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QUADRATIC SERENDIPITY FINITE ELEMENTS

ON POLYGONS USING GENERALIZED

BARYCENTRIC COORDINATES

ALEXANDER RAND, ANDREW GILLETTE, AND CHANDRAJIT BAJAJ

Abstract. We introduce a finite element construction for use on the class of
convex, planar polygons and show that it obtains a quadratic error convergence
estimate. On a convex n-gon, our construction produces 2n basis functions,
associated in a Lagrange-like fashion to each vertex and each edge midpoint,
by transforming and combining a set of n(n + 1)/2 basis functions known
to obtain quadratic convergence. This technique broadens the scope of the
so-called ‘serendipity’ elements, previously studied only for quadrilateral and
regular hexahedral meshes, by employing the theory of generalized barycentric
coordinates. Uniform a priori error estimates are established over the class
of convex quadrilaterals with bounded aspect ratio as well as over the class
of convex planar polygons satisfying additional shape regularity conditions to
exclude large interior angles and short edges. Numerical evidence is provided
on a trapezoidal quadrilateral mesh, previously not amenable to serendipity
constructions, and applications to adaptive meshing are discussed.

1. Introduction

Barycentric coordinates provide a basis for linear finite elements on simplices,
and generalized barycentric coordinates naturally produce a suitable basis for linear
finite elements on general polygons. Various applications make use of this tech-
nique [15, 16, 25, 26, 28, 30, 32–34, 37], but in each case, only linear error estimates
can be asserted. A quadratic finite element can easily be constructed by taking
pairwise products of the basis functions from the linear element, yet this approach
has not been pursued, primarily since the requisite number of basis functions grows
quadratically in the number of vertices of the polygon. Still, many of the pairwise
products are zero along the entire polygonal boundary and thus are unimportant for
inter-element continuity, a key ingredient in finite element theory. For quadrilateral
elements, these ‘extra’ basis functions are well understood and, for quadrilaterals
that can be affinely mapped to a square, the so-called ‘serendipity element’ yields
an acceptable basis consisting of only those basis functions needed to guarantee
inter-element continuity [3, 4, 39]. We generalize this construction to produce a
quadratic serendipity element for a class of shape-regular convex polygons derived
from generalized barycentric coordinates.
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{λi}
pairwise

products
�� {μab} A �� {ξij} B �� {ψij}

Linear Quadratic Serendipity Lagrange

Figure 1. Overview of the construction process. In each figure,
the dots are in one-to-one correspondence with the set of functions
listed below it. At the filled dots, all functions in the set evaluate
to zero except for the function corresponding to the dot which
evaluates to one. The rightmost element has quadratic precision
with only these types of ‘Lagrange-like’ basis functions.

Our construction yields a set of Lagrange-like basis functions {ψij} – one per
vertex and one per edge midpoint – using a linear combination of pairwise products
of generalized barycentric functions {λi}. We show that this set spans all constant,
linear, and quadratic polynomials, making it suitable for finite element analysis
via the Bramble-Hilbert lemma. Further, given uniform bounds on the aspect
ratio, edge lengths, and interior angles of the polygon, we bound ||ψij ||H1(Ω) uni-

formly with respect to ||λi||H1(Ω). Since our previous work shows that ||λi||H1(Ω)

is bounded uniformly under these geometric hypotheses for typical definitions of
λi [17, 27], this proves that the ψij functions are well-behaved.

Figure 1 gives a visual depiction of the construction process. Starting with one
generalized barycentric function λi per vertex of an n-gon, take all pairwise products
yielding a total of n(n+ 1)/2 functions μab := λaλb. The linear transformation A

reduces the set {μab} to the 2n element set {ξij}, indexed over vertices and edge
midpoints of the polygon. A simple bounded linear transformation B converts {ξij}
into a basis {ψij} which satisfies the “Lagrange property”, meaning each function
takes the value 1 at its associated node and 0 at all other nodes.

The paper is organized as follows. In Section 2, we review relevant background
on finite element theory, serendipity elements, and generalized barycentric func-
tions. In Section 3, we show that if the entries of matrix A satisfy certain linear
constraints Qc1-Qc3, the resulting set of functions {ξij} span all constant, linear
and quadratic monomials in two variables, a requirement for quadratic finite ele-
ments. In Section 4, we show how the constraints Qc1-Qc3 can be satisfied in the
special cases of the unit square, regular polygons, and convex quadrilaterals. In
Section 5, we show how Qc1-Qc3 can be satisfied on a simple convex polygon. We
also prove that the resulting value of ||A|| is bounded uniformly, provided the convex
polygon satisfies certain geometric quality conditions. In Section 6 we define B and
show that the final {ψij} basis is Lagrange-like. Finally, in Section 7, we describe
practical applications, give numerical evidence, and consider future directions.
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QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS 2693

Figure 2. Notation used to describe polygonal geometry.

2. Background and notation

Let Ω be a convex polygon with n vertices (v1, . . . ,vn) ordered counterclockwise.
Denote the interior angle at vi by βi. The largest distance between two points in Ω
(the diameter of Ω) is denoted diam(Ω) and the radius of the largest inscribed circle
is denoted ρ(Ω). The center of this circle is denoted c and is selected arbitrarily
when no unique circle exists. The aspect ratio (or chunkiness parameter) γ is the
ratio of the diameter to the radius of the largest inscribed circle, i.e.

γ :=
diam(Ω)

ρ(Ω)
.

The notation is shown in Figure 2.
For a multi-index α = (α1, α2) and point x = (x, y), define xα := xα1yα2 ,

α! := α1α2, |α| := α1 + α2, and Dαu := ∂|α|u/∂xα1∂yα2 . The Sobolev semi-norms
and norms over an open set Ω for a non-negative integer m are defined by

|u|2Hm(Ω) :=

∫
Ω

∑
|α|=m

|Dαu(x)|2 dx and ||u||2Hm(Ω) :=
∑

0≤k≤m

|u|2Hk(Ω) .

The H0-norm is the L2-norm and will be denoted ||·||L2(Ω). The space of polyno-

mials of degree ≤ k on a domain is denoted Pk.

2.1. The Bramble-Hilbert lemma. A finite element method approximates a
function u from an infinite-dimensional functional space V by a function uh from
a finite-dimensional subspace Vh ⊂ V . One goal of such approaches is to prove
that the error of the numerical solution uh is bounded a priori by the error of the
best approximation available in Vh, i.e. ||u− uh||V ≤ C infw∈Vh

||u− w||V . In this
paper, V = H1 and Vh is the span of a set of functions defined piecewise over a 2D
mesh of convex polygons. The parameter h indicates the maximum diameter of an
element in the mesh. Further details on the finite element method can be found in
a number of textbooks [5, 8, 11, 39].

A quadratic finite element method in this context means that when h → 0, the
best approximation error (infw∈Vh

||u− w||V ) converges to zero with order h2. This
means the space Vh is ‘dense enough’ in V to allow for quadratic convergence. Such
arguments are usually proved via the Bramble-Hilbert lemma which guarantees that
if Vh contains polynomials up to a certain degree, a bound on the approximation
error can be found. The variant of the Bramble-Hilbert lemma stated below includes
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Figure 3. Using affine transformation, analysis can be restricted
to a class of unit diameter polygons.

a uniform constant over all convex domains which is a necessary detail in the context
of general polygonal elements and generalized barycentric functions.

Lemma 2.1 (Bramble-Hilbert [10,35]). There exists a uniform constant CBH such
that for all convex polygons Ω and for all u ∈ Hk+1(Ω), there exists a degree k

polynomial pu with ||u− pu||Hk′ (Ω) ≤ CBH diam(Ω)k+1−k′ |u|Hk+1(Ω) for any k′ ≤
k.

Our focus is on quadratic elements (i.e., k = 2) and error estimates in the
H1-norm (i.e., k′ = 1) which yields an estimate that scales with diam(Ω)2. Our
methods extend to more general Sobolev spaces (i.e., W k,p, the space of functions
with all derivatives of order ≤ k in Lp) whenever the Bramble-Hilbert lemma holds.
Extensions to higher order elements (k > 2) will be briefly discussed in Section 7.

Observe that if Ω is transformed by any invertible affine map T , the polynomial
p ◦ T−1 on TΩ has the same degree as the polynomial p on Ω. This fact is often
exploited in the simpler and well-studied case of triangular meshes; an estimate on
a reference triangle K̂ becomes an estimate on any physical triangle K by passing
through an affine transformation taking K̂ to K. For n > 3, however, two generic
n-gons may differ by a non-affine transformation and thus, as we will see in the
next section, the use of a single reference element can become overly restrictive on
element geometry. In our arguments, we instead analyze classes of “reference” ele-
ments, namely, diameter one convex quadrilaterals or convex polygons of diameter
one satisfying the geometric criteria given in Section 2.3; see Figure 3. Using a class
of reference elements allows us to establish uniform error estimates over all affine
transformations of this class.

2.2. Serendipity quadratic elements. The term ‘serendipity element’ refers to
a long-standing observation in the finite element community that tensor product
bases of polynomials on rectangular meshes of quadrilaterals in 2D or cubes in 3D
can obtain higher order convergence rates with fewer than the ‘expected’ number
of basis functions resulting from tensor products. This phenomenon is discussed
in many finite element textbooks, e.g. [8, 20, 31], and was recently characterized
precisely by Arnold and Awanou [3]. For instance, the degree r tensor product
basis on a square reference element has (r + 1)2 basis functions and can have
guaranteed convergence rates of order r + 1 when transformed to a rectangular
mesh via bilinear isomorphisms [4]. By the Bramble-Hilbert lemma, however, the
function space spanned by this basis may be unnecessarily large, as the dimension
of Pr is only (r + 1)(r + 2)/2 and only 4r degrees of freedom associated to the
boundary are needed to ensure sufficient inter-element continuity in H1.
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QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS 2695

This motivates the construction of the serendipity element for quadrilaterals. By
a judicious choice of basis functions, an order r convergence rate can be obtained
with one basis function associated to each vertex, (r − 1) basis functions associ-
ated to each edge, and q additional functions associated to interior points of the
quadrilateral, where q = 0 for r < 4 and q = (r − 2)(r − 1)/2 for r ≥ 4 [3]. Such
an approach only works if the reference element is mapped via an affine transfor-
mation; it has been demonstrated that the serendipity element fails on trapezoidal
elements, such as those shown in Figure 10 [22, 24, 38, 39].

Some very specific serendipity elements have been constructed for quadrilaterals
and regular hexagons based on the Wachspress coordinates (discussed in the next
sections) [1, 2, 18, 19, 36]. Our work generalizes this construction to arbitrary poly-
gons without dependence on the type of generalized barycentric coordinate selected
and with uniform bounds under certain geometric criteria.

2.3. Generalized barycentric elements. To avoid non-affine transformations
associated with tensor product constructions on a single reference element, we use
generalized barycentric coordinates to define our basis functions. These coordinates
are any functions satisfying the following agreed-upon definition in the literature.

Definition 2.2. The functions λi : Ω → R, i = 1, . . . , n, are barycentric coor-
dinates on Ω if they satisfy two properties.

B1. Non-negative: λi ≥ 0 on Ω.

B2. Linear completeness: For any linear function L : Ω→R, L=

n∑
i=1

L(vi)λi.

We will further restrict our attention to barycentric coordinates satisfying the
following invariance property. Let T : R2 → R

2 be a composition of translation, ro-
tation, and uniform scaling transformations and let {λT

i } denote a set of barycentric
coordinates on TΩ.

B3. Invariance: λi(x) = λT
i (T (x)).

A set of barycentric coordinates {λi} also satisfies three additional familiar prop-
erties. A proof that B1 and B2 imply the additional properties B4-B6 can be found
in [17]. Note that B4 and B5 follow immediately by setting L = 1 or L = x in B2.

B4. Partition of unity:

n∑
i=1

λi ≡ 1.

B5. Linear precision:
n∑

i=1

viλi(x) = x.

B6. Interpolation: λi(vj) = δij .

Various particular barycentric coordinates have been constructed in the litera-
ture. We briefly mention a few of the more prominent kinds and associated refer-
ences here; readers are referred to our prior work [17, Section 2] as well as the survey
papers of Cueto et al. [9] and Sukumar and Tabarraei [33] for further details. The
triangulation coordinates λTri are defined by triangulating the polygon and using
the standard barycentric coordinates over each triangle [14]. Harmonic coordinates
λHar are defined as the solution to Laplace’s equation on the polygon with piecewise
linear boundary data satisfying B6 [7, 21, 25]. Explicitly constructed functions in-
clude the rational Wachspress coordinates λWach [36], the Sibson coordinates λSibs
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2696 ALEXANDER RAND, ANDREW GILLETTE, AND CHANDRAJIT BAJAJ

defined in terms of the Voronoi diagram of the vertices of the polygon [12,29], and
the mean value coordinates λMVal defined by Floater [13, 14].

To obtain convergence estimates with any of these functions, certain geometric
conditions must be satisfied by a generic mesh element. We will consider domains
satisfying the following three geometric conditions.

G1. Bounded aspect ratio: There exists γ∗ ∈ R such that γ < γ∗.
G2. Minimum edge length: There exists d∗ ∈ R such that |vi−vj | > d∗ > 0

for all i 	= j.
G3. Maximum interior angle: There exists β∗ ∈ R such that βi < β∗ < π

for all i.

Under some set of these conditions, the H1-norm of many generalized barycen-
tric coordinates are bounded in H1-norm. This is a key estimate in asserting the
expected (linear) convergence rate in the typical finite element setting.

Theorem 2.3 ([27] for λMVal and [17] for others). For any convex polygon Ω
satisfying G1, G2, and G3, λTri, λHar, λWach, λSibs, and λMVal are all bounded in
H1, i.e. there exists a constant C > 0 such that

(2.1) ||λi||H1(Ω) ≤ C.

The results in [17] and [27] are somewhat stronger than the statement of Theo-
rem 2.3, namely, not all of the geometric hypotheses are necessary for every coor-
dinate type. Our results, however, rely generically on any set of barycentric coor-
dinates satisfying (2.1). For instance, the degenerate pentagon formed by adding
an additional vertex in the center of the side of a square does not satisfy G3, but
some choices of barycentric coordinates, such as λMVal and λHar, will still admit
an estimate like (2.1) on this geometry. We analyze the potential weakening of the
geometric hypotheses in Section 7.

2.4. Quadratic precision barycentric functions. Since generalized barycentric
coordinates are only guaranteed to have linear precision (property B5), they cannot
provide greater than linear order error estimates. Pairwise products of barycentric
coordinates, however, provide quadratic precision, as the following simple proposi-
tion explains.

Proposition 2.4. Given a set of barycentric coordinates {λi}ni=1, the set of func-
tions {μab} := {λaλb}na,b=1 has constant, linear, and quadratic precision,1 i.e.

n∑
a=1

n∑
b=1

μab = 1,
n∑

a=1

n∑
b=1

vaμab = x and
n∑

a=1

n∑
b=1

vav
T
b μab = xxT .(2.2)

Proof. The result is immediate from properties B4 and B5 of the λi functions. �
The product rule ensures that Theorem 2.3 extends immediately to the pairwise

product functions.

Corollary 2.5. Let Ω be a convex polygon satisfying G1, G2, and G3, and let λi

denote a set of barycentric coordinates satisfying the result of Theorem 2.3 (e.g.
λTri, λHar, λWach, λSibs, or λMVal). Then pairwise products of the λi functions are
all bounded in H1, i.e. there exists a constant C > 0 such that

(2.3) ||μab||H1(Ω) ≤ C.

1Note that xxT is a symmetric matrix of quadratic monomials.
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While the {μab} functions are commonly used on triangles to provide a quadratic
Lagrange element, they have not been considered in the context of generalized
barycentric coordinates on convex polygons as considered here. Langer and Seidel
have considered higher order barycentric interpolation in the computer graphics
literature [23]; their approach, however, is for problems requiring C1-continuous in-
terpolation rather than the weaker H1-continuity required for finite element theory.

In the remainder of this section, we describe notation that will be used to index
functions throughout the rest of the paper. Since μab = μba, the summations from
(2.2) can be written in a symmetric expansion. Define the paired index set

I := {{a, b} | a, b ∈ {1, . . . , n}} .
Note that sets with cardinality 1 occur when a = b and are included in I. We
partition I into three subsets corresponding to geometrical features of the polygon:
vertices, edges of the boundary, and interior diagonals. More precisely, I = V ∪E∪
D, a disjoint union, where

V := {{a, a} | a ∈ {1, . . . , n}} ;
E := {{a, a+ 1} | a ∈ {1, . . . , n}} ;
D := I \ (V ∪E) .

In the definition of E above (and in general for indices throughout the paper), values
are interpreted modulo n, i.e. {n, n + 1}, {n, 1}, and {0, 1} all correspond to the
edge between vertex 1 and vertex n. To simplify notation, we will omit the braces
and commas when referring to elements of the index set I. For instance, instead
of μ{a,b}, we write just μab. We emphasize that ab ∈ I refers to an unordered and
possibly non-distinct pair of vertices. Occasionally we will also use the abbreviated
notation

vab :=
va + vb

2
,

so that vaa is just a different expression for va. Under these conventions, the
precision properties from (2.2) can be rewritten as follows.

Q1. Constant precision:
∑
aa∈V

μaa +
∑

ab∈E∪D

2μab = 1.

Q2. Linear precision:
∑
aa∈V

vaaμaa +
∑

ab∈E∪D

2vabμab = x.

Q3. Quadratic precision:
∑
aa∈V

vav
T
a μaa +

∑
ab∈E∪D

(vav
T
b + vbv

T
a )μab = xxT .

3. Reducing quadratic elements to serendipity elements

We now seek to reduce the set of pairwise product functions {μab} to a basis
{ξij} for a serendipity quadratic finite element space. Our desired basis must

(i) span all quadratic polynomials of two variables on Ω,
(ii) be exactly the space of quadratic polynomials (of one variable) when re-

stricted to edges of Ω, and
(iii) contain only 2n basis functions.

The intuition for how to achieve this is seen from the number of distinct pairwise
products:

|{μab}| = |I| = |V |+ |E|+ |D| = n+ n+
n(n− 3)

2
= n+

(
n

2

)
.
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2698 ALEXANDER RAND, ANDREW GILLETTE, AND CHANDRAJIT BAJAJ

On ∂Ω, functions with indices in V vanish on all but two adjacent edges, functions
with indices in E vanish on all but one edge, and functions with indices in D vanish
on all edges. Since Q1-Q3 hold on all of Ω, including ∂Ω, the set {μab : ab ∈
V ∪E} satisfies (ii) and (iii), but not necessarily (i). Thus, our goal is to add linear
combinations of functions with indices in D to those with indices in V or E such
that (i) is ensured.

We formalize this goal as a linear algebra problem: find a matrix A for the
equation

(3.1) [ξij ] := A[μab]

such that [ξij ] satisfies the following conditions analogous to Q1-Q3:

Qξ1. Constant precision:
∑
ii∈V

ξii +
∑

i(i+1)∈E

2ξi(i+1) = 1.

Qξ2. Linear precision:
∑
ii∈V

viiξii +
∑

i(i+1)∈E

2vi(i+1)ξi(i+1) = x.

Qξ3. Quadratic precision:∑
ii∈V

viv
T
i ξii +

∑
i(i+1)∈E

(viv
T
i+1 + vi+1v

T
i )ξi(i+1) = xxT .

Since (3.1) is a linear relationship, we are still able to restrict our analysis to a
reference set of unit diameter polygons (recall Figure 3). Specifically, if matrix A

yields a “reference” basis T [ξij ] = AT [μab] satisfying Qξ1-Qξ3, then the “physical”
basis [ξij ] = A[μab] also satisfies Qξ1-Qξ3.

To specify A in (3.1), we will use the specific basis orderings

[ξij ] := [ ξ11, ξ22, . . . , ξnn︸ ︷︷ ︸
indices in V

, ξ12, ξ23, . . . , ξ(n−1)n, ξn(n+1)︸ ︷︷ ︸
indices in E

],(3.2)

[μab] := [ μ11, μ22, . . . , μnn︸ ︷︷ ︸
indices in V

, μ12, μ23, . . . , μ(n−1)n, μn(n+1)︸ ︷︷ ︸
indices in E

,(3.3)

μ13, . . . , (lexicographical), . . . , μ(n−2)n︸ ︷︷ ︸
indices in D

].

The entries of A are denoted cijab following the orderings given in (3.2)-(3.3) so that

(3.4) A :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1111 · · · c11ab · · · c11(n−2)n

...
. . .

...
. . .

...

cij11 · · · cijab · · · cij(n−2)n

...
. . .

...
. . .

...

c
n(n+1)
11 · · · c

n(n+1)
ab · · · c

n(n+1)
(n−2)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

A sufficient set of constraints on the coefficients of A to ensure Qξ1-Qξ3 is given by
the following lemma.

Lemma 3.1. The constraints Qc1-Qc3 listed below imply Qξ1-Qξ3, respectively;
that is, Qc1 ⇒ Qξ1, Qc2 ⇒ Qξ2, and Qc3 ⇒ Qξ3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS 2699

Qc1.
∑
ii∈V

ciiaa +
∑

i(i+1)∈E

2ci(i+1)
aa = 1 ∀aa ∈ V , and

∑
ii∈V

ciiab +
∑

i(i+1)∈E

2c
i(i+1)
ab = 2, ∀ab ∈ E ∪D.

Qc2.
∑
ii∈V

ciiaavii +
∑

i(i+1)∈E

2ci(i+1)
aa vi(i+1) = vaa ∀aa ∈ V , and

∑
ii∈V

ciiabvii +
∑

i(i+1)∈E

2c
i(i+1)
ab vi(i+1) = 2vab, ∀ab ∈ E ∪D.

Qc3.
∑
ii∈V

ciiaaviv
T
i +

∑
i(i+1)∈E

ci(i+1)
aa (viv

T
i+1 + vi+1v

T
i ) = vav

T
a ∀a ∈ V , and

∑
ii∈V

ciiabviv
T
i +

∑
i(i+1)∈E

c
i(i+1)
ab (viv

T
i+1+vi+1v

T
i ) = vav

T
b +vbv

T
a , ∀ab ∈ E ∪D.

Proof. Suppose Qc1 holds. Substituting the expressions from Qc1 into the coeffi-
cients of Q1 (from the end of Section 2), we get

∑
aa∈V

⎛
⎝∑

ii∈V

ciiaa +
∑

i(i+1)∈E

2ci(i+1)
aa

⎞
⎠μaa

+
∑

ab∈E∪D

⎛
⎝∑

ii∈V

ciiab +
∑

i(i+1)∈E

2c
i(i+1)
ab

⎞
⎠μab = 1.

Regrouping this summation over ij indices instead of ab indices, we have

(3.5)
∑
ii∈V

(∑
ab∈I

ciiabμab

)
+

∑
i(i+1)∈E

2

(∑
ab∈I

c
i(i+1)
ab μab

)
= 1.

Since (3.1) defines ξij =
∑
ab∈I

cijabμab, (3.5) is exactly the statement of Qξ1. The

other two cases follow by the same technique of regrouping summations. �

We now give some remarks about our approach to finding coefficients satisfying
Qc1-Qc3. Observe that the first equation in each of Qc1-Qc3 is satisfied by

(3.6) ciiaa := δia and ci(i+1)
aa := 0.

Further, if ab = a(a + 1) ∈ E, the second equation in each of Qc1-Qc3 is satisfied
by

(3.7) ciia(a+1) := 0 and c
i(i+1)
a(a+1) := δia.

The choices in (3.6) and (3.7) give A the simple structure

(3.8) A :=
[
I A

′ ]
,

where I is the 2n × 2n identity matrix. Note that this corresponds exactly to our
intuitive approach of setting each ξij function to be the corresponding μij function
plus a linear combination of μab functions with ab ∈ D. Also, with this selection,
we can verify that many of the conditions which are part of Qc1, Qc2 and Qc3 hold.
Specifically, whenever ab ∈ V ∪ E, the corresponding conditions hold, as we prove
in the following lemma.
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Figure 4. When constructing the matrix A, only six non-zero el-
ements are used in each column corresponding to an interior diag-
onal of the pairwise product basis. In the serendipity basis, the in-
terior diagonal function μab only contributes to six basis functions
as shown, corresponding to the vertices of the diagonal’s endpoints
and the midpoints of adjacent boundary edges.

Lemma 3.2. The first 2n columns of the matrix A given by (3.8), i.e., the identity
portion, ensure that Qc1, Qc2 and Qc3 hold for ab ∈ V ∪ E.

Proof. This lemma follows from direct substitution. In each case, there is only one

non-zero element caaaa or c
a(a+1)
a(a+1) on the right side of the equation from Qc1, Qc2 or

Qc3, and substituting 1 for that coefficient gives the desired equality. �

It remains to define A
′, i.e. those coefficients cijab with ab ∈ D and verify the cor-

responding equations in Qc1, Qc2, and Qc3. For each column of A′, Qc1, Qc2, and

Qc3 yield a system of six scalar equations for the 2n variables {cijab}ij∈V ∪E . Since
we have many more variables than equations, there remains significant flexibility
in the construction of a solution. In the upcoming sections, we will present such a
solution where all but six of the coefficients in each column of A′ are set to zero.
The non-zero coefficients are chosen to be c

a(a−1)
ab , caaab , c

a(a+1)
ab , c

b(b−1)
ab , cbbab, and

c
b(b+1)
ab , as these have a natural correspondence to the geometry of the polygon and
the edge ab; see Figure 4.

We will show that the system of equations Qc1-Qc3 with this selection of non-zero
coefficients for A′ has an explicitly constructible solution. The solution is presented
for special classes of polygons in Section 4 and for generic convex polygons in
Section 5. In each case, we prove a uniform bound on the size of the coefficients of
A, a sufficient result to control ||ξij ||H1(Ω), as the following lemma shows.

Lemma 3.3. Let Ω be a convex polygon satisfying G1, G2, and G3, and let λi

denote a set of barycentric coordinates satisfying the result of Theorem 2.3 (e.g.
λTri, λHar, λWach, λSibs, or λMVal). Suppose there exists M > 1 such that for all

entries of A′, |cijab| < M . Then the functions ξij are all bounded in H1, i.e. there
exists a constant B > 0 such that

(3.9) ||ξij ||H1(Ω) ≤ B.
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Proof. Since ξij is defined by (3.1), Corollary 2.5 implies that there exists C > 0
such that

||ξij ||H1(Ω) ≤ ||A||max
ab

||μab||H1(Ω) < C||A||.

Since the space of linear transformations from R
n(n+1)/2 to R2n is finite-dimensional,

all norms on A are equivalent. Thus, without loss of generality, we interpret ||A||
as the maximum absolute row sum norm, i.e.

(3.10) ||A|| := max
ij

∑
ab

|cijab|.

By the structure of A from (3.8) and the hypothesis, we have

||A|| ≤ n(n+ 1)

2
M.

�

4. Special cases of the serendipity reduction

Before showing that Qc1-Qc3 can be satisfied in a general setting, we study some
simpler special cases in which symmetry reduces the number of equations that must
be satisfied simultaneously.

4.1. Unit square. We begin with the case where serendipity elements were first
examined, namely over meshes of squares. Strang and Fix [31] gave one of the
first discussions of the serendipity element; in this paper we will use the modern
notation introduced by Arnold and Awanou [3]. Here, the quadratic serendipity
space on the unit square, denoted S2(I

2), is defined as the span of eight monomials:

(4.1) S2(I
2) := span

{
1, x, y, x2, xy, y2, x2y, xy2

}
.

We will now show how our construction process recovers the same space of mono-
mials. Denote vertices and midpoints on [0, 1]2 by

v1 = (0, 0) v2 = (1, 0) v3 = (1, 1) v4 = (0, 1)

(4.2) v12 = (1/2, 0) v23 = (1, 1/2) v34 = (1/2, 1) v14 = (0, 1/2)
v13 = v24 = (1/2, 1/2).

The standard bilinear basis for the square is

λ1 = (1− x)(1− y) λ2 = x(1− y)

λ4 = (1− x)y λ3 = xy.

Since the λi have vanishing second derivatives and satisfy the definition of barycen-
tric coordinates, they are in fact the harmonic coordinates λHar in this special case.
Pairwise products give us the following 10 (not linearly independent) functions:

μ11 = (1− x)2(1− y)2 μ12 = (1− x)x(1− y)2

μ22 = x2(1− y)2 μ23 = x2(1− y)y

μ33 = x2y2 μ34 = (1− x)xy2

μ44 = (1− x)2y2 μ14 = (1− x)2(1− y)y

μ13 = (1− x)x(1− y)y μ24 = (1− x)x(1− y)y.

For the special geometry of the square, μ13 = μ24, but this is not true for general
quadrilaterals as we see in Section 4.3. The serendipity construction eliminates the
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functions μ13 and μ24 to give an 8-dimensional space. The basis reduction via the
A matrix is given by

(4.3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ11
ξ22
ξ33
ξ44
ξ12
ξ23
ξ34
ξ14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 0 −1
0 0 0 0 1 0 0 0 1/2 1/2
0 0 0 0 0 1 0 0 1/2 1/2
0 0 0 0 0 0 1 0 1/2 1/2
0 0 0 0 0 0 0 1 1/2 1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ11

μ22

μ33

μ44

μ12

μ23

μ34

μ14

μ13

μ24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It can be confirmed directly that (4.3) follows from the definitions of A given in
the increasingly generic settings examined in Section 4.2, Section 4.3 and Section 5.
The resulting functions are

ξ11 = (1− x)(1− y)(1− x− y) ξ12 = (1− x)x(1− y)(4.4)

ξ22 = x(1− y)(x− y) ξ23 = x(1− y)y

ξ33 = xy(−1 + x+ y) ξ34 = (1− x)xy

ξ44 = (1− x)y(y − x) ξ14 = (1− x)(1− y)y.

Theorem 4.1. For the unit square, the basis functions {ξij} defined in (4.4) satisfy
Qξ1-Qξ3.

Proof. A simple proof is to observe that the coefficients of the matrix in (4.3) satisfy
Qc1-Qc3 and then apply Lemma 3.1. To illuminate the construction in this special
case of common interest, we state some explicit calculations. The constant precision
condition Qξ1 is verified by the calculation

ξ11 + ξ22 + ξ33 + ξ44 + 2ξ12 + 2ξ23 + 2ξ34 + 2ξ14 = 1.

The x component of the linear precision condition Qξ2 is verified by the calculation

(v1)xξ11 + (v2)xξ22 + (v3)xξ33 + (v4)xξ44

+2(v12)xξ12 + 2(v23)xξ23 + 2(v34)xξ34 + 2(v14)xξ14

= ξ22 + ξ33 + 2 · 1
2
ξ12 + 2 · 1ξ23 + 2 · 1

2
ξ34

= x.

The verification for the y component is similar. The xy component of the quadratic
precision condition Qξ3 is verified by

(v1)x(v1)yξ11 + (v2)x(v2)yξ22 + (v3)x(v3)yξ33 + (v4)x(v4)yξ44

+ [(v1)x(v2)y + (v2)x(v1)y] ξ12 + [(v2)x(v3)y + (v3)x(v2)y] ξ23

+ [(v3)x(v4)y + (v4)x(v3)y] ξ34 + [(v4)x(v1)y + (v1)x(v4)y] ξ14

= ξ33 + ξ23 + ξ34 = xy.

The monomials x2 and y2 can be similarly expressed as a linear combination of the
ξij , via the formula given in Qξ3. �
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Figure 5. Notation for the construction of a regular polygon.

Corollary 4.2. The span of the ξij functions defined by (4.4) is the standard
serendipity space, i.e.

span
{
ξii, ξi(i+1)

}
= S2(I

2).

Proof. Observe that x2y = ξ23 + ξ33 and xy2 = ξ33 + ξ34. By the definition of
S2(I

2) in (4.1) and the theorem, span
{
ξii, ξi(i+1)

}
⊃ S2(I

2). Since both spaces are
dimension eight, they are identical. �

4.2. Regular polygons. We now generalize our construction to any regular poly-
gon with n vertices. Without loss of generality, this configuration can be described
by two parameters 0 < σ ≤ θ ≤ π/2 as shown in Figure 5. Note that the n vertices
of the polygon are located at angles of the form kσ where k = 0, 1, . . . , n− 1.

For two generic non-adjacent vertices va and vb, the coordinates of the six rele-
vant vertices (recalling Figure 4) are:

va =

[
cos θ
sin θ

]
; va−1 =

[
cos(θ − σ)
sin(θ − σ)

]
; va+1 =

[
cos(θ + σ)
sin(θ + σ)

]
;

vb =

[
cos θ
− sin θ

]
; vb−1 =

[
cos(θ + σ)
− sin(θ + σ)

]
; vb+1 =

[
cos(θ − σ)
− sin(θ − σ)

]
.

We seek to establish the existence of suitable constants caaab , c
a,a+1
ab , ca−1,a

ab , cbbab,

cb−1,b
ab , cb,b+1

ab which preserve quadratic precision and to investigate the geomet-
ric conditions under which these constants become large. The symmetry of this

configuration suggests that caaab = cbbab, c
a−1,a
ab = cb,b+1

ab , and ca,a+1
ab = cb−1,b

ab are rea-
sonable requirements. For simplicity we will denote these constants by c0 := caaab ,

c− := ca−1,a
ab , and c+ := ca,a+1

ab .
Thus equation Qc1 (which contains only six non-zero elements) reduces to

2c0 + 4c− + 4c+ = 2.(4.5)

Qc2 involves two equations, one of which is trivially satisfied in our symmetric
configuration. Thus, the only restriction to maintain is

2 cos θc0 + 2 [cos θ + cos(θ − σ)] c− + 2 [cos θ + cos(θ + σ)] c+ = 2 cos θ.(4.6)
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Qc3 gives three more requirements, one of which is again trivially satisfied. This
gives two remaining restrictions:

2 cos2 θc0 + 4 cos θ cos(θ − σ)c− + 4 cos θ cos(θ + σ)c+ = 2 cos2 θ;(4.7)

2 sin2 θc0 + 4 sin θ sin(θ − σ)c− + 4 sin θ sin(θ + σ)c+ = −2 sin2 θ.(4.8)

Now we have four equations (4.5)-(4.8) and three unknowns c0, c− and c+. For-
tunately, equation (4.6) is a simple linear combination of (4.5) and(4.7); specifically
(4.6) is cos θ

2 times (4.5) plus 1
2 cos θ times (4.7). With a little algebra, we can produce

the system

(4.9)

⎡
⎣ 1 2 2

1 2(cosσ + sinσ tan θ) 2(cosσ − sin σ tan θ)
1 2(cosσ − sin σ cot θ) 2(cosσ + sin σ cot θ)

⎤
⎦
⎡
⎣ c0

c−
c+

⎤
⎦ =

⎡
⎣ 1

1
−1

⎤
⎦ .

The solution of this system can be computed as

c0 =
(−1 + cosσ) cot θ + (1 + cosσ) tan θ

(−1 + cosσ)(cot θ + tan θ)
;

c− =
cosσ − sin σ tan θ − 1

2 (tan θ + cot θ) sin σ (cosσ − 1)
; c+ =

1− cosσ − sinσ tan θ

2 (tan θ + cot θ) sinσ (cosσ − 1)
.

Although tan θ (and thus the solution above) is not defined for θ = π/2, the
solution in this boundary case can be defined by the limiting value which always
exists. We can now prove the following.

Theorem 4.3. For any regular polygon, the basis functions {ξij} constructed using

the coefficients caaab = cbbab = c0, c
a−1,a
ab = cb,b+1

ab = c−, c
a,a+1
ab = cb−1,b

ab = c+ satisfy
Qξ1-Qξ3.

Proof. The construction above ensures that the solution satisfies Qc1, Qc2, and
Qc3. �

The serendipity element for regular polygons can be used for meshes consist-
ing of only one regular polygon or a finite number of regular polygons. The for-
mer occurs only in meshes of triangles, squares and hexagons, as these are the
only regular polygons that can tile the plane. On the other hand, many tilings
consisting of several regular polygons can be constructed using multiple regular
polygons. Examples include the snub square tiling (octagons and squares), the
truncated hexagonal tiling (dodecahedra and triangles), the rhombitrihexagonal
tiling (hexagons, squares, and triangles), and the truncated trihexagonal tiling (do-
decagons, hexagons, and squares); see e.g. [6]. The construction process outlined
above opens up the possibility of finite element methods applied over these types
of mixed-geometry meshes, a mostly unexplored field.

4.3. Generic quadrilaterals. Fix a convex quadrilateral Ω with vertices v1, v2,
v3, and v4, ordered counterclockwise. We will describe how to set the coefficients
of the submatrix A

′ in (3.8). It suffices to describe how to set the coefficients in

the ‘13’-column of the matrix, i.e., those of the form cij13. The ‘24’-column can be
filled using the same construction after permuting the indices. Thus, without loss
of generality, suppose that v1 := (−�, 0) and v3 := (�, 0) so that v2 is below the
x-axis and v4 is above the x-axis, as shown in Figure 6. We have eight coefficients
to set

c1113, c
22
13, c

33
13, c

44
13, c

12
13, c

23
13, c

34
13, and c1413.
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Figure 6. A generic convex quadrilateral, rotated so that one of
its diagonals lies on the x-axis. Geometrically, c1213 and c3413 are
selected to be coefficients of the convex combination of v2 and v4

that lies on the x-axis.

Using a subscript x or y to denote the corresponding component of a vertex, define
the coefficients as follows:

c2213 := 0 c4413 := 0(4.10)

c1213 :=
(v4)y

(v4)y − (v2)y
c3413 :=

(v2)y
(v2)y − (v4)y

(4.11)

c2313 := c1213 c1413 := c3413(4.12)

c1113 :=
c1213(v2)x + c3413(v4)x

�
− 1 c3313 := −c1213(v2)x + c3413(v4)x

�
− 1.(4.13)

Note that by following the strategy shown in Figure 4, there are only six non-zero
entries. For ease of notation in the rest of this section, we define the quantity

d :=
c1213(v2)x + c3413(v4)x

�
.

First we assert that the resulting basis does span all quadratic polynomials.

Theorem 4.4. For any quadrilateral, the basis functions {ξij} constructed using
the coefficients given in (4.10)-(4.13) satisfy Qξ1-Qξ3.

Proof. Considering Lemmas 3.1 and 3.2, we must only verify Qc1-Qc3 in the cases
when ab ∈ D = {13, 24}. This will be verified directly by substituting (4.10)-(4.13)
into the constraints Qc1-Qc3 in the case ab = 13. As noted before, the ab = 24 case
is identical, requiring only a permutation of indices. First note that

(4.14) c1113 + c3313 = −2 and c1113 − c3313 = 2d.

For Qc1, the sum reduces to

c1113 + c3313 + 4(c1213 + c3413) = −2 + 4(1) = 2,

as required. For Qc2, the x-coordinate equation reduces to

�(c3313 − c1113) + 2d� = 0

by (4.14), which is the desired inequality since we fixed (without loss of generality)
vab = (0, 0). The y-coordinate equation reduces to 2(c1213(v2)y + c3413(v4)y) = 0,
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Figure 7. A generic convex polygon, rotated so that va = (−�, 0)
and vb = (�, 0). The x-intercept of the line between va−1 and va+1

is defined to be −da� and the x-intercept of the line between vb−1

and vb+1 is defined to be db�.

which holds by (4.11). Finally, a bit of algebra reduces the matrix equality of Qc3
to only the equality �2(c1113+c3313) = −2�2 of its first entry (all other entries are zero),
which holds by (4.14). �

Theorem 4.5. Over all convex quadrilaterals, ||A|| is uniformly bounded.

Proof. By Lemma 3.3, it suffices to bound |cij13| uniformly. First observe that the
convex combination of the vertices v2 and v4 using coefficients c1213 and c3413 produces
a point lying on the x-axis, i.e.,

1 =c1213 + c3413 and(4.15)

0 =c1213(v2)y + c3413(v4)y.(4.16)

Since (v2)y > 0 and (v4)y < 0, (4.12) implies that c1213, c
34
13 ∈ (0, 1). By (4.12), it

also follows that c2313, c
14
13 ∈ (0, 1).

For c1113 and c3313, note that the quantity d� is the x-intercept of the line segment
connecting v2 and v4. Thus d� ∈ [−�, �] by convexity. So d ∈ [−1, 1], and thus
(4.13) implies |c1113| = |d− 1| ≤ 2 and |c3313| = | − d− 1| ≤ 2. �

5. Proof of the serendipity reduction on generic convex polygons

We now define the sub-matrix A
′ from (3.8) in the case of a generic polygon.

Pick a column of A′, i.e., fix ab ∈ D. The coefficients cijab are constrained by a
total of six equations Qc1, Qc2, and Qc3. As before (recall Figure 4), six non-zero
coefficients will be selected in each column to satisfy these constraints. Specifically,

(5.1) ciiab := 0, for i 	∈ {a, b} and c
i(i+1)
ab = 0, for i 	∈ {a− 1, a, b− 1, b},

leaving only the following six coefficients to be determined:

caaab , c
bb
ab, c

(a−1)a
ab , c

a(a+1)
ab , c

(b−1)b
ab , and c

b(b+1)
ab .
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For the remainder of this section, we will omit the subscript ab to ease the notation.
Writing Qc1-Qc3 for this fixed ab pair, we have six equations with six unknowns:

caa + cbb + 2c(a−1)a + 2ca(a+1) + 2c(b−1)b + 2cb(b+1) = 2;

caavaa + 2c(a−1)av(a−1)a + 2ca(a+1)va(a+1)

+ cbbvbb + 2c(b−1)bv(b−1)b + 2cb(b+1)vb(b+1) = 2vab;

caavav
T
a + c(a−1)a(va−1v

T
a + vav

T
a−1) + ca(a+1)(vav

T
a+1 + va+1v

T
a )

+ cbbvbv
T
b + c(b−1)b(vb−1v

T
b + vbv

T
b−1)

+ cb(b+1)(vbv
T
b+1 + vb+1v

T
b ) = vav

T
b + vbv

T
a .

Assume without loss of generality that va = (−�, 0) and vb = (�, 0) with � < 1/2
(since Ω has diameter 1). We introduce the terms da and db defined by

da :=
(va−1)x(va+1)y − (va+1)x(va−1)y

(va−1)y − (va+1)y
· 1
�

and(5.2)

db :=
(vb+1)x(vb−1)y − (vb−1)x(vb+1)y

(vb−1)y − (vb+1)y
· 1
�
.(5.3)

These terms have a concrete geometrical interpretation as shown in Figure 7: −da�
is the x-intercept of the line between va−1 and va+1, while db� is the x-intercept
of the line between vb−1 and vb+1. Thus, by the convexity assumption, da, db ∈
[−1, 1]. Additionally, −da ≤ db with equality only in the case of a quadrilateral
which was dealt with previously. For ease of notation and subsequent explanation,
we also define

(5.4) s :=
2

2− (da + db)
.

First we choose c(a−1)a and ca(a+1) as the solution to the following system of equa-
tions:

c(a−1)a + ca(a+1) = s;(5.5)

c(a−1)ava−1 + ca(a+1)va+1 = sdava.(5.6)

There are a total of three equations since (5.6) equates vectors, but it can be verified
directly that this system of equations is only rank two. Moreover, any two of the
equations from (5.5) and (5.6) suffice to give the same unique solution for c(a−1)a

and ca(a+1).
Similarly, we select c(b−1)b and cb(b−1) as the solution to the system

c(b−1)b + cb(b+1) = s;(5.7)

c(b−1)bvb−1 + cb(b+1)vb+1 = sdbvb.(5.8)

Finally, we assign caa and cbb by

caa =
−2− 2da

2− (da + db)
and(5.9)

cbb =
−2− 2db

2− (da + db)
,(5.10)

and claim that this set of coefficients leads to a basis with quadratic precision.
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Theorem 5.1. For any convex polygon, the basis functions {ξij} constructed using
the coefficients defined by (5.5)-(5.10) satisfy Qξ1-Qξ3.

Proof. Based on Lemmas 3.1 and 3.2, it only remains to verify that Qc1, Qc2, and
Qc3 hold when ab ∈ D. Observe that caa and cbb satisfy the following equations:

caa + cbb + 4s = 2;(5.11)

caa − cbb + s(da − db) = 0;(5.12)

caa + cbb + 2s(da + db) = −2.(5.13)

First, note that Qc1 follows immediately from (5.5), (5.7) and (5.11).
The linear precision conditions (Qc2) are just a matter of algebra. Equations

(5.5)-(5.8) yield

caavaa+cbbvbb+2c(a−1)av(a−1)a+2ca(a+1)va(a+1)+2c(b−1)bv(b−1)b+2cb(b+1)vb(b+1)

= (caa + c(a−1)a + ca(a+1))va + (cbb + c(b−1)b + cb(b+1))vb

+ c(a−1)ava−1 + ca(a+1)va+1 + c(b−1)bvb−1 + cb(b+1)vb+1

= (caa + c(a−1)a + ca(a+1))va + (cbb + c(b−1)b + cb(b+1))vb + sdava + sdbvb

= (caa + s+ sda)va + (cbb + s+ sdb)vb.

Substituting the fixed coordinates of va = (−�, 0) and vb = (�, 0) reduces this
expression to the vector[

(−caa − s− sda + cbb + s+ sdb)�
0

]
.

Finally, we address Qc3. Factoring the left side gives

caavav
T
a + cbbvbv

T
b + c(a−1)a(va−1v

T
a + vav

T
a−1) + · · ·+ cb(b+1)(vbv

T
b+1 + vb+1v

T
b )

= caavav
T
a + cbbvbv

T
b

+ (c(a−1)ava−1 + ca(a+1)va+1)v
T
a + va(c

(a−1)avT
a−1 + ca(a+1)vT

a+1)

+ (c(b−1)bvb−1 + cb(b+1)vb+1)v
T
b + vb(c

(b−1)bvT
b−1 + cb(b+1)vT

b+1)

= caavav
T
a + cbbvbv

T
b + sdavav

T
a + sdbvbv

T
b + va(sdav

T
a ) + vb(sdbv

T
b )

= (caa + 2sda)vav
T
a + (cbb + 2sdb)vbv

T
b .

Again substituting the coordinates of va and vb, we obtain the matrix[(
caa + 2sda + cbb + 2sdb

)
�2 0

0 0

]
.

The right side of Qc3 is

vav
T
b + vbv

T
a =

[
−2�2 0
0 0

]
.

Hence the only equation that must be satisfied is exactly (5.13). �

Remark 5.2. We note that s was specifically chosen so that (5.11)-(5.13) would
hold. The case s = 1 happens when da = −db, i.e. only for the quadrilateral.
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Figure 8. Notation used in proof of Theorem 5.3.

Theorem 5.3. Given a convex polygon satisfying G1, G2 and G3, ||A|| is uni-
formly bounded.

Proof. By Lemma 3.3, it suffices to show a uniform bound on the six coefficients
defined by equations (5.5)-(5.10). First we prove a uniform bound on da and db
given in G1-G3.

We fix some notation as shown in Figure 8. Let C(va, d∗) be the circle of radius
d∗ (from G2) around va. Let p− := (p−x , p

−
y ) and p+ := (p+x , p

+
y ) be the points on

C(va, d∗) where the line segments to va from va−1 and va+1, respectively, intersect.
The chord on C(va, d∗) between p− and p+ intersects the x-axis at xp := (xp, 0).
By convexity, (va)x < xp.

To bound xp − (va)x below, note that the triangle vap
−p+ with angle βa at va

is isosceles. Thus, the triangle vap
−xp has angle ∠vap

−xp = (π−βa)/2, as shown
on the right of Figure 8. The distance to the nearest point on the line segment

between p− and p+ is d∗ sin
(

π−βa

2

)
. Based on G3, ε∗ > 0 is defined to be

(5.14) xp − (va)x ≥ d∗ sin

(
π − βa

2

)
> d∗ sin

(
π − β∗

2

)
=: ε∗ > 0.

Since −da� < 1 is the x-intercept of the line between va−1 and va+1, we have
xp ≤ −da�. Then we rewrite (va)x = −� in the geometrically suggestive form

(xp − (va)x) + (−da�− xp) + (0 + da�) = �.

Since −da� − xp ≥ 0, we have xp − (va)x + da� ≤ �. Using (5.14), this becomes
da� < �− ε∗. Recall from Figure 7 and previous discussion that da, db ∈ [−1, 1] and
−da ≤ db. By symmetry, db� < �− ε∗, and hence da + db < 2�− 2ε∗ < 1− 2ε∗.

We use the definition of caa from (5.9), the derived bounds on da and db, and
the fact that � ≤ 1/2 to conclude that

|caa| < |2 + 2da|
1 + 2ε∗

<
2 + 2(1− (ε∗/�))

1 + 2ε∗
≤ 4− 4ε∗

1 + 2ε∗
< 4.

Similarly, |cbb| < 4−4ε∗
1+2ε∗

< 4. For the remaining coefficients, observe that the

definition of s in (5.4) implies that 0 < s < 2/(1 + 2ε∗). Equation (5.5) and
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Figure 9. A comparison of the product barycentric basis (left)
with the standard Lagrange basis (right) for quadratic polynomials
in one dimension.

the y-component of equation (5.6) ensure that c(a−1)a/s and ca(a+1)/s are the
coefficients of a convex combination of va−1 and va+1. Thus c(a−1)a, c(a+1)a ∈
(0, s) and s serves as an upper bound on the norms of each coefficient. Likewise,
|c(b−1)b|, |cb(b+1)| < s. Therefore,

max

(
4− 4ε∗
1 + 2ε∗

,
2

1 + 2ε∗
, 1

)

is a uniform bound on all the coefficients of A. �

6. Converting serendipity elements to Lagrange-like elements

The 2n basis functions constructed thus far naturally correspond to vertices and
edges of the polygon, but the functions associated to midpoints are not Lagrange-
like. This is due to the fact that functions of the form ξi(i+1) may not evaluate to
1 at vi(i+1) or ξii may not evaluate to 0 at vi(i+1), even though the set of {ξij}
satisfies the partition of unity property Qξ1. To fix this, we apply a simple bounded
linear transformation given by the matrix B defined below.

To motivate our approach, we first consider a simpler setting: polynomial bases
over the unit segment [0, 1] ⊂ R. The barycentric functions on this domain are
λ0(x) = 1−x and λ1(x) = x. Taking pairwise products, we get the quadratic basis

μ00(x) := (λ0(x))
2
= (1 − x)2, μ01(x) := λ0(x)λ1(x) = (1 − x)x, and μ11(x) :=

(λ1(x))
2 = x2, shown on the left of Figure 9. This basis is not Lagrange-like since

μ01(1/2) 	= 1 and μ00(1/2), μ11(1/2) 	= 0. The quadratic Lagrange basis is given by
ψ00(x) := 2(1− x)

(
1
2 − x

)
, ψ01(x) := 4(1− x)x, and ψ11(x) := 2

(
x− 1

2

)
x, shown

on the right of Figure 9. These two bases are related by the linear transformation
B1D:

[ψij ] =

⎡
⎣ψ00

ψ11

ψ01

⎤
⎦ =

⎡
⎣1 0 −1
0 1 −1
0 0 4

⎤
⎦
⎡
⎣μ00

μ11

μ01

⎤
⎦ = B1D[μij ].(6.1)
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This procedure generalizes to the case of converting the 2D serendipity basis
{ξij} to a Lagrange-like basis {ψij}. Define

ψii := ξii − ξi,i+1 − ξi−1,i and ψi,i+1 = 4 ξi,i+1.

Using our conventions for basis ordering and index notation, the transformation
matrix B taking [ξij ] to [ψij ] has the structure

[ψij ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11

ψ22

...
ψnn

ψ12

ψ23

...
ψn1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 · · · −1
1 −1 −1 · · ·

. . .
. . .

. . .

. . .
. . .

. . .

1 −1 −1
4

4

0
. . .

. . .

4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ11
ξ22
...

ξnn
ξ12
ξ23
...

ξn1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B[ξij ].

The following proposition says that the functions {ψij} defined by the above trans-
formation are Lagrange-like.

Proposition 6.1. For all i, j ∈ {1, . . . , n}, ψii(vj) = δji , ψii(vj,j+1) = 0, ψi(i+1)(vj)

= 0, and ψi(i+1)(vj,j+1) = δji .

Proof. We show the last claim first. By the definitions of B and A, we have

ψi(i+1)(vj,j+1) = 4 ξi(i+1)(vj,j+1)

= 4

(
n∑

a=1

ci(i+1)
aa μaa(vj,j+1) +

∑
a<b

c
i(i+1)
ab μab(vj,j+1)

)
.

Since λa is piecewise linear on the boundary of the polygon and λa(vj) = δja (by
B6), we have that λa(vj,j+1) = 1/2 if a ∈ {j, j+1} and zero otherwise. Accordingly,
μaa(vj,j+1) = 1/4 if a ∈ {j, j + 1} and zero otherwise, while μab(vj,j+1) = 1/4 if
{a, b} = {j, j + 1} and zero otherwise. Thus

ψi(i+1)(vj,j+1) = 4

((
c
i(i+1)
jj + c

i(i+1)
(j+1)(j+1)

)
· 1
4
+ c

i(i+1)
j(j+1) ·

1

4

)
= c

i(i+1)
j(j+1) = δij ,

since the identity structure of A as given in (3.8) implies that c
i(i+1)
jj = c

i(i+1)
(j+1)(j+1) =

0 and that c
i(i+1)
j(j+1) = δij .

Next, observe that μab(vj) = λa(vj)λb(vj) = 1 if a = b = j and 0 otherwise.
Hence, any term of the form c∗∗abμab(vj) for a 	= b is necessarily zero. Therefore, by

a similar expansion, ψi(i+1)(vj) = c
i(i+1)
jj = 0, proving the penultimate claim.
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For the first two claims, a similar analysis yields

ψii(vj) = ξii(vj)− ξi(i+1)(vj)− ξ(i−1)i(vj)

= ciijj · 1− c
i(i+1)
jj · 1− c

(i−1)i
jj · 1

= ciijj = δij ,

again by the identity structure of A. Finally, by similar analysis, we have that

ψii(vj,j+1) = ξii(vj,j+1)− ξi(i+1)(vj,j+1)− ξ(i−1)i(vj,j+1)

= (ciijj + cii(j+1)(j+1) + ciij(j+1))
1

4
− ξi(i+1)(vj,j+1)− ξ(i−1)i(vj,j+1)

= (δij + δi(j+1))
1

4
− 1

4
δij −

1

4
δi(j+1) = 0,

completing the proof. �

In closing, note that ||B|| is uniformly bounded since its entries all lie in {−1, 0,
1, 4}.

7. Applications and extensions

Our quadratic serendipity element construction has a number of uses in modern
finite element application contexts. First, the construction for quadrilaterals given
in Section 4.3 allows for quadratic order methods on arbitrary quadrilateral meshes
with only eight basis functions per element instead of the nine used in a bilinear map
of the biquadratic tensor product basis on a square. In particular, we show that
our approach maintains quadratic convergence on a mesh of convex quadrilaterals
known to result in only linear convergence when traditional serendipity elements
are mapped non-affinely [4].

We solve Poisson’s equation on a square domain composed of n2 trapezoidal el-
ements as shown in Figure 10 (left). Boundary conditions are prescribed according
to the solution u(x, y) = sin(x)ey; we use our construction from Section 4.3 starting
with mean value coordinates {λMVal

i }. Mean value coordinates were selected based

||u− uh||L2 ||∇(u− uh)||L2

n error rate error rate

2 2.34e-3 2.22e-2
4 3.03e-4 2.95 6.10e-3 1.87
8 3.87e-5 2.97 1.59e-3 1.94
16 4.88e-6 2.99 4.04e-4 1.97
32 6.13e-7 3.00 1.02e-4 1.99
64 7.67e-8 3.00 2.56e-5 1.99
128 9.59e-9 3.00 6.40e-6 2.00
256 1.20e-9 3.00 1.64e-6 1.96

Figure 10. Trapezoidal meshes (left) fail to produce qua-
dratic convergence with traditional serendipity elements; see [4].
Since our construction begins with affinely-invariant generalized
barycentric functions, the expected quadratic convergence rate can
be recovered (right). The results shown were generated using the
basis {ψij} resulting from the selection of the mean value coordi-
nates as the initial barycentric functions.
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on a few advantages they have over other types: they are easy to compute based
on an explicit formula, and the coordinate gradients do not degrade based on large
interior angles [27]. For this particular example, where no interior angles asymptot-
ically approach 180◦, Wachspress coordinates give very similar results. As shown
in Figure 10 (right), the expected convergence rates from our theoretical analysis
are observed, namely, cubic in the L2-norm and quadratic in the H1-norm.

An additional application of our method is to adaptive finite elements, such as
the one shown in Figure 11. This is possible since the result of Theorem 5.3 still
holds if G3 fails to hold only on a set of consecutive vertices of the polygon. This
weakened condition suffices since consecutive large angles in the polygon do not
cause the coefficients cijab to blow up. For instance, consider the degenerate pentagon
shown in Figure 11 which satisfies this weaker condition but not G3. Examining
the potentially problematic coefficients cij25, observe that the lines through v1, v4

and v1, v3 both intersect the midpoint of the line through v2, v5 (which happens

to be v1). In the computation of the cij25 coefficients, the associated values d2 and
d5 are both zero, and hence s = 1 (recall Figure 7 and formula (5.4)). Since s is
bounded away from ∞, the analysis from the proof of Theorem 5.3 holds as stated
for these coefficients and hence for the entire element. A more detailed analysis of
such large-angle elements is an open question for future study.

Figure 11. Theorem 5.3 can be generalized to allow certain types
of geometries that do not satisfy G3. The degenerate pentagon
(left), widely used in adaptive finite element methods for quadri-
lateral meshes, satisfies G1 and G2, but only satisfies G3 for four
of its vertices. The bounds on the coefficients cijab from Section 5
still hold on this geometry, resulting in the Lagrange-like quadratic
element (right).

Nevertheless, the geometric hypotheses of Theorem 5.3 cannot be relaxed en-
tirely. Arbitrarily large non-consecutive large angles, as well as very short edges,
can cause a blowup in the coefficients used in the construction of A, as shown in
Figure 12. In the left figure, as edges va−1va and vb−1vb approach length zero, da
and db both approach one, meaning s (in the construction of Section 5) approaches

∞. In this case, the coefficients c
(a−1)a
ij and c

(b−1)b
ij grow larger without bound,

thereby violating the result of Theorem 5.3. In the right figure, as the overall shape
approaches a square, da and db again approach one so that s again approaches ∞.

In this case, all the coefficients c
(a−1)a
ij , c

a(a+1)
ij , c

(b−1)b
ij and c

b(b+1)
ij grow without
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Figure 12. The hypotheses of Theorem 5.3 cannot be relaxed
entirely, as demonstrated by these shapes. If G2 does not hold,
arbitrarily small edges can cause a blowup in the coefficients cijab
(left). If G3 does not hold, non-consecutive angles approaching π
can cause a similar blowup.

bound. Nevertheless, if these types of extreme geometries are required, it may be
possible to devise alternative definitions of the cabij coefficients satisfying Qc1-Qc3
with controlled norm estimates since the set of restrictions Qc1-Qc3 does not have
full rank. Note that this flexibility has led to multiple constructions of the tradi-
tional serendipity square [22,24]. Cursory numerical experimentation suggests that
some bounded construction exists, even in the degenerate situation.

The computational cost of our method is an important consideration in applica-
tion contexts. A typical finite element method using our approach would involve the
following steps: (1) selecting λi coordinates and implementing the corresponding
ψij basis functions, (2) defining a quadrature rule for each affine-equivalent class
of shapes appearing in the domain mesh, (3) assembling a matrix L representing
the discrete version of linear operator, and (4) solving a linear system of the form
Lu = f . The quadrature step may incur some computational effort, however, if
only a few shape templates are needed, this is a one-time fixed pre-preprocessing
cost. In the trapezoidal mesh example from Figure 10, for instance, we only needed
one quadrature rule, as all domain shapes were affinity equivalent. Assembling
the matrix L may also be expensive, as the entries involve integrals of products
of gradients of ψij functions. Again, however, this cost is incurred only once per
affine-equivalent domain shape and thus can be reasonable to allow, depending on
the application context.

The computational advantage to our approach comes in the final linear solve.
The size of the matrix L is proportional to the number of edges in the mesh,
matching the size of the corresponding matrix for quadratic Lagrange elements on
triangles or quadratic serendipity elements on squares. If the pairwise products μab

were used instead of the ψij functions, the size of L would be proportional to the
square of the number of edges in the mesh, a substantial difference.

Finally, we note that although this construction is specific to quadratic elements,
the approach seems adaptable, with some effort, to the construction of cubic and
higher order serendipity elements on generic convex polygons. As a larger linear
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system must be satisfied, stating an explicit solution becomes complex. Further re-
search along these lines should probably assert the existence of a uniformly bounded
solution without specifying the construction. In practice, a least squares solver
could be used to construct such a basis numerically.
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