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Abstract— This paper deals with the problem of quadratic
stabilization of switched affine systems, where the state of the
switched system has to be driven to a point (the “switched
equilibrium”) which is not in the set of subsystems equilibria.
Quadratic stability of the switched equilibrium is assessed
using a continuous Lyapunov function, having piecewise con-
tinuous derivative. A necessary and sufficient condition is given
for the case of two subsystems and a sufficient condition is
given in the general case. Two switching rules are presented:
a state feedback, in which sliding modes may occur, and an
hybrid feedback, in which sliding modes can be avoided. Two
examples illustrate our results.
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I. INTRODUCTION

Switched systems are a class of hybrid systems consisting
of a family of continuous-time subsystems and a criterion
that rules the switching among them. The switching signal
may just depend on time or state, or may be generated by
more complex techniques. In the last years, several results
for Lyapunov stability and stabilization of switched and
hybrid continuous-time systems have been proposed in the
literature [1], [2], [3], [4], [5].

One of the problems is the stabilization of a switched
system using a single Lyapunov function whose derivative
is negative and bounded by a quadratic function within the
activation regions of each subsystem, and may eventually be
positive outside these regions. In the field of switched sys-
tems, this stability property is usually defined as quadratic
stability [6], [1].

The approach proposed by Wicks et al. [7] points out
that the existence of a stable convex combination of the
linear subsystems Ai implies the possibility of quadratic
stabilization of the origin through a suitable switching rule.
Feron [8] demonstrated that this condition is not only
sufficient but also necessary for quadratic stability in the
case of two subsystems. In order to avoid the occurrence
of fast switching, a hybrid switching strategy has been
proposed (see [9], [6]).

Another approach is given in the nonlinear case by
Pettersson and Lennartson [10]. Sufficient conditions guar-
anteeing quadratic stability can be formulated as a nonlinear
optimization problem, where the existence of a stable con-
vex combination of dynamical matrices is required.

The problem of quadratic stabilization of a plant with
a set of given state-feedback controllers has also been
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considered by Skafidas et al. [11]. A sufficient condition for
quadratic stabilization of a switched control system is the
existence of a convex combination of the controllers which
stabilizes the plant. Results on quadratic stabilization have
also been extended to the case of uncertain linear systems.

In [12], Xu et Antsaklis used a geometric approach to
give necessary and sufficient conditions for the stabilization
of second-order switched systems.

However, all the above papers consider the case of
autonomous switched systems, in which the state of the
switched system must be driven to a point which is an
equilibrium point for all the component subsystems (or at
least for some of them).

The aim of this paper is the extension of some of
the previous results (mainly from [7], [8]) to the case of
switched affine systems, where the state of the switched
system must be driven to a point which is not in the set
of subsystems equilibria. This point is denoted switched
equilibrium, since switching is used to construct a new
equilibrium which is not present in the original subsystems.
It should be noted that there is not a trivial solution to
the problem, even if all subsystems are individually stable.
Switching among subsystems is thus a necessary condition
to reach and stay in the neighborhood of the switched
equilibrium.

The proposed methodology offers a useful tool for stabi-
lization of a system with piecewise constant inputs. This
situation is typical of many practical applications (e.g.
temperature control), where technological or economical
constraints dictate the use of actuators which are capable of
generating a discrete set of controls rather than a continuous
range of controls. Moreover, this approach can be used
conversely to design a set of input values which allow
quadratic stabilization of the origin for a system with
piecewise constant inputs and with one or more operating
modes (one or more dynamical matrices Ai).

The outline of the paper is as follows. The switched
equilibrium problem is formulated in the next section.
Conditions guaranteeing quadratic stabilization are given in
Section III. Two different switching rules are discussed in
Section IV, namely a state feedback and a hybrid feedback.
Section V presents two illustrative examples.

II. SWITCHED EQUILIBRIUM PROBLEM

In this paper we consider the following switched affine
system

ẋ = Aσx+bσ, (1)



where x ∈ R
n and σ(t) : [0,∞) → P = {1, . . . ,m} is a

piecewise constant function of time called switching signal.
We say that the subsystem Σi is active at time t when σ(t) =
i. Assuming that all Ai are nonsingular, each subsystem Σi
has a (stable or unstable) equilibrium point x̄i = −A−1

i bi.
For such a system we want to find a switching signal such
that a given point x̄ is a stable equilibrium.

With a little abuse of terminology, we will call the point
x̄ a switched equilibrium. In fact, discarding the trivial case
where x̄ = x̄i for some i, the regulation can be achieved
only through switching, even if all the subsystems are
asymptotically stable.

Without loss of generality, we consider the case where
the switched equilibrium is the origin x̄ = 0, because any
prescribed equilibrium point can be shifted to the origin via
a change of variable x̃ = x− x̄.

Quadratic stability for a switched affine system can be
defined in terms of a Lyapunov function as follows.

Definition 1: The switched equilibrium x̄ = 0 is quadrat-
ically stable if and only if there exist a matrix P = PT > 0
and a constant ε > 0 such that for the quadratic function
V (x) = xT Px we have

V̇ (x(t)) ≤−εxT x,

along all system trajectories.
Remark 1: Discontinuities in the right-hand side of (1),

which imply discontinuities in the derivative of the Lya-
punov function can be overcome by the introduction of Fil-
ippov solutions [13], [11]. Therefore, the derivative V̇ (x(t))
is defined as follows

• when the system Σi is active

V̇ (x(t)) = V̇i(x(t)) = xT (AT
i P+PAi)x+2bT

i Px,

• at the switching point between system Σi and system
Σ j

V̇ (x(t)) = sup
γ∈[0,1]

{

γV̇i(x(t))+(1− γ) V̇ j(x(t))
}

,

The key concept in the paper is the notion of average
system, a convex combination of the subsystems, defined as
follows

Σeq : ẋ = Aeqx+beq, (2)

where
Aeq = ∑m

i=1 αiAi beq = ∑m
i=1 αibi

with 0 < αi < 1 and ∑m
i=1 αi = 1.

The average system (2) may be approximatively imple-
mented by sequential switching among subsystems with the
dwell time of Σi proportional to αi [7]. In order to achieve
a good approximation, switching must be fast enough (the
largest dwell time must be at least one order of magnitude
faster than the smallest time constant of all the subsystems).
Clearly asymptotic stability of the origin requires beq = 0
and Aeq to be a stability matrix.

Such a time average control involves rapid switching,
which may lead to problems always associated to chattering.

Moreover, quadratic stability of the switched equilibrium
can be achieved only with infinitely fast switching. This
suggests searching for a modification of this methodology,
where rapid switching can be avoided except when the state
approaches the switched equilibrium.

III. QUADRATIC STABILIZATION OF A
SWITCHED EQUILIBRIUM

The objective of this section is to construct a continuous
Lyapunov function whose derivative along any state trajec-
tory is negative for each subsystem Σi within some regions
in the state-space. Moreover, these regions must cover the
entire state-space. A necessary and sufficient condition for
quadratic stabilization in the case of two subsystems and a
sufficient condition in the general case will be presented.

Theorem 1: Given the switched affine system (1) with
m = 2, the point x̄ = 0 is a quadratic stabilizable switched
equilibrium if and only if there exists α ∈ (0,1) such that

Aeq = αA1 +(1−α)A2 is Hurwitz (3)
beq = αb1 +(1−α)b2 = 0 (4)

Proof: (Sufficiency) If the convex combination Aeq is
stable, there exist two positive definite symmetric matrices
P and Q such that

AT
eqP+PAeq = −Q. (5)

Using (3), we can rewrite (5) as

αxT (AT
1 P+PA1)x+(1−α)xT (AT

2 P+PA2)x = −xT Qx,

and adding the null term 2(αb1 +(1−α)b2)
T Px = 0 (recall

(4)), we obtain

α
(

(xT (AT
1 P+PA1)x+2bT

1 Px
)

+

+(1−α)
(

xT (AT
2 P+PA2)x+2bT

2 Px
)

= −xT Qx. (6)

Let λmin be the smallest (positive real) eigenvalue of Q.
Given 0 < ε ≤ λmin, we have −xT Qx ≤ −εxT x, so that (6)
can be rewritten as

α
(

(xT (AT
1 P+PA1)x+2bT

1 Px
)

+

+(1−α)
(

xT (AT
2 P+PA2)x+2bT

2 Px
)

≤−εxT x, (7)

or equivalently

α
(

(xT (AT
1 P+PA1)x+2bT

1 Px+ εxT x
)

+

+(1−α)
(

xT (AT
2 P+PA2)x+2bT

2 Px+ εxT x
)

≤ 0. (8)

This means that for every nonzero x we have that either
xT (AT

1 P + PA1)x + 2bT
1 Px + εxT x ≤ 0 or xT (AT

2 P + PA2)x +
2bT

2 Px + εxT x ≤ 0, or equivalently we have that either
xT (AT

1 P + PA1)x + 2bT
1 Px ≤ −εxT x or xT (AT

2 P + PA2)x +
2bT

2 Px ≤−εxT x. Now, define the two regions

Ωi =
{

x | xT (AT
i P+PAi)x+2bT

i Px ≤−εxT x
}

, i ∈ {1,2}.
(9)

These are two closed regions which overlap and cover R
n \

{0}. It is easy to show that any strategy where the system



Σi is active in region Ωi assures quadratic stability, using
the Lyapunov function V (x) = xT Px (with P given by (5)).
In fact, within the region Ωi

V̇ (x(t)) = V̇i(x(t)) = xT (AT
i P+PAi)x+2bT

i Px ≤−εxT x,

while at the switching points (which are interior to the
region Ω1 ∩Ω2)

V̇ (x(t)) = sup
γ∈[0,1]

{

γV̇1(x(t))+(1− γ) V̇2(x(t))
}

≤

≤ max
i=1,2

{

V̇i(x(t))
}

≤−εxT x.

Then, there exist ε > 0 and P = PT > 0 satisfying Definition
1.

(Necessity) If the switched equilibrium is quadratically
stable, for every x 6= 0 one of the following conditions must
be satisfied xT (AT

1 P+PA1)x+2bT
1 Px ≤−εxT x or xT (AT

2 P+
PA2)x+2bT

2 Px ≤−εxT x, or stated otherwise it is necessary
that

xT (−AT
1 P−PA1 − εI)x−2bT

1 Px ≥ 0

when xT (AT
2 P+PA2 + εI)x+2bT

2 Px ≥ 0 (10)

and

xT (−AT
2 P−PA2 − εI)x−2bT

2 Px ≥ 0

when xT (AT
1 P+PA1 + εI)x+2bT

1 Px ≥ 0 (11)

We do not consider the case in which bi = 0 and Ai is stable
for some i. In this case the condition is trivially true because
one of the two inequalities is always satisfied (system Σi is
quadratically stable and has an equilibrium in the origin).

By applying the S-procedure [14] to one of the previous
conditions (e.g. to (10)), we conclude that for some β ≥ 0
the following relation holds

xT (−AT
1 P−PA1 − εI)x−2bT

1 Px+

−β(xT (AT
2 P+PA2 + εI)x+2bT

2 Px) ≥ 0, (12)

or equivalently

xT (

(A1 +βA2)
T P+P(A1 +βA2)

)

x+

+2(b1 +βb2)Px ≤−ε(1+β)xT x. (13)

We can rewrite (13) in terms of a convex combination of
Ai and bi as follows

xT
(

(A1 +βA2)
T

1+β
P+P

(A1 +βA2)

1+β

)

x+

+2
(b1 +βb2)

1+β
Px ≤−εxT x, (14)

This means that x̄ = 0 must be an asymptotically stable equi-
librium for the average system ẋ = (αA1 + (1−α)A2)x +
(αb1 + (1−α)b2), where α = 1

1+β . Thus the condition is
necessary, too. �

When there are more than two subsystems, it is possible
to search for a pair of subsystems satisfying (3) and (4).
Moreover, Theorem 1 can be generalized to the case of m
subsystems as a sufficient condition only.

Theorem 2: Given the switched affine system (1), if there
exist αi ∈ (0,1), i = 1, . . . ,m such that

m

∑
i=1

αi = 1 (15)

Aeq =
m

∑
i=1

αiAi is Hurwitz (16)

beq =
m

∑
i=1

αibi = 0 (17)

then the point x̄ = 0 is a quadratic stabilizable switched
equilibrium.

Proof: The proof immediately follows from the proof of
sufficiency for Theorem 1 with minor modifications. �

Remark 2: For the class of switched system considered
it is impossible to achieve uniform quadratic stability, that
is quadratic stability under arbitrary switching signals. In
fact, it requires that for any x 6= 0

V̇i(x) = xT (AT
i P+PAi)x+2bT

i Px ≤−εxT x, ∀i ∈ P

However, in the subsystem equilibrium x̄i = −A−1
i bi we

have

V̇i(x̄i) = 2x̄T
i AT

i Px̄i +2bT
i Px̄i =

= −2bT
i A−T

i AT
i Px̄i +2bT

i Px̄i = 0
Remark 3: Conditions (4) and (17) may appear as very

strong constraints on the system structure. However, it
should be remembered that a switched affine system is
often used to model a linear system with a quantized input
variable, namely a system ẋ = Ax+Bu where

u(t) : [0,∞) →{ū1, . . . , ūm}.

In this case, the switched system is defined by

Ai = A bi = Būi

and, provided that the input values can be chosen arbitrarily,
condition (17) can be always met with by using no more
than 2 input values. Moreover, condition (16) reduces to the
stability of A.

IV. SWITCHING RULES
Since the activation regions Ωi partially overlap, different

switching rules can be adopted. In this paper we focus on
two simple strategies which take the form of a state feed-
back and a hybrid feedback, respectively. These strategies
mainly differ since sliding modes may occur in the first
strategy, while they are avoided in the second one.

A. State Feedback Switching Rule
In the first switching rule, the subsystem with the highest

rate of decrease of V (x) is activated

σ(x) = argmin
i∈P

{V̇i(x)}. (18)

Therefore, this rule takes the form of a state-feedback,
where the activation region of the i-th system is defined
as

Ψi = {x | V̇i(x) < V̇ j(x),∀ j 6= i}, (19)



The state feedback strategy assures the highest decrease
rate V̇ (x(t)). Unfortunately this rule does not avoid the
occurrence of sliding modes, which may appear in some
region of the state space, even when the state is far away
from the switched equilibrium.

B. Hybrid Feedback Switching Rule

The second strategy is a hybrid feedback, which avoids
the occurrence of sliding modes introducing some hystere-
sis. The basic idea is to give a lower bound on the decay
rate V̇min(x(t)) = −εxT x with ε > 0 and to switch off the
active system only when it no more satisfies the required
constraint.

The strategy can be summarized as follows in the general
case of m subsystems

1) (initialization) at time t = 0 activate the system Σi0
with

i0 = argmin
i∈P

{(V̇i(x0))};

2) (switching off rule) if system Σi is active and
xT (AT

i P + PAi)x + 2bT
i Px > −εxT x switch to system

Σ j with
j = argmin

j∈P
{(V̇ j(x))}.

3) (equilibrium neighbourhood rule) if ‖x‖ ≤ ρo f f stop
switching until ‖x‖ ≥ ρon (with ρo f f < ρon)

We define the admissible region of activation (where
system Σi can be active) as follows

Φi = {x | V̇i(x)+ εxT x < 0}. (20)

This strategy assures that the interval between two con-
secutive switching is always bounded away from zero.

V. EXAMPLES

The following examples illustrate some of the ideas
presented in this paper.

Example 1: We first consider the problem of constructing
a quadratically stable switched equilibrium in the origin by
switching between two individually stable affine systems.

A1 =

[

4 5
−7 −7

]

b1 =

[

0
−2

]

A2 =

[

−4 −1
1 −2

]

b2 =

[

0
8

]

The eigenvalues of A1 are {−1.50 ± 2.18i} and the
eigenvalues of A2 are {−3, −3}. It should be noted that
even if both systems are individually stable there is not a
trivial solution to the problem of switched equilibrium sta-
bilization, since none of the two systems has an equilibrium
in the origin. Condition (4) is satisfied for α = 0.8 and the
corresponding convex combination (3) is stable (eigenvalues
in {−1.80±1.70i}). Selecting Q = I2 and applying the state
feedback switching rule, the switching surface is given by

ψ12 = 1.58x2
1 +2.94x1x2 −0.247x2

2 −16.2x1 −11.9x2 = 0

with Ψ1 = {x | ψ12 < 0} and Ψ2 = {x | ψ12 > 0}.
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Fig. 1. Trajectory simulation with the state feedback switching rule
(solid), boundaries of activation region Ψi (dotted), subsystems equilibria
(crosses) and switched equilibrium (circle) for Example 1.
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Fig. 2. Trajectory simulation with the hybrid feedback switching rule
(solid), boundaries of admissible region Φi (dotted), subsystems equilibria
(crosses) and switched equilibrium (circle) for Example 1.

The boundaries of the activation regions and a sample
trajectory are reported in Fig. 1. It should be noted that
sliding motions occur along two portions of the switching
surface.

With the hybrid feedback switching rule, by setting ε =
0.5, ρo f f = 0.1 and ρon = 0.2 we obtain the following
admissible regions of activation

Φ1 : 2.08x2
1 +2.94x1x2 +0.253x2

2 −3.25x1 −2.39x2 ≤ 0

Φ2 : −10.8x2
1 −11.8x1x2 −3.51x2

2 +13.0x1 +9.56x2 ≤ 0

The result of the simulation of the system with this
switching rule and with the same initial state is depicted
in Fig. 2, together with the commutation boundaries and



the ball inside which switching is stopped.
Example 2: The second example consider four individu-

ally unstable third order subsystems, which share a stable
convex combination.

A1 =





4.15 −1.06 −6.70
5.74 4.78 −4.68

26.38 −6.38 −8.29



 b1 =





1
−4
1





A2 =





−3.20 −7.60 −2.00
0.90 1.20 −1.00
1.00 6.00 5.00



 b2 =





4
−2
−1





A3 =





5.75 −16.48 2.41
9.51 −9.49 19.55

16.19 4.64 14.05



 b3 =





−2
1
−1





A4 =





−12.38 18.42 0.54
−11.90 3.24 −16.32
−26.50 −8.64 −16.60



 b4 =





−1
2
1





The eigenvalues of matrices Ai are respectively {2.67±
5.31i, 5.30}, {−1, 2± i}, {12.27± 10.88i, −14.23} and
{−18.44±16.57i, 11.13}. Condition (17) is satisfied for

α1 = 0.15 α2 = 0.2 α3 = 0.3 α4 = 0.35

and the corresponding convex combination (16) is Hurwitz
(eigenvalues in {−2.59, −0.96, −0.17}). The regions Ψi
and Φi can be computed as in the previous example.

The results of the simulation of the system with the two
switching rules are depicted in Fig. 3. The effectiveness
of the hybrid feedback in reducing the occurrence of fast
switching with respect to state feedback can be appreciated
in Fig. 4. In fact, state feedback involves sliding motions
on the switching surfaces, regardless of the proximity to
the switched equilibrium. On the contrary, hybrid feedback
assures a comparably slow switching when the state is far
enough from the switched equilibrium (e.g. interval (0÷
0.4)). When the state approaches the switched equilibrium,
the commutations become faster (e.g. interval (0.4÷0.9)),
since switching surfaces are closer to each other. However,
thanks to rule 3 in the neighbourhood of the equilibrium
(e.g. interval (0.9÷1)), switching time is always bounded
away from zero.

VI. CONCLUSIONS
This paper studies quadratic stabilization of a switched

affine system about a nonequilibrium point. Switching is
thus used to construct a stable equilibrium which is not
in the set of subsystems equilibria. Some conditions for
quadratic stability of the origin are presented, together with
a switching rule which explicitly avoid fast switching. An
area of further work involves the application of this method
to the case of systems with piecewise constant inputs, where
constant terms can be arbitrarily designed.
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Fig. 3. Trajectory simulation for Example 2, with the state feedback
switching rule (above) and with the hybrid feedback switching rule
(below).
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Fig. 4. Switching signals for Example 2, with the state feedback switching
rule (above) and with the hybrid feedback switching rule (below).
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[7] M.A. Wicks, P. Peleties and R.A. DeCarlo, “Construction of piece-

wise Lyapunov function for stabilizing switched systems”, in Proc.
33rd Conf. Decision and Control, Lake Buena Vista, FL, 1994, pp
3492-3497.

[8] E. Feron, “Quadratic stabilizability of switched systems via state and
output feedback”, technical report CICS-P-468, MIT, 1996.

[9] D. Liberzon and A.S. Morse, Basic problems in stability and design
of switched systems, IEEE Control Systems Magazine, vol. 19(5),
1999, pp 59-70.

[10] S. Pettersson and B. Lennartson, “Stabilization of hybrid system
using a min-projection strategy”, in Proc. 2001 American Control
Conf., Arlington, VA, 2001, pp 223-228.

[11] E. Skafidas, R.J. Evans, A.V. Savkin and I.R. Petersen, Stability
results for switched control systems, Automatica, vol. 35(4), 1999,
pp 553-564.

[12] X. Xu and P.J. Antsaklis, Stabilization of second-order LTI switched
systems, International Journal of Control, vol. 73, 2000, pp 1261-
1279.

[13] A.F. Filippov, Differential equations with discontinuous right-hand
sides, Kluwer Academic; 1988.

[14] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory, SIAM; 1994.

[15] M.S. Branicky, Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems, IEEE Trans. Automatic Control, vol.
43(4), 1998, pp 475-482.


