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Abstract. We introduce a new characterization of the NP complexity
class, called Quadratic Span Programs (QSPs), which is a natural exten-
sion of span programs defined by Karchmer and Wigderson. Our main
motivation is the quick construction of succinct, easily verified arguments
for NP statements.

To achieve this goal, QSPs use a new approach to the well-known
technique of arithmetization of Boolean circuits. Our new approach yields
dramatic performance improvements. Using QSPs, we construct a NIZK
argument – in the CRS model – for Circuit-SAT consisting of just 7
group elements. The CRS size and prover computation are quasi-linear,
making our scheme seemingly quite practical, a result supported by our
implementation. Indeed, our NIZK argument attains the shortest proof,
most efficient prover, and most efficient verifier of any known technique.
We also present a variant of QSPs, called Quadratic Arithmetic Programs
(QAPs), that “naturally” compute arithmetic circuits over large fields,
along with succinct NIZK constructions that use QAPs.

Finally, we show how QSPs and QAPs can be used to efficiently and
publicly verify outsourced computations, where a client asks a server to
compute F (x) for a given function F and must verify the result provided
by the server in considerably less time than it would take to compute
F from scratch. The resulting schemes are the most efficient, general-
purpose publicly verifiable computation schemes.
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1 Introduction

Arithmetization of Boolean computations is a well known technique: it maps
a Boolean circuit to a set of polynomial (e.g., quadratic) equations over a
field. The celebrated result IP=PSPACE [35, 41] used arithmetization as a
crucial tool and set the stage for the PCP theorem [2–4, 20], which provided
a new characterization of NP that revolutionized the notion of “proof” – in
particular, it shows that NP statements have probabilistically checkable proofs
(PCPs) that can be verified in time polylogarithmic in the size of a classical
proof.

Cryptographers quickly seized on the potential applicability of PCPs to secure
computation. Kilian [32] showed how to use PCPs to construct interactive argu-
ments (i.e., computationally sound proof systems [14]) for NP that are succinct –
i.e., polylogarithmic in their communication complexity. Micali [36] showed how
to make these arguments non-interactive in the random oracle model. Recent
work [8, 19, 26] (see also [17]) has improved Micali’s construction by removing
the random oracle, which is known to be uninstantiable [15], and replacing it
with an “extractable collision-resistant hash function” (ECRH), whose security
relies on the plausible, but non-falsifiable [37], assumption that for any algorithm
that computes an image of the ECRH, there is an extractor (that watches the
algorithm) that computes a pre-image.1 These recent constructions have been
called succinct non-interactive arguments (SNARGs) of knowledge (SNARKs),
since, under the knowledge assumption, the SNARG permits “knowledge” ex-
traction of the entire hash preimage – i.e., the entire PCP.

PCPs are not the only arithmetization technique for creating SNARKs. Groth
shows how to arithmetize a Boolean circuit so that a proof of its satisfiabil-
ity can be written using only a constant number of group elements [27] (af-
ter a single pre-processing stage to establish a common reference string (CRS)
[9, 10]).

Our work provides a brand new form of arithmetization which we call
Quadratic Span Programs (QSPs), since it is a generalization of the notion of
Span Programs proposed by Karchmer and Wigderson [31]. We show that our
new arithmetization technique yields far more efficient SNARKs than either
PCP-based or Groth-like proofs. Using QSPs, we construct a NIZK argument
in the CRS model for circuit SAT consisting of just 7 group elements. The CRS
size and prover computation are quasi-linear in the circuit size, making our
scheme quite practical, to the point where we have implemented and evaluated
it (see Section 5). A variant of our technique works directly on arithmetic circuits
over large fields, obtaining Quadratic Arithmetic Programs (QAPs) and avoid-
ing the complexity of a Boolean description of an arithmetic computation (see
Section 4).

1 We know that the security of succinct non-interactive arguments cannot be based on
falsifiable assumptions via black box reductions [1, 23]; hence non-falsifiable “knowl-
edge” assumptions seem unavoidable in this context.
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1.1 Quadratic Span Programs

QSPs are a natural extension of span programs (SPs), a linear-algebraic model
of computation introduced by Karchmer and Wigderson [31].2 An SP of size m
over a field F consists of a set V = {v0(x), v1(x), . . . , vm(x)} of polynomials of
degree d− 1, a partition of the indices I = {1, . . . ,m} into two sets Ilabeled and
Ifree, and a further partition of Ilabeled as ∪i∈[n],j∈{0,1}Iij meant to represent n
Boolean inputs. The SP is said to “compute” a function f if the following is true
for all input assignments u ∈ {0, 1}n: the polynomial v0(x) can be expressed as
a linear combination of the polynomials that “belong” to the input assignment
u – namely, the set of polynomials Vu with indices in Iu = Ifree ∪i Ii,ui – iff
f(u) = 1.

Functions with polynomial size SPs are in NC2, since linear algebra is in
NC2. Consequently, it is widely believed that SPs cannot efficiently compute all
functions in P (or verify all NP relations).

We define QSPs somewhat similarly to SPs.

Definition 1 (Quadratic Span Program). A quadratic span program (QSP)
Q over field F contains two sets of polynomials V = {vk(x) : k ∈ {0, . . . ,m}}
andW = {wk(x) : k ∈ {0, . . . ,m}} and a divisor polynomial D(x), all from F [x].
Q also contains a partition of the indices I = {1, . . . ,m} into two sets Ilabeled
and Ifree, and a further partition of Ilabeled as ∪i∈[n],j∈{0,1}Iij.

For input u ∈ {0, 1}n, let Iu = Ifree∪i Ii,ui be the set of indices that “belong”
to input u. Q accepts an input u ∈ {0, 1}n iff there exist tuples (a1, . . . , am) and
(b1, . . . , bm) from Fm, with ak = 0 = bk for all k /∈ Iu:

D(x) divides
(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

bk · wk(x)
)
. (1)

Q “computes” a Boolean function f : {0, 1}n → {0, 1} if it accepts exactly those
inputs u where f(u) = 1. Q has size m and degree deg(D(x)).

QSPs are a natural extension of (linear) SPs. An SP accepts an input u if and
only if the target polynomial can be written as an affine linear combination
of polynomials that “belong” to u. A QSP accepts an input u if and only if
the divisor polynomial divides a product of two affine linear combinations of
polynomials that “belong” to u, where “product” is polynomial multiplication.

Unlike SPs, QSPs can efficiently compute any function in P , and the “canon-
ical QSP” we build has performance parameters that yield faster SNARKs, as
stated in the two theorems below.

Theorem 1. (Informal) For any Boolean circuit C with s gates and any field
F of size at least d = O(s), there is a QSP of size and degree O(s) (with small
constants) over F that computes C.

2 SPs were first defined [31] in terms of vectors {v0,v1, . . . ,vm}, rather than polyno-
mials. The “target” vector v0 must be expressible as a linear combination of the
vectors that “belong” to the input assignment u (as defined above). Our definition
in terms of polynomials is equivalent [22]: just think of each vector as the evaluation
of the corresponding polynomial on a fixed set of points.
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Theorem 2. (Informal) Given a circuit C with s gates, computing the polyno-
mials D(x), V and W of our “canonical” QSP, which computes C, takes O(s)
work (O(s) F operations). Given u ∈ {0, 1}n for which C(u) = 1, computing
suitable tuples (a1, . . . , am), (b1, . . . , bm) ∈ {0, 1}m that satisfy Equation 1 takes
O(s) work. Given (a1, . . . , am), computing v(x) = v0(x) +

∑m
k=1 ak · vk(x) takes

O(s) work. (Similarly for w(x).) Computing the quotient h(x) = v(x)·w(x)/D(x)
takes Õ(s) work.

We obtain such performance by exploiting the sparseness of the polynomials
vk(x)’s and wk(x)’s in our canonical QSP. In particular, they behave similarly
to Lagrange basis polynomials �j(x) =

∏
i�=j(x− ri)/(rj − ri) in that they each

evaluate to 0 at almost all roots of D(x), which is a product of linear terms.
This makes it easy to compute v(x) and w(x) in linear time by representing
them by their evaluation at these roots. Computing h(x) in purely linear, versus
quasi-linear, time remains an open problem.

1.2 From QSPs to SNARKs, NIZKs, and Verifiable Computing

We use QSPs to build SNARKs and NIZKs in the CRS model [9, 10].

SNARKs. Our SNARK for f uses a CRS in which the QSP polynomials (e.g.,
{vk(x)}) are represented by terms gvk(σ) (etc.), where g is a generator of a
bilinear group [12], and σ ∈ F is secret. The CRS size is linear in the circuit
size of f . To oversimplify, to compute a SNARK, the prover uses its satisfying
input to compute tuples (a1, . . . , am) and (b1, . . . , bm), and then uses them and
the CRS to compute gv = gv(σ), gw = gw(σ), gh = gh(σ) for v(x), w(x), h(x) as
defined in Theorem 2. The verifier confirms that e(gv, gw) = e(gh, g

t(σ)), where
e is the bilinear map. (The actual scheme is more complicated – see Section
3.2.) For security, we require a non-falsifiable “knowledge” assumption which, as
noted above, is necessary [1, 23].

NIZK. It is straightforward to randomize our public-verifier SNARK to make it
statistical zero knowledge and obtain a non-interactive zero-knowledge (NIZK)
argument [9, 10]. Details are in Section 3.3.

Verifiable Computation. In the full version [22], we use our QSP-based
SNARK to achieve a very efficient scheme for public verifiable computation [21,
39].

Remark on Efficiency and Adaptivity. In the description above, the CRS
(the QSP polynomials) depend on a particular language or relation. We can
achieve an “adaptive” solution (where first the CRS is fixed, and then the lan-
guage or relation is selected) by applying our QSP construction to the universal
circuit, at the cost of expanding the circuit by a logarithmic factor, yielding
quasi-linear complexity for CRS size and prover computation.
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1.3 Comparisons to Other Work on Succinct Arguments

PCP-based Protocols. Ishai, Kushilevitz and Ostrovsky [30] were perhaps
the first to seriously investigate how to tweak PCP-techniques to yield the best
possible succinct arguments. However in their solution the prover’s computation
(and also the verifier’s computation in a pre-processing step) is quadratic in the
size of the classical proof.

Very recently, Ben-Sasson et al. present a new PCP scheme with quasilinear
complexity for the prover and the CRS [7]. Our direct construction of QSPs
yields better asymptotic performance, even before these PCPs are converted
into SNARKs.

Groth-like Schemes. Groth et al. [28, 29] previously constructed NIZKs over
bilinear groups with various attractive properties, but with size linear in the
circuit. More recently, Groth essentially found a way to compress the proof into
a constant number of group elements [27] (still higher than ours – 42 group
elements versus 7 for ours). Security relies on a non-falsifiable “knowledge of
exponent” assumption, similar to the one we use.

The main drawbacks of Groth’s succinct NIZK are the prover complexity and
the CRS size, which are both quadratic in the circuit size. Lipmaa [33] showed
how to reduce the size of the CRS in Groth’s construction from quadratic to
quasi-linear in the circuit size, but prover complexity remains quadratic.

2 Quadratic Span Programs (QSPs)

Above, we defined Quadratic Span Programs (QSPs) in a manner that is su-
perficially similar to that of span programs (SPs). The crucial difference is that
QSPs can compute any efficiently computable function. We demonstrate this via
an explicit construction of a QSP for any circuit C.3 The construction uses two
components: a gate checker and a wire checker.

2.1 A Gate Checker

While we do not know how to efficiently construct SPs for arbitrary functions
f ∈ P, we can always efficiently construct an SP for a function related to f ,
called the gate checker function for f , which ensures that a set of wire values is
consistent with the gates in a circuit for f .

Definition 2 (Gate Checker Function). Let f : {0, 1}n → {0, 1} be a func-
tion whose Boolean circuit C has s gates. Let N = n+ s – the total number of
wires in C (wires that fan out are considered one wire). Define φ : {0, 1}N →
{0, 1} to be a function that outputs ‘1’ iff the input is a valid assignment of C’s
wires with output wire set to ‘1’. We say that φ is the gate checker function
for f .

3 The full version of the paper [22] gives a formal reduction from circuit SAT to a
QSP satisfiability problem, hence proving that QSP SAT is NP complete.
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An SP for the gate checker function φ does not, however, compute the function
f ; such an SP has labeled (non-free) polynomials even for the interior wires of C,
whereas an SP for f is only permitted to have labeled polynomials for C’s input
wires. If we simply move the polynomials for the interior wires to the “free” set,
then we might introduce additional valid linear combinations that do not satisfy
C; in particular these linear combinations could use polynomials that correspond
to conflicting assignments (both ‘0’ and ‘1’) for some interior wire in C.

What we prove however, is that these conflicting assignments are the only
possible problem we introduce by moving the polynomials for the interior wires
to the “free” set. In other words, if we restrict the linear combination to use
polynomials associated with at most one value per wire, then the SP for φ can
also be used to compute the function f . The following lemma formalizes the
property.

Lemma 1. Let S = ({v0(x), . . . , vm(x)}, Ifree, Ilabeled = ∪i∈[N ],j∈{0,1}Iij) be
an SP that computes the gate checker function φ of f . Then, for all u ∈ {0, 1}n,
the following is true iff f(u) = 1: there exists a tuple (a1, . . . , am) satisfying the
following constraints:

– Target in Span: v0(x) =
∑

k ak · vk(x).
– Correct Inputs: For all k ∈ ∪ni=1Iiui , we have ak = 0.
– No Double Assignments: For all i ∈ {n+1, . . . , N} and all k1 ∈ Ii0 and

k2 ∈ Ii1, at most one of ak1 , ak2 is nonzero.

In particular, if f(u) �= 1, then a linear combination that satisfies the first and
second constraints must violate the third – i.e., must make a “double assignment”
of some wire i ∈ {n+ 1, . . . , N}.
Proof. (Lemma 1) If f(u) = 1, then we can assign the wires of C validly with
the output wire set to 1. Therefore, we can extend u ∈ {0, 1}n to an input
u′ ∈ {0, 1}N that satisfies φ. Since u′ satisfies φ, there is a linear combination
(a1, . . . , am) such that v0(x) =

∑
k ak · vk(x) and ak = 0 for all k ∈ ∪ni=1Iiu′

i
,

thus satisfying the constraints listed in the lemma.
Conversely, suppose that (a1, . . . , am) satisfies the constraints. Then, since S

computes φ, there is an extension u′ ∈ {0, 1}N of u ∈ {0, 1}n such that φ(u′) = 1
and such that u′ “agrees” with the tuple (a1, . . . , am) in the sense that ak = 0
for all k ∈ Iiu′

i
, i ∈ [N ]. Since φ(u′) = 1 where u′ is an extension of u, and since

φ tests the satisfaction of f ’s Boolean circuit, we must have f(u) = 1.

Looking ahead, our construction will use the span program for φ to obtain
efficient proofs about the correct evaluation of f . The second component of
our construction, the wire checker, will efficiently verify that the No Double
Assignments property holds.

2.2 A Wire Checker

To prevent double wire assignments, we introduce some additional polynomials
in the form of a wire checker, defined as follows.4

4 While Definition 3 resembles a QSP, a wire checker is not, on its own, a QSP.
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Definition 3 (Aggregate Wire Checker). Let I = ∪i∈[N ],j∈{0,1}Iij be a
partition of [m]. An aggregate wire checker for I consists of polynomials D(x),
V = {vk(x) : k ∈ I} and W = {wk(x) : k ∈ I} such that

D(x) divides
(∑

k∈I
ak · vk(x)

)
·
(∑

k∈I
bk · wk(x)

)
(2)

if {ak} and {bk} indicate consistent bit assignments of all N bits (i.e., for each
i ∈ [N ], for some bit Bi, ak = bk = 0 for all k ∈ IiB̄i

), but not if {ak} and {bk}
indicate inconsistent bit assignments of any of the N bits in the following sense:
For some i ∈ [N ],

– There exist ka ∈ Ii0 and k′a ∈ Ii1 and kb ∈ Ii0 ∪ Ii1 such that aka �= 0,
ak′

a
�= 0 and bkb

�= 0, or

– There exist ka ∈ Ii0 ∪ Ii1 and kb ∈ Ii0 and k′b ∈ Ii1 such that aka �= 0,
bkb
�= 0 and bk′

b
�= 0.

The size of the wire checker is |I|, and the degree is deg(D(x)).

To construct an aggregate wire checker, we first construct a checker for a single
wire. Let I0 = {1, . . . , L0}, I1 = {L0 + 1, . . . , L0 + L1}, and I = I0 ∪ I1 be the
indices associated with the wire.

Construction of a Wire Checker.

1. Let Lmax = max(L0, L1). For L′ = 3Lmax − 2, select distinct roots R(0) =

{r(0)1 , . . . , r
(0)
L′ } and R(1) = {r(1)1 , . . . , r

(1)
L′ } from F . Set R = R(0) ∪R(1). Set

D(x) =
∏

r∈R(x− r).

2. Interpolate the polynomials in {vk(x)} and {wk(x)} to have degree (L′ +
L0 − 1) if k ∈ I0 and (L′ + L1 − 1) if k ∈ I1, and to satisfy:

(a) For k ∈ I0, vk(r) = 0 for all r ∈ R(0)∪{r(1)1 , . . . , r
(1)
L0
} except vk(r(1)k ) = 1,

and wk(r) = 0 for all r ∈ R(1) ∪ {r(0)1 , . . . , r
(0)
L0
} except wk(r

(0)
k ) = 1.

(b) For k ∈ I1, vk(r) = 0 for all r ∈ R(1)∪{r(0)1 , . . . , r
(0)
L1
} except vk(r(0)k−L0

) =

1, and wk(r) = 0 for all r ∈ R(0) ∪ {r(1)1 , . . . , r
(1)
L1
} except wk(r

(1)
k−L0

) = 1.

Lemma 2. The construction above is a wire checker.

Proof. (Lemma 2) Clearly, D(x) divides the product in Equation 2 – i.e.,
(
∑

k∈I ak · vk(r)) · (
∑

k∈I bk · wk(r)) = 0 for all r ∈ R – if {ak}, {bk} indicate
consistent assignments.

If {ak} indicates a double assignment and {bk} is nonzero, then
∑

k∈I0
ak ·

vk(x) has at most L0 − 1 roots in R(1), since it is nonzero of degree L′ + L0 − 1
and already has R(0) as roots. A similar analysis shows that

∑
k∈I1

ak · vk(x)
has at most L1−1 roots in R(0). Note that

∑
k∈I ak ·vk(x) has exactly the same

roots inR(1) that
∑

k∈I0
ak ·vk(x) does, since the other part of the sum – namely,∑

k∈I1
ak ·vk(x) – has everything in R(1) as a root. Similarly,

∑
k∈I ak ·vk(x) has

exactly the same roots in R(0) that
∑

k∈I1
ak · vk(x) does. So,

∑
k∈I ak · vk(x)

has at most L0+L1−2 ≤ 2Lmax−2 roots in R. Since ∑k∈I bk ·wk(x) is nonzero
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and degree-(L′ + Lmax − 1), it has at most L′ + Lmax − 1 roots in R. So, the
overall product has at most L′ + 3Lmax − 3 < 2L′ roots, and is therefore not
divisible by D(x).

Using the Chinese Remainder Theorem, we compose the wire checkers for indi-
vidual wires into an aggregate wire checker for the whole circuit.

Construction of an Aggregate Wire Checker.

1. Generate all of the roots and the divisor polynomial. For each wire i ∈ [N ],
select distinct roots for R(i0) and R(i1) from F as in the single-wire checker.
Note that the roots are distinct across the i’s as well. Set R = ∪iR(i0)∪R(i1).
Set the aggregate wire checker’s divisor polynomial to D(x) =

∏
iDi(x) =∏

r∈R(x− r).

2. Generate polynomials for the individual wire checkers. For each wire i ∈ [N ],
construct the sets of polynomials V(i) and W(i) as in the single-wire checker.

3. Compose individual wire checkers via CRT. For i ∈ [N ], for k ∈ Ii0 ∪ Ii1,
interpolate vk(x) to be of degree at most deg(D(x))− 1 and satisfy vk(x) =

v
(i)
k (x) mod Di(x) and vk(x) = 0 mod D(x)/Di(x). Analogously for wk(x).
Set V = {vk(x)} and W = {wk(x)}.

Lemma 3. The above construction is an aggregate wire checker.

Proof. (Lemma 3) If {ak}, {bk} indicate consistent assignments, then they are
consistent on the i-th bit for k restricted to Ii0 ∪ Ii1. Hence, Di(x) divides the
product in Eqn.2 when the summations are restricted to k ∈ Ii0∪Ii1. Since vk(x)
and wk(x) are divisible by Di(x) for all k /∈ Ii0 ∪ Ii1, the overall (unrestricted)
product in Eqn.2 is divisible by Di(x). Since this holds for all i, the product is
divisible by D(x).

If, for some i, {ak} indicates a double assignment of the i-th bit and {bk} is
nonzero over k ∈ Ii0∪Ii1, then, by Lemma 2, Di(x) does not divide the product
in Eqn.2 when the summations are restricted to k ∈ Ii0 ∪ Ii1. As above, Di(x)
divides everything else, and thus the overall product in Eqn.2 is not divisible by
Di(x), and thus not divisible by D(x).

2.3 Conscientious Span Programs

Notice that the aggregate wire checker definition above enforces a slightly weaker
condition than forbidding double assignments: it states that double assigning a
wire with the {ak} (i.e., using non-zero ak values from both Ii0 and Ii1) is
forbidden, unless the {bk} indicate a non-assignment of that wire – i.e., all the
corresponding bk = 0 (and vice versa for a double assignment in the {bk}).

To compensate for the weakness of the wire checker, we require the SP being
checked to be conscientious, which guarantees that every satisfying linear com-
bination uses at least one polynomial from the sets associated with its input.
In our canonical QSP, we will use the wire checker above on two instances of a
conscientious SP for φ. Conscientiousness guarantees that each instance includes
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a non-zero coefficient for each wire used in the satisfying assignment, and hence
the wire checker will always catch double assignments in either instance.

More formally, we define a conscientious SP as follows:

Definition 4. Let S = ({v0(x), . . . , vm(x)}, Ifree, Ilabeled = ∪i∈[n],j∈{0,1} Iij)
be an SP. We say that S is a conscientious SP for f : {0, 1}n → {0, 1} if, for
any tuple (a1, . . . , am) that satisfies the usual SP requirements that f(u) = 1 for
u ∈ {0, 1}n iff (1) v0(x) =

∑
k ak · vk(x) and (2) for all k ∈ ∪ni=1Iiūi we have

ak = 0, we also have the property that for all i ∈ [n], there exists k ∈ Iiui such
that ak �= 0. Let m be the size of the SP and deg(v0(x)) + 1 be the degree of the
SP.

To construct a conscientious SP for φ, we first build a conscientious SP for a
single NAND gate.

Lemma 4. There is a degree-9 conscientious SP for NAND of size 12.

Proof. (Lemma 4) Choose a set of 9 distinct roots in F to get R = (r0, rl0, r
′
l0,

rl1, r
′
l1, rr0, r

′
r0, rr1, r

′
r1). Define 9 “linearly independent” polynomials {v0(x),

vl0(x), v
′
l0(x), vl1(x), v

′
l1(x), vr0(x), v

′
r0(x), vr1(x), v

′
r1(x)} to be the correspond-

ing Lagrange basis polynomials for R; that is, they are the degree-8 polynomials
obtained by interpolating such that ∀r ∈ R, v0(r) = 0, except that v0(r0) = 1;
vl0(r) = 0, except that vl0(rl0) = 1, and so on. We will use the convention that
the pair of polynomials Vl0 = (vl0(x), v

′
l0(x)) belongs to the assignment of 0 to

the left wire, etc.
Set vo0(x) = v0(x) − vl1(x) − vr1(x) and Vo0 = {vo0(x)}, so that one can

express v0(x) as a linear combination of polynomials in Vl1 ∪ Vr1 ∪ Vo0.
Set vo1(x) = v0(x) − vl0(x) − vr0(x), v

′
o1(x) = v0(x) − v′l0(x) − v′r1(x), and

v′′o1(x) = v0(x) − v′l1(x) − v′r0(x), and Vo1 = {vo1(x), v′o1(x), v′′o1(x)}, so that one
can express v0(x) as a linear combination of polynomials associated to the other
satisfying gate assignments.

That the above polynomials define a conscientious SP for NAND of the
claimed size and degree follows by inspection. The details are elaborated in
the full version.

To obtain a conscientious SP for an entire circuit, we build a conscientious SP
for each gate, using a distinct set of roots Ri for each SP, and then compose the
gate SPs together using the Chinese Remainder Theorem, just as we did when
building the aggregate wire checker.

Lemma 5. Suppose a circuit C consists of s Boolean gates from some set Γ –
e.g, Γ = {NAND}. Suppose that, for each gate g ∈ Γ , there is a conscientious SP
of size m′ and degree d′ that computes whether its input is a satisfying assignment
of g’s input/output wires. Then there is a conscientious SP S of size m = s ·m′

and degree d = s · d′ that computes the gate checker function φ for C. S is a
straightforward composition of SPs {Sg} for the individual gates g of C.

Intuition. The proof is constructive. For each gate g, build an SP S(g) follow-
ing Lemma 4, obtaining from each a unique set of roots R(g) and polynomi-

als {v(g)0 (x)} ∪ V(g). Let R = ∪gR(g). Let v0(x) be a polynomial such that
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v0(r) = v
(g)
0 (r) for all r ∈ R(g) and all gates g in the circuit. For each gate g,

extend g’s polynomials such that for all v(x) ∈ V(g), and r ∈ R/R(g), v(r) = 0.
The aggregate SP’s set of polynomials V will consist of v0(x) along with all of
the extended polynomials. Since the roots used in each SP are unique across all
SPs, this composition preserves all of the local linearity relationships created by
Lemma 4; it also does not introduce any new relationships, since the unique roots
prevent “interactions” across the gate SPs. See the full version of the paper [22]
for the full proof.

2.4 The Canonical Quadratic Span Program

We now describe how to take any polynomial-time computable function f , and
construct a polynomial-size QSP that computes f . The construction uses the
Chinese Remainder Theorem (CRT) to merge the two components above, the
gate checker and the wire checker, so that the quadratic test (Eq. 1) checks both
at once. The wire checker’s guarantee of no double assignments relies on the fact
that the SP for the gate checker is conscientious, and hence must use at least
one polynomial for each wire to arrive at a satisfying linear combination. Thus,
we can conclude that the wire values are consistent with the circuit’s gates, and
that no wire is set to both 0 and 1.

More specifically, we build two copies of the conscientious SP for the gate
checker, ensuring that all of the roots used are distinct. One copy will become the
V polynomials in the QSP, while the other copy will become theW polynomials.
We then construct the polynomials for the aggregate wire checker described
above, using a third set of distinct roots. Since all of the divisor polynomials
from the different components have different roots, they are relatively prime.
Hence, we can use the CRT to define the final QSP polynomials so that they
match the value of the constituent polynomials from each component.

The Canonical QSP: Qcan,f .

1. Take as input the Boolean circuit C for f : {0, 1}n → {0, 1}, which has s
gates.

2. Using disjoint sets of rootsR(V) andR(W), construct two instances of the con-
scientious gate checker SP for C – namely, S(V) = (V̂ = {v̂0(x), . . . , v̂m(x)},
Ifree, Ilabeled) and S(W) = (Ŵ = {ŵ0(x), . . . , ŵm(x)}, Ifree, Ilabeled).

3. Define D̂(V)(x) =
∏

r∈R(V)(x − r) and D̂(W)(x) =
∏

r∈R(W)(x − r). Note
that because we use distinct roots for each incarnation, the resulting divisor
polynomials D̂(V)(x) and D̂(W)(x) are relatively prime.

4. Using disjoint sets of roots R = {R(i0),R(i1) : i ∈ [N ]} and the partition of
Ilabeled, construct the aggregate wire checker from Lemma 3, which consists
of the following polynomials: D′(x) =

∏
r∈R(x− r), V ′ = {v′1(x), . . . , v′m(x)}

and W ′ = {w′
1(x), . . . , w

′
m(x)}.

5. Define D(x) = D̂(V)(x) · D̂(W)(x) ·D′(x).
6. Finally, define V = {v0(x), . . . , vm(x)} and W = {w0(x), . . . , wm(x)} using

the CRT to interpolate vk(x) and wk(x) as follows:
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vk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

v̂k(x) mod D̂(V)(x)
v′k(x) mod D′(x)
1 mod D̂(W)(x) if k = 0

0 mod D̂(W)(x) if k �= 0

wk(x) =

⎧
⎪⎪⎨

⎪⎪⎩

ŵk(x) mod D̂(W)(x)
w′

k(x) mod D′(x)
1 mod D̂(V)(x) if k = 0

0 mod D̂(V)(x) if k �= 0

7. Output Qcan,f = (V ,W , D(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij), where the
labeled indices ∪i∈[n+1,N ]Iij from the gate checker SP for C have been moved
to Ifree.

The proof of the following theorem is in the full version [22].

Theorem 3. For any Boolean circuit C with n inputs, s gates, and N = n+ s
total wire values, the canonical QSP computes C.

2.5 Performance and Technical Issues

By Lemmas 4 and 5, given a function f whose Boolean circuit has s (NAND)
gates, we have a conscientious SP of size 12s and degree 9s for f ’s gate-checker
function. However, for performance and technical reasons, we use a larger con-
scientious SP of size 36s and degree 27s.

The first reason we use a larger SP is that we transform f ’s Boolean circuit to
one with fan-out two (except that one “dummy” input, set to ‘1’, may feed into
multiple gates). The resulting circuit may be larger by a constant factor. We
reduce fan-out to two before applying the SP composition lemma (Lemma 5) be-
cause we want the evaluation vectors {(vk(r1), . . . , vk(rd)), (wk(r1), . . . , wk(rd)) :
k ∈ [m], r ∈ R} of our QSP to be sparse – i.e., to have only constant nonzero sup-
port. Sparseness allows us, for example, to compute v(x) = v0(x) +

∑
ak · vk(x)

very quickly in evaluation representation, in time linear in the degree of the QSP.
The second reason is that we obtain a strong QSP.

Definition 5 (Strong QSP). A QSP Q = (V ,W , t(x), Ifree, Ilabeled =
∪i∈[n],j∈{0,1}Iij) is a strong QSP if |Iij | = 1 for all i ∈ [n], j ∈ {0, 1} and
the QSP divisibility requirement (Eq.1) holds only if {ak}, {bk} are “unequiv-
ocally” bound to some input u ∈ {0, 1}n – in particular, ak = 1 = bk for all
{k = Iiui} and ak = 0 = bk for all {k = Iiūi}.
In a strong QSP, the labeled sets are singletons, and the QSP can be satisfied
only by applying an unequivocal 0/1 linear combination to the labeled vectors.
Ultimately, this property helps improve the performance of our cryptographic
constructions for NIZKs and verifiable computation, since a verifier who knows
part of the circuit input (e.g., the statement u portion of the input to a rela-
tion) will be able to “predict” the portion of the QSP linear combination that
corresponds to u (and therefore this portion does not need to be “sent” by the
prover).

When it is applied to the partition Ilabeled = ∪i∈[N ],j∈{0,1}Iij of the SP for
the gate checker function, the size of the aggregate wire checker is |Ilabeled| ≤ 24s
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and the degree is 76s. (See full version [22] for details.) Since the QSP has two
SPs and one aggregate wire checker, and since composing the SPs with the wire
checker does not increase the size, the QSP has size 36s and degree 130s.

3 Overview of Cryptographic Constructions and Security

We build SNARKs and NIZKs in the common reference string (CRS) model [9,
10] for relations R(u,w) with n′-bit statements and (n − n′)-bit witnesses. We
apply our QSPs for n-bit inputs to the circuit computing R.

Groth’s construction [27] specifically targets the circuit SAT relation; in par-
ticular, he takes u to be a circuit that can be chosen adaptively and uses
R(u,w) = u(w). The CRS size and prover computation grow quadratically with
|u|. The verifier computation is O(|u|), but it can be reduced to O(1) in an amor-
tized sense with u-dependent pre-processing. To compare directly with Groth,
we can handle u being an adaptively-chosen circuit by constructing R from a
universal circuit. In this case, the size of the circuit computing R may be larger
than |u| by a logarithmic factor, which correspondingly increases the CRS size
and prover computation to Õ(|u|). The verifier computation is O(|u|), but it can
be reduced to O(1) in an amortized sense just as in Groth. If u, or any part of
u, can be chosen non-adaptively, our scheme becomes more efficient.

We present our constructions with their proof intuition, deferring the formal
proofs to the full version [22].

3.1 Definitions

First, we define a SNARK for a Prover P who holds a witness w which he can
use to convince a Verifier V of a statement u.

Definition 6 (SNARK). We say that Π = (Gen,P,V) is a succinct non-
interactive argument of knowledge (SNARK) with security parameter κ for an
NP language L with a corresponding NP relation R with n′-bit statements and
(n− n′)-bit witnesses , if it satisfies the following properties:

Perfect Completeness: For all A,

Pr

⎡
⎣V(priv, u, π) = 1

if (u,w) ∈ R

∣∣∣∣∣∣
(crs, priv)← Gen(1κ)

(u,w)← A(crs)
π ← P(crs, u, w)

⎤
⎦ = 1,

where P(crs, u, w) runs in time poly(κ, n).

Soundness: For all efficient A,

Pr

[
V(priv, u, π) = 1

u �∈ L

∣∣∣∣
(crs, priv)← Gen(1κ)
(u, π)← A(1κ, crs)

]
= negl(κ).

Succinctness: The proof length is |π| = poly(κ).
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Extraction: For any poly-size prover P∗, there exists a poly-size extractor EP∗ ,
such that for any auxiliary information z ∈ {0, 1}κ, the following holds

Pr

⎡
⎣V(priv, u, π) = 1

(u,w) /∈ R

∣∣∣∣∣∣
(crs, priv)← Gen(1κ)
(u, π)← P∗(crs, z)
w ← EP∗(crs, z)

⎤
⎦ = negl(κ).

We omit the standard definition of NIZKs. Note that, to build a NIZK, it suffices
to build (as we do) a SNARK that is statistical zero-knowledge.

3.2 Our SNARK Construction

We can create a SNARK for an NP relation R = {(u,w)} with n′-bit statements
and (n − n′)-bit witnesses by building a canonical QSP for the function f such
that f(u,w) = 1 iff (u,w) ∈ R. At a high-level, the prover uses his inputs to
evaluate the circuit for f , hence obtaining linear combinations for the QSP that
satisfy Eq.1. He uses these combinations to compute v(x) = v0(x)+

∑
ak · vk(x)

(and similarly for w(x)), and convinces the verifier that the QSP’s quadratic
property holds (Eq.1), which implies f(u,w) = 1, by calculating h(x) such that
h(x) ·D(x) = v(x)w(x).

To protect against malicious provers, all of the calculations described above
are performed over encoded values. Specifically, the CRS holds an encoding of
the evaluation of each polynomial (e.g., the {vk(x)}) at a secret point σ. The
encoding permits homomorphic operations, which allow the prover to calculate
v(σ), w(σ), and h(σ) inside the encoding. The encoding also permits a quadratic
equality check so that the verifier can check that Equation 1 holds.

An encoding scheme E has two algorithms (Setup, E), where Setup takes the
security parameter and generates parameters for the scheme, and E (possibly
randomized) produces an encoding for an element. Our preferred encoding is
exponentiation within a bilinear group: E(vk(σ)) = gvk(σ), in which case, the
quadratic equality check is performed via a pairing. One may also use an addi-
tively homomorphic encryption scheme, e.g., Paillier5: E(vk(σ)) = Encpk(vk(σ)).
In this case, the verifier needs a secret key sk to remove the encoding and perform
the quadratic check, and hence the SNARK is designated-verifier.

As a final note, to ensure the prover uses circuit inputs matching u, the verifier
calculates the portion of v(σ) that corresponds to u independently, leaving the
portion of v(σ) that corresponds to the witness to the prover.

To base the security of our scheme on an existing knowledge of exponent
assumption [27], we add terms to the CRS of the form E(ασi), E(αvk(σ)),
E(αwk(σ)), E(βvvk(σ)), E(βwwk(σ)), and extend the proof with relations be-
tween these terms and those in the basic proof (see Section 3.4).

5 Technically, our constructions apply only where the encoding space is a field, and the
plaintext space of Paillier is a ring, not a field. However, it would be easy to extend
our results to Paillier, using the fact that one is unlikely to encounter encodings of
nontrivial zero divisors in ZN unless one is able to factor N .
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CRS generation Gen: On input security parameter κ, construct a common
random string CRS = (crsP , crsV ). Let f be the function checking the rela-
tion R(u,w) and let Qf = (V ,W , D(x), Ifree, Ilabeled = ∪i∈[n],j∈{0,1}Iij , I =
Ifree ∪ Ilabeled) be a QSP of size m and degree d for the functionality f6.

Let Iin = ∪n′
i=1Iij and Imid = I \ Iin. Generate public and private param-

eters (pk, sk) for the encoding scheme E. Generate uniformly at random
α, σ, βv, βw, γ ← F ∗ and set the output:

crsP =
(
pk,Qf , n

′, {E(σi)}i∈[0,d], {E(ασi)}i∈[0,d],

{E(vk(σ))}k∈Imid
, {E(wk(σ))}k∈I ,

{E(αvk(σ))}k∈Imid
, {E(αwk(σ))}k∈I ,

{E(βvvk(σ))}k∈Imid
, {E(βwwk(σ))}k∈I

)

crsV =
(
pk, sk, E(1), E(α), E(γ), E(βvγ), E(βwγ),

{E(vk(σ))}k∈{0}∪Iin
, E(w0(σ)), E(D(σ))

)
.

Prove P: On input crsP , statement u ∈ {0, 1}n′
and witness w, P evaluates Qf

to obtain (a1, . . . , am) and (b1, . . . , bm) and polynomial h(x) such that

h(x) ·D(x) =
(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

bk · wk(x)
)
.

Let vmid(x) =
∑

k∈Imid
ak · vk(x) and w(x) =

∑
k∈I bk ·wk(x). Then, P uses

the encoding’s homomorphism to output the following proof:

π =
(
E(vmid(σ)), E(w(σ)), E(h(σ)),

E(αvmid(σ)), E(αw(σ)), E(αh(σ)), E(βv vmid(σ) + βww(σ))
)
.

Verify V: On input crsV , u, and π = (πvmid
, πw, πh, πv′

mid
, πw′ , πh′ , πy), V con-

firms that the terms are in the support of validly encoded elements. Let
Vmid, W , H , V ′

mid, W
′, H ′, and Y be what is encoded. V computes an en-

coding E(vin(σ)) of vin(σ) =
∑

k∈Iin
ak ·vk(σ). V confirms that the following

equations hold:

H ·D(σ) = (v0(σ) + vin(σ) + Vmid) · (w0(σ) +W ),

V ′
mid = αVmid,W

′ = αW,H ′ = αH, γY = (βvγ)Vmid + (βwγ)W.

3.3 Making the SNARK Statistical Zero-Knowledge (NIZKs)

In our NIZK construction, the prover simply randomizes each of the terms
v0(σ) + vin(σ) + Vmid and w0(σ) +W so that their product is still divisible by
D(σ), but the terms reveal nothing more about the original values. We achieve
this by adding random multiples of D(σ) to both terms, which preserves the di-
visibility property for their product. We supplement crsP with additional terms

6 For example, with circuit SAT, f is a universal circuit.
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to facilitate computation of the remainder of the randomized proof. Specifically,
we include: E(D(σ)), E(αD(σ)), E(βvD(σ)), E(βwD(σ)), E(v0(σ)), E(αv0(σ)),
E(w0(σ)) and E(αw0(σ)).

After generating a proof π as above, the prover randomizes it as follows. He
picks random δvmid

, δw ← F and outputs the following proof:

π′ =
(
E(v′mid(σ)), E(w′(σ)), E(h′(σ)),

E(αv′mid(σ)), E(αw′(σ)), E(αh′(σ)), E(βvv
′
mid(σ) + βww

′(σ))
)
,

where v′mid(x) = vmid(x) + δvmid
D(x), w′(x) = w(x) + δwD(x), h′(x) = (v0(x) +

vin(x)+v′mid(x)) ·(w0(x)+w′(x))/D(x), and v0(x), vin(x), vmid(x) and w(x) are
the values computed in the SNARK construction from the previous section. The
encodings in the new proof π′ can be computed efficiently from the encodings in
π and the augmented crsP .

3.4 Security

We base security on two assumptions, the q-power Diffie-Hellman (q-PDH) as-
sumption and the q-power knowledge of exponent (q-PKE) assumption. When
we instantiate our construction and the q-PDH and q-PKE assumptions with
an encoding scheme E(a) = ga over a bilinear group, the q-PDH and q-PKE
assumptions are virtually identical to those used by Groth in his NIZK construc-
tion [27].7 Also, the bilinear group version of our q-PDH assumption is very
similar to, but weaker than, assumptions that were used to construct hierar-
chical identity-based encryption and broadcast encryption schemes with short
ciphertexts [11, 13].

The q-PDH assumption is a “conventional” falsifiable assumption, though
still somewhat unusual in its dependence on q, which is related to the size of the
circuits for the functions computed by our SNARKs.

Assumption 1 (q-PDH). Let κ be a security parameter, and q = poly(κ). The
q-power Diffie-Hellman (q-PDH) assumption holds for encoding E if for all non-
uniform probabilistic polynomial time adversaries A we have

Pr

⎡
⎣

pk ← E .Setup(1κ) ; σ ← F ∗ ;
τ ← (pk,E(1), E(σ), . . . , E(σq), E(σq+2), . . . , E(σ2q)) ;

y ← A(τ) : y = E(σq+1)

⎤
⎦ = negl(κ).

The q-PKE assumption is a non-falsifiable “knowledge” assumption, similar in
spirit to (but more complicated than) early knowledge-of-exponent assumptions
(KEAs) [6, 18].

Assumption 2 (q-PKE). Let κ be a security parameter, and q = poly(κ). The
q-power knowledge of exponent (q-PKE) assumption holds for encoding E if for

7 Our q-PDH assumption is actually weaker than his q-CPDH assumption, and our
q-PKE assumption is identical to Groth’s [27] and Lipmaa’s [33], except that we
extend the assumption to handle auxiliary inputs.
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every non-uniform probabilistic polynomial time adversary A, there exists a non-
uniform probabilistic polynomial time extractor χA such that

Pr

⎡
⎢⎢⎣

pk ← E .Setup(1κ) ; α, σ ← F ∗;
τ ← (pk,E(1), E(σ), . . . , E(σq), E(α), E(ασ), . . . , E(ασq));

(E(c), E(ĉ); a0, . . . , aq)← (A||χA)(τ, z) :
ĉ = αc ∧ c �= ∑q

k=0 akσ
k

⎤
⎥⎥⎦ = negl(κ)

for any auxiliary information z ∈ {0, 1}poly(κ) that is independent of α.

Next we state our main security theorem.

Theorem 4. If the q-PDH and d-PKE assumptions hold for some q ≥ max{2d−
1, d+2}, then the NIZK scheme defined in Section 3.3, instantiated with a QSP
of degree d, is secure under Definition 6.

Here, we provide some intuition, using a simpler version of our scheme, which
has the following 6 element proof:

π = (E(vmid(σ)), E(w(σ)), E(h(σ)), E(αvvmid(σ)), E(αww(σ)), E(αhh(σ))) .

For the version above, the intuition is that it is hard for the prover, who knows
the CRS but not αw, to output any pair (E(W ), E(W ′)) with W ′ = αwW unless
he knows a representation {bk : k ∈ I} of W such that W =

∑
bkwk(σ). Knowl-

edge of exponent assumptions (KEAs)8 formalize this intuition: they say that
for any algorithm that outputs a pair of encoded elements with ratio αw, there
is an extractor that “watches” the algorithm’s computation and outputs the rep-
resentation (the linear combination). In the security proof, extractors for the v,
w and h terms extract out polynomials vmid(x), w(x), h(x) that are in the spans
of {vk(x) : k ∈ Imid}, {wk(x) : k ∈ I}, {xi : i ∈ [d]}. If the proof verifies, then
(v0(σ) + v(σ)) · (w0(σ) +w(σ)) = h(σ) ·D(σ) for v(x) = vmid(x) +

∑
k∈Iin

vk(x).
If indeed (v0(x) + v(x)) · (w0(x) +w(x)) = h(x) ·D(x) as polynomials, then the
soundness of our QSP implies that we have extracted a true proof. Otherwise,
(v0(x) + v(x)) · (w0(x) + w(x)) − h(x) ·D(x) is a nonzero polynomial having σ
as a root, which allows the simulator to solve a hard problem.

We modified this simpler scheme to the more complicated SNARK construc-
tion in order to base security on assumptions slightly weaker than Groth’s [27].
With these assumptions, we can only extract representations of the encoded
terms with respect to the power basis {xi} (as in [27]), not with respect to {vk(x) :
k ∈ Imid}. Thus, this extraction does not guarantee that vmid(x) and w(x) are
in their proper spans. We ensure this via the final term E(βvvmid(σ)+βww(σ)),
from which the simulator can solve a hard problem if vmid(x) or w(x) lies outside
its proper span.

3.5 Efficiency

Next we state the complexities for our SNARK construction and refer the reader
to the full version of the paper [22] for the proofs.

8 KEAs [6, 18, 24] exist for Paillier/RSA [19, 24], bilinear groups [27, 33], and even
lattices [34].
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Prover’s Work. The prover computation requires a number of group operations
linear in the size of the QSP, aside from the computation of h(x), which can be
computed in O(d · log2(d)) time, where d is the degree of the QSP, via multipoint
evaluation and interpolation. When we construct a SNARK for circuit SAT, we
use a QSP for a universal circuit, which has size O(|C| log |C|) where |C| is the
maximum size of the circuits in the satisfiability problem.

Verifier’s Work. The verification of the SNARK is proportional to the state-
ment size and independent of the size of the witness. We can further reduce the
verification work [22] to a constant plus a hash function evaluation by applying
an ordinary hash function to the statement and proving a new relation which
takes the the hash output as the statement.

4 Quadratic Programs for Arithmetic Circuits

We also construct Quadratic Arithmetic Programs (QAPs), a natural extension
of QSPs which “naturally” compute arithmetic circuits modulo the group order
p. For some functions, arithmetic circuits are much smaller than their Boolean
counterparts, suggesting that, in such cases, QAPs are a more attractive option.
In fact, it turns out (see [38]) that QAPs are more efficient than QSPs, even for
the Boolean case.

The full details of the QAP construction appear in the final version [22]; here
we present the definition of QAPs and our main result about them.

Definition 7 (Quadratic Arithmetic Programs (QAP)). A quadratic
arithmetic program (QAP) Q over field F contains three sets of polynomials
V = {vk(x) : k ∈ {0, . . . ,m}}, W = {wk(x) : k ∈ {0, . . . ,m}}, Y = {yk(x) : k ∈
{0, . . . ,m}}, and a divisor polynomial D(x), all from F [x].

Let f : Fn −→ Fn′
be a function having input variables with labels 1, . . . , n and

output variables with labels m−n′+1, . . . ,m. We say that Q is a QAP that com-
putes f if the following is true: a1, . . . , an, am−n′+1, . . . , am ∈ Fn+n′

is a valid
assignment to the input/output variables of f iff there exist (an+1, . . . , am−n′) ∈
Fm−n−n′

such that D(x) divides:

(
v0(x) +

m∑
k=1

ak · vk(x)
)
·
(
w0(x) +

m∑
k=1

ak · wk(x)
)
−
(
y0(x) +

m∑
k=1

ak · yk(x)
)
.

The size of Q is m. The degree of Q is deg(D(x)).

We prove that we can build very efficient QAPs for arbitrary circuits.

Theorem 5. Let C be an arithmetic circuit with input from Fn that has s
multiplication gates, each with fan-in two, and whose output gates are all multi-
plication gates. There is a QAP with size n+ s and degree s that computes C.
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5 Concrete Performance

We developed a system called Pinocchio [38] that includes a compiler that trans-
forms a subset of C into either a QSP or QAP, and a set of programs for generat-
ing the CRS, creating proofs, and verifying proofs. It supports NIZK proofs and
VC proofs, with both designated and public verifiers. We use a pairing-based
encoding, with a 256-bit BN-curve [5] that provides 128 bits of security.

We find that QAPs outperform QSPs, and that Pinocchio significantly outper-
forms state-of-the-art systems [16, 40] based on PCPs [2, 25, 30].9 For example,
we measured the time for NxN matrix multiplication using random 32-bit ma-
trix entries. For N = 25 to 100, Pinocchio’s verifier takes 8-13ms, making it 5-7
orders of magnitude faster than previous work, while the worker takes 8.9-776.4s,
making it 19− 60× faster.

Acknowledgments. We thank Nir Bitansky, Jens Groth, Yuval Ishai, Seny
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