QUADRATIC RESIDUE CODES OVER p-ADIC INTEGERS AND THEIR PROJECTIONS TO INTEGERS MODULO p^{e}

Young Ho Park

Abstract

We give idempotent generators for quadratic residue codes over p-adic integers and over the rings $\mathbb{Z}_{p^{e}}$.

1. Introduction

Let R be a ring. A code of length n over R is a R-submodule of R^{n}. For generality on codes over fields, we refer [5] and [8]. For codes over \mathbb{Z}_{m}, see $[3,12]$, and for self dual codes, see [11]. See $[1,4]$ for codes over p-adic numbers.

Quadratic residue codes are cyclic codes of prime length n defined over a finite field $\mathbb{F}_{p^{e}}$, where p^{e} is a quadratic residue $\bmod n$. They comprise a very important family of codes. Examples of quadratic residue codes include the binary [7,4,3] Hamming code, the binary [23,12,7] Golay code, the ternary [11,6,5] Golay code and the quaternary Hexacode. Quadratic residue codes have rate close to $1 / 2$ and tend to have high minimum distance. Extended quadratic residue codes are self-dual.

Denote by $\mathbb{Z}_{p^{e}}$ the ring of integers modulo p^{e}, and $\mathbb{Z}_{p^{\infty}}$ the ring of p adic integers. In next section we are going to generalize these quadratic

[^0]residue codes over the field \mathbb{F}_{p} to rings $\mathbb{Z}_{p^{e}}$ and to the p-adic integers $\mathbb{Z}_{p^{\infty}}$.

In early papers [2,5,6,10,13], authors tried to generalize the quadratic residue codes to the rings $\mathbb{Z}_{4}, \mathbb{Z}_{8}, \mathbb{Z}_{16}, \mathbb{Z}_{9}$ by giving idempotent generators. In [7], author defined quadratic residue codes over the rings $\mathbb{Z}_{p^{e}}$ and p-adic integer ring $\mathbb{Z}_{p^{\infty}}$ in general and gave generating polynomials. In this article, we give their idempotent generators.

2. Quadratic residue codes over $\mathbb{Z}_{p^{e}}$

In the earlier works by several authors, quadratic residue codes over $\mathbb{Z}_{p^{e}}$ are usually defined by giving idempotent generators. See $[2,10]$ for quadratic residue codes over $\mathbb{Z}_{8}, \mathbb{Z}_{16}$ and [13] for codes over \mathbb{Z}_{9} for example. However it is generally difficult to give a formula for such generators and hard to understand. We will define quadratic residue codes over $\mathbb{Z}_{p^{e}}$ in a similar way as in the field case. The p-adic case $(e=\infty)$ is also included here. For codes over p-adic integers, we refer [1,3,4].

Let p be a prime and let n be a prime such that p is a quadratic residue modulo n. Let Q be the set of quadratic residues modulo n, and N the set of quadratic nonresidues modulo n.

Let \mathbb{Q}_{p} denote the field of p-adic numbers. Let K be the splitting field of $x^{n}-1$ over \mathbb{Q}_{p}. Since the roots of $x^{n}-1$ in K form a multiplicative group of order n, it is clear that there exists an element ζ such that $K=$ $\mathbb{Q}_{p}[\zeta]$. By considering the map $\Psi_{e}: \mathbb{Z}_{p^{\infty}} \rightarrow \mathbb{Z}_{p^{e}}$ defined by $\Psi_{e}(a)=a$ $\left(\bmod p^{e}\right)$ and extending it to $\mathbb{Z}_{p^{\infty}}[\zeta]$, we can easily see that

$$
\mathbb{Z}_{p^{e}}[\zeta] \simeq \mathbb{Z}_{p^{\infty}}[\zeta] /\left(p^{e}\right)
$$

$\mathbb{Z}_{p^{e}}[\zeta]$ is a Galois ring defined over $\mathbb{Z}_{p^{e}}$. Elements in $\mathbb{Z}_{p^{e}}[\zeta]$ can be written uniquely as a ζ-adic expansion $u=\sum_{i=0}^{p-1} v_{i} \zeta^{i}, v_{i} \in \mathbb{Z}_{p^{e}}$ or in a p-adic expansion

$$
u=u_{0}+p u_{1}+p^{2} u_{2}+\cdots+p^{e-1} u_{e-1}
$$

where $u_{i} \in\left\{0,1, \zeta, \cdots, \zeta^{p-1}\right\} \simeq \mathbb{F}_{p}$, the finite field of p elements. In p adic integer case, this sum is infinite. The automorphism group of $\mathbb{Z}_{p}[\zeta]$ over $\mathbb{Z}_{p^{e}}$ is the cyclic group generated by the Frobenius automorphism

$$
\mathcal{F}\left(\sum_{i=0}^{e-1} p^{i} u_{i}\right)=\sum_{i=0}^{e-1} p^{i} u_{i}^{p}
$$

We refer [1] or [9] for details. As in the field case, we let

$$
Q_{e}(x)=\prod_{i \in Q}\left(x-\zeta^{i}\right), \quad N_{e}(x)=\prod_{i \in N}\left(x-\zeta^{i}\right) .
$$

Since $p \in Q$ we have

$$
\mathcal{F}\left(Q_{e}(x)\right)=\prod_{i \in Q}\left(x-\zeta^{p i}\right)=\prod_{i \in Q}\left(x-\zeta^{i}\right)=Q_{e}(x)
$$

and similarly $\mathcal{F}\left(N_{e}(x)\right)=N_{e}(x)$. Thus $Q_{e}(x)$ and $N_{e}(x)$ are polynomials in $\mathbb{Z}_{p^{e}}[x]$. We certainly have that

$$
x^{n}-1=(x-1) Q_{e}(x) N_{e}(x)
$$

and for all $e^{\prime} \geq e$,

$$
Q_{e^{\prime}}(x) \equiv Q_{e}(x) \quad\left(\bmod p^{e}\right), \quad N_{e^{\prime}}(x) \equiv N_{e}(x) \quad\left(\bmod p^{e}\right) .
$$

$Q_{\infty}(x)$ and $N_{\infty}(x)$ may be defined as p-adic limits of $Q_{e}(x)$ and $N_{e}(x)$.
Definition 2.1. Cyclic codes $\mathcal{Q}^{e}, \mathcal{Q}_{1}^{e}, \mathcal{N}^{e}, \mathcal{N}_{1}^{e}$ of length n with generator polynomials

$$
Q_{e}(x), \quad(x-1) Q_{e}(x), \quad N_{e}(x), \quad(x-1) N_{e}(x)
$$

respectively, are called quadratic residue codes over $\mathbb{Z}_{p^{e}}$.

3. Main Theorem

Let

$$
f_{Q}(x)=\sum_{i \in Q} x^{i}, \quad f_{N}(x)=\sum_{i \in N} x^{i} .
$$

the polynomials in $\mathbb{Z}_{p^{e}}[x] /\left(x^{n}-1\right)$, where $e=1,2, \ldots, \infty$.
Theorem 3.1. 1. Suppose $n=4 k-1$.

$$
\begin{aligned}
f_{Q}^{2} & =\frac{n-3}{4} f_{Q}+\frac{n+1}{4} f_{N} \\
f_{N}^{2} & =\frac{n+1}{4} f_{Q}+\frac{n-3}{4} f_{N} \\
f_{Q} f_{N} & =\frac{n-1}{2}+\frac{n-3}{4} f_{Q}+\frac{n-3}{4} f_{N}
\end{aligned}
$$

2. Suppose $n=4 k+1$.

$$
\begin{aligned}
f_{Q}^{2} & =\frac{n-5}{4} f_{Q}+\frac{n-1}{4} f_{N}+\frac{n-1}{2} \\
f_{N}^{2} & =\frac{n-1}{4} f_{Q}+\frac{n-5}{4} f_{N}+\frac{n-1}{2} \\
f_{Q} f_{N} & =\frac{n-1}{4} f_{Q}+\frac{n-1}{4} f_{N}
\end{aligned}
$$

Proof. It follows from the Perron's theorem.
Let

$$
\lambda=f_{Q}(\zeta)=\sum_{i \in Q} \zeta^{i}, \quad \mu=f_{N}(\zeta)=\sum_{i \in N} \zeta^{i}
$$

Diffenrent choice of the root ζ may interchange λ and μ. Let

$$
\theta=\lambda-\mu
$$

Then

$$
\theta^{2}= \pm n
$$

for $n=4 k \pm 1$, where double signs are in the same order.
THEOREM 3.2. 1. If $n=4 k-1$, then λ and μ are roots of $x^{2}+$ $x+k=0$.
2. If $n=4 k+1$, then λ and μ are roots of $x^{2}+x-k=0$.

Note that $\mu+\lambda=-1$. For details, we refer [7].
THEOREM 3.3. Let $p>2$ be a prime and and $n=4 k \pm 1$ be a prime such that p is a quadratic residue modulo n. Let $\theta^{2} \equiv \pm 1(\bmod p)$, where double signs are in the same order as in $n=4 k \pm 1$. The idempotent generators of the p-adic quadratic residue codes $\left\langle Q_{\infty}(x)\right\rangle,\langle(x-$ 1) $\left.Q_{\infty}(x)\right\rangle,\left\langle N_{\infty}(x)\right\rangle,\left\langle(x-1) N_{\infty}(x)\right\rangle$ of length n are given as follows, respectively:

$$
\begin{aligned}
E_{q}(x) & =a+b f_{Q}(x)+c f_{N}(x) \\
F_{q}(x) & =a^{\prime}-c f_{Q}(x)-b f_{N}(x) \\
E_{n}(x) & =a+c f_{Q}(x)+b f_{N}(x) \\
F_{n}(x) & =a^{\prime}-b f_{Q}(x)-c f_{N}(x)
\end{aligned}
$$

where

$$
a=\frac{n+1}{2 n}, \quad a^{\prime}=\frac{n-1}{2 n}, \quad b=\frac{1 \mp \theta}{2 n}, \quad c=\frac{1 \pm \theta}{2 n} .
$$

The idempotent generators of quadratic residue codes over $\mathbb{Z}_{p^{e}}$ can be obtained by projecting these generators modular p^{e}.

Proof. We prove the formula for $E_{q}(x)$ in the case that $n=4 k-1$. Let

$$
E=1+f_{Q}(x)+f_{N}(x)+n+\theta\left(f_{Q}(x)-f_{N}(x)\right)
$$

It is a lengthy but straightforward computation to show that $E^{2}=2 n E$ using Theorem 3.1 and $\theta^{2}=-n$. Therefore $\left(\frac{E}{2 n}\right)^{2}=\frac{E}{2 n}$. But $\frac{E}{2 n}=$ $E_{q}(x)$. Thus $E_{q}(x)$ is idempotent. Next, note that $1+f_{Q}(x)+f_{N}(x)=$ $Q_{\infty}(x) N_{\infty}(x)$. Thus for all $i \in Q$, we have $E\left(\zeta^{i}\right)=0+n+\theta(\lambda-\mu)=$ $n+\theta^{2}=0$. For all $i \in N$, we have $E\left(\zeta^{i}\right)=0+n+\theta(\mu-\lambda)=$ $n-\theta^{2}=2 n$. Thus $E_{q}\left(\zeta^{i}\right)=0$ if $i \in Q$ and $E_{q}\left(\zeta^{i}\right)=1$ if $i \in N$. We also have that $E_{q}(1)=1$. Thus $E_{q}(x)=V(x) Q_{\infty}(x)$ for some $V(x)$ and $E_{q}(x)$ is relatively prime to $N_{\infty}(x)(x-1)$. Therefore there exist $A(x), B(x)$ such that $A(x) E_{q}(x)+B(x) N_{\infty}(x)(x-1)=1$. From this we get $A(x) E_{q}(x) Q(x)=Q(x)$. Hence $\left\langle E_{q}(x)\right\rangle=\left\langle Q_{\infty}(x)\right\rangle$.

All remaining cases can be proved in a similar way.
Note that an idempotent generator for the binary case is given in [1].

4. An example

In this section, we use our Theorem 3.3 to find idempotent generators of the quadratic residue codes over \mathbb{Z}_{9} as in [13].

First we note that $\left(\frac{n}{3}\right)=1$ iff $n=12 r \pm 1$ for some r. In order to solve $\theta^{2} \equiv \pm n(\bmod 9)$, we need to separate cases further according to r modulo 3 . We compute everything modulo 9 .

Case I. $n=12 r-1$.

1. $r=3 j:(n=36 j-1)$.

In this case $n=36 j-1=-1$. Inverse of $2 n=-2$ is 4 . Thus $a=4(n+1)=0, a^{\prime}=4(n-1)=1$. Solving $\theta^{2}=-n=1$, we obtain $\theta= \pm 1$. Thus $b, c=4(1 \pm \theta)=8,0$. Hence the idempotent generators of quadratic residue codes are

$$
8 f_{Q}, \quad 8 f_{N}, \quad 1-8 f_{Q}, \quad 1-8 f_{N} .
$$

2. $r=3 j+1: \quad(n=36 j+11)$.

In this case $n=2$, and the inverse of $2 n$ is 7 . Thus $a=3$ and $a^{\prime}=7$. From $\theta^{2}=-n=7$, we get $\theta= \pm 4$. Thus $b, c=7(1 \pm 4)=$

8,6 . Thus the idempotent generators of quadratic residue codes are

$$
3+8 f_{Q}+6 f_{N}, \quad 3+6 f_{Q}+8 f_{N}, \quad 7+f_{Q}+3 f_{N}, \quad 7+3 f_{Q}+f_{N}
$$

3. $r=3 j+2: \quad(n=36 j+23)$.

Similarly, we find that the idempotent generators of quadratic residue codes for this case are

$$
6+3 f_{Q}+8 f_{N}, \quad 6+8 f_{Q}+3 f_{N}, \quad 4+6 f_{Q}+1 f_{N}, \quad 4+1 f_{Q}+6 f_{N}
$$

Case II. $n=12 r+1$.

1. $r=3 j:(n=36 j+1)$.

In this case $n=1$. Inverse of $2 n=2$ is 5 . Thus $a=1, a^{\prime}=0$. Solving $\theta^{2}=n$, we obtain $\theta= \pm 1$. Thus $b, c=5(1 \pm \theta)=0,1$. Hence the idempotent generators of quadratic residue codes are

$$
1+f_{N}, \quad 1+f_{Q}, \quad 8 f_{N}, \quad 8 f_{Q}
$$

2. $r=3 j+1:((n=36 j+13)$.

The idempotent generators of quadratic residue codes are

$$
4+6 f_{Q}+f_{N}, \quad 4+f_{Q}+6 f_{N}, \quad 6+3 f_{Q}+8 f_{N}, \quad 6+8 f_{Q}+3 f_{N}
$$

3. $r=3 j+2:(n=36 j+25)$.

The idempotent generators of quadratic residue codes for this case are

$$
7+f_{Q}+3 f_{N}, \quad 7+3 f_{Q}+f_{N}, \quad 3+8_{Q}+6 f_{N}, \quad 3+6 f_{Q}+8 f_{N}
$$

References

[1] A.R. Calderbank and N.J.A. Sloane, Modular and p-adic and cyclic codes, DCC, 6 (1995), 21-35.
[2] M.H Chiu, S. S.-T. Yau and Y. Yu, \mathbb{Z}_{8}-cyclic codes and quadratic residue codes, Advances in Algebra 25 (2000), 12-33.
[3] S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their weight enumerators, Discrite Math. 305 (2005), 123-135.
[4] S.T. Dougherty and Y.H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. 39 (2006), 65-80.
[5] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
[6] S.J. Kim, Quadratic residue codes over \mathbb{Z}_{16}, Kangweon-Kyungki Math. J. 11 (2003), 57-64.
[7] S.J. Kim, Generator polynomials of the p-adic quadratic residue codes, Kangweon-Kyungki Math. J. 13 (2005), 103-112.
[8] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
[9] B.R. McDonald, Finite rings with identity, Dekker, New York, 1974.
[10] K. Nagata, F. Nemenzo and H. Wada, On self-dual codes over \mathbb{Z}_{16}, Lecture Notes in Computer Science 5527, 107-116, 2009.
[11] G. Nebe, E. Rains and N.J.A. Sloane, Self-dual codes and invariant theory, Springer-Verlag, 2006.
[12] Y.H. Park, Modular independence and generator matrices for codes over \mathbb{Z}_{m}, Des. Codes. Crypt 50 (2009), 147-162.
[13] B. Taeri, Quadratic residue codes over \mathbb{Z}_{9}, J. Korean Math Soc. 46 (2009), 13-30.

Young Ho Park
Department of Mathematics
Kangwon National University
Chuncheon 200-701, Korea
E-mail: yhpark@kangwon.ac.kr

[^0]: Received March 6, 2015. Revised March 15, 2015. Accepted March 15, 2015. 2010 Mathematics Subject Classification: 94B05.
 Key words and phrases: quadratic residue code, p-adic code, idempotent generator.

 This study was supported by 2013 Research Grant from Kangwon National University (No. C1009751-01-01).
 (c) The Kangwon-Kyungki Mathematical Society, 2015.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

