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ABSTRACT. A quadratic spline interpolation theory is developed 
which, in general, produces better fits to continuous functions than 
does the existing cubic spline interpolation theory. 

1. Let A:0=Xo<*i< # • -<xn=l be a partition of [0, 1], A function s 
is a spline of order m having knots in A if s e Cm~2[0, 1] and, on each 
interval (X-_l5 x*), s(x) is represented by a polynomial of degree ra—1 or 
less. 

For the case ra = 3, we call s a quadratic spline. For quadratic splines, 
set s—siXi), X—s'ix,) for /=0 , 1, • • • , « , and h^x^x^, ^_i / 2 = 
siXi-hJT), a—h^Khi+h^), c ^ l - a , for f=l, 2, • • • , n. 

Any three of the parameters s^-i» ^_1/2, si9 X{_l9 At- may be used to rep
resent the quadratic spline s on the interval (x{_l9 x^. Because of con
tinuity, these parameters must satisfy the consistency relations 

(1.1) 0A_i + 3s< + CiSi+i = 4aA-i/2 + 4CA-+1/2 

and 

(1.2) cX-x + 3A< + flA+i = 8(s,+1/2 - s,_1/2)/(/*,. + hM) 

for /= 1,2, • • • , «—1. For simplicity, we assume that s and s' are periodic, 
i.e. 

(1.3) 50 = sn and A0 = Xn 

so that (1.1) and (1.2) hold for / = 0 and i=n provided that the subscripts 
be read modulo n. For a given A, the periodic quadratic spline subspace 
has dimension n. 

2. If ƒ is a given continuous function satisfying 

(2.1) y(0) = XI), 

the periodic quadratic spline interpolant s=S3y associated with y and A is 

AMS (MOS) subject classifications (1970). Primary 41A10. 
1 Work supported by the National Research Council of Canada while at the University 

of Alberta. 
Copyright © American Mathematical Society 1974 

903 



904 M. J. MARSDEN [September 

uniquely defined by the conditions 

(2.2) Vi/2 = tt-1/2 = y(xt - hJ2) for i = 1, 2 , . . . , n. 

More generally, we may define operators Sm=5m(A, a) by requiring 
that Smy be a periodic spline of order m which interpolates ƒ at n nodes 
specified by the parameter vector a. 

We extend y periodically with period 1 and define : 

e = y - S3y, ei = e(xt)9 | | /J = m a x { | f t \ : l ^ i ^ n } , 

11/11 = m a x { | / ( x ) | : 0 ^ x ^ l } , 

œ(f; Ô) = sup{|/(x) - ƒ ( * ' ) ! :|x - x'| ^ <5}, 

«Sail =sup{||S8y||:| |y|| = 1}, and ft = ||ftj. 

If ƒ G C'[0, 1] with ƒ (0)= ƒ (1), we define <?;=£?'(*,). 

THEOREM 2.1. Le/ ƒ G C[0, 1] wiVA J ( 0 ) = J ( 1 ) #«</ let s=S3y be the 
periodic quadratic spline interpolant associated with y and A. Then 

N l ^ 2 | | ) ; | | , | | s | |^2| |y | | , | |S 8 | | ^2 , 
||e,|| £2œ(y;hl2)9 \\e\\ <:3œ(y;h/2). 

The bound on \\S3\\ cannot be decreased, in general. 

THEOREM 2.2 Let y and y' be continuous and periodic functions. Then 

lls'll = WW Û 2 11/11, He'll ^ 3 H/H, ||e|| ^ (f)ft ||/||, 
||e,|| ^ ftco(/; ft/2), KU ^ 3co(/; ft/2), ||e'|| ^ (f)co(/; ft/2), 

||e|| ^(¥)f ta)C' ; f t /2) . 

THEOREM 2.3. Let y,y', and y" be continuous and periodic functions. 
Then 

Ik-ll û ( i ) * W ; h) ^ (|)fta H/'H, 
IKII ^ ( i ) ^ ( / ; *) û h H/'H, He'll ^ ftco(/'; ft) ^ 2ft ||/'||, 
lle|| ^ (f)ft2co(/; fc) ̂  m211/11. 

THEOREM 2.4. Z,e? j , / , j " , andy'" be continuous and periodic functions. 
Then 

IKII ^ (W2 11/1, He'll ^ (M)A211/1, 

Ml ^ (TT)/I3 11/1 and ||e,|| ^ (|)ft3 | |/"||. 

If, in addition, ylv is continuous and periodic, then 

K-u ^ m2 H/-II + (A)ft3 11/1, iie'H ^ (A-)*» n/"H + (A)/»3 n / 1 , 

kll ^ (A)/»3 11/1 + (Th)h4 | | / 1 , ||e|| £ (i|)ft3 ||/"|| + (#T)ft
4 H/1 . 
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These theorems are established by a technique used by Meir and Sharma 
in their landmark cubic spline paper [6]. They hold without restriction on 
A. Indeed, we may permit x^—Xi provided that we let s' be discontinuous 
at such "double knots". By setting x1=x0 and xw_!=xn , thereby producing 
a "triple knot", we may drop the assumptions (1.3) amd (2.1). 

3. Theorem 2.1 and specific examples produce the third line in the 
following table of best possible norm inequalities and error bounds 
for low-degree (m—1=0, 1,2, 3) spline interpolation to continuous 
functions on an arbitrary partition A. 

nodes = x,_1/2 US!|| = 1 \\y - Siy\\ = co(y; A/2) 
nodes = x, \\S2\\ = 1 ||y - S2y\\ ^ ®)œ(y; A/2) 
nodes = x,_1/2 ||S8|| ^ 2 \\y - S*y\ = C*œ(y; h\2) 

with f <; C* = 3 
nodes = xi \\SA\\ ^ 0 0 ||y — Séy\\ ^ 00 

TABLE. Best bounds for arbitrary partitions 

The last line of this table was established by Nord [7]. See also [3]. 
We conjecture that the nodes (xi_1+xi+xi+<ÙJ'S would produce finite 
constants A and B in the relations HSJ—^ and \\y—S^y\\^Bco(y'9 h\2). 
These nodes have appeared previously in connection with variation-
diminishing cubic spline approximation (see [5] and [4]). 

4. For quadratic spline interpolation, the assertion ||e||=0(/z3) cannot 
be improved. However, on a uniform mesh with x^ijn and hi=h = l/n9 

point error bounds with an extra factor of h are valid. These are similar 
to point error bounds for cubic spline interpolation which have recently 
been discovered by T. R. Lucas [2]. See also [1]. 

THEOREM 4.1. Let A={///z}. Then ||S8II<V2- Let A=(3±V 3) / 6- If 
y, y', y", y'\ and y1Y are continuous and periodic functions, then 

Ikll Û (Th)h* \\yiv\\, K-J û (Ws lly'l, 
and 

K-1/.II ^ (TI)^2 l l / l . 
The assertion \\Sz\\<y/2 for a uniform mesh was proved in [8]. It can 

also be proved by the methods of [9]. Indeed, each of the assertions of 
[9] has a quadratic spline counterpart. 

REFERENCES 

1. G. Birkhoff and C. R. de Boor, Piecewise polynomial interpolation and approxi
mation, Approximation of Functions (Proc. Sympos. General Motors Res. Lab., 
1964), Elsevier, Amsterdam, 1965, pp. 164-190. MR 32 #6646. 



906 M. J. MARSDEN 

2. T. R. Lucas, Error bounds for interpolating cubic splines under various end con
ditions, Notices Amer. Math. Soc. 19 (1972), A-795. Abstract #699-B15. 

3. M.J. Marsden, Cubic spline interpolation of continuous functions. J. Approximation 
Theory 10 (1974), 103-111. 

4. , An identity for spline functions with applications to variation-diminishing 
spline approximation, J. Approximation Theory 3 (1970), 7-49. MR 40 #7682. 

5. M.J. Marsden and I. J. Schoenberg, On variation diminishing spline approximation 
methods, Mathematica (Cluj) 8 (31) (1966), 61-82. MR 35 #4648. 

6. A. Sharma and A. Meir, Degree of approximation of spline interpolation, J. Math. 
Mech. 15 (1966), 759-767. MR 33 #3006. 

7. S. Nord, Approximation properties of the spline fit, Nordisk Tidskr. Informations-
Behandling (BIT) 7 (1967), 132-144. MR 36 #1887. 

8. F. B. Richards, Convergence o f natural spline interpolations on uniform subdivisions, 
J. Approximation Theory (to appear). 

9. F. Schurer and E. W. Cheney, On interpolating cubic splines with equally-spaced 
nodes, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 517-524. 
MR 40 #6129. 

Current address: University of Pittsburgh, Pittsburgh, Pennsylvania 15260 


