admissible
stable observability maps for A	 in the sense that C	 ∈ L(H ;L2(R;Y )),
K	 ∈ L(H ;L2(R;U)), and

C	A	(t) = π+τ(t)C	,

K	A	(t) = π+τ(t)K	,

for all t ∈ R+.

Proof. (i) This follows from Lemma 13 and Definition 14.
(ii) We fix some t > 0, and consider controls u of the type u = uopt + η, where

η ∈ L2(R+;U) satisfies π[0,t]η = 0 but is otherwise arbitrary. Then the state x(t)
at time t and the output y of Ψ are given by

x(t) = xopt(t),

y(s) = yopt(s), 0 ≤ s ≤ t,

π+τ(t)y = π+τ(t)yopt +Dτ(t)η
= Cxopt(t) +Dπ+τ(t) (uopt + η) .

We write the cost Q(x0, u) in the form

Q(x0, u) =

∫ t

0

〈yopt(s), yopt(s)〉Y ds+

∫ ∞

t

〈y(s), y(s)〉Y ds

=

∫ t

0

〈yopt(s), yopt(s)〉Y ds+

∫ ∞

0

〈(τ(t)y)(s), (τ(t)y)(s)〉Y .

Since uopt is the minimizing control, the derivative of Q(x0, u) with respect to η
must vanish at the point η = 0, and this implies that (cf. the proof of Lemma 13)

π+D∗π+τ(t)yopt = π+D∗ (Cxopt(t) +Dπ+τ(t)uopt) = 0,

i.e., (21) holds with x0, yopt, and uopt replaced by xopt(t), π+τ(t)yopt, and
π+τ(t)uopt, respectively. From this equation we can solve π+τ(t)uopt, and get
(cf. Lemma 13 and Definition 14)

π+τ(t)K	x0 = π+τ(t)uopt = K	xopt(t) = K	A	(t)x0,

π+τ(t)C	x0 = π+τ(t)yopt = C	xopt(t) = C	A	(t)x0,

A	(s+ t)x0 = xopt(s+ t) = A	(s)xopt(t) = A	(s)A	(t)x0.

Thus, A	 is a semigroup, and K	 and C	 are admissible observability maps for
A	. The strong continuity of A	 is immediate.

A stronger version of this lemma was proved independently by Zwart [52].
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4. Spectral Factorization and Inner-Outer Factorization

As we shall prove below, the quadratic cost minimization problem is closely re-
lated to the spectral factorization problem, where we factor D∗D into two invertible
factors, out of which one is causal, and the other is anti-causal:

Definition 16. Let D : L2(R;U) → L2(R;Y ) be bounded, linear, and time-invari-
ant. A bounded linear time-invariant operator X : L2(R;U) → L2(R;U) is called a
(canonical and invertible) spectral factor of D∗D iff X is causal and has a bounded
causal inverse (this inverse is necessarily time-invariant), and

X ∗X = D∗D.
As is well-known, the spectral factorization problem can be reduced to an inner-

outer factorization problem.

Definition 17. Let D : L2(R;U) → L2(R;Y ) be bounded, linear, causal, and
time-invariant. An inner-outer factorization of D is a factorization of the form

D = YX ,
where both Y : L2(R;U) → L2(R;Y ) and X : L2(R;U) → L2(R;U) are bounded
linear causal time-invariant operators, Y is an isometry, i.e., Y∗Y = I, and the
range of Xπ+ is dense in L2(R+;U). We call Y an inner factor and X an outer
factor of D.

Note that Xπ+ is the Toeplitz operator induced by X .

Lemma 18. Let D : L2(R;U) → L2(R;Y ) be bounded, linear, causal, and time-
invariant.

(i) If X is a spectral factor of D∗D, then D is coercive and YX =
(DX−1

)X is
an inner-outer factorization of D. Conversely, if D is coercive and YX is an
inner-outer factorization of D, then X is a spectral factor of D∗D.

(ii) D∗D has a spectral factor X if and only if D is coercive.
(iii) The set of all spectral factors of D∗D can be parametrized as JX , where X is

a fixed spectral factor and J ∈ L(U) is an arbitrary unitary operator.
(iv) The inverse of the Toeplitz operator π+D∗Dπ+ in part (i) of Lemma 13 can be

written in the form (π+D∗Dπ+)−1 = X−1π+(X ∗)−1, where X is an arbitrary
spectral factor of D∗D.

Inner-outer factorizations (without any coercivity assumptions) can be parame-
trized in the same way; see [32, Theorem B, p. 101].

Proof of Lemma 18. (i) The first claim is obvious. Conversely, suppose that D is co-
ercive, and that YX is an inner-outer factorization of D. Then D∗D = X ∗Y∗YX =
X ∗X . Thus, in order to prove that X is a spectral factor of D∗D, it suffices to show
that X has a bounded causal inverse.

Since D is coercive and Y is an isometry, also X is coercive; hence X is one-to-one
and has a closed range. By the time-invariance of X , we have X τ(t)π+ = τ(t)Xπ+

for all t ∈ R+, and this combined with the fact that the range of Xπ+ is dense in
L2(R+;U) implies that the range of X is dense in L2(R;U). Thus, X is a bijection
and, by the closed graph theorem, it has a bounded inverse X−1. To prove that this
inverse is causal, it suffices to show that the range of Xπ+ is equal to L2(R+;U).
But this follows from the fact that the range of Xπ+ is both dense in L2(R+;U)
and (by the coercivity of Xπ+) closed in L2(R+;U).
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(ii) If D∗D has a spectral factor, then D∗D is invertible, and D must be coer-
cive. Conversely, if D is coercive, then it follows from [32, Theorem 3.4, p. 50 and
Theorem 3.7, p. 54] that D∗D has a factorization X ∗X where X is outer. By the
argument given above X is invertible; hence X is a spectral factor of D∗D.

(iii) To prove the claim about the uniqueness of a spectral factor X , suppose
that both X and Z are spectral factors, i.e.,

X ∗X = D∗D = Z∗Z,
and that both X and Z are causal and have causal inverses. Then

XZ−1 = (X ∗)−1Z∗.
The left-hand side is causal and the right-hand side is anti-causal, so these operators
are static and, by Lemma 6,

XZ−1 = (X ∗)−1Z∗ = J

for some operator J ∈ L(U). Thus, X = JZ and Z∗ = X ∗J ; hence Z = J∗X =
J∗JZ. Since both X and J are invertible, this implies that J is unitary, i.e.,
J∗J = JJ∗ = I.

(iv) Use the causality of X and anti-causality of (X ∗)−1 to get

X−1π+(X ∗)−1π+D∗Dπ+ = X−1π+(X ∗)−1π+X ∗Xπ+

= X−1π+(X ∗)−1X ∗Xπ+

= X−1π+Xπ+

= X−1Xπ+

= π+.

Thus, X−1π+(X ∗)−1 is a left inverse of π+D∗Dπ+ on L2(R+;U). Since we know
π+D∗Dπ+ to be invertible, this operator must also be a right inverse of π+D∗Dπ+.

5. Static Output Feedback, State Feedback, and Output Injection

To connect the quadratic cost minimization problem to the spectral factorization
problem (or alternatively, to the inner-outer factorization problem), we need the
notion of a state feedback, which can be reduced to the notion of a (static) output
feedback. The idea is to feed a part z = Ly of the output y of a well-posed linear
system Ψ back into the input, as drawn in Figure 2. Here L is a bounded linear
operator from the output space into the input space. Then, in the initial value
setting with initial value x0 and input v, we find that the effective input u, the
state x(t) at time t ≥ 0, the output y, and the feedback control signal z satisfy the
equations

u = z + π+v,

x(t) = A(t)x0 + Bτ(t)u,
y = Cx0 +Du,
z = Ly,

(22)
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Figure 2. Static Output Feedback

which formally can be solved as

u = (I − LD)−1 (LCx0 + π+v) ,

x(t) =
(
A(t) + Bτ(t)L (I −DL)

−1 C
)
x0 + B (I − LD)

−1
τ(t)π+v,

y = (I −DL)
−1

(Cx0 +Dπ+v) ,

z = (I − LD)
−1

L (Cx0 +Dπ+v) .

(23)

We say that the feedback operator L is admissible whenever these equations are
valid:

Definition 19. Let Ψ = [A B
C D ] be an externally stable causal [anti-causal] well-

posed linear system on (U,H, Y ). The operator L ∈ L(Y ;U) is called an ad-
missible stable output feedback operator for Ψ iff the time-invariant operator I −
LD : L2(R;U) → L2(R;U) has a bounded causal [anti-causal] inverse, or equiva-
lently, iff the time-invariant operator I−DL : L2(R;Y ) → L2(R;Y ) has a bounded
causal [anti-causal] inverse.

Observe that the inverses are necessarily time-invariant whenever they exist.
That the two different invertibility conditions are equivalent is well-known, and so
are the facts that

(I −DL)
−1

= I +D (I − LD)
−1

L,

(I − LD)
−1

= I + L (I −DL)
−1D,

(I −DL)
−1D = D (I − LD)

−1
,

(I − LD)−1 L = L (I −DL)−1 .

As Weiss [46, Section 6] proved, x and y in (23) can be interpreted as the state
and output of another well-posed linear system:

Proposition 20. Let Ψ = [A B
C D ] be an externally stable causal well-posed linear

system, and let L ∈ L(Y ;U) be an admissible stable output feedback operator for Ψ.
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Then the system

ΨL =

[AL BLτ
CL DL

]
=

[A+ BτL (I −DL)
−1 C B (I − LD)

−1
τ

(I −DL)−1 C D (I − LD)−1

]
=

[A Bτ
C D

]
+

[Bτ
D
]
L (I −DL)

−1 [C D]
=

[A Bτ
C D

]
+

[Bτ
D
]
L
[CL DL

]
=

[A Bτ
C D

]
+

[BLτ
DL

]
L
[C D]

is another externally stable causal well-posed linear system on (U,H, Y ). We call
this system the closed loop system with output feedback operator L. In the initial
value setting with initial time zero, initial value x0, and control v, the controlled
state x(t) at time t and the output y of ΨL are given by (23). (An analogous result
is valid in the anti-causal case.)

To get a better feeling for the feedback formula in Proposition 20 we recommend
that the reader carry out the following exercise. If in the classical system (1) we
replace u by u = Ly + v, then we get a new well-defined system of the same type
iff I −DL is invertible, or equivalently, iff I − LD is invertible. In the new system
the operators [ A B

C D ] have been replaced by[
AL BL
CL DL

]
=

[
A+BL (I −DL)−1 C B (I − LD)−1

(I −DL)−1 C D (I − LD)−1

]
=

[
A B
C D

]
+

[
B
D

]
L (I −DL)

−1 [C D
]

=

[
A B
C D

]
+

[
B
D

]
L
[
CL DL

]
=

[
A B
C D

]
+

[
BL
DL

]
L
[
C D

]
.

(24)

This formula is probably not that familiar to most readers, since it is not common to
allow a feed-through operator D inside a feedback loop, and the formula simplifies
significantly when D = 0. In addition, the invertibility condition on I −DL drops
out when D = 0. However, there is a striking similarity between this formula and
the one given in Proposition 20. A general well-posed linear system need not have a
well-defined feed-through operator D (see Definition 35), so in the general case it is
not possible to normalize D to be zero. Similar comments apply to our subsequent
feedback formulas.

As the following lemma shows, stability and strong stability are preserved under
stable feedback:

Lemma 21. Let Ψ = [A B
C D ] be an externally stable causal well-posed linear system,

and let L ∈ L(Y ;U) be an admissible stable output feedback operator for Ψ. Then
the closed loop system ΨL is stable iff Ψ is stable, i.e., supt∈R+‖A(t)‖ < ∞ iff
supt∈R+‖AL(t)‖ <∞. Moreover ΨL is strongly stable iff Ψ is strongly stable, i.e.,
A(t)x→ 0 as t→∞ for all x ∈ H iff AL(t)x→ 0 as t→∞ for all x ∈ H.
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Figure 3. State Feedback Connection

Proof. The first claim follows from the fact that the difference AL − A =

BτL (I −DL)
−1 C is bounded.

To prove the second claim it suffices to show that

Bτ(t)L(I −DL)−1Cx→ 0 as t→∞
for every x ∈ H . Fix x ∈ H , and split the expression above into

Bτ(t)L(I −DL)−1Cx = Bτ(t− T )(π+ + π−)τ(T )L(I −DL)−1Cx
= Bτ(t)π[T,∞)L(I −DL)−1Cx

+A(t− T )Bτ(T )L(I −DL)−1Cx.
Here the first term tends to zero as T → ∞, uniformly in t ≥ T , and the second
term tends to zero as t→∞ and T is fixed.

As we mentioned above, a state feedback can be reduced to an output feedback
as follows. The appropriate connection has been drawn in Figure 3.

Definition 22. Let Ψ = [A B
C D ] be an externally stable causal [anti-causal] well-

posed linear system on (U,H, Y ). The pair
(K F) is called an admissible stable

state feedback pair for Ψ iff the extended system

Ψext =

 A B(C
K
) (D

F
)

is an externally stable causal [anti-causal] well-posed linear system, and
(
0 I

)
is

an admissible stable output feedback operator for Ψext, i.e., I − F has a bounded
causal [anti-causal] inverse.

In the state feedback case with initial value x0 and input v, we obtain the
effective input u, the state x(t), the output y, and the feedback control signal z of
Ψext from (22) and (23) by replacing C, D, L, and y by ( CK ), (DF ),

(
0 I

)
, and ( yz ),

respectively. This leads to the formulas

u = z + π+v,

x(t) = A(t)x0 + Bτ(t)u,
y = Cx0 +Du,
z = Kx0 + Fu,

(25)
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and

u = (I −F)
−1

(Kx0 + π+v) ,

x(t) =
(
A(t) + Bτ(t) (I −F)−1K

)
x0 + B (I −F)−1 τ(t)π+v,

y =
(
C +D (I −F)

−1K
)
x0 +D (I −F)

−1
π+v,

z = (I −F)−1 (Kx0 + Fπ+v) .

(26)

We get the closed loop state feedback system Ψ	 by making the same replacements
in Proposition 20:

Proposition 23. Let Ψ = [A B
C D ] be an externally stable causal well-posed linear

system, and let
(K F) be an admissible stable state feedback pair for Ψ. Then the

system

Ψ	 =

 A	 B	τ(C	
K	

) (D	
F	

)
=

 A+ Bτ (I −F)
−1K B (I −F)

−1
τ(C +D (I −F)

−1K
(I −F)

−1K
) ( D (I −F)

−1

(I −F)
−1 − I

)
=

 A Bτ(C
K
) (D

F
)+

 Bτ(D
F
) (I − F)

−1 [K F]
is another externally stable well-posed linear system on (U,H, Y ×U). We call this
system the closed loop state feedback system with state feedback pair

(K F). In
the initial value setting with initial time zero, initial value x0, and control v, the
controlled state x(t) at time t and the outputs y and z of Ψ	 are given by (26).
(An analogous result is valid in the anti-causal case.)

Remark 24. We shall frequently regard the signal u in Figure 3 as an additional
output of the closed loop system. This output has the same observability map
K	 = (I−F)−1K as the output z, and its input/output map is F	+I = (I−F)−1.
A similar remark applies to the signal z∗ in the adjoint output injection connection
in Figure 4.

The adjoint of the state feedback system Ψ	 is the output injection system drawn
in Figure 4.

Definition 25. Let Ψ∗ =
[A∗ C∗
B∗ D∗

]
be an externally stable anti-causal [causal] well-

posed linear system on (Y,H,U). Then the pair
(K∗
F∗

)
is called an admissible stable

output injection pair for Ψ∗ iff the extended system

Ψ∗ext =

[A∗ (C∗ K∗)
B∗ (D∗ F∗)

]
is an externally stable anti-causal [causal] well-posed linear system, and ( 0

I ) is an
admissible stable output feedback operator for Ψ∗ext, i.e., I − F∗ has a bounded
anti-causal [causal] inverse.
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Figure 4. Adjoint Output Injection Connection

The appropriate formulas for the output injection connection are in the initial
value setting

z∗ = u∗ + π−v∗,

x∗(s) = A∗(−s)x∗0 + C∗τ(s)π−y∗ +K∗τ(s)z∗,
u∗ = B∗x∗0 +D∗π−y∗ + F∗z∗,

(27)

and

z∗ = (I −F∗)−1
(B∗x∗0 +D∗π−y∗ + π−v∗) ,

x∗(s) =
(
A∗(−s) +K∗τ(s) (I −F∗)−1 B∗

)
x∗0(28)

+
(
C∗ +K∗ (I −F∗)−1D∗

)
τ(s)π−y∗ +K∗ (I −F∗)−1 τ(s)π−v∗,

u∗ = (I −F∗)−1
(B∗x∗0 +D∗π−y∗ + F∗π−v∗) .

We shall actually use this system in the time-invariant setting, for which slightly
simpler formulas are valid (set x∗0 = 0 and delete π−).

We get the closed loop output injection system Ψ∗	 by making the appropriate
replacements in Proposition 20:

Proposition 26. Let Ψ∗ =
[A∗ C∗
B∗ D∗

]
be an externally stable anti-causal well-posed

linear system, and let
( K∗
F∗

)
be an admissible stable output injection pair for Ψ.

Then the system Ψ∗	 given by

Ψ∗	 =

[A∗	 (C∗	τ K∗	τ
)

B∗	
(D∗	 F∗	

) ]
=

[
A∗ +K∗τ∗ (I −F∗)−1 B∗

(
C∗τ +K∗ (I −F∗)−1D∗τ K∗ (I −F∗)−1

τ
)

(I −F∗)−1 B∗ ((I −F∗)−1D∗ (I −F∗)−1 − I)

]

is an externally stable anti-causal well-posed linear system. We call this system the
closed loop output injection system with output injection pair

(K∗
F∗

)
. The controlled

state x∗(s) at time s ≤ 0 and output u∗ of Ψ∗	 in the initial value setting with initial
time zero, initial state x∗0, and controls y∗ and v∗ are given by (28). (An analogous
result is valid in the causal case.)
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6. The Connection Between Quadratic Cost Minimization and

Spectral Factorization

The following theorem is our first main result. It shows that the spectral factor-
ization problem is equivalent to the problem of finding a state feedback solution to
the quadratic cost minimization problem:

Theorem 27. Let Ψ = [A B
C D ] be an externally stable causal well-posed linear sys-

tem on (U,H, Y ), and let D be coercive (in the sense of Definition 12). For each
x0 ∈ H, let xopt, uopt, and yopt be the optimal state, control, and output for the
quadratic cost minimization problem (see Lemma 13). Let Π be the Riccati operator
defined in Definition 14.

(i) If YX is an inner-outer factorization of D (in the sense of Definition 17),
and if E is an arbitrary invertible operator in L(U), then(K F) =

(−π+E
−1Y∗C (

I − E−1X ))
is an admissible stable state feedback pair for Ψ, andxopt

yopt

uopt

 =

A	
C	
K	

x0 =

A+ BX−1τEK
C + YEK
X−1EK

x0

=

AC
0

 x0 −
BX−1τ

Y
X−1

 π+Y∗Cx0

is equal to the state and output of the closed loop system

Ψ	 =

 A	 B	(C	
K	

) (D	
F	

) =

A+ BX−1τEK BX−1E(C + YEK
X−1EK

) ( YE
X−1E − I

)
=

A− BX−1τπ+Y∗C BX−1E(
(I − Yπ+Y∗) C
−X−1π+Y∗C

) ( YE
X−1E − I

)(29)

with this feedback pair, initial value x0, initial time zero, and zero control u.
The Riccati operator Π of Ψ can be written in the following alternative forms:

Π = C∗C − K∗E∗EK = C∗ (I − Yπ+Y∗) C = C∗C	 = C∗	C	.

In particular, Π is the observability gramian of the closed loop system Ψ	.
(ii) Conversely, if

( yopt
uopt

)
is equal to the output of some externally stable closed

loop state feedback extension Ψ	 of Ψ with initial value x0, initial time 0,
zero control u, and some admissible stable state feedback pair

(K F), then
there exists an invertible operator E ∈ L(U) such that YX is an inner-outer

factorization of D, where Y = D (I −F)
−1

E−1 and X = E (I −F). More-
over, K is given by K = −π+E

−1Y∗C. Thus, every state feedback solution of
the quadratic cost minimization problem is of the type described in part (i).

Remark 28. The operator Yπ+Y∗ in the formulas above is equal to the projection
operator P in Lemma 13. The operator I−Yπ+Y∗ can be interpreted as the Riccati
operator of a particular realization of D; see [37].

The explanation for the appearance of the extra undetermined operator E in
Theorem 27 is the following. In the case of the classical system (1) a standard state
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feedback law has the form u = Lx for some bounded linear operator L. The right-
hand side of this feedback equation can be thought of as an extra output of the
original system with the property that the feed-through term has been normalized to
be zero. As we mentioned in connection with the formula for the output feedback
connection, it is not in general possible to normalize the feed-through term of
a well-posed linear system to be zero; to do this we need the extra regularity
condition introduced in Definition 35. If we do not normalize the feed-through
term in the feedback loop to be zero, the we must write the feedback equation
in the form u = Kx + Fu for some bounded linear operators K and F . This
equation is equivalent to the earlier equation u = Lx iff I − F is invertible, and
L = (I−F )−1K. Define E = (I−F )−1. Then the feedback equation u = Kx+Fu
becomes u = E−1Lx + (I − E−1)u, which begins to resemble the actual formula
used in Theorem 27. Notice, in particular, that the “effective” feedback is L = EK
instead of K.

For later reference, let us write out the expression for the extended open loop
system Ψext in Definition 22 with the particular state feedback pair

(K F) =(−π+E
−1Y∗C (

I − E−1X )) given by Theorem 27, and also the expressions for
the adjoints of Ψext and Ψ	:

Ψext =

 A B(C
K
) (D

F
) =

 A B( C
−π+E

−1Y∗C
) ( D

I − E−1X
) ,(30)

Ψ∗ext =

[A∗ (C∗ K∗)
B∗ (D∗ F∗)

]
=

A∗ (
C∗ −C∗Y (E∗)−1

π+

)
B∗

(
D∗ I −X ∗ (E∗)−1

)  ,(31)

Ψ∗	 =

[A∗	 (C∗	 K∗	
)

B∗	
(D∗	 F∗	

)](32)

=

A∗ − C∗Yπ+τ
∗ (X ∗)−1 B∗

(
C∗ (I − Yπ+Y∗) −C∗Yπ+ (X ∗)−1

)
E∗ (X ∗)−1 B∗

(
E∗Y∗ E∗ (X ∗)−1 − I

)  .
Proof of Theorem 27. (i) We suppose that YX is an inner-outer factorization of D.
Let E ∈ L(H) be invertible, and define(K F) =

(−π+E
−1Y∗C (

I − E−1X )) .
We claim that the system Ψext defined in (30) is an externally stable well-posed

linear system on (U,H, Y × U). It is obvious that all the operators in this system
are causal, bounded linear operators on their appropriate domains. The only non-
obvious parts of the claim that Ψext is well-posed are that

KA(t) = π+τ(t)K, t ∈ R+,
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and that the Hankel operator of F is equal to KB. To compute KA(t), we recall
that E−1Y∗ is time-invariant and anti-causal; hence

KA(t) = −π+E
−1Y∗CA(t)

= −π+E
−1Y∗π+τ(t)C

= −π+E
−1Y∗τ(t)C

= −π+τ(t)E
−1Y∗C

= −π+τ(t)π+E
−1Y∗C

= π+τ(t)K.
In the computation of the Hankel operator of F , we use the facts that F and−E−1X
have the same Hankel operator, that X = Y∗YX = Y∗D, that π+ + π− = I, that
E−1Y∗ is anti-causal, and that the Hankel operator of D is CB:

π+Fπ− = −π+E
−1Xπ−

= −π+E
−1Y∗Dπ−

= −π+E
−1Y∗π+Dπ−

= −π+E
−1Y∗CB

= KB.
To complete the proof of (i) it suffices to insert the formula for (π+D∗Dπ+)−1

given in part (iv) of Lemma 18 into the formulas of Lemma 13, and to compare
the result to the output of the closed loop system Ψ	 with initial time zero, initial
state x0, and zero control u.

(ii) Conversely, suppose that
( yopt
uopt

)
is equal to the output of some externally

stable closed loop state feedback extension Ψ	 of Ψ with initial value x0, initial
time 0, zero control u, and some admissible stable state feedback pair

(K F).
According to Proposition 23,

yopt = C	x0 =
(
C +D (I −F)

−1K
)
x0,

uopt = K	x0 = (I −F)−1Kx0.
(33)

The first step of this proof is to show that it is possible to write D∗D in the
form Z∗W , where both Z and W are causal and W has a bounded causal inverse.
Motivated by the formula F = I − E−1X in part (i), we take E = I, and choose
W and Z∗ to be

W = I −F , Z∗ = D∗DW−1 = D∗D (I −F)
−1

.

Since
(K F) is an admissible stable state feedback pair for Ψ, W = I−F is causal

and has a bounded causal inverse (which makes it possible to define Z∗ in the way
that we did above).

We claim that Z∗ is anti-causal. To prove this we choose an arbitrary u ∈
L2(R;U), and choose x0 in the quadratic cost minimization problem to be x0 =

B	u. Recall that the Hankel operator of D	 = D (I −F)
−1

is C	B	 since Ψ	 is a
well-posed system, and compute

yopt = C	x0 = C	B	u

= π+D	π−u = π+D (I −F)
−1

π−u.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUADRATIC OPTIMAL CONTROL OF LINEAR SYSTEMS 3701

By (21), π+D∗yopt = 0, and this together with the computation above and the

anti-causality of D∗ shows that π+Z∗π− = π+D∗D (I −F)−1 π− = 0, i.e., Z∗ is
anti-causal.

By now we know that Z∗W = D∗D, that Z∗ is anti-causal, that W is causal
and invertible, and that the inverse of W is causal. Taking adjoints in the equation
Z∗W = D∗D, we get

W∗Z = D∗D = Z∗W ;

hence

ZW−1 = (W∗)−1D∗DW−1 = (W∗)−1Z∗.
Since ZW−1 is causal and (W∗)−1Z∗ is anti-causal, the operator (W∗)−1D∗DW−1

is static. By Lemma 6, it is equal to a multiplication operator by an operator
M ∈ L(U), i.e., (W∗)−1D∗DW−1 = M for some M ∈ L(U). The operator M

must be positive and invertible since (W∗)−1D∗DW−1 is positive and invertible.
Let E ∈ L(U) be an arbitrary invertible operator satisfying E∗E = M ; for example,

we may take E to be the positive square root ofM . Then (W∗)−1D∗DW−1 = E∗E,
i.e.,

D∗D = W∗E∗EW = (I −F∗)E∗E (I −F) .

Consequently, if we define

X = E (I −F) ,

then X is a spectral factor of D∗D, and YX =
(
D (I − F)

−1
E−1

)
(E (I −F)) is

an inner-outer factorization of D.
To prove that K must be of the form K = −π+E

−1Y∗C, we observe that by (21)
and (33),

π+D∗
(
C +D (I −F)

−1K
)

= 0.

Replacing D∗D by X ∗X = (I −F∗)E∗E (I −F), we get

π+X ∗EK = −π+D∗C,
which we can solve for K (since E−1 (X ∗)−1

is anti-causal) in the form

K = −π+E
−1 (X ∗)−1D∗C = −π+E

−1Y∗C.

7. The Generators of a Well-Posed Linear system

By a result due to Salamon [35] (and apparently discovered independently by
Weiss [43, 44]), every well-posed linear system Ψ has a well-defined (unbounded)
control operator B and a well-defined (unbounded) observation operator C, and
formulas (3), (4), (8), (9), (11), (12), (13), and (15) hold in a weak sense (see Remark
30 below). In order to present this result we need some additional definitions.

LetA be the semigroup of the well-posed linear system Ψ on (U,H, Y ), i.e., A is a
semigroup on H . Denote the generator of A by A, and denote the domain dom(A)
of A by W . Choose an arbitrary number α from the resolvent set of A. Then
W = (αI−A)−1H , and we can choose the norm in W to be ‖x‖W = ‖(αI −A)x‖H .

Let V be the completion of H under the norm
∥∥(αI −A)−1x

∥∥
H

. Then

W ⊂ H ⊂ V
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with dense and continuous embeddings, (αI −A) is an (isometric) isomorphism of
W onto H , and (αI −A) extends to an (isometric) isomorphism of H onto V . The
semigroup A can be restricted to a semigroup on W , and extended to a semigroup
on V . The three semigroups that we get in this way are (isometrically) isomorphic,
and we denote them all with the same letter A.

We repeat the same construction with A and A replaced by their adjoints A∗
and A∗ to get two more spaces V ∗ = dom(A∗) and W ∗, with

V ∗ ⊂ H ⊂W ∗.

It is possible to identify W ∗ with the dual of W and V with the dual of V ∗ if we
use H as the pivot space.

Proposition 29. Let Ψ = [A B
C D ] be a causal and Ψ∗ =

[A∗ C∗
B∗ D∗

]
an anti-causal

externally stable well-posed linear system on (U,H, Y ), respectively on (Y,H,U).
These systems have (unique) generating operators

[
A B
C ?

]
, respectively

[
A∗ C∗
B∗ ?

]
, with

the following properties (the question mark stands for a missing entry):

(i) A ∈ L(W ;H) ∩ L(H ;V ) is the generator of A, A∗ ∈ L(V ∗;H) ∩ L(H ;W ∗)
is the generator of A∗, B ∈ L(U ;V ), C∗ ∈ L(Y ;W ∗), C ∈ L(W ;Y ), and
B∗ ∈ L(V ∗;U). Moreover, for every sufficiently large real number α, αI −
A has an inverse in L(H ;W ) ∩ L(V ;H), and αI − A∗ has an inverse in
L(H ;V ∗) ∩ L(W ∗;H).

(ii) C ∈ L(W ;W 1,2(R+;Y )), B∗ ∈ L(V ∗;W 1,2(R+;U)), and (4) and (9) hold for
every x ∈ W and x∗ ∈ V ∗. Moreover, for such x and x∗, (Cx)′ = CAx and
(B∗x∗)′ = −B∗A∗x∗.

(iii) In the time-invariant setting, if u ∈ W 1,2(R;U), then the controlled state
x = Bτu and the output y = Du of Ψ satisfy x ∈ BC1(R;H), y ∈W 1,2(R;Y ),
x′ = Bτu′ = Ax + Bu ∈ BC(R;H), y′ = Du′, and x(t) → 0 and x′(t) →
0 in H as t → −∞. Analogously, in the time-invariant setting, if y∗ ∈
W 1,2(R;Y ), then the controlled state x∗ = C∗τy∗ and the output u∗ = D∗y∗ of
Ψ∗ satisfy x∗ ∈ BC1(R;H), u∗ ∈ W 1,2(R;U), (x∗)′ = C∗τ (y∗)′ = −A∗x∗ −
C∗y∗ ∈ BC(R;H), (u∗)′ = D∗ (y∗)′, and x∗(s) → 0 and (x∗)′ (s) → 0 in H
as s→∞.

(iv) In the initial value setting, if u ∈ W 1,2(R+;U), x0 ∈ H, and Ax0 +Bu(0) ∈
H, then the controlled state x = Ax0+Bτπ+u and the output y = Cx0+Dπ+u
of Ψ satisfy

x ∈ C1(R+;H), y ∈ W 1,2(R+;Y ),

x′ = A(Ax0 +Bu(0)) + Bτu′ = Ax+Bu ∈ C(R+;H),

x(t) is given by (13), and y′ = C (Ax0 +Bu(0)) + Du′. Analogously, in the
initial value setting, if y∗ ∈W 1,2(R−;Y ), x∗0 ∈ H, and A∗x∗0 +C∗y∗(0) ∈ H,
then the controlled state x∗(s) = A∗(−s)x∗0 + C∗τ(s)π−y∗ and the output
u∗ = B∗x∗0 +D∗π−y∗ of Ψ∗ satisfy

x∗ ∈ C1(R−;H), u∗ ∈ W 1,2(R+;U),

(x∗)′ (s) = −A∗(−s)(A∗x∗0 + C∗y∗(0)) + C∗τ(s) (y∗)′

= −A∗x∗ − C∗y∗ ∈ C(R−;H),

x∗(s) is given by (15), and (u∗)′ = −B∗ (A∗x∗0 + C∗y∗(0)) +D∗ (y∗)′.
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Outline of Proof. Most of these claims follow directly from [34, Lemmas 2.3
and 2.5] and [35, Theorem 3.1 and Lemma 3.2]. The key step is to prove that
B ∈ L(U ;V ) and C ∈ L(W ;Y ) and that (4) and (13) hold in the appropriate
spaces, because that enables us to regard [A B

0 0 ] as a classical system on (U, V, ?)
and [A 0

C 0 ] as a classical system on (?,W, Y ) (the question marks represent irrelevant
spaces). This makes it is possible to use standard semigroup theory as presented
in, e.g., [29]. To show that x(t) → 0 in H as t→ −∞ in (iii) is suffices to observe
that

‖x(t)‖H = ‖Bτ(t)u‖H
= ‖Bπ−τ(t)u‖H
= ‖Bτ(t)τ(−t)π−τ(t)u‖H
=
∥∥Bτ(t)π(−∞,t]u

∥∥
H

≤ ‖B‖L(L2(R;U);H)

∥∥π(−∞,t]u
∥∥
L2(R;U)

,

which tends to zero as t→ −∞. A similar proof with u replaced by u′ shows that
x′(t) → 0 in H as t → −∞. To deduce the statements about the adjoint system
Ψ∗ it suffices to reflect the time axis and to apply the corresponding result for Ψ.

Remark 30. According to Proposition 29, (4) holds for each x ∈ W , and (13) holds
as an equation in H , provided that the integral is interpreted as a Bochner integral
in V . To derive a weak version of (11) we argue as follows. Fix some u ∈ L2(R;U),
and define uT = π[T,∞)u and xT = BτuT . Then u − uT = π(−∞,T )u → 0 in

L2(R;U) as T → −∞, so xT (t) → x(t) = Bτ(t)u in H , uniformly in t. Moreover,
xT (t) = 0 for t ≤ T . Since we can regard [A B

0 0 ] as a classical system on (U, V, ?)
(the output space is irrelevant), it follows from (2) that

xT (t) =

∫ t

T

A(t− s)Bu(s) ds, t ≥ T.

We conclude that (11) holds in the sense that

x(t) = lim
T→−∞

∫ t

T

A(t− s)Bu(s) ds, t ∈ R,

where the integral is computed in V , but the limit is taken in H and is uniform in t
(we interpret the integral as zero if t < T ). In particular, taking t = 0 we find that

Bu = lim
T→−∞

∫ 0

T

A(−s)Bu(s) ds,

where the integral is computed in V but the limit is taken in H . Analogous inter-
pretations are valid for the adjoint equations (8), (9), (12), and (15).

Proposition 29 is not quite sufficient for our purposes. We need a small enhance-
ment, which involves some additional Hilbert spaces. According to Proposition 29,
the values of the states x and x∗ and their derivatives lie in H , but we need to know
that the states actually lie in some smaller spaces. These smaller spaces are not
uniquely determined. We choose to follow Salamon and use the smallest possible
spaces, instead of the larger spaces introduced by G. Weiss. These smallest possible
spaces are “range spaces” of certain mappings, constructed as follows:
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Lemma 31. Let E ∈ L(X ;Y ), where X and Y are Banach spaces. For each
y ∈ range(E), let ‖y‖Z = inf { ‖x‖X | y = Ex }. This defines a norm on range(E)
that makes range(E) a Banach space Z, and this norm is (not necessarily strictly)
stronger than the norm of Y . The operator E induces an isometric isomorphism
of the quotient X/ker(E) onto Z, and E is continuous and open from X onto Z.
If X is a Hilbert space, then so is Z, and then E is an isometric isomorphism of
ker(E)⊥ onto Z.

This result is standard but difficult to find in the literature. The idea is to factor
E into E = Fπ, where π : X → X/ker(E) is the (continuous and open) quotient
map, and F : X/ker(E) is injective [3, Problem F, p. 266], and to let the norm
in range(E) = range(F ) be the one induced by F . This makes F an isometric
isomorphism of X/ker(E) onto Z.

Let Ψ be a well-posed linear system on (U,H, Y ) with generating operators[
A B
C ?

]
. Choose an arbitrary number α from the resolvent sets of A. We denote the

range space (constructed as in Lemma 31) of the mapping (αI−A)−1
(
I B

)
: H×

U → H by WB , and the corresponding space that we get by replacing Ψ by its
adjoint by V ∗C . These spaces are independent of the particular value of α.

The elements of WB and V ∗C can be characterized in the following way:

Lemma 32. The following conditions are equivalent:

(i) x ∈WB ;
(ii) x = (αI −A)−1 (x1 +Bu) for some x1 ∈ H and u ∈ U ;
(iii) x = x2 + (αI −A)−1Bu for some x2 ∈ W and u ∈ U ;
(iv) x ∈ H and Ax+Bu ∈ H for some u ∈ U .

Likewise, the following conditions are also equivalent:

(v) x∗ ∈ V ∗C ;
(vi) x∗ = (αI −A∗)−1 (x∗1 + C∗y∗) for some x∗1 ∈ H and y∗ ∈ Y ;
(vii) x∗ = x∗2 + (αI −A∗)−1C∗y∗ for some x∗2 ∈ V ∗ and y∗ ∈ Y ;
(viii) x∗ ∈ H and A∗x∗ + C∗y∗ ∈ H for some y∗ ∈ Y .

Proof. The equivalence of (i) and (ii) follows from the definition of WB . Take
x2 = (αI − A)−1x1 to show that (ii) and (iii) are equivalent. If x is of the form
(ii), then x ∈ H and Ax+Bu = −x1 + α(αI −A)−1 (x1 +Bu) ∈ H , so (iv) holds.
Conversely, if (iv) holds, then (ii) is satisfied with x1 = αx − (Ax+Bu). The
equivalence of (v)-(viii) is proved analogously.

It is easy to see that

W ⊂WB ⊂ H and V ∗ ⊂ V ∗C ⊂ H,

with continuous injections.
Obviously, WB and V ∗C are dense in H since W and V ∗ are dense in H . However,

W need not be dense in WB, and V ∗ need not be dense in V ∗C . In particular, in
the realizations discussed in [37] and [38] W is a closed subspace of WB and V ∗

is a closed subspace of V ∗C . For example, the realization that is denoted by Ξ− in
[37] is Salamon’s exactly controllable realization which we get by taking H to be
H = L2(R−;U), A(t) to be the unilateral left-shift τ(t)π− on L2(R−;U), Bu =

π−u, and Cx = π+Dx [39, Definition 2.10]. For this realization W = W 1,2
0 (R−;U)

and WB = W 1,2(R−;U), so W is a closed subspace of WB . Salamon introduces
the space WB in [34] (denoting it by Z) in the special case where the mapping
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(αI −A)−1
(
I B

)
is one-to-one (a case that he refers to as an abstract boundary

control system; the exactly controllable realization is of this type).
Proposition 29 implies the following result:

Proposition 33. The conclusion of Proposition 29 can be strengthened as follows:

(i) In part (iii), x ∈ BC(R;WB), x∗ ∈ BC(R;V ∗C), x(t) → 0 in WB as t→ −∞,
and x∗(s) → 0 in V ∗C as s→ +∞.

(ii) In part (iv), x ∈ C(R+;WB) and x∗ ∈ C(R+;V ∗C).

Proof. Use the fact that x′ = Ax+Bu to write x in the form

x = (αI −A)−1(αx− x′ +Bu).

Since x and x′ are continuous in H and u is continuous in U , this implies that x is
continuous in WB . The other claims are proved in a similar way.

Remark 34. By Lemma 32, the spaces WB and V ∗C can be characterized as the
spaces of permitted initial values x0 and x∗0 in part (iv) of Proposition 29. By
Proposition 33, they are invariant in the sense that the states x and x∗ in parts
(iii) and (iv) of Proposition 29 stay in these spaces for all time. Moreover, by
Proposition 37 below, they are large enough to contain the domains of all state
feedback perturbations of A and A∗.

In general, a well-posed linear system need not have a well-defined feed-through
operatorD, so equations (5), (10), (14), and (16) cannot possibly be true in general.
This fact motivated G. Weiss to introduce the class of regular systems. In [45,
Theorem 5.8] Weiss gives eight equivalent characterizations of regularity, one of
which is the following:

Definition 35. A causal time-invariant operator D : L2(R;U) → L2(R;Y ) is reg-
ular iff, for every u0 ∈ U , the strong Cesàro mean of order one

Du0 = lim
t→0+

1

t

∫ t

0

(DχR+u0)(s) ds

exists (here χR+ stands for the characteristic function of R+, and DχR+u0 is
the step response corresponding to the constant input u0). An anti-causal time-
invariant operator D∗ : L2(R;Y ) → L2(R;U) is regular iff, for every y∗0 ∈ Y , the
strong Cesàro mean of order one

D∗y∗0 = lim
s→0−

1

s

∫ s

0

(D∗χR−y∗0)(t) dt

exists (here χR− stands for the characteristic function of R−, and D∗χR+y∗0 is the
step response corresponding to the constant input y∗0). The operators D : U → Y
and D∗ : Y → U defined above are called the feed-through operators of D and D∗.
The systems Ψ and Ψ∗ are regular iff their input/output maps are regular.

Thus, a system is regular iff its step response has a one-sided limit in the strong
C1-sense at the origin. It is known [46, p. 38] that the adjoint of a regular in-
put/output map need not be regular.

Let us rewrite equations (5), (10), (14), and (16) in terms of the controlled states
x(t) and x∗(s) of Ψ and Ψ∗ in the common forms

y(t) = Cx(t) +Du(t),

u∗(s) = B∗x∗(s) +D∗y∗(s).
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Then, as Weiss proved, for regular systems these equations remain valid in a weak
sense:

Proposition 36. Let Ψ and Ψ∗ be well-posed linear systems on (U,H, Y ), respec-
tively, (Y,H,U), with generating operators

[
A B
C ?

]
, respectively

[
A∗ C∗
B∗ ?

]
.

(i) Ψ is regular if and only if the strong Abel limit

Cx = lim
λ→+∞

Cλ(λI −A)−1x

exists for every x ∈ WB, and Ψ∗ is regular if and only if the strong Abel limit

B
∗
x∗ = lim

λ→+∞
B∗λ(λI −A∗)−1x∗

exists for every x∗ ∈ V ∗C . The operators C and B
∗

defined in this way are
bounded linear operators from WB into Y and from V ∗C into U , respectively,
and they are extensions of the operators C ∈ L(W ;Y ) and B∗ ∈ L(V ∗;U).

(ii) In the regular case, denote the feed-through operators of Ψ and Ψ∗ by D and
D∗, respectively. Then the conclusion of Proposition 29 can be strengthened

as follows: Both in parts (iii) and (iv), y = Cx+Du and u∗ = B
∗
x∗+D∗y∗.

Proof. Part (i) follows easily from the equivalence of (1) and (4) in [45, Theorem
5.8], and Part (ii) from [45, Remark 6.2].

Let us remark that our operator C is a restriction of the operator that Weiss

denotes by C̃L in [45] and by CΛ in [46], and also a restriction of Weiss’ operator

CL. He does not explicitly study B
∗

and the time-invariant setting.
Since W and V ∗ need not be dense in WB , respectively V ∗C , the extensions C

and B
∗

are not uniquely determined by Weiss C and B∗. Salamon uses a different
extension K of C in [34, Section 2.2]. As shown in [40], some of our final results
can be extended to the non-regular case through the use of Salamon’s extension

of C and the corresponding extension of B∗ instead of our extensions C and B
∗

(induced by Weiss’ extensions).
In this work we make no explicit use of the notion of the transfer function of the

input/output map of a well-posed linear system, and we refer the reader to [39],
[45], [46], and [50] for discussions of these functions. In our setting, the transfer
function of D is an H∞-function over the right half-plane, and the transfer function
of D∗ is an H∞-function over the left half-plane (in Weiss’ setting, both of these
are defined on right-half planes).

8. The Generators of the Closed Loop System

Consider the closed loop output feedback system ΨL introduced in Proposition
20. We denote the generating operators of this system by

[
AL BL
CL ?

]
, and in the

regular case by
[
AL BL
CL DL

]
. In the classical case we know that these generators are

given by (24), and Salamon and Weiss have extended this relation to general well-
posed closed loop linear output feedback systems.

The generator AL of the closed loop semigroup SL was computed by Salamon in
[34, Section 4]. His description of the domain dom(AL) of AL was incomplete in the
case where the observation operator is unbounded and the control space U infinite-
dimensional, due to the fact that Salamon never makes the connection between
the well-posedness of the closed loop system and the invertibility of the loop gain
transfer function in some right-half plane that Weiss makes in [46, Proposition 3.6].
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However, by combining [34, Lemma 4.4(iii)] with [46, Proposition 3.6] we get a
satisfactory result (presented in [46] in the regular case). We shall not need the
exact result here, but we shall need the following consequence of this result, that
can also be derived from [46, Proposition 6.6].

Proposition 37. Denote the generators of the closed loop system ΨL in Proposi-
tion 20 by

[
AL BL
CL ?

]
, and let WBL and V ∗CL be the closed loop versions of WB and

V ∗C , respectively. Then WBL = WB and V ∗C = V ∗CL ; hence dom(AL) ⊂ WB and
dom(A∗L) ⊂ V ∗C .

Thus, in the sequel we shall throughout replace WBL and V ∗CL by WB and V ∗C ,
respectively.

In the regular case the closed loop generating operators have been determined
by Weiss [46]; see, in particular, Theorem 4.7, Proposition 4.8, and Section 7 in
that paper. From there we extract the following results:

Proposition 38. Let Ψ and ΨL be the open and closed loop systems in Proposi-
tion 20, with admissible output feedback operator L.

(i) If both Ψ and Ψ∗ are regular, then both ΨL and Ψ∗L are regular, I − DL is
invertible in L(Y ), and I − LD is invertible in L(U).

(ii) Suppose that Ψ and Ψ∗ are regular. Denote the generators of Ψ and ΨL by

[ A B
C D ] and

[
AL BL
CL DL

]
, respectively. Then the relation[

AL BL
CL DL

]
=

[
A+BL (I −DL)−1 C B (I − LD)−1

(I −DL)−1 C D (I − LD)−1

]
holds in the following sense: the equation for AL is valid on dom(AL) ⊂
WBL = WB , the equation for CL is valid on WBL = WB , the equation for

DL is valid on U , and the equation for BL should be interpreted as B
∗
L =

(I −D∗L∗)−1B
∗
, which is valid on V ∗CL = V ∗C .

Another different interpretation of the formula BL = B(I − LD)−1 is given in
[46, Section 7].

Applying the preceding result with L = (0 I) to the system Ψext in (30), we get
the following result:

Proposition 39. In addition to the hypothesis of Theorem 27, suppose that both
the extended system Ψext given by (30) and its adjoint system Ψ∗ext given by (31)
are regular, i.e., D, D∗, F , and F∗ are regular. Denote the generating operators

of Ψext by
[

A B

( CK ) (DF )

]
and the generating operators of Ψ	 by

[
A	 B	(
C	
K	

) (
D	
F	

) ]
(the

regularity of Ψ	 follows from Proposition 38.)

(i) Under these assumptions the outer factor X and the inner factor Y are regular
together with their adjoints. If we denote the feed-through operator of X by X
and the feed-through operator of Y by Y , then X = E(I−F ), X is invertible,
and D = Y X.

(ii) Construct the range space V ∗(C,K) in the same way as the space V ∗C was con-

structed, except that Ψ is replaced by Ψext. Then V ∗C ⊂ V ∗(C,K), and the

relation A	 B	(
C	
K	

) (
D	
F	

) =

A+BX−1EK BX−1E(
C + Y EK
X−1EK

) (
Y E

X−1E − I

)
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holds in the following sense: the equation for A	 is valid on dom(A	) ⊂WB ,
the equations for C	 and K	 are valid on WB, the equations for D	 and F	
are valid on U , the equation for F	 is valid on Y , and the equation for B	
should be interpreted as B

∗
	 = E∗(X∗)−1B

∗
, which is valid on V ∗(C,K).

This follows directly from Theorem 27 and Proposition 38. It is also true that
dom(A∗	) ⊂ V ∗K ⊂ V ∗(C,K), with continuous inclusions where V ∗K is the range space

constructed in the same way as V ∗C and V ∗(C,K) were constructed, but with Ψ re-

placed by the system [A B
K F ]. That this inclusion is true follows from the fact that

the closed loop semigroup A	 depends only on A, B, K, and F , and not explicitly
on C.

We have the following corollary to Theorem 27 and Proposition 38:

Corollary 40. Let the assumption of Theorem 27 hold. If Ψ is regular and D∗D
has a regular spectral factor X , then every spectral factor of D∗D is regular, and
this is the case if and only if the extended system Ψext in (30) is regular. If Ψ∗

is regular and D∗D has a spectral factor X with a regular adjoint X ∗, then every
spectral factor of D∗D has a regular adjoint, and this is the case if and only if
the adjoint extended system Ψ∗ext in (31) is regular. If both Ψ and Ψ∗ are regular
and D∗D has a regular spectral factor X with a regular adjoint X ∗, then both the
closed loop systems Ψ	 and Ψ∗	 are regular, the feed-through operator X of X is
invertible, and there is a unique spectral factor of D∗D with a positive self-adjoint
feed-through operator. Moreover, in this case there is a unique feedback pair (K,F)
in Theorem 27 for which the feed-through operator of F is zero, namely(K F) =

(−π+X
−1Y∗C (

I −X−1X )) ,
where YX is an arbitrary inner-outer factorization of D, and X is the feed-through
operator of X .

Proof. Most of these claims follow immediately from Theorem 27 and Proposi-
tion 38. To get the unique spectral factor that has a positive self-adjoint feed-
through operator we take an arbitrary spectral factor X with feed-through oper-

ator X , and multiply it to the left by the unitary operator (X∗X)1/2 X−1, where

(X∗X)
1/2

is the unique positive self-adjoint square root of X∗X . To get the unique
feedback pair (K,F) for which the feed-through part of F is zero we take an arbi-
trary spectral factor X with feed-through operator X , and choose the operator E
in Theorem 27 to be E = X .

We remark that the case treated in [37] was regular, and there we throughout
normalized X to have a positive self-adjoint feed-through operator, and took E in
Theorem 27 to be the feed-through operator of X .

9. The Open and Closed Loop Lyapunov Equations

In the sequel we suppose throughout that D is coercive. We claim that the
feedback operator can be expressed in terms of the Riccati operator, and conversely,
that the Riccati operator can be computed from the feedback operator through a
Lyapunov equation. By combining these two facts we get an algebraic Riccati
equation for the Riccati operator. Since the proof of the fact that the Riccati
operator can be computed from the feedback operator through a Lyapunov equation
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is quite elementary and does not require any regularity assumptions, we start with
this part.

It is possible to develop (at least) three different Lyapunov equations, one for
the open loop system Ψext, one for the closed loop system Ψ	, and a mixture of
these two:

Theorem 41. Let Ψ = [A B
C D ] be a causal externally stable well-posed linear system

on (U,H, Y ) with a coercive input/output map D. Let E be the operator in Theo-

rem 27, denote the generating operators of the system Ψext in (30) by
[

A B

( CK )
(

?
?

) ]
,

and denote the generating operators of the system Ψ	in (29) by

[
A	 B	(
C	
K	

) (
?
?

) ]. With

this notation, the Riccati operator Π of Ψ satisfies the open loop Lyapunov equation

〈Ax1,Πx0〉H + 〈x1,ΠAx0〉H = − 〈Cx1, Cx0〉Y + 〈EKx1, EKx0〉U ,
x0, x1 ∈ dom(A),

the closed loop Lyapunov equation

〈A	x1,Πx0〉H + 〈x1,ΠA	x0〉H = − 〈C	x1, C	x0〉Y , x0, x1 ∈ dom(A	),

and the mixed Lyapunov equation

〈A	x1,Πx0〉H + 〈x1,ΠAx0〉H = − 〈C	x1, Cx0〉Y , x0 ∈ dom(A), x1 ∈ dom(A	).

If Ψ is strongly stable, then each of these equations determines Π uniquely (as a
function of the other operators).

Proof. By Theorem 27 and Proposition 29, we have for all x0 and x1 in W =
dom(A) and for all t ∈ R+,

〈A(t)x1,ΠA(t)x0〉H = 〈CA(t)x1, CA(t)x0〉L2(R+;Y )

− 〈EKA(t)x1, EKA(t)x0〉L2(R+;U)

=

∫ ∞

0

〈CA(s + t)x1, CA(s+ t)x0〉Y ds

−
∫ ∞

0

〈EKA(s+ t)x1, EKA(s+ t)x0〉U ds

=

∫ ∞

t

〈CA(s)x1, CA(s)x0〉Y ds

−
∫ ∞

t

〈EKA(s)x1, EKA(s)x0〉U ds.

Differentiating both sides of this equation with respect to t and taking t = 0, we
get the open loop Lyapunov equation. To get the closed loop Lyapunov equation
we argue in the same way, except that we start from the equation A∗	ΠA	 =
A∗	C∗	C	A	. Finally, the mixed Lyapunov equation is also deduced in the same
way, starting from the fact that A∗	ΠA = A∗	C∗	CA.

To prove that the open loop Lyapunov equation determines Π uniquely we argue
as follows. Take x0 and x1 in W . Then 〈Ax1,ΠAx0〉 is continuously differentiable
on R+, with the derivate 〈AAx1,ΠAAx0〉. Thus, if Π satisfies the open loop
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Lyapunov equation, then for each t > 0,

〈x1,Πx0〉H − 〈A(t)x1,ΠA(t)x0〉H
=

∫ t

0

〈CA(s)x1, CA(s)x0〉Y ds

−
∫ t

0

〈EKA(s)x1, EKA(s)x0〉U ds

=

∫ t

0

〈(Cx1)(s), (Cx1)(s)x0〉Y ds

−
∫ t

0

〈E(Kx1)(s), E(Kx1)(s)〉U ds.

Let t → ∞. Because of the strong stability of Ψ, A(t)x0 → 0 and A(t)x1 → 0 in
H , and we conclude that

〈x1,Πx0〉H = 〈Cx1, Cx0〉L2(R+;Y ) − 〈EKx1, EKx0〉L2(R+;U) .

This being true for all x0 and x1 in W , we must have Π = C∗C − K∗E∗EK.
The proofs that also the closed loop and the mixed Lyapunov equations deter-

mine Π uniquely are similar (cf. Lemma 21).

The uniqueness proofs given above have been adapted from [19, Theorems 3 and
4].

Remark 42. As is well known, in the classical case the different Lyapunov equations
given in Theorem 41 are equivalent; we can pass from one to another by using the
appropriate version of (24) and the connection between the Riccati operator Π and
the feedback operator K displayed in Theorem 44. A crucial role in these formulas
is played by the feed-through operator D of the original system. Since a general
well-posed linear system does not have a well-defined feed-through operator, it is
difficult if not impossible to pass from one of the Lyapunov equations given above
to another in the general case. Note that the closed loop and mixed Lyapunov
equations are quite elementary, since they are based on the identities Π = C∗	C	
and Π = C∗	C proved in Lemma 15, but the validity of the open loop Lyapunov
equation is a deeper result.

Corollary 43. Make the same same assumption and introduce the same notation
as in Theorem 41.

(i) The Riccati operator Π satisfies the equations

ΠAx = − (A∗Π + C∗C −K∗E∗EK)x = − (
A∗	Π + C∗	C

)
x, x ∈ dom(A),

ΠA	x = − (A∗Π + C∗C	)x = − (
A∗	Π + C∗	C	

)
x, x ∈ dom(A	).

In particular, the operators A∗Π + C∗C − K∗E∗EK and A∗	Π + C∗	C map
dom(A) continuously into H, and the operators A∗Π + C∗C	 and A∗	Π +
C∗	C	 map dom(A	) continuously into H.

(ii) Construct the range space V ∗(C,K) in the same way as the space V ∗C was con-

structed, except that Ψ is replaced by Ψext. Then Π ∈ L(dom(A);V ∗(C,K)) ∩
L(dom(A	);V ∗C ).
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(iii)

Π ∈ L(dom(A); dom(A∗)) iff C∗C −K∗E∗EK ∈ L(dom(A);H),

Π ∈ L(dom(A); dom(A∗	)) iff C∗	C ∈ L(dom(A);H),

Π ∈ L(dom(A	); dom(A∗)) iff C∗C	 ∈ L(dom(A	);H),

Π ∈ L(dom(A	); dom(A∗	)) iff C∗	C	 ∈ L(dom(A	);H).

(iv) Π ∈ L(WB ;V ∗C,K).

Proof. The first part follows immediately from Theorem 41. To prove parts (ii)
and (iii) it suffices to choose some α in the resolvent set of A∗ or A∗	, to add αΠx0

to both the equations, and to solve the resulting equations for Πx0. Claim (iv) is
proved in [40].

10. The Algebraic Riccati Equation

In order to turn the Lyapunov equations developed in the previous section
into algebraic Riccati equations we still need to show that in some sense B∗Π =
−D∗(C +DK). Actually, as we shall see, this equation is not quite correct in the
sense that in some cases we shall have to replace the feed-through operator D of
D by the feed-through operator X of the outer factor X of D, a phenomenon that
was first discovered in [37].

To compute B∗Π we study some coupled systems, where the output of the orig-
inal open loop system Ψ or the closed loop state feedback system Ψ	 is used as the
input of the adjoint closed loop system Ψ∗	 or open loop system Ψ∗, respectively.
The systems Ψ and Ψ	 are considered in the initial value setting with initial time
zero, and the adjoint systems Ψ∗	 and Ψ∗ are considered in the time-invariant set-
ting on R+. We start with the connection drawn in Figure 5, which will tell us
how B∗Π behaves on dom(A).

Theorem 44. Make the same assumption and introduce the same notation as in
Proposition 39. Then

EKx = −(X∗)−1
(
B
∗
Π +D∗C

)
x, x ∈ dom(A).

Proof. Let us first remark that B
∗
Π is well-defined, since, by Proposition 39 and

Corollary 43, B
∗ ∈ L(V ∗(C,K);U) and Π ∈ L(W ;V ∗(C,K)).

Consider the connection in Figure 5. We take u = 0 and x0 ∈W , and define

x(t) = A(t)x0, y(t) = (Cx0)(t) = CA(t)x0, t ∈ R+.

A Bτ(C
K
) (D

F
)A∗ (C∗τ K∗τ)

B∗ (D∗ F∗)
Π

E∗E

?

x0

06

x

��

y
?

z

�

x∗

6
c
−

+� 0

u∗

?c−+

r 6

�� 0

Figure 5. Primal-Dual Connection with Dual Feedback
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Then, by Proposition 29, x ∈ C1(R+;H) and y ∈ W 1,2(R+;Y ). We extend y to
an arbitrary function in W 1,2(R;Y ) (for example, define y(t) = y(−t) for t < 0),
and define

x∗ = C∗	τy = C∗ (I − Yπ+Y∗) τy, u∗ = D∗	y = E∗Y∗y.
By the same proposition, x∗ ∈ BC1(R;H) and u∗ ∈ W 1,2(R;U). For nonnegative
t we have (use the anti-causality of C∗	 and Y∗)

y(t) = Cx(t),

x∗(t) = C∗	τ(t)Cx0 = C∗	CA(t)x0 = ΠA(t)x0 = Πx(t),

u∗(t) = E∗ (Y∗Cy) (t) = −E∗E (Ky) (t) = −E∗EKA(t)x0 = −E∗EKx(t).
By Propositions 36 and 39, for all t ∈ R,

u∗(t) = B
∗
	x

∗(t) +D∗	y(t) = E∗(X∗)−1
(
B
∗
x∗(t) +D∗y(t)

)
.

For nonnegative t we can combine this with the preceding equations and use the
invertibility of E∗ to get

EKx(t) = −(X∗)−1
(
B
∗
Πx(t) +D∗C

)
x(t).

In particular, taking t = 0 we find that EKx0 = −(X∗)−1
(
B
∗
Π +D∗C

)
x0.

Corollary 45. In the regular case treated in Theorem 44, the Riccati operator sat-
isfies the open loop algebraic Riccati Equation

〈Ax1,Πx0〉H + 〈x1,ΠAx0〉H
= − 〈Cx1, Cx0〉Y +

〈(
B
∗
Π +D∗C

)
x1, (X

∗X)
−1

(
B
∗
Π +D∗C

)
x0

〉
U
,

x0, x1 ∈ dom(A),

Proof. Combine Theorems 41 and 44.

Theorem 44 tells us how B
∗
Π maps W = dom(A). It is an interesting fact that

it is possible to define B
∗
Π also on W	 = dom(A	), but that the resulting formula

differs significantly from the one in Theorem 44:

Theorem 46. With the assumption and notation of Proposition 39, the Riccati
operator Π satisfies

B
∗
Πx+D∗C	x = B

∗
Πx+D∗

(
C +DX−1EK

)
x = 0, x ∈ dom(A	).

In particular, if D∗D is invertible, then

EKx1 = −X (D∗D)−1
(
B
∗
Π +D∗C

)
x1, x1 ∈ dom(A	).

In the classical case, dom(A) = dom(A	) and X∗X = D∗D, so in that case this
theorem is identical to Theorem 44. However, they differ from each other in the
general case. In particular, although X∗X is always invertible, D∗D need not be
so. See the examples in [38, Section 8] and [41].

Proof. Let us consider the connection in Figure 6. We take u = 0 and x0 ∈
dom(A	), and define

x(t) = A	(t)x0, y(t) = (C	x0)(t) = C	A	(t)x0, t ∈ R+.
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Figure 6. Primal-Dual Connection with Primal Feedback

Then, by Proposition 29, x ∈ C1(R;H) and y ∈W 1,2(R;Y ), and we can extend y
to a function in W 1,2(R;Y ). Define

x∗ = C∗τy, u∗ = D∗y.
By the same proposition, x∗ ∈ BC1(R;H) and u∗ ∈ W 1,2(R;U). For t ∈ R+ we

have, by Proposition 39, by the anti-causality of C∗ and D∗ = (X ∗)−1 Y∗, and by
the fact that Y∗Y = I,

y(t) = C	x(t) =
(
C +DX−1EK

)
x(t),

x∗(t) = C∗τ(t)C	x0 = C∗C	A	(t)x0 = ΠA	(t)x0 = Πx(t),

π+u
∗ = π+ (X ∗)−1 Y∗ (I − Yπ+Y∗) Cx0 = π+ (X ∗)−1

(π+Y∗ − (Y∗Y)π+Y∗) = 0.

By Propositions 36 and 39, for all t ∈ R,

u∗(t) = B
∗
x∗(t) +D∗y(t),

which for nonnegative t we may combine with the equations above to get

0 = B
∗
Πx(t) +D∗

(
C +DX−1EK

)
x(t).

Take t = 0 to get the claim of Theorem 46.

The diagrams in Figures 5 and 6 are simplified versions of the more complete
diagrams in [40].

Remark 47. Most of the results in this paper remain true if we throughout replace
the algebra of time-invariant bounded linear operators from L2(R;U) into L2(R;Y )
by some subalgebra, for example, by the algebra studied in [37]. The main exception
is that spectral factorizations and inner-outer factorizations need not exist. In
particular, Theorem 27 remains valid in that setting, too.
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