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Abstract

We report on the efficient Turbomole implementation of quadratic response properties

within the time-dependent density functional theory (TDDFT) context that includes the static

and dynamic dipole hyperpolarizability, ground-to-excited-state two-photon absorption ampli-

tudes (through a single residue) and state-to-state one-photon absorption amplitudes (through

a double residue). Our implementation makes full use of arbitrary (including non-Abelian)

point-group symmetry as well as permutational symmetry and enables the calculation of non-

linear properties with hybrid density functionals for molecules with hundreds of atoms and

thousands of basis functions at a cost that is a fixed multiple of the cost of the correspond-

ing linear properties. Using the PBE0 hybrid density functional, we show that excited-state
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absorption spectra computed within the pseudowavefunction approach contain the qualitative

features of transient absorption spectra tracking excimer formation in perylene diimide dimers;

two-photon absorption cross sections for a series of highly twisted fused porphyrin chains

are semiquantitatively reproduced; and the computed dynamic hyperpolarizability of several

calix[4]arene stereoisomers yield simulated hyper-Raleigh scattering signals consistent with

experiment. In addition, we show that the incorrect pole structure of adiabatic TDDFT proper-

ties can cause incorrect excited state absorption spectra and overly resonant hyperpolarizabili-

ties, and discuss possible remedies.

Nonlinear spectroscopy contains powerful techniques for understanding fundamental light-

matter interactions, characterizing complex systems through their high-order properties, and driv-

ing novel chemistry.1 Macroscopic nonlinear behavior of molecular materials is dictated by the

nonlinear response function of the molecules that make up the material. For example, the molec-

ular quadratic response function—the first nonlinear response function—encodes the microscopic

behavior that leads to processes such as second harmonic generation, sum frequency generation,

and the electro-optical Pockels effect.1

In addition to the direct description of response properties, response functions are valuable

formal tools allowing for the definition of excited state energies and (transition) properties. This

approach is especially powerful in the context of approximate electronic structure methods as it

provides a definition of excited states and state-to-state properties that requires no explicit wave-

function.2,3 For example, the poles of the linear response function give excitation energies and their

corresponding residues define transition properties between the ground state and an excited state.2

The quadratic response function contains two-photon absorption amplitudes as single residues2

and transition properties between two excited states (state-to-state) as double residues.2

We present details of a highly resource-efficient implementation of the time-dependent density

functional theory (TDDFT) quadratic response function that makes full use of arbitrary point-group

symmetry (non-Abelian as well as Abelian), and enables calculations of the static and dynamic hy-

perpolarizabilities as well as two-photon absorption spectra from the ground state and one-photon
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excited-state absorption for molecules with hundreds of atoms and thousands of basis functions.

Several implementations of TDDFT hyperpolarizabilities,4–15 two-photon absorption spectra,13,16–20

and excited-state absorption spectra21–24 have been reported to date and can be found in well es-

tablished electronic structure codes such as the Dalton program.25 While pure density functionals

(no exact exchange) are known to overestimate (hyper)polarizabilities, the results from hybrid

density functionals are greatly improved.26 However, application of hybrid density functionals to

nonlinear optical properties of large molecular clusters and materials has thus far been limited by

high computational costs. The implementation detailed here i) is designed to be CPU and mem-

ory efficient for use on workstations or single nodes of compute clusters and ii) makes full use of

arbitrary (including non-Abelian) point-group symmetry (hyperpolarizability and two-photon ab-

sorption) and iii) makes full use of permutational symmetry of the intermediate response densities.

As a result, second-order response calculations using hybrid density functionals on molecules with

hundreds of atoms and thousands of basis functions are feasible using a single workstation node:

the largest calculations reported here involved computing the two-photon absorption amplitudes of

100 excited states for a molecule with 446 atoms and 4548 basis functions.

Recently, we showed that nonlinear response functions defined from any approximate elec-

tronic structure methods have an incorrect pole structure that result in unphysical divergences in

state-to-state properties.27 Within TDDFT, the pole structure is cured only by the exact frequency-

dependent exchange-correlation (hyper)kernel. Using our new implementation, we expand upon

the unphysical behavior of the TDDFT quadratic response function and show specific examples in

which a spurious resonance drowns out real features of an excited-state absorption spectrum and

the two-photon absorption strength is “over-resonant”.

Throughout this paper, the following notation is used: lower-case letters denote single-particle

orbitals with {i, j, k, l} reserved for orbitals that are strictly occupied in the reference state, {a, b, c, d}

reserved for orbitals that are strictly unoccupied in the reference state, and {p, q, r, s} denoting

generic orbitals; upper-case letters denote excited electronic states, {N,M,K}.
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1 Response theory

TDDFT response functions may be derived through several equivalent routes, including density

based,28,29 density matrix based,30–32 or through the action.32–34 Second- and higher-order response

functions are conveniently derived using the density matrix based approach, in which the response

density matrices are defined by enforcing the idempotency and equation of motion of the Kohn–

Sham density matrix,

γ(t, x, x′) =
∑

i

ϕ∗i (t, x)ϕi(t, x′), (1)

order by order where ϕi(t, x) is a time-dependent Kohn–Sham orbital. The equation of motion for

the Kohn–Sham density matrix is

i
∂

∂t
γ =

[

Ĥ[ρ], γ
]

, (2)

where

Ĥ[ρ] = T̂ + v̂(t) + v̂HXC[ρ], (3)

with T̂ the kinetic energy operator, v̂(t) the time-dependent external potential, and v̂HXC[ρ] the

Hartree-exchange-correlation potential.3 The time-dependent field is parametrized as

v̂(t) =
∑

α

v̂(α)e−iωαt + v̂(−α)eiωαt, (4)

where α labels the perturbation that is oscillating with frequency ωα, and the requirement that v̂(t)

be Hermitian forces v̂(α) =
(

v̂(−α)
)†

.

The first- and second-order idempotency conditions

γ(α) = γ(α)γ(0) + γ(0)γ(α) (5)

γ(αβ) = γ(αβ)γ(0) + γ(α)γ(β) + γ(β)γ(α) + γ(0)γ(αβ), (6)

4



and the first- and second-order equations-of-motion

ωαγ
(α) =

[

Ĥ(0), γ(α)
]

+
[

Ĥ(α), γ(0)
]

(7)

(ωα + ωβ)γ(αβ) =
[

Ĥ(0), γ(αβ)
]

+
[

Ĥ(α), γ(β)
]

+
[

Ĥ(β), γ(α)
]

+
[

Ĥ(αβ), γ(0)
]

, (8)

therefore define the first- and second-order density matrices, where f (α) is shorthand for functional

differentiation followed by evaluation at the time-independent field-free Hamiltonian,

δ f

δv(α)

∣

∣

∣

∣

∣

∣

v=v0

≡ f (α). (9)

The linear and quadratic response functions are then obtained as expectation values of the first-

and second-order density matrices,

〈〈v(β); v(α)〉〉 = tr(v̂(β)γ(α)), (10)

〈〈v(γ); v(α)(ωα), v(β)(ωβ)〉〉 = tr(v̂(γ)γ(αβ)) (11)

1.1 Linear response

The TDDFT linear response function can be written as3

〈〈v(β); v(α)〉〉 = −〈P(β),Q(β)|X(α),Y (α)〉, (12)

where the polarization vector |X(α),Y (α)〉 parametrizes the off-diagonal blocks of the first-order

single-particle reduced density matrix,

γ(α)(x, x′) =
∑

ia

[

X
(α)
ia
ϕa(x)ϕi(x′) + Y

(α)
ia
ϕi(x)ϕa(x′)

]

, (13)
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and |P(ζ),Q(ζ)〉 collects the off-diagonal elements of one-body operator v̂(ζ), i.e., P
(ζ)
ia
= v

(ζ)
ai

and

Q
(ζ)
ia
= v

(ζ)
ia

. The polarization vector is the solution of the linear response equation3

|X(α),Y (α)〉 = −(Λ − ωα∆)−1|P(α),Q(α)〉 (14)

with linear response super operator

Λ =























A B

B A























(15)

and metric

∆ =























1 0

0 −1























. (16)

The elements of the linear response super operator—also referred to as the electronic and mag-

netic orbital rotation Hessians, respectively—are35

(A + B)ia, jb = (ǫa − ǫi)δi jδab + 2 f xc
ia, jb + 2(ia| jb)

− cx[(ib| ja) + (i j|ab)] (17a)

(A − B)ia, jb = (ǫa − ǫi)δi jδab + cx[(ib| ja) − (i j|ab)], (17b)

where

(pq|rs) =
"

dx dx′ϕp(x)ϕq(x)
1

|r − r′|
ϕr(x′)ϕs(x′) (18)

is a matrix element of the two-electron Coulomb operator, ǫp is the Kohn–Sham orbital eigenvalue

for single-particle orbital ϕp, f xc
pq,rs is a matrix element of the exchange-correlation kernel, and cx

is a coefficient that allows one to interpolate between TDHF and TDDFT with pure density func-

tionals. Within the adiabatic approximation to the exchange-correlation functional, the formally
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frequency dependent f xc is replaced by its static counterpart, i.e., the second functional derivative

of the exchange-correlation energy Exc,

f xc(x, x′) ≈
δ2Exc[ρ]
δρ(x)δρ(x′)

∣

∣

∣

∣

∣

∣

ρ=ρ0

, (19)

evaluated at the ground state density.

Excited state energies and transition moments are obtained from the poles of the inverse linear

response operator,2 leading to the symplectic eigenvalue equation

(Λ −ΩN∆)|XN ,YN〉 = 0, (20)

subject to the normalization condition

〈XN ,YN |∆|XM,Y M〉 = 〈XN |XM〉 − 〈YN |Y M〉 = δNM. (21)

Transition moments between the ground state and an excited state2 are obtained from the excitation

vectors as v
(α)
0N
= 〈v(α)|XN ,YN〉.

1.2 Quadratic response

Continuing to second-order, the quadratic response function can be written as3

〈〈v(γ); v(α)(ωα), v(β)(ωβ)〉〉 = Tr(v̂(γ)γ(αβ))

= Tr(v̂(γ)K(αβ)) + 〈P(γ),Q(γ)|X(αβ),Y (αβ)〉, (22)

where the second-order single-particle reduced density matrix, γ(αβ), is parametrized in terms of

the unrelaxed density matrix K(αβ) (occupied-occupied and virtual-virtual blocks) and the orbital
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relaxation contribution |X(αβ),Y (αβ)〉 (occupied-virtual and virtual-occupied blocks), i.e.,

γ(αβ) =























K(αβ),occ X(αβ)

(

Y(αβ)
)T

K(αβ),virt























. (23)

K(αβ) contains simple products of first-order quantities,

K
(αβ)
i j
= −

∑

a

(

X
(α)
ja

Y
(β)
ia
+ (α↔ β)

)

, (24a)

K
(αβ)
ab
=

∑

i

(

X
(α)
ia

Y
(β)
ib
+ (α↔ β)

)

, (24b)

where we have introduced (α ↔ β) to denote the permutation of (α) and (β) in the preceding

terms in the parentheses. For the sake of computational efficiency and numerical stability, it is

beneficial to separate the totally symmetric and the skew-symmetric contributions to all second-

order quantities. To this end, we denote the symmetric and skew-symmetric portions of K(αβ)

by K+(αβ) and K−(αβ), respectively, i.e., K
+(αβ)
pq = 1

2 (K(αβ)
pq + K

(αβ)
qp ) and K

−(αβ)
pq = 1

2 (K(αβ)
pq − K

(αβ)
qp ).

Furthermore, we replace X(α) and Y (α) by R(α) = X(α) + Y (α) and L(α) = X(α) − Y (α). The unrelaxed

second-order density matrix becomes

K
+(αβ)
i j
= −

1
4

∑

a

[

R
(α)
ia

R
(β)
ja
− L

(α)
ia

L
(β)
ja
+ (α↔ β)

]

, (25a)

K
−(αβ)
i j
=

1
4

∑

a

[

L
(α)
ia

R
(β)
ja
− R

(α)
ia

L
(β)
ja
+ (α↔ β)

]

, (25b)

K
+(αβ)
ab
=

1
4

∑

i

[

R
(α)
ia

R
(β)
ib
− L

(α)
ia

L
(β)
ib
+ (α↔ β)

]

, (25c)

K
−(αβ)
ab
=

1
4

∑

a

[

L
(α)
ia

R
(β)
ib
− R

(α)
ia

L
(β)
ib
+ (α↔ β)

]

. (25d)

K(αβ) is neither symmetric nor skew-symmetric with respect to exchange of the orbital indices, but

is symmetric with respect to simultaneous exchange of (v(α), ωα) and (v(β), ωβ). This is required by
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the symmetry of the quadratic response function,

〈〈v(γ); v(α)(ωα), v(β)(ωβ)〉〉 = 〈〈v(γ); v(β)(ωβ), v(α)(ωα)〉〉. (26)

The off-diagonal blocks of γ(αβ) require solution of the second-order response equation,

|X(αβ),Y (αβ)〉 = (Λ − (ωα + ωβ)∆)−1|P(αβ),Q(αβ)〉, (27)

with

(P + Q)(αβ)
ia
= −

1
2

∑

j

[

R
(β)
ja

U
+(α)
ji
− L

(β)
ja

U
−(α)
ji
+ (α↔ β)

]

+
1
2

∑

b

[

R
(β)
ib

U
+(α)
ab
− L

(β)
ib

U
−(α)
ab
+ (α↔ β)

]

+ H+ai[K
+(αβ)] + 2gxc

ai [R
(α),R(β)], (28a)

(P − Q)(αβ)
ia
= −

1
2

∑

j

[

L
(β)
ja

U
+(α)
ji
− R

(β)
ja

U
−(α)
ji
+ (α↔ β)

]

+
1
2

∑

b

[

L
(β)
ib

U
+(α)
ab
− R

(β)
ib

U
−(α)
ab
+ (α↔ β)

]

− H−ia[K−(αβ)], (28b)

where we have introduced

U±(α)
pq = H±pq[(X ± Y)(α)] + v(α)

qp ± v(α)
pq (29)
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using the linear transformations

H+pq[M] =
∑

rs

[

2(pq|rs) + 2 f xc
pq,rs

− cx[(ps|qr) + (pr|qs)]
]

Mrs, (30a)

H−pq[M] = cx

∑

rs

[

(ps|qr) − (pr|qs)]
]

Mrs, (30b)

and

gxc
pq[M,M′] =

∑

rstu

gxc
pq,rs,tuMrsM

′
tu. (31)

The previous equations generalize Eq. (39) in Ref. 3 and include a term erroneously omitted in

Ref. 3. gxc is the exchange-correlation hyperkernel which reduces to the third functional derivative

of the exchange-correlation energy within the adiabatic approximation to the exchange-correlation

functional,

gxc(x, x′, x′′) ≈
δ3Exc[ρ]

δρ(x)δρ(x′)δρ(x′′)

∣

∣

∣

∣

∣

∣

ρ=ρ0

, (32)

evaluated at the ground state density. Again, (P±Q)(α) are both symmetric with respect to exchange

of (v(α), ωα) and (v(β), ωβ), as required.

Inserting Eq. (27) into Eq. (22) and applying the inverse linear response operator instead to the

left yields

〈〈v(γ);v(α)(ωα), v(β)(ωβ)〉〉 =

= Tr(v̂(γ)K(αβ)) + 〈X(γ),Y (γ)|P(αβ),Q(αβ)〉 (33)

which is a realization of the 2n+1 rule.
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1.2.1 Two-photon absorption amplitudes

From the response theory of exact electronic states one finds that the single residue of the quadratic

response function2,36,37

lim
ω′→ΩN

(ω′ −ΩN)〈〈v(γ)(−ω′); v(α)(ω), v(β)(ω′ − ω)〉〉

= −v
(αβ)
0N

(ω)v(γ)
0N

(34)

yields the two-photon absorption (2PA) amplitude v
(αβ)
0N

(ω). Combining with Eq. (33), the TDDFT

2PA amplitude becomes

v
(αβ)
0N

(ω) = 〈XN ,YN |P(αβ),Q(αβ)〉, (35)

where ωα = ω and ωβ = ΩN − ω in P(αβ) and Q(αβ).

1.2.2 State-to-state transition properties

The double residue of the quadratic response function

lim
ωα,ωβ→−ΩN ,ΩM

(ωα + ΩN)(ωβ −ΩM)×

〈〈v(γ); v(α)(ωα), v(β)(ωβ)〉〉 = −v
(α)
0N

v̄
(γ)
NM

v
(β)
M0, (36)

with v̄
(γ)
NM
= v

(γ)
NM
− δNMv

(γ)
00 enables the identification of the state-to-state transition density as

γNM =























KNM,occ XNM

(YNM)T KNM,virt























, (37)

where KNM is the block-diagonal unrelaxed transition density and XNM and YNM describe orbital

relaxations. Defining RN and LN in analogy to R(α) and L(α), and using the fact that changing the

sign of the response frequency switches X and Y , the unrelaxed state-to-state transition density
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matrix becomes

K+NM
i j = −

1
4

∑

a

[

RN
iaRM

ja + LN
iaLM

ja + (N ↔ M)
]

, (38a)

K−NM
i j =

1
4

∑

a

[

LM
ia RN

ja + RM
ia LN

ja − (N ↔ M)
]

, (38b)

K+NM
ab =

1
4

∑

i

[

RN
iaRM

ib + LN
iaLM

ib + (N ↔ M)
]

, (38c)

K−NM
ab =

1
4

∑

a

[

LM
ia RN

ib + RM
ia LN

ib − (N ↔ M)
]

. (38d)

In contrast to the quadratic response function case, the skew-symmetric part of KNM is antisym-

metric with respect to exchange of N and M.

The orbital relaxation terms (off-diagonal blocks of the transition density) are the solution to

the response equation

|XNM,YNM〉 = (Λ −ΩMN∆)−1|PNM,QNM〉, (39)

where

(P + Q)NM
ia = −

1
2

∑

j

[

RM
jaH+ji[R

N] + LM
jaH−ji[L

N] + (N ↔ M)
]

+
1
2

∑

b

[

RM
ib H+ab[RN] + LM

ib H−ab[LN] + (N ↔ M)
]

+ H+ia[K+NM] + 2gxc
ia [RN ,RM], (40a)

(P − Q)NM
ia =

1
2

∑

j

[

LM
jaH+ji[R

N] + RM
jaH−ji[L

N] − (N ↔ M)
]

−
1
2

∑

b

[

LM
ib H+ab[RN] + RM

ib H−ab[LN] − (N ↔ M)
]

− H−ia[K−NM], (40b)

and ΩMN ≡ ΩM − ΩN . Again, in contrast to (P − Q)(αβ), (P − Q)NM is anti-symmetric with respect

to exchange of N and M. The previous equations generalize Eq. (57) in Ref. 3 and include a term

12



erroneously omitted in Ref. 3.

Applying the spectral representation of the linear response operator,

|XNM,YNM〉 =
∑

K

[

|XK ,YK〉
〈XK ,YK |PNM,QNM〉

ΩNM −ΩK

+ |YK , XK〉
〈YK , XK |PNM,QNM〉

ΩNM + ΩK

]

(41)

one sees that the transition density matrix diverges when

|ΩMN | −ΩK → 0. (42)

Such behavior is unphysical since transition density matrices must always be finite.27 Two routes to

circumvent these unphysical divergences during simulations of excited state absorption spectra are

explored in this work. In the first, the orbital relaxation is treated statically which is referred to as

the pseudowavefunction (PW) approach.38 This is similar to Li and Liu’s equation-of-motion39,40

formulation of state-to-state derivative couplings but differs from their state-to-state properties by

including the orbital relaxation in the one-particle transition density matrix. Operationally, PW

couplings are equivalent to setting ΩMN to 0 in Eq. (39):

|XNM,pw,YNM,pw〉 = Λ−1|PNM,QNM〉. (43)

Computing the transition density within response theory, ρNM, and within PW, ρNM,pw, require the

solution of the same number of linear response equations. However, when computing properties,

significant computational savings can be realized by exploiting the fact that those linear response

equations are at the same (zero) frequency. For example, the occupied-virtual contribution to the

transition dipole moment can be rearranged by applying the inverse linear response operator to the

left,

v
(α),ov
NM
= 〈v(α)|XNM,pw,YNM,pw〉 = 〈X(α),Y (α)|PNM,QNM〉, (44)
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where the superscript “ov” indicates the occupied-virtual contribution and X(α) and Y (α) are static

polarizability vectors, such that only one solution to a linear response equation is required per

property rather than per pair of states.

Finally, we will also explore unrelaxed state-to-state transition properties, which are obtained

by ignoring the orbital relaxation terms. Unrelaxed properties are inexpensive since they require

no additional solution of a linear response equation, but are inconsistent with any derivative based

properties and tend to overestimate transition properties, as is shown below.

2 Implementation

In this section, we outline the overall algorithm for all three second-order calculations and dis-

cuss several implementation details related to the use of symmetry in reducing the computational

cost of hyperpolarizability and two-photon absorption calculations. The implementation detailed

here builds on existing implementations of linear response properties and their gradients in Tur-

bomole.41 Calculations can be performed with spin-restricted or spin-unrestricted orbitals; with

or without the resolution-of-the-identity approximation for Coulomb integrals42,43 (RI-J); within

full TDDFT or the Tamm–Dancoff approximation44 (TDA); and for Hartree–Fock as well as DFT.

Elements of the static hyperpolarizability were verified against finite-field derivatives of the to-

tal energy, dipole moment, and static polarizability. Hyperpolarizability tensors with a single

zero-frequency were verified against finite-field derivatives of the dynamic polarizability through

β(ω, 0) = d
dE
α(ω). All second-order right-hand-sides (RHSs) as well as final amplitudes were

additionally verified against sum-over-states representations obtained by inserting the spectral rep-

resentation of the linear response operator and polarization vectors.

The most time-consuming steps of second-order response calculations are identical to opera-

tions that appear in linear response: solution of the symplectic eigenvalue equation, Eq. (20), or

solution of a linear system of equations, Eqs. (14) and (39). Algorithms to iteratively diagonalize

large matrices or solve large linear system of equations within TDDFT are well established; ours
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is integral driven45–49 and uses a nonorthonormal Krylov subspace method50–52 such that the total

cost scales asymptotically quadratically with system size, sublinearly with the number of solu-

tions requested, and is comparable to the cost of ground state calculations. All RHS vectors are

computed once and stored on disk. Molecular point-group symmetry is exploited in the molecular

orbital basis by Clebsch-Gordan reduction of the molecular orbital products.45 The symmetry-

adapted (A ± B)ia, jb matrix elements are nonzero only if the direct product of the irreps containing

i and a contain the product of j and b. All matrix-vector products were performed in the atomic

orbital basis, in which symmetry is exploited using skeleton operator techniques.53,54 This leads to

a speed up roughly the same order as that of the point-group. The next most time-consuming steps

are the construction of the second-order RHSs, Eq. (28) and (40), which are evaluated as in Ref.

55.

2.1 Hyperpolarizability and two-photon absorption

Since the hyperpolarizability and two-photon absorption amplitudes share the same RHS, the gen-

eral outline of both calculations differ primarily in the first step (where for 2PA, excited states must

first be computed) and the last (where the inner product in 2PA is between the RHS and an excita-

tion vector while for hyperpolarizability it is between the RHS and the polarization vector and the

sum frequency). Thus, we discuss both algorithms simultaneously.

Consider first the full hyperpolarizability tensor, β(ω1, ω2), with a set of np unique perturba-

tions, where

βµντ(ω1, ω2) = 〈〈v(τ); v(µ)(ω1), v(ν)(ω2)〉〉. (45)

In general, the hyperpolarizability tensor will have n3
p elements. However, since the quadratic

response function is symmetric with respect to simultaneous permutations of perturbation operators

and frequencies, e.g.,

〈〈v(γ); v(α)(ωα), v(β)(ωβ)〉〉 = 〈〈v(γ); v(β)(ωβ), v(α)(ωα)〉〉, (46)
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the number of unique elements is reduced if any of the frequencies are repeated. For example,

the full dipole hyperpolarizability (np = 3) contains 27 elements, but only 10 of them are unique

if both input frequencies are zero. Point-group symmetry further reduces the number of unique

elements in the hyperpolarizability. Similarly, the two-photon absorption tensor v0K(ω) has, in the

general case, n2
p unique elements which is reduced to 1

2np(np + 1) when ω = ΩK/2.

Both hyperpolarizability and 2PA require the computation of several polarization vectors. nX =

npnω distinct polarization vectors are required, where for the hyperpolarizability nω is the number

of distinct frequencies in the set {ω1, ω2, ω1 + ω2} and for 2PA, nω is the number of distinct fre-

quencies in {ω,ΩK −ω}. In the hyperpolarizability case, ω1 and ω2 are specified freely by the user,

while in the 2PA case, only ω is freely chosen.

With the polarization vectors determined, the RHS vectors, P(αβ) and Q(αβ), must be formed. To

minimize the number of RHS vectors needed to compute the hyperpolarizability with a given fre-

quency pair (ω1, ω2), the RHS is decomposed according to frequency and point-group symmetry.

First, the n2
p RHS vectors are transformed so as to be explicitly symmetric (S +µν) or antisymmetric

(S −µν) with respect to exchange of perturbation (but not frequency),

|S ±µν〉 =
1
2

(

|P(µν),Q(µν)〉(ω1, ω2) ± |P(νµ),Q(νµ)〉(ω1, ω2)
)

, (47)

where |P(µν),Q(µν)〉(ω1, ω2) is the result of evaluating Eq. (28) with (v(α), ωα) = (v(µ), ω1) and

(v(β), ωβ) = (v(ν), ω2). S −µν is a Kleinman symmetry forbidden contribution to the hyperpolariz-

ability and 2PA that vanishes when ω1 = ω2. Thus, when ω1 = ω2, the number of necessary RHS

vectors is immediately reduced. The (anti)symmetrized RHS vectors are then conveniently de-

composed into irreducible representations (irrep), where a further reduction in the number of RHS

vectors can be accomplished by neglecting those RHS vectors that belong to an irrep orthogonal

to the entire original set of perturbation operators (hyperpolarizability) or to the excited-state of

interest (2PA).

The final hyperpolarizability or 2PA tensor is obtained by computing the inner products, and
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transforming the full tensor from the irreducible basis to the Cartesian basis.

For example, consider the computation of the dipole hyperpolarizability. First, the 3nω distinct

first order polarization vectors must be computed. Next, the RHS vectors must be constructed. If

ω1 , ω2, then both the symmetric and anti-symmetric RHS vectors must be constructed, whereas

only the symmetric vectors are necessary if ω1 = ω2. In the case of the dipole hyperpolarizability,

the 6 symmetric RHS vectors transform as the 6 unique elements of the polarizability tensor and

the 3 antisymmetric RHS vectors transform as magnetic moments. Finally, the hyperpolarizability

tensor constructed as in Eq. (33).

On the other hand, computation of the 2PA tensor starts with the calculation of all excited states

of interest. Then 3 polarization vectors (x, y, and z) are computed for each unique ω and ΩK − ω

for all states of interest, K. The RHS is constructed identically to the hyperpolarizability RHS,

with ω1 = ω and ω2 = ΩK − ω, and finally the 2PA amplitudes are constructed as in Eq. (35).

Table 1: Number of unique frequencies (nω), first-order polarizations (nX), and right-hand sides
(nP) required to compute a general hyperpolarizability with p distinct perturbations and the dipole
hyperpolarizability (p = 3) in accordance with the 2n+1 rule, as well as the number of symmetry
distinct elements for different choices of frequencies.

ω1 ,ω2 , 0 ω1 = 0,ω2 ω1 =ω2 , 0 ω1 =ω2 = 0
nω 3 2 2 1

General hyperpolarizability

nX 3p 2p 2p p

nP 3p 3p 2p 2p

rank(β) p3 1
2

p2(p + 1)
1
2

p2(p + 1)
(p + 2)!

3!(p − 1)!
Dipole hyperpolarizability

nX 9 6 6 3
nP 9 9 6 6
rank(β) 27 18 18 10

2.2 Excited-state absorption

Regardless of which formulation used, the first step of computing excited-state absorption ampli-

tudes is to calculate all excited states of interest. The excitation vectors directly determine the
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unrelaxed transition density, such that there is essentially no significant additional cost in comput-

ing the unrelaxed ESA amplitudes relative to the ground-state absorption amplitudes.

For the full response theory based ESA amplitudes as well as for the PW based amplitudes,

two algorithms are possible. Both require the RHS shown in Eq. (40). In the first, the off-diagonal

blocks of the transition density are determined by solving Eq. (39) for response amplitudes or Eq.

(44) for PW amplitudes. In either case, the number of polarizability-like calculations required is

nexc, where nexc is the number of excited-state amplitudes requested. This approach yields the full

transition density matrix from which any transition properties are easily computed. The second ap-

proach avoids the formation of the transition density in favor of computing (dynamic) polarizability

vectors for all properties of interest that are then contracted with the RHS. This approach requires

the solution of npnω polarizability-like calculations where np is the number of one-electron prop-

erties desired and nω is the number of unique frequencies encountered. For response properties, nω

is the number of unique energy differences among all requested amplitudes (generally nω = nexc),

whereas for PW properties nω = 1.

3 ESA: perylene diimide dimers

We now use our implementation to study the excited-state absorption spectra during excimer for-

mation of a cofacially- and a slip-stacked perylene diimide (PDI) dimer on a triptycene scaffold

shown in Fig. 1. Such chromophore dimers are valuable models to study charge- and energy-

transfer in artificial light harvesting systems and materials for solar energy capture. The structures

shown in Fig. 1 are derived from a pair of dimers first synthesized and studied spectroscopically

by Margulies et al,56 but in the present case the n-octyl groups bound to the imide nitrogen are

replaced with methyl.

First, we compare the qualitative behaviors of the spectra provided by the quadratic response,

pseudowavefunction, and unrelaxed formulations of state-to-state properties, all of which were

computed with the implementation detailed above. Fig. 2 shows the excited-state absorption spec-
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Figure 1: Structures of perylene diimide (PDI) structures for which excited state absorption spectra
are computed.

tra computed using the PBE0 density functional57 with the def2-SVP basis set58 for both dimers

in their ground state geometry. All excited-state absorption spectra in this section were broadened

using a Lorentzian with full-width-at-half-maximum of 0.2 eV. Ground state geometries were ob-

tained by optimizing with the TPSS density functional59 including D3 dispersion corrections60 and

the def2-TZVP58 basis set. As an example of the computational requirements, computing excited-

state absorption amplitudes of the cofacial dimer from the first excited state to the next 10 singlet

states (11 excited states, 10 amplitudes) with PBE0/def2-SVP and within response theory required

32 hours on a single core of an Intel Xeon X5660 with 2.80GHz clock speed. The most striking

feature of Fig. 2 is the giant absorption peak at 599 nm in the excited-state absorption of the slip-

stacked dimer computed from response theory, which has been scaled down by a factor of 2000 to

facilitate comparison with the other spectra. The giant absorption is an unphysical artifact of the

accidental matching condition Eq. (42): here, |(Ω69 − Ω1) − Ω1| < 0.25mH. This spurious reso-

nance is a severe failure made worse by its proximity to real transitions of interest and its presence

at the ground state geometry. The PW-based spectra, on the other hand, are well behaved across

the entire window. Furthermore, far from the matching condition of Eq. (42), the response and PW

spectra are nearly identical while the unrelaxed spectra are consistently larger (up to a factor of 5),

indicating that the orbital relaxation terms are comparable in magnitude to the unrelaxed terms and

that the PW formulation captures a significant portion of the orbital relaxation.

Next, we consider the effect of structural relaxation on the excited-state absorption spectra by

simulating excited-state absorption at the relaxed excited-state geometry. Both excited-state ge-

ometries were obtained by optimizing the first excited-state (S1) geometry using PBE0-D357,60

with the def2-SVP58 basis set. We focus on the PW spectra because it is well behaved and ap-

19



 0

 1

 2

 3

 400  800  1200

wavelength (nm) wavelength (nm)

E
S
A

 (a
.u
.)

cofacial slippedresponse
pw
unrelaxed/4

 400  800  1200

wavelength (nm) wavelength (nm)

E
S
A

 (a
.u
.)

cofacial slipped response/2000
pw
unrelaxed/4

Figure 2: Comparison of excited-state absorption spectra computed using quadratic response (“re-
sponse”), pseudowavefunction (“pw”), and unrelaxed state-to-state properties for the cofacial- and
slip-stacked PDI dimers in their ground state geometries. All calculations used the PBE0 density
functional57 was used with the def2-SVP basis set.58 Spectra were broadened with a Lorentzian
with full-width-at-half-maximum of 0.2 eV. Note that response spectra for the slip-stacked dimer
was scaled by 1/2000 and both unrelaxed spectra were scaled by 0.25.

proximately includes orbital relaxation. Fig. 3 compares the excited-state absorption spectra from

the ground-state geometry and the excited-state geometry for both molecules. All excited-state ab-

sorption spectra were computed with PBE057 and def2-TZVPP.58 With this basis set, the cofacial-

and slipped-stacked dimers contain 3018 and 3260 basis functions, respectively.
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Figure 3: Simulated excited-state absorption during excimer formation in cofacial- and slipped-
stacked PDI dimers at their ground state and relaxed excited-state geometries. Excited-state ab-
sorption spectra were computed using PBE0/def2-TZVPP with the PW formulation of the transi-
tion amplitudes. Spectra were broadened with a Lorentzian with full-width-at-half-maximum of
0.2 eV.

Ultrafast transient absorption measurements of the cofacial-stacked dimer reveal that the ini-

tially broad excited-state absorption centered at 667 nm sharpens and slightly blue shifts to 665

nm—a shift of 6 meV—as the excimer forms.56 The simulated spectra recover the sharpening upon

excimer formation as indicated by the reduction of the full-width-at-half-maximum (FWHM) from

0.66 eV at the ground state geometry to 0.47 eV at the excited state geometry. In contrast to the

experimental behavior, the absorption maximum red shifts from 685 nm to 736 nm, a shift of 0.24

eV. This result is nonetheless encouraging, as both experiment and simulation agree that the shift
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in the absorption maximum is slight. During excimer formation in the slip-stacked dimer, on the

other hand, the initially sharp transient absorption peak centered at 707 nm becomes broad and

relatively featureless,56 while the simulated spectra is initially centered at 718 nm and slightly

broadens upon excimer formation—FWHM of 0.72 eV at the ground state geometry compared to

0.76 eV at the excimer geometry.

4 2PA: twisted porphyrins

To demonstrate our two-photon absorption amplitude implementation, we compute the one-photon

absorption (1PA) and two-photon absorption (2PA) spectra of a series of recently synthesized

highly twisted π-conjugated porphyrins.61 Specifically, we consider the porphyrin monomer (mP),

dimer (dP), and tetramer (tP) with mesityl substitutions (i.e., compounds 1a, 4a, and 7 in Ref. 61),

as shown in Fig. 4.
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Figure 4: Structures of highly twisted porphyrin molecules. The monomer (mP), dimer (dP), and
tetramer (tP) correspond to molecules 1a, 4a, and 7 in Ref. 61.

Previously reported crystal structures61 were used as initial geometries for all compounds

and were subsequently optimized using the TPSS density functional59 with D3 dispersion cor-

rections.60 Final optimized structures were obtained with the def2-TZVP basis set58 for mP and

dP, while the def2-SVP basis set58 was used for tP due to the large size of tP.

The one- and two-photon absorption spectra were computed using the hybrid PBE0 density

functional57 with def2-SVP,58 except for tP, which used def2-SV(P). Computing two-photon ab-
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Figure 5: One-photon and two-photon absorption spectra of twisted porphyrins computed using
TDDFT: a) mP b) dP c) tP. Simulated spectra were computed from response theory with PBE057

and def2-SVP (mP and dP) or def2-SV(P) (tP). Stick spectra were broadened with Lorentzian
functions with half-width-at-half-maximum Γ = 0.1eV.

sorption amplitudes to the first 10 excited states of mP (equivalent of 10 excited state calculations

followed by 10 dynamic polarizability calculations) required 44 hours on an Intel Xeon X5660

with 2.80GHz clock speed. Figure 5 collects one- and two-photon absorption spectra plotted as

both stick spectra as well as broadened with a Lorentzian with half-width-at-half-maximum of 0.1

eV (see App. B). The stark differences between one- and two-photon absorption spectra are a

consequence of the near inversion symmetry of the porphyrin rings. With perfect inversion sym-

metry, transitions can be one-photon active or two-photon active, but not both. Thus, in the case

of the twisted porphyrins, transitions that are bright in the one-photon spectrum tend to be dark in

the two-photon spectrum and vice versa. Both the experimentally obtained and TDDFT computed

one-photon spectra show a pronounced red shift as the porphyrin chain elongates, corroborating

the interpretation of the chain as being fully conjugated. In addition, TDDFT predicts an increas-

ing maximum two-photon absorption cross section as the chain grows, in line with the expected

increase of the absorption cross section with increasing conjugation length.62 The computed max-

imum two-photon absorption cross section for mP (61 GM) is consistent with Yoon et al’s obser-

vation that the two-photon absorption cross section of a similar Ni porphyrin was below 100 GM63

and lies within the range of two-photon absorption cross sections measured for other porphyrin

monomers (10 - 100 GM).64 Furthermore, TDDFT predicts the two-photon absorption cross sec-

tion of dP (the only molecule in the series in which two-photon absorption was measured) to be

690 GM which compares well with the experimentally observed value (640 GM at 1200 nm61).
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The predicted maximum two-photon absorption of tP, 5600 GM, is larger by a factor of 7.8 than

dP; in comparison, the observed absorption strength for a series of coplanar fused Ni porphyrin

chains increased by a factor of 3.8 going between a dimer (8000 ± 200 GM) and a tetramer (29900

± 600 GM).63 Furthermore, the predicted two-photon absorption amplitudes for the twisted por-

phyrin chain are smaller by about an order of magnitude than those observed for the coplanar fused

Ni porphyrin chains, which can be rationalized in terms of the significantly diminished degree of

conjugation of the twisted porphyrin chain relative to the coplanar chain.63

The spurious pole in the quadratic response function manifests as an incorrect asymptotic res-

onance enhancement of the two-photon absorption spectra, i.e., the approximate two-photon ab-

sorption strengths are “over resonant”. Consider the sum-over-states representation of the exact

two-photon absorption amplitude,

v
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, (48)

with v̄
(α)
NM
= v

(α)
NM
− δNMv

(α)
00 . The two-photon absorption amplitude becomes strongly enhanced if

there is an intermediate state, K, for which ΩK ≈ ΩN/2. The corresponding transition strength

grows asymptotically as

δ2PA
n ∝

1
∆Ω2

(49)

for ∆Ω = ΩK −ΩN/2 (see App. A for a definition of δ2PA
n ). By contrast, analysis of Eq. (35) reveals

that the TDDFT two-photon absorption transition strength is expected to grow asymptotically as

δ2PA,TDDFT
n ∝

1
∆Ω4
. (50)

To verify the incorrect asymptotic behavior numerically, we compute the near resonant tran-

sition strength of a modified mP. The resonance detuning, ∆Ω, was scanned by interpolating be-

tween the relaxed ground state geometry and the excited state geometry—optimized using PBE057

and def2-SVP.58 To simplify the resulting spectra as well as reduce the computational cost of each
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calculation, the mesityl groups were replaced with hydrogen atoms (after optimization), and both

geometries were adapted to have D2d symmetry. The interpolation between the ground state geom-

etry and the excited state geometry was performed by linearly interpolating the symmetry unique

internal coordinates. Fig. 6 shows δ2PA
n for excitation to excited state 17A1 near a resonance with

excited state 5E, i.e., where Ω17A1 ≈ 2Ω5E. Fitting the numerical transition strengths to the form

log(δn) = m log |∆Ω| + b yields m = −4.0005, or δn ∝
1

∆Ω4.0005 . The fit was limited to points where

δn was greater than 1011 a.u. (to focus on the single resonant contribution) but less than 1015 a.u.

(to avoid numerical noise).
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Figure 6: Resonant behavior of two-photon absorption strength computed through quadratic re-
sponse TDDFT.

The overly resonant behavior seen above is analagous to the inconsistency in behavior of two-

photon absorption cross sections near one-photon transitions reported by Hu et al within damped

response theory.18 Explicit damping, for example through the complex polarization propagator, is

a commonly employed strategy to remove physical divergences in response functions by suppos-

ing a finite excited-state lifetime.10,65 However, explicit damping does not change the underlying

pole structure of the approximate response function, only how the pole structure translates into an

observable, and therefore cannot cure unphysical behavior.

5 Hyperpolarizability: octupolar calixarenes

To demonstrate our implementation of the dynamic hyperpolarizability, we compute the hyper-

polarizability at two frequencies for four conformational isomers of the cyclophane tetranitrote-

trapropxycalix[4]arene shown in Fig. 7. These molecules have previously been experimentally
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shown to have large second-order responses66,67 and are therefore interesting prototypical nonlin-

ear optically active chromophores.

Figure 7: Octupolar calix[4]arene molecules for which hyperpolarizabilities are reported.

Molecular geometries were optimized using the TPSS density functional59 with dispersion

corrections60 and the def2-TZVP basis set.58 Hyperpolarizabilities were computed using the PBE0

density functional57 with split valence58 (def2-SVP, def2-TZVP) and diffuse property-optimized68

(def2-SVPD, def2-TZVPD) basis sets. As an example of the efficiency of our implementation,

computing the dynamic hyperpolarizability at two frequencies (1064 nm and 900 nm) for the

cone isomer and def2-SVP basis required 12 hours on a single core of an Intel Xeon X5660 with

2.80GHz clock speed. To facilitate direct comparison with experimental Hyper-Raleigh scattering

(HRS) results, we decompose the rank 3 hyperpolarizability tensor into rotational invariants before

computing the HRS signal (see App. B). Assuming Kleinman symmetry (i.e., the hyperpolariz-

ability is symmetric with respect to any permutation of indices), the hyperpolarizability can be

exactly decomposed as a vector (dipolar) and a septor (octupolar) part,

β = β(1) + β(3), (51)

and HRS is sensitive to both components.

Fig. 8 compares the computed results to the nanosecond HRS (nHRS) measurements with

1064nm light and femtosecond HRS (fHRS) measurements with 900nm light as well as simulated

results using an additive model reported by Kenis et al.67 Within the additive model, the hyper-

polarizability for the complex is constructed as a sum of the individual p-propoxynitrobenzene

moieties. Since the hyperpolarizabilities from the additive model were scaled such that the simu-
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Figure 8: Hyperpolarizabilities computed with PBE057 functional and several basis sets compared
to results from an additive model and Hyper-Raleigh scattering (HRS) experiments.67 Experimen-
tal results at 1064nm (left) were obtained from nanosecond HRS while results at 900nm (right)
were obtained from femtosecond HRS.67 Nanosecond HRS measurements of the partial cone and
1,2 alt contain fluorescence contributions and therefore overestimate the pure hyperpolarizability
contribution. Results from the additive model were uniformly scaled so that the simulated and
experimental results for the cone agree.67

lated and experimental results for the cone conformation are identical, we consider only the trends

given by the additive model. The computed signals at 1064nm for the cone and 1,3 alt conform-

ers are consistent with the experimental nHRS results, while the computed and measured signals

for the partial cone and 1,2 alt differ significantly. However, Kenis et al observed significant flu-

orescence in the nHRS experiments for the partial cone and 1,2 alt, suggesting that the reported

hyperpolarizabilities for these two conformers overestimate the actual molecular hyperpolarizabil-

ity. The fHRS measurements at 900nm, on the other hand, reduced the fluorescence contribution

by integrating in a time-window (0.3 ns) much shorter than the fluorescence lifetime (2 ns).67 We

therefore focus our discussion on the fHRS results. On the positive side, the computed hyperpo-

larizabilities reproduce the experimental trend—cone > 1,2 alt > partial cone > 1,3 alt—for every

basis set considered. In contrast, the additive model predicted the hyperpolarizability of 1,2 alt

to be significantly lower than that of the partial cone. The discrepancy between the experimental

results and the additive model was explained by a combination of conformational flexibility and an

incomplete suppression of fluorescence; however, the present results suggest non-additive effects

may be responsible.

Finally, two properties of basis set dependence of the hyperpolarizability are apparent from

Fig. 8. First, the hyperpolarizability is strongly sensitive to diffuse functions in the basis set; for

example, the computed HRS signals increased by 34–45% going from def2-SVP to def2-SVPD,
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and by 13–18% going from def2-TZVP to def2-TZVPD. Second, unlike the polarizability,69,70 the

first hyperpolarizability obeys no variational principle. As a consequence, the hyperpolarizabil-

ity does not converge monotonically towards the basis set limit. For example, in all computed

results shown here, the hyperpolarizability computed with the largest basis set (def2-TZVPD) is

intermediate between the values for two different proper subsets (def2-SVPD and def2-TZVP).

6 Conclusions

An efficient implementation of the quadratic response function, including the calculation of two-

photon and excited-state absorption amplitudes, that makes full use of non-Abelian as well as

Abelian point-group symmetries was detailed. Importantly, the schemes discussed here compute

second-order response properties at a cost which is a fixed system-independent multiple of the

corresponding first-order properties. The dipole hyperpolarizability requires at most three times

the number of first-order polarization vector calculations as as a calculation of the dipole polar-

izability, all of which can be performed simultaneously owing to the 2n + 1 rule.71 Two-photon

absorption amplitudes require at most the equivalent of two polarizability calculations per ampli-

tude in addition to the initial excited state calculation. Excited-state absorption amplitudes require

a single CPKS-like step per amplitude (in addition the initial excited state calculation) meaning

an excited-state absorption spectrum from a given excited state is roughly twice the cost of the

corresponding ground state spectrum. Furthermore, within the PW formulation, the excited-state

absorption spectrum requires only the equivalent of an additional static polarizability calculation,

hence providing the excited-state absorption spectrum for nearly the same cost as the ground-state

absorption spectrum. Thus second-order properties are accessible for any systems for which first-

order properties can be computed; the largest molecule considered here contained 446 atoms and

3932 basis functions (tP).

To demonstrate the reach of our implementation, we simulated excited-state absorption spectra

during excimer formation in two perylene-diimide dimers, one- and two-photon absorption spectra
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for a series of twisted porphyrins, and the dynamic hyperpolarizability of octupolar calix[4]arenes.

The unphysical divergence in the excited-state absorption spectra was readily apparent in the

excited-state absorption spectrum of the slip-stacked perylene diimide molecule, in which the spec-

trum was dominated by a single spurious peak that masked all other features even at the ground

state geometry. On the other hand, the PW formulation yields well behaved spectra with no diver-

gences and reproduces qualitative features of experimentally observed excimer formation.

The one- and two-photon absorption spectra of the twisted porphyrin series reproduce the qual-

itative features of the experimental spectra, including the increase of the two-photon absorption

cross-section upon extending the monomer into a dimer.61,63 In addition, the computed maximum

two-photon absorption cross sections semiquantitatively reproduce the values observed experimen-

tally.

The TDDFT simulated dipole hyperpolarizability agrees well with measured hyper-Raleigh

scattering signals for the series of calix[4]arenes considered here. The simulated hyper-Raleigh

scattering signal were within about a factor of two of the experimental results and in addition, the

correct trend of cone > 1,2 alt > partial cone > 1,3 alt was recovered. In contrast, a previously re-

ported additive model predicted a reversal of the partial cone and 1,2 alt, i.e., partial cone > 1,2 alt.

Furthermore, our results exhibited a strong basis set dependence and non-monotonic convergence

of the hyperpolarizability, indicating that diffuse functions are as vital to the reliable description of

hyperpolarizabilities as they are to polarizabilities.

Our results provide further evidence that the incorrect pole structure of approximate nonlinear

response functions is more than a fundamental curiosity but has serious and far-reaching conse-

quences for the simulation of nonlinear properties in molecular systems. However, if the spurious

poles are avoided, either through the PW formulation or fortuitously, the TDDFT results are semi-

quantitative, which is often sufficient for screening or modeling purposes. Our implementation will

be available in a future release of Turbomole, thus enabling nonlinear TDDFT-based properties for

systems with hundreds of atoms and thousands of basis functions.
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A Two-photon absorption cross sections

The two-photon absorption cross section has dimensions of [length]4[time] and is typically re-

ported in Göppert-Mayer (GM) units which are defined as 1 GM = 10−50 cm4 s. The cross section

with appropriate units is72

σ2PA(ω) =
Nπ3αa5

0

c

(

ω

Hartree

)2

× (52)

∑

n

[(

δ2PA
n

a.u.

)

(L(2ω −Ωn;Γ) · Hartree)
]

, (53)

where α is the fine structure constant, a0 the Bohr radius, c the speed of light, ω the photon

frequency, δ2PA the two-photon transition strength, and L(ω;Γ) the normalized lineshape function.

The two-photon transition strength to state n, δ2PA
n , is given by

δ2PA
n = FδF

n +GδGn + HδH
n , (54)

where the averaged quantities are defined by

δF
n =

1
30

∑

αβ

v
(αα)
0n

(Ωn/2)v(ββ)
0n

(Ωn/2), (55)

δGn =
1
30

∑

αβ

v
(αβ)
0n

(Ωn/2)v(αβ)
0n

(Ωn/2), (56)

δH
n =

1
30

∑

αβ

v
(αβ)
0n

(Ωn/2)v(βα)
0n

(Ωn/2), (57)

and the values of the coefficients N , F, G, and H are determined by the type of experiment be-
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ing simulated. All results reported in this paper simulate a single-beam experiment with linearly

polarized lasers, i.e., N = 4 and F = G = H = 2.72

The line shape function must be normalized, i.e.,
∫ ∞

−∞
dωL(ω;Γ) = 1. All spectra reported here

use a Lorentzian line shape,

L(ω;Γ) =
1
π

Γ

ω2 + Γ2
, (58)

with broadening factor Γ = 0.1 eV.

B Hyperpolarizability measurements

In this section, rotationally invariant representations of the rank-3 hyperpolarizability tensor are

presented and used to express the simulated hyper Raleigh-scattering (HRS) signal. However,

since the values of individual elements of the tensor depend on molecular orientation and experi-

ments typically measure orientationally averaged responses, it is convenient to work directly with

rotationally invariant quantities.73

A rank-3 Cartesian tensor, T, can be decomposed into

T = t(0) + t(1) + t(2) + t(3), (59)

where t(0) is the scalar component, t(1) the vector component (with 3 subcomponents), t(2) the

deviator component (with 2 subcomponents), and t(3) the septor component. These components

naturally define the following scalar invariants:

• magnitude of the scalar, |A|, with

A =
1
6

∑

αβγ

eαβγTαβγ, (60)

30



• norms of the three vectors, |~τ1|, |~τ2|, |~τ3|, with

τ1
α =

∑

β

Tαββ (61)

τ2
α =

∑

β

Tβαβ (62)

τ3
α =

∑

β

Tββα (63)

• the eigenvalues of the two traceless symmetric deviator matrices,

D1
αβ = −

1
2

∑

γκ

(

eαγκTκγβ + eβγκTγκα
)

− 2Aδαβ (64)

D2
αβ = −

1
2

∑

γκ

(

Tαγκeκγβ + Tβγκeγκα
)

− 2Aδαβ (65)

• root-mean-square of elements of septor,

t
(3)
αβγ = T̄αβγ −

1
5

(

τ′αδβγ + τ
′
βδαγ + τ

′
γδαβ

)

, (66)

where

T̄αβγ =
1
6

(

Tαβγ + Tβγα + Tγαβ + Tαγβ + Tγβα + Tβαγ
)

, (67)

and

~τ′ =
1
3

(

~τ1 + ~τ2 + ~τ3
)

(68)

In the previous equations, e, is an antisymmetric tensor defined by

eαβγ =







































1 if αβγ an even permutation of xyz

−1 if αβγ an odd permutation of xyz

0 otherwise

(69)

Hyper-Raleigh scattering measures the intensity of scattered frequency-doubled light upon il-
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lumination of an isotropic solution as a function of solute concentration.74,75 The intensity of the

scattered field is proportional to the sum of solvent and solute contributions as well as the square

of the incident intensity,

I(2ω) ∝
(

Nsolvent 〈β
2
HRS〉solvent + Nsolute 〈β

2
HRS〉solute

)

I(ω)2, (70)

where Nsolvent (Nsolute) is the number density of the solvent (solute), 〈β2
HRS〉solvent (〈β2

HRS〉solute) is the

squared orientationally averaged molecular hyperpolarizability signal of the solvent (solute), and

I(ω) is the field intensity with frequency ω.74

Assuming Kleinman symmetry (i.e. the hyperpolarizability is symmetric with respect to ex-

change of any indices), the signal is sensitive to an isotropic average of the hyperpolarizability,76

〈β2
HRS〉 =

6
35

∑

α

β2
ααα +

16
105

∑

α,β

βαααβαββ

+
38
105

∑

α,β

β2
αββ +

16
105
Pcycβααβββγγ

+
20
35
βxyz (71)

=
2
15
|τ′|2 +

2
21
|t(3)|2, (72)

where the last line is an equivalent expression in terms of the tensor invariants τ′ and t(3).
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(24) Oliveira, E. F.; Shi, J.; Lavarda, F. C.; Lüer, L.; Milián-Medina, B.; Gierschner, J. Excited

state absorption spectra of dissolved and aggregated distyrylbenzene: A TD-DFT state and

vibronic analysis. J. Chem. Phys. 2017, 147, 034903.

(25) Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimi-

raglia, R.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Ekström, U.; Enevoldsen, T.; Eriksen, J. J.;

Ettenhuber, P.; Fernández, B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.;

Hättig, C.; Heiberg, H.; Helgaker, T.; Hennum, A. C.; Hettema, H.; Hjertenæs, E.; Høst, S.;

Høyvik, I.-M.; Iozzi, M. F.; Jansı́k, B.; Jensen, H. J. Aa.; Jonsson, D.; Jørgensen, P.; Kauc-

zor, J.; Kirpekar, S.; Kjærgaard, T.; Klopper, W.; Knecht, S.; Kobayashi, R.; Koch, H.; Kong-

sted, J.; Krapp, A.; Kristensen, K.; Ligabue, A.; Lutnæs, O. B.; Melo, J. I.; Mikkelsen, K. V.;

Myhre, R. H.; Neiss, C.; Nielsen, C. B.; Norman, P.; Olsen, J.; Olsen, J. M. H.; Osted, A.;

Packer, M. J.; Pawlowski, F.; Pedersen, T. B.; Provasi, P. F.; Reine, S.; Rinkevicius, Z.;

Ruden, T. A.; Ruud, K.; Rybkin, V. V.; Sałek, P.; Samson, C. C. M.; de Merás, A. S.; Saue, T.;

Sauer, S. P. A.; Schimmelpfennig, B.; Sneskov, K.; Steindal, A. H.; Sylvester-Hvid, K. O.;

Taylor, P. R.; Teale, A. M.; Tellgren, E. I.; Tew, D. P.; Thorvaldsen, A. J.; Thøgersen, L.; Vah-

tras, O.; Watson, M. A.; Wilson, D. J. D.; Ziolkowski, M.; Ågren, H. The Dalton quantum

chemistry program system. WIREs Comput. Mol. Sci. 2014, 4, 269–284.
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