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QUADRATIC RESIDUE CODES OVER p-ADIC

INTEGERS AND THEIR PROJECTIONS TO INTEGERS

MODULO pe

Young Ho Park

Abstract. We give idempotent generators for quadratic residue
codes over p-adic integers and over the rings Zpe .

1. Introduction

Let R be a ring. A code of length n over R is a R-submodule of Rn.
For generality on codes over fields, we refer [5] and [8]. For codes over
Zm, see [3, 12], and for self dual codes, see [11]. See [1, 4] for codes over
p-adic numbers.

Quadratic residue codes are cyclic codes of prime length n defined over
a finite field Fpe , where pe is a quadratic residue mod n. They comprise
a very important family of codes. Examples of quadratic residue codes
include the binary [7,4,3] Hamming code, the binary [23,12,7] Golay
code, the ternary [11,6,5] Golay code and the quaternary Hexacode.
Quadratic residue codes have rate close to 1/2 and tend to have high
minimum distance. Extended quadratic residue codes are self-dual.

Denote by Zpe the ring of integers modulo pe, and Zp∞ the ring of p-
adic integers. In next section we are going to generalize these quadratic
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residue codes over the field Fp to rings Zpe and to the p-adic integers
Zp∞ .

In early papers [2,5,6,10,13], authors tried to generalize the quadratic
residue codes to the rings Z4,Z8,Z16,Z9 by giving idempotent genera-
tors. In [7], author defined quadratic residue codes over the rings Zpe

and p-adic integer ring Zp∞ in general and gave generating polynomials.
In this article, we give their idempotent generators.

2. Quadratic residue codes over Zpe

In the earlier works by several authors, quadratic residue codes over
Zpe are usually defined by giving idempotent generators. See [2, 10]
for quadratic residue codes over Z8, Z16 and [13] for codes over Z9 for
example. However it is generally difficult to give a formula for such
generators and hard to understand. We will define quadratic residue
codes over Zpe in a similar way as in the field case. The p-adic case
(e = ∞) is also included here. For codes over p-adic integers, we refer
[1, 3, 4].

Let p be a prime and let n be a prime such that p is a quadratic
residue modulo n. Let Q be the set of quadratic residues modulo n, and
N the set of quadratic nonresidues modulo n.

Let Qp denote the field of p-adic numbers. Let K be the splitting field
of xn − 1 over Qp. Since the roots of xn − 1 in K form a multiplicative
group of order n, it is clear that there exists an element ζ such that K =
Qp[ζ]. By considering the map Ψe : Zp∞ → Zpe defined by Ψe(a) = a
(mod pe) and extending it to Zp∞ [ζ], we can easily see that

Zpe [ζ] ' Zp∞ [ζ]/(pe).

Zpe [ζ] is a Galois ring defined over Zpe . Elements in Zpe [ζ] can be written

uniquely as a ζ-adic expansion u =
∑p−1

i=0 viζ
i, vi ∈ Zpe or in a p-adic

expansion
u = u0 + pu1 + p2u2 + · · ·+ pe−1ue−1

where ui ∈ {0, 1, ζ, · · · , ζp−1} ' Fp, the finite field of p elements. In p-
adic integer case, this sum is infinite. The automorphism group of Zpe [ζ]
over Zpe is the cyclic group generated by the Frobenius automorphism

F(
e−1∑
i=0

piui) =
e−1∑
i=0

piupi .
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We refer [1] or [9] for details. As in the field case, we let

Qe(x) =
∏
i∈Q

(x− ζ i), Ne(x) =
∏
i∈N

(x− ζ i).

Since p ∈ Q we have

F(Qe(x)) =
∏
i∈Q

(x− ζpi) =
∏
i∈Q

(x− ζ i) = Qe(x)

and similarly F(Ne(x)) = Ne(x). Thus Qe(x) and Ne(x) are polynomials
in Zpe [x]. We certainly have that

xn − 1 = (x− 1)Qe(x)Ne(x)

and for all e′ ≥ e,

Qe′(x) ≡ Qe(x) (mod pe), Ne′(x) ≡ Ne(x) (mod pe).

Q∞(x) and N∞(x) may be defined as p-adic limits of Qe(x) and Ne(x).

Definition 2.1. Cyclic codes Qe,Qe
1,N e,N e

1 of length n with gen-
erator polynomials

Qe(x), (x− 1)Qe(x), Ne(x), (x− 1)Ne(x),

respectively, are called quadratic residue codes over Zpe .

3. Main Theorem

Let

fQ(x) =
∑
i∈Q

xi, fN(x) =
∑
i∈N

xi.

the polynomials in Zpe [x]/(xn − 1), where e = 1, 2, . . . ,∞.

Theorem 3.1. 1. Suppose n = 4k − 1.

f 2
Q =

n− 3

4
fQ +

n+ 1

4
fN

f 2
N =

n+ 1

4
fQ +

n− 3

4
fN

fQfN =
n− 1

2
+
n− 3

4
fQ +

n− 3

4
fN
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2. Suppose n = 4k + 1.

f 2
Q =

n− 5

4
fQ +

n− 1

4
fN +

n− 1

2

f 2
N =

n− 1

4
fQ +

n− 5

4
fN +

n− 1

2

fQfN =
n− 1

4
fQ +

n− 1

4
fN

Proof. It follows from the Perron’s theorem.

Let

λ = fQ(ζ) =
∑
i∈Q

ζ i, µ = fN(ζ) =
∑
i∈N

ζ i

Diffenrent choice of the root ζ may interchange λ and µ. Let

θ = λ− µ.
Then

θ2 = ±n
for n = 4k ± 1, where double signs are in the same order.

Theorem 3.2. 1. If n = 4k − 1, then λ and µ are roots of x2 +
x+ k = 0.

2. If n = 4k + 1, then λ and µ are roots of x2 + x− k = 0.

Note that µ+ λ = −1. For details, we refer [7].

Theorem 3.3. Let p > 2 be a prime and and n = 4k ± 1 be a prime
such that p is a quadratic residue modulo n. Let θ2 ≡ ±1 (mod p),
where double signs are in the same order as in n = 4k ± 1. The idem-
potent generators of the p-adic quadratic residue codes 〈Q∞(x)〉, 〈(x −
1)Q∞(x)〉, 〈N∞(x)〉, 〈(x− 1)N∞(x)〉 of length n are given as follows, re-
spectively:

Eq(x) = a+ bfQ(x) + cfN(x)

Fq(x) = a′ − cfQ(x)− bfN(x)

En(x) = a+ cfQ(x) + bfN(x)

Fn(x) = a′ − bfQ(x)− cfN(x)

where

a =
n+ 1

2n
, a′ =

n− 1

2n
, b =

1∓ θ
2n

, c =
1± θ

2n
.
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The idempotent generators of quadratic residue codes over Zpe can
be obtained by projecting these generators modular pe.

Proof. We prove the formula for Eq(x) in the case that n = 4k − 1.
Let

E = 1 + fQ(x) + fN(x) + n+ θ(fQ(x)− fN(x)).

It is a lengthy but straightforward computation to show that E2 = 2nE
using Theorem 3.1 and θ2 = −n. Therefore ( E

2n
)2 = E

2n
. But E

2n
=

Eq(x). Thus Eq(x) is idempotent. Next, note that 1 + fQ(x) + fN(x) =
Q∞(x)N∞(x). Thus for all i ∈ Q, we have E(ζ i) = 0 + n + θ(λ − µ) =
n + θ2 = 0. For all i ∈ N , we have E(ζ i) = 0 + n + θ(µ − λ) =
n − θ2 = 2n. Thus Eq(ζ

i) = 0 if i ∈ Q and Eq(ζ
i) = 1 if i ∈ N .

We also have that Eq(1) = 1. Thus Eq(x) = V (x)Q∞(x) for some V (x)
and Eq(x) is relatively prime to N∞(x)(x − 1). Therefore there exist
A(x), B(x) such that A(x)Eq(x) +B(x)N∞(x)(x− 1) = 1. From this we
get A(x)Eq(x)Q(x) = Q(x). Hence 〈Eq(x)〉 = 〈Q∞(x)〉.

All remaining cases can be proved in a similar way.

Note that an idempotent generator for the binary case is given in [1].

4. An example

In this section, we use our Theorem 3.3 to find idempotent generators
of the quadratic residue codes over Z9 as in [13].

First we note that

(
n

3

)
= 1 iff n = 12r ± 1 for some r. In order to

solve θ2 ≡ ±n (mod 9), we need to separate cases further according to
r modulo 3. We compute everything modulo 9.

Case I. n = 12r − 1.

1. r = 3j: (n = 36j − 1).
In this case n = 36j − 1 = −1. Inverse of 2n = −2 is 4. Thus

a = 4(n + 1) = 0, a′ = 4(n − 1) = 1. Solving θ2 = −n = 1, we
obtain θ = ±1. Thus b, c = 4(1± θ) = 8, 0. Hence the idempotent
generators of quadratic residue codes are

8fQ, 8fN , 1− 8fQ, 1− 8fN .

2. r = 3j + 1: (n = 36j + 11).
In this case n = 2, and the inverse of 2n is 7. Thus a = 3 and

a′ = 7. From θ2 = −n = 7, we get θ = ±4. Thus b, c = 7(1± 4) =
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8, 6. Thus the idempotent generators of quadratic residue codes
are

3 + 8fQ + 6fN , 3 + 6fQ + 8fN , 7 + fQ + 3fN , 7 + 3fQ + fN .

3. r = 3j + 2: (n = 36j + 23).
Similarly, we find that the idempotent generators of quadratic

residue codes for this case are

6 + 3fQ + 8fN , 6 + 8fQ + 3fN , 4 + 6fQ + 1fN , 4 + 1fQ + 6fN .

Case II. n = 12r + 1.

1. r = 3j: (n = 36j + 1).
In this case n = 1. Inverse of 2n = 2 is 5. Thus a = 1, a′ = 0.

Solving θ2 = n, we obtain θ = ±1. Thus b, c = 5(1 ± θ) = 0, 1.
Hence the idempotent generators of quadratic residue codes are

1 + fN , 1 + fQ, 8fN , 8fQ.

2. r = 3j + 1: ((n = 36j + 13).
The idempotent generators of quadratic residue codes are

4 + 6fQ + fN , 4 + fQ + 6fN , 6 + 3fQ + 8fN , 6 + 8fQ + 3fN .

3. r = 3j + 2: (n = 36j + 25).
The idempotent generators of quadratic residue codes for this

case are

7 + fQ + 3fN , 7 + 3fQ + fN , 3 + 8Q + 6fN , 3 + 6fQ + 8fN .
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