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�adratic worst-case message complexity for State Machine Replication in the

partial synchrony model

ANDREW LEWIS-PYE, London School of Economics, UK

We consider the message complexity of State Machine Replication protocols dealing with Byzantine failures in the partial synchrony

model. A result of Dolev and Reischuk gives a quadratic lower bound for the message complexity, but it was unknown whether this

lower bound is tight, with the most efficient known protocols giving worst-case message complexity$ (=3) . We describe a protocol

whichmeets Dolev and Reischuk’s quadratic lower bound, while also satisfying other desirable properties. To specify these properties,

suppose that we have = replicas, 5 of which display Byzantine faults (with= ≥ 35 +1). Suppose that Δ is an upper bound on message

delay, i.e. if a message is sent at time C , then it is received by time max{C,�() } + Δ. We describe a deterministic protocol that

simultaneously achieves $ (=2) worst-case message complexity, optimistic responsiveness, $ (5 Δ) time to first confirmation after

�() and$ (=) mean message complexity.

1 INTRODUCTION

Protocols for StateMachine Replication (SMR) [Lam78, Sch90] are used to ensure that a distributed network of ‘replicas’

(e.g. servers) can agree on an order in which to implement client-initiated service requests. Traditionally, such protocols

have been studied in the ‘permissioned’ setting, which means that the protocol is carried out by a fixed set of replicas,

all of whom are known to each other from the start of the protocol execution. Together with the related task of reaching

Byzantine Agreement [PSL80, LSP82], SMR protocols are a central topic in distributed computing. For an up-to-date

account of the latest advances in this area, see [CKN21].

Of direct relevance to the study of SMR protocols is the fact that recent years have seen a surge of interest in

‘blockchain’ technologies, such as Bitcoin [N+08]. The key factor differentiating Bitcoin from traditional SMR proto-

cols is that it functions in a ‘permissionless’ setting, which means that the protocol operates over an unknown network

of replicas that anybody is free to join. Despite this distinction, the surge of investment in blockchain technology has

led to significant renewed interest in permissioned SMR protocols. On the one hand, this is because many of the en-

visaged blockchain applications actually pertain to fundamentally permissioned settings – a prominent example is the

use of SMR protocols to facilitate international transfers between members of banking consortia. On the other hand,

there are also now several established techniques (e.g. [CM16]) for implementing permissioned protocols in permis-

sionless settings. The latest implementations of some crytocurrencies, such as Ethereum [But18], use permissioned

SMR protocols [BG17] that are tailored in a simple way to instantiate a form of permissionless entry.

These new applications bring with them a focus on the need for permissioned SMR protocols that are both robust

and scalable. Robustness means being able to deal with arbitrary (especially malicious) behaviour from a non-trivial

proportion of replicas. In the parlance of the distributed computing literature, protocols that can deal with behaviour of

this kind are called ‘Byzantine Fault Tolerant’ (BFT). Practical solutions may also need to tolerate unbounded periods

of bad network connectivity and denial-of-service attacks. A standard way to model this is to work in the ‘partial

synchrony’ communication model of [DLS88], which means that protocols are required to guarantee consistency at

all times (i.e. that non-faulty replicas never disagree on the ordering of client requests), but are only required to make

progress on processing new client requests during time intervals whenmessage delivery is reliable, i.e. during intervals

when messages are guaranteed to be delivered within some known time bound Δ.
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The issue of scalability. PBFT [CL+99] is well-known as the first practical BFT SMR protocol for the partial syn-

chrony model. When PBFT was first conceived, however, typical real-world SMR implementations would involve a

number of replicas = in the single digits. Today, implementations are envisaged that use hundreds or even thousands

of replicas. It therefore becomes vital to consider protocols that scale well with the number of replicas, and message

complexity is an important metric in this regard.1 A result of Dolev and Reishchuck [DR85] establishes a quadratic

lower bound on the message complexity when the given bound 5 on the number of faulty replicas is Θ(=) (as we

assume here). Many BFT SMR protocols have been developed since PBFT (e.g. Zyzzyva [KAD+10], Prime [ACKL10],

SBFT [GAG+19], Upright [CKL+09], 700BFT [GKQV10], BFT- SMaRt [BSA14], Tendermint [Buc16, BKM18], Hotstuff

[YMR+18], LibraBFT [BCC+19], Casper [BG17]), but none achieve worst-case message complexity better than $ (=3).

The aim of this paper is to describe a BFT SMR protocol for the partial synchrony model that achieves worst-case

message complexity $ (=2), and so which is the first such protocol to meet the quadratic lower bound of Dolev and

Reishchuk. The protocol we describe also satisfies other desirable properties: Optimistic responsiveness, $ ( 5 Δ) time

to first confirmation after�() and $ (=) mean message complexity. These terms will be explained in Sections 1.1 and

1.2. In the context of the partial synchrony model, a protocol is said to have optimal resiliency if it can handle any

number 5 of Byzantine faults, so long as = ≥ 35 + 1 (this being optimal by a result of Dwork, Lynch and Stockmeyer

[DLS88]).

Theorem 1.1. Consider the partial synchrony model. There exists a BFT SMR protocol with optimal resiliency and

worst-case message complexity $ (=2). This protocol can simultaneously be made to satisfy optimistic responsiveness, to

give $ ( 5 Δ) time to first confirmation after �() and $ (=) mean message complexity.

Theorem 1.1 above is stated in terms of message complexity, i.e. the number of messages sent. A more fine-grained

analysis is achieved by thinking in terms of communication complexity, i.e. the number of bits sent to confirm requests.

The variable ^ in the theorems below is a security parameter specifying the length of signatures and hashes. Theorem

1.2 gives an analogue of Theorem 1.1 in terms of communication complexity, but drops the requirement for$ (=) mean

communication complexity. Theorem 1.3 can be seen as a corollary of Theorem 1.2. We will also give an independent

proof, which is simpler than a direct proof of Theorem 1.2.

Theorem 1.2. Consider the partial synchronymodel. There exists a BFT SMR protocol with optimal resiliency and worst-

case communication complexity$ (^=2). This protocol can simultaneously be made to satisfy optimistic responsiveness and

to give $ ( 5 Δ) time to first confirmation after �() .

Theorem 1.3. Consider the partial synchrony model. There exists a protocol for Byzantine Agreement with optimal

resiliency and worst-case communication complexity $ (^=2). This protocol can be made to ensure that all correct replicas

terminate within time $ ( 5 Δ) after �() .

1.1 Defining the model and metrics

The replicas.We consider a set of = ≥ 35 + 1 replicas, indexed by 8 ∈ {0, . . . , = − 1}. Certain replicas may be corrupted

by an adversary, and may then display Byzantine failures. We allow that the adversary can choose which replicas to

corrupt in a dynamic fashion over the course of the protocol execution, so long as they corrupt a total of at most 5

many replicas. We will refer to the (at least =− 5 ) replicas that are never corrupted as correct. Every pair of replicas has a

1Message complexity will be defined formally in Section 1.1. Roughly, it is the worst-case number of messages that need to be sent to confirm requests
once message delivery is reliable.
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bidirectional, reliable, and authenticated channel between them, i.e., each replica is able to send messages individually

to each of the other replicas, these messages will eventually arrive, and the recipient can verify the sender’s identity.

When we say that a replica broadcasts a message, this means that it simultaneously sends the message to all replicas.2

Cryptographic assumptions. We assume the existence of a cryptographic signature scheme, a collision-resistant

hash function ℎ, a public key infrastructure (PKI) to validate signatures, and a threshold signature scheme [BLS01,

CKS05, Sho00]. As is standard, we assume that replicas are polynomial-time bounded, which means that replicas are

given a security parameter ^ specifying the length of signatures and hashes, and may perform a number of basic

operations during the protocol execution which is at most polynomial in ^ . In particular, this means that the length of

the protocol execution is bounded by a polynomial in ^ . As in other SMR protocols [YMR+18], the threshold signature

scheme is used to create a signature of size ^ combining signatures from : of = many replicas. In our case, : will always

take the value = − 5 . We suppose that hashes are unique during any protocol execution, i.e. for any two inputs< and

<′ given to the hash function, ℎ(<) = ℎ(<′) implies< =<′. We also restrict attention to protocol executions in which

the adversary is unable to break the cryptographic schemes described above.

Communication models. Three standard communication models are:

(1) The synchronous model. All replicas begin the protocol execution simultaneously with access to a global clock.

There is a known bound Δ on the time for message delivery.

(2) The partial synchrony model. The known bound Δ on message delivery only applies after some unknown Global

Synchronisation Time3 (GST), i.e. if a message is sent at time C then it arrives by time max{GST, C} + Δ. Replicas

do not have access to a global clock, but can accurately measure local time, i.e. each replica has an accurate

stopwatch/timer.4 There is no requirement that replicas all start the protocol execution simultaneously, but all

correct replicas are assumed to join prior to GST.

(3) The asynchronous model. Each message can take any finite amount of time to be delivered. Replicas do not have

access to timers.

An important assumption in the description of the partial synchrony model above is that replicas do not have glob-

ally synchronised clocks. If replicas have access to globally synchronised clocks, then a simple approach to achieving

the quadratic lower bound of Dolev and Reischuk in terms of message complexity (which works if one is willing to

drop the requirement for optimistic responsiveness – see Section 1.2 for a definition of the latter term) is to implement

a version of Hotstuff in which each view is carried out at a previously determined time according to the global clock.

More generally, the problem of achieving the quadratic lower bound is interesting so long as any of the following

three conditions hold: (1) Replicas do not have globally synchronised clocks; (2) There is a requirement for optimistic

responsiveness; (3) We are concerned with communication (rather than just message) complexity. We will consider

dropping all of these assumptions in this paper.

A seminal result of result of Fisher, Lynch and Paterson [FLP85] shows that, for the asynchronous model, determinis-

tic SMR protocols are not possible and that no SMR protocol (deterministic or otherwise) is able to achieve unbounded

2It will be technically convenient to suppose that, when a replica broadcasts a message, it also ‘sends’ the message to itself. This just means that, for the
purpose of carrying out its instructions, the replica immediately regards the message as having been received.
3The model is really intended to model a scenario in which consistency must be maintained at all times, and new requests must be confirmed during
synchronous intervals of sufficient length. The use of the unknown Global Synchronisation Time is a standard technical convenience, which can be
argued to be equivalent to these requirements. See [DLS88] for further details.
4This assumption is made for technical convenience, but it will be clear that the protocol we describe can easily be adjusted (without communication
complexity cost) to handle scenarios in which there is a known upper bound on the ratio between the speed of the timers held by different replicas.
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values for the worst-case complexity measures we consider here. We work in the partial synchrony model and it will

be convenient to think of the adversary as controlling message delivery subject to the constraints outlined above.

The blockchain. Rather than being concerned with the rate at which clients produce requests, we consider a protocol

that produces chains of blocks, each of which is thought of as containing a constant bounded number of requests.

Replicas begin the protocol execution with agreement on a unique genesis block. All blocks other than the genesis

block must have a unique parent block, whose hash is specified in the block. If � ′ is the parent of �, then � ′ is also

called a predecessor of �, and all predecessors of � ′ are predecessors of �. All blocks must have the genesis block as a

predecessor – to avoid constant mention of replicas having to check for block ‘validity’, it will be convenient in what

follows to assume replicas simply ignore blocks that cannot be verified to satisfy these conditions. Two distinct blocks

are called incompatible if neither is a predecessor of the other.

Consistency and liveness. We consider a protocol that confirms blocks. The requirement for consistency is that no

pair of incompatible blocks should ever be confirmed. The requirement for liveness is that arbitrarily many blocks will

be confirmed if the protocol is run for sufficiently long after GST – for the protocols we describe here, we will be able

to guarantee that each interval of length $ ( 5 Δ) after GST produces a new confirmed block.

The complexity measures. In the protocols we describe here, messages will contain epoch/view numbers. Since we

assume that replicas are polynomial-time bounded, the written forms of epoch/view numbers are of length $ (^).

It follows from the result of Fisher, Lynch and Paterson, mentioned above, that SMR protocols in the partial syn-

chrony model cannot guarantee the confirmation of requests prior to GST+Δ. For this reason, the worst-case complex-

ity measure described in the following definition counts the number of messages sent by correct replicas after GST+Δ.

The maximum value in the definition is taken over all possible actions of the adversary and choices for GST (which

we can suppose chosen by the adversary).

Definition 1.4. The worst-case message complexity is the maximum number of messages sent by correct replicas

after GST + Δ and prior to the first block confirmation.

We also consider a version of Definition 1.4 which is modified in the obvious way to give the corresponding notion

for communication complexity. Let �∗8 be the unique block (if it exists) which is the 8th to be confirmed after GST + Δ.

In the following definition, G8 denotes the number of messages sent by correct replicas after the confirmation of �∗8 and

before the confirmation of �∗8+1. The slightly circuitous wording of the definition stems from the fact that the adversary

may prevent (1/:)
∑:
8=1 G8 from moving towards a limit value as : increases, although it always remains bounded.

Definition 1.5. For 8 ∈ N>0, let G8 be defined as above. We say the mean message complexity is $ (=) if there exists

some constant � and a function : (=) such that, for all = and all : > : (=), 1
:

∑:
8=1 G8 < �= for all protocol executions

in which at least : blocks are confirmed after GST+Δ.

1.2 Related work

In this paper, we are concerned with the partial synchrony model. PBFT was the first practical BFT SMR protocol for

the partial synchrony model. As is now standard for BFT SMR protocols in the partial synchrony model, the protocol

implements a sequence of views, with each view having a designated leader who is responsible for driving consensus

on the next set of requests to be confirmed. Subsequent to PBFT a great number of BFT SMR protocols have been

developed (e.g. Zyzzyva [KAD+10], Prime [ACKL10], SBFT [GAG+19], Upright [CKL+09], 700BFT [GKQV10], BFT-
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SMaRt [BSA14]) which work by using the same paradigm of leaders, views and view changes, but none achieve worst-

case message complexity better than $ (=3).

For PBFT-like protocols, such as those listed above, the complexity bottleneck tends to be the part of the protocol

dedicated to view changes (which are required because leaders may be faulty). Recently, a number of elegant protocols,

such as Tendermint [Buc16, BKM18] and Casper [BG17] have been described, which considerably simplify the leader

replacement protocol. In the case of Tendermint and Casper, however, this simplicity is achieved at the expense of opti-

mistic responsiveness. Informally, optimistic responsiveness [YMR+18] requires that, for a fixed input Δ, an unbounded

number of blocks/requests can be confirmed in any time interval of fixed length after GST, so long as leaders are cor-

rect, and so long as messages are delivered and instructions carried out fast enough. So, when leaders are correct, the

rate at which blocks are confirmed after GST depends on the actual speed of the system, and is not limited by high

estimates for Δ (although liveness with Byzantine failures still depends on the bound Δ holding after GST).

The significant achievement of Hotstuff [YMR+18], was to simultaneously achieve optimistic responsiveness, while

keeping a linear bound on communication complexity within each view. Liveness for Hotstuff, however, still requires

implementing a protocol to ensure view synchronisation, i.e. to ensure that all replicas eventually spend long enough

within the same view with correct leader. In Hotstuff, this task of view synchronisation is delegated to a separate

Pacemaker module. The implementation of the Pacemaker module is left unspecified, although it is pointed out that a

practically infeasible method of using expontially increasing ‘timeouts’ would suffice.

The task of achieving a general and efficient implementation of the Pacemaker module is addressed in a couple

of recent papers by Naor et. al. [NBMS19] and Naor and Keidar [NK20]. The first of these two papers describes a

version of the Pacemaker module named Cogsworth, which, when faced with benign failures, achieves $ (=) mean

message complexity. In the face of Byzantine failures, however, Cogsworth requires Ω(=2) messages per view change,

which means that a sequence of Ω(=) many view changes before finding a correct leader requires sending Ω(=3) many

messages. The module described in [NK20] then improves on the ability to deal with Byzantine failures, achieving

$ (=) mean message complexity in the face of Byzantine failures, and $ (Δ) expected time to first block confirmation

after GST (when implemented with a protocol such as Hotstuff). Since the protocol utilises a random process of leader

selection it has unbounded worst-case message complexity, but if modified in the obvious way (using a deterministic

sequence of rotating leaders) gives a deterministic protocol with worst-case message complexity which is Ω(=3), with

time to first confirmation after GST which is $ ( 5 2Δ).

The study of protocols for Byzantine Agreement was introduced in [PSL80, LSP82], where it was shown that the

problem can be solved in the synchronous model iff 5 < =/2 when a PKI is provided. A recent paper by Momose and

Ren [MR20] describes a protocolwith optimal resiliency and quadratic communication complexity for the synchronous

model, therebymeeting the lower bound of Dolev and Reischuk [DR85] for that model. For the partial synchrony model,

Dwork, Lynch and Stockmeyer [DLS88] showed that Byzantine Agreement can be solved iff 5 < =/3. The state-of-the-

art in terms ofmessage/communication complexity for the partial synchronymodel is achieved by using SMR protocols

to solve Byzantine Agreement. The most efficient previously known protocols have worst case message complexity

$ (=3) – this can be achieved, for example, by implementing Hotstuff with any Pacemaker module that has message

complexity $ (=2) per view-change. $ (=) expected message complexity can be achieved by combining Hotstuff with

the Pacemaker module of Naor and Keidar [NK20].

We refer the reader to [CKN21] for a survey which also goes into detail re the state-of-the-art for probabilistic

protocols in the asynchronous setting, and well as further results on protocols for achieving Byzantine Agreement.
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2 THE PROTOCOL FOR THEOREM 1.1

As is standard, we describe a protocol for which the instructions are divided into a sequence of views. Within each

view, the instructions will be essentially the same as for Hotstuff – where the protocol differs from Hotstuff is in the

mechanisms used to achieve view synchronisation. We assume the reader is familiar with Hotstuff, but the role of

Hotstuff in our protocol can really be entirely blackboxed. All one needs to understand about Hotstuff to follow the

protocol we describe here, is that it achieves the following:

• Consistency: Incompatible blocks will never be confirmed so long as each individual replica never executes view

instructions out of order, i.e. so long as no correct replica executes instructions for a view E and then instructions

for a view E ′ < E .

• Liveness: Block confirmation will occur, so long as all replicas are eventually in the same view for sufficiently

long and that view has a correct leader.

Since Theorem 1.1 refers to message rather than communication complexity, we don’t really need to use a threshold

signature scheme for the protocol of this section. We do so to facilitate our discussion in Section 4, which describes

how to modify the protocol to deal with communication complexity.

2.1 The high level idea.

The basic plan is that we will spend$ (=2) messages to synchronise, but will do so only every 5 +1 views. Since at least

one leader amongst those 5 + 1 views will be correct and will produce a new confirmed block (if the view is initiated

after GST), and since the complexity of each view is$ (=), this results in$ (=2)messages being required before a correct

leader produces a new confirmed block.

2.2 Epochs.

As well as being divided into views, the instructions are divided into epochs. Each epoch consists of 5 +1 views that are

specific to that epoch. Each epoch therefore has 5 + 1 different leaders (one for each view within the epoch), at least

one of which must be correct. Leaders are rotated, so that the leaders for epoch 8 are replicas 8 mod =, . . . , 8 + 5 mod =.

We consider three different kinds of certificate, each of which combines a set of = − 5 signatures into a single threshold

signature:

• QCs (quorum certificates) correspond to a specific round of voting within a view.

• VCs (view certificates) combine votes to begin a new view.

• ECs (epoch certificates) combine votes to begin a new epoch.

Just as for Hotstuff, each view has three stages of voting. We order QCs by epoch number, then by view number

within the epoch, and then by stage number within the view. Each QC will correspond to a specific block. All votes and

blocks are assumed to be signed by the sender, and to contain the corresponding epoch, view and stage number.

Before describing how to coordinate the views within an epoch, we’ll first describe how to implement epoch changes.

We start that way because understanding epoch changes does not require understanding the rest of the protocol, and

because the instructions for epoch changes are very simple. This simplicity stems from the fact that we can afford to

spend $ (=2) messages for each epoch change. Roughly, when any replica wishes to enter epoch 4 , it sends an “epoch 4”

message to each of the 5 + 1 leaders of epoch 4 . When a correct leader receives = − 5 epoch 4 messages, it combines

those messages into a message with a single threshold signature, which we call an EC for epoch 4 . The leader then
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broadcasts that EC, signalling that replicas should begin the epoch.When any correct replica first sees an EC for epoch

4 , they broadcast that EC and begin the epoch. The precise instructions are below.

The instructions for epoch changes.

• When any replica wishes to enter epoch 4 , it sends an “epoch 4” message to each of the 5 + 1 leaders of

epoch 4 (potentially including itself). The conditions under which a replica wishes to enter an epoch will

be described subsequently in the instructions for view changes.

• If a replica is one of the 5 +1 leaders for epoch 4 , they enter epoch 4 if they are presently in a lower epocha

and either:

(a) They receive = − 5 epoch 4 messages (from different replicas), or;

(b) They receive an EC for epoch 4 .

In the case that (a) holds, the leader combines the = − 5 epoch 4 messages into a message with a single

threshold signature, which we call an EC for epoch 4 , and the leader then broadcasts that EC. In the case

that (b) holds, the leader simply broadcasts the EC.

• Each replica which is not a leader for epoch 4 enters the epoch if they are presently in a lower epoch and

if they see an EC for epoch 4 . Upon entering epoch 4 , they broadcast that EC for epoch 4 to all replicas.

• A replica leaves an epoch when it enters a higher epoch.

aIf at any point any replica finds that the requirements to enter two different views or epochs are simultaneously fulfilled, then the replica

enters the higher of the two.

The instructions described above ensure:

(†0) If a correct replica 8 enters epoch 4 at time C , then all correct replicas will have entered an epoch 4 ′ ≥ 4 by time

max{C,�() } + Δ, since they will see the EC sent by 8 by that time.

(†2) Each epoch change has message complexity $ (=2), since each replica sends $ ( 5 ) messages upon wishing to

enter epoch 4 and $ (=) messages upon entering epoch 4 .

2.3 Proceeding through the views within an epoch.

A simple approach to coordinating the views within an epoch would be to require correct replicas to restart their timer

upon entering the epoch, and then to begin each view at a designated time according to their timer (so that timers

are reset once per epoch). So long as all correct replicas begin the epoch within time Δ of each other, this approach

would also (sufficiently) synchronise correct replicas for each view within the epoch. The problem with this simple

approach is that it would negate the possibility for optimistic responsiveness – for the protocol to be optimistically

responsive, we need correct leaders to be able to produce confirmed blocks at a rate that depends on how fast messages

are delivered, rather than at a maximum speed which is determined by Δ. To achieve optimistic responsiveness, we

therefore also allow replicas to begin a view E + 1 earlier than the designated time, if a confirmed block corresponding

to view E is produced.

Roughly, the instructions are as follows. When each replica starts epoch 4 , they reset their personal timer to 0 and

begin by “wishing to enter view 0” (of epoch 4). Each replica will wish to enter a view E > 0 when either their timer

reaches the designated time for that view, or else they see a block corresponding to view E − 1 confirmed. When they

wish to enter a certain view E , they send a “view E” message to the leader of view E . When the leader sees = − 5 view E
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messages, they form them into a VC for that view, and broadcast that VC to all replicas. Replicas will begin view E when

they see a VC for the view (unless they are already in a higher view). The precise instructions, which are described

below, refer to the ‘message state’ of a replica: At any point in the protocol execution, the message state of a replica is

the set of all messages received by that replica so far (including messages they have ‘sent’ to themselves).

The instructions for view changes.

• When each replica starts epoch 4 , they reset their personal timer to 0 and begin by wishing to enter view 0.

• A replica wishes to enter view E > 0 of epoch 4 at the first point at which it is in a lower view (for this

epoch) and either:

(a) It sees a block corresponding to view E − 1 confirmed, or;

(b) Its personal timer reaches 12EΔ (the idea to have in mind here is that each view will last for at most 12Δ

after �() when leaders are correct). We’ll refer to 12EΔ as the trigger time for view E .

• When any replica wishes to enter view E , it sends a view E message to the leader of view E . It attaches to

that message its present message state (which includes the highest QC it has seen).

• The leader of view E of epoch 4 enters the view if they are in epoch 4 and both:

(a) 8 = 0 or they are presently in a lower view, and;

(b) They receive = − 5 view E messages (from different replicas).

When this occurs, the leader combines the = − 5 view E messages into a message with a single threshold

signature, which we call a VC for view E . The leader considers the highest QC it has seen, which corre-

sponds to a block � ′ (say). The leader then broadcasts a new proposed block � with parent � ′, together

with the newly produced VC, and attaches to that message its present message state.

• Each replica which is not the leader of view E of epoch 4 enters the view if they are in epoch 4 and both:

(a) E = 0 or they are presently in a lower view, and;

(b) they see a VC for view E .

• Each replica in epoch 4 wishes to enter epoch 4 + 1 the first time that either it sees a confirmed block for

view 5 of epoch 4 , or else its personal timer reaches 12( 5 + 1)Δ. Later, we’ll also refer to 12( 5 + 1)Δ as a

trigger time.

The instructions above suffice to describe how views and epochs are coordinated. It only remains to describe the

instructions within each view, which are similar to Hotstuff.

2.4 The instructions within each view.

In addition to the instructions for view and epoch changes above, the remaining instructions are as follows. These

instructions are similar to Hotstuff and, in particular, make use of the same ‘lock’ functionality (we refer the reader

to [Buc16, YMR+18] for an explanation of this functionality). All replicas begin in epoch 1 with their ‘lock’ set to be

the genesis block, which corresponds to view 0 of epoch 0. The ‘highest QC’ below a block � is the highest QC that

corresponds to any block (including �) in the initial segment of that chain. The instructions for each view are then as

follows.
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The instructions while in view E ≥ 0. At any timewhile in view E , until such a point as it wishes to enter a greater

view or epoch (or actually enters a greater view or epoch), each replica carries out the following instructions.

• Stage 1 Voting. Each replica considers the first block � they receive for view E produced by the leader

(this arrives with the VC for the view). If it extends their lock, or else if the highest QC below the block is

as high or higher than they have previously seen (if it’s higher they release their lock), they send a stage

1 vote for � to the leader. The stage 1 vote for � is a signed message including the stage, view and epoch

number and a hash of the block.

• If the leader receives = − 5 stage 1 votes for the block they proposed, then they combine these votes into

a stage 1 QC for the block, and broadcast this QC.

• Stage 2 Voting. The first time a replica sees a stage 1 QC for the block � (specified above) they send a

stage 2 vote for � to the leader.

• If the leader receives = − 5 stage 2 votes for the block they proposed, then they combine these votes into

a stage 2 QC for the block, and broadcast this QC.

• Stage 3 Voting. The first time a replica sees a stage 2 QC for the block � (as specified above) they set �

as their lock and send a stage 3 vote for � to the leader.

• If the leader receives = − 5 stage 3 votes for the block they proposed, then they combine these votes into

a stage 3 QC for the block (which marks the block as confirmed), and broadcast this QC.

3 CONSISTENCY, LIVENESS AND COMPLEXITY

First of all, we deal with consistency, which works exactly as for Hotstuff. For the sake of making our paper as self-

contained as possible, we include a proof here.

Lemma 3.1. The protocol described in Section 2 satisfies consistency.

Proof. Suppose, towards a contradiction, that two incompatible blocks � and � ′ are both confirmed. During the

description of the protocol in Section 2, we numbered views within each epoch, so that each epoch has views numbered

from 0 to 5 . Just for the duration of this proof, however, it is convenient to suppose that views all have distinct numbers,

so that epoch 1 contains views 0, . . . , 5 , then epoch 2 contains views 5 +1, . . . , 25 +1, and so on. Note also, that blocks and

votes all contain their epoch, view and stage number. So, we can talk of blocks and votes as corresponding to specific

views (and stages of voting). Since any two sets of = − 5 replicas must have a correct replica in the intersection, and

since each correct replica only sends at most one stage 3 vote in each view, it immediately follows that � and � ′ must

correspond to different views. Without loss of generality, suppose that � corresponds to view E and that � ′ corresponds

to a greater view E ′ > E . Let E ′′ be the least view > E such that a block � ′′ corresponding to E ′′ is incompatible with �

and receives a stage 1 QC. The fact that � is confirmed means that at least = − 25 correct replicas must set � as their

lock while in view E . None of those = − 25 correct replicas which set � as their lock during view E can produce a stage

1 vote for � ′′ during view E ′′. Since any two sets of = − 25 correct replicas contain a correct replica in the intersection,

this means that � ′′ cannot receive a stage 1 QC, and gives the required contradiction. �

Next, we prove liveness. As we do so, however, it is convenient to consider also the message complexity:

Lemma 3.2. The protocol described in Section 2 satisfies liveness,$ (=2) worst-case message complexity and$ ( 5 Δ) time

to first confirmation after �() .
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Proof. Let 40 be the greatest epoch that any correct replica is in at any time < GST, let C1 be the first time (if there

exists such) at which any correct replica enters epoch 40 + 1, and let E1 be the least view of epoch 40 + 1 which has a

correct leader. Our basic aim is to prove that view E1 of epoch 40 + 1 will produce a confirmed block. To do so, we first

want to produce a bound on C1.

Bounding C1. Note first that, by (†0) (of Section 2), all correct replicas will see an EC for epoch 40 by �() + Δ, and

will be in an epoch ≥ 40 by this time. Generally, for any correct replica to enter an epoch 4 > 1, at least = − 25 correct

replicas have to be in epoch 4 − 1 and wish to enter epoch 4 . This means that the first epoch 4 > 40 that any correct

replica will enter at any time ≥ �() will be 40 + 1. In fact, we can argue that C1 ≤ �() + 2Δ + 12( 5 + 1)Δ. To see this,

suppose towards a contradiction that no correct replica enters epoch 40 + 1 (and therefore no higher epoch either) by

time �() + 2Δ + 12( 5 + 1)Δ. Then all correct replicas will wish to enter epoch 40 + 1 by time �() + Δ + 12( 5 + 1)Δ,

and will send an epoch 40 + 1 message to all leaders of epoch 40 + 1. A correct leader for epoch 40 + 1 will then receive

= − 5 epoch 40 + 1 messages by time�() + 2Δ + 12( 5 + 1)Δ, and will enter epoch 40 + 1 at this time.

Proving that view E1 produces a confirmedblock. Let C∗ be the first time (if it exists) at which a block corresponding

to view E1 of 40 + 1 is confirmed, and let C2 = min{C∗, C1 + 12(E1 + 1)Δ}. Note that, for a correct replica to enter a view or

epoch (> 1), at least = − 25 correct replicas must first wish to enter the respective view or epoch. Correct replicas will

only wish to enter a given view or epoch when either they see a block corresponding to the previous view5 confirmed,

or else their timer reaches the relevant ‘trigger time’ (see the instructions for view changes in Section 2). This means

that:

(⋄0) No correct replica can enter an epoch > 40 + 1 prior to C2.

(⋄1) No correct replica can enter any view E > E1 of epoch 40 + 1 prior to C2.

We claim that:

(⋄2) The number of messages sent by correct replicas (combined) in the time interval (GST + Δ, C2] is $ (=2).

(⋄3) A block corresponding to view E1 will be confirmed by time C2.

From (⋄2) and (⋄3) it follows that$ (=2) messages are sent by all correct replicas combined after�() +Δ and before

the first block proposed by a correct leader is confirmed. It also follows that the time to first confirmation after�() is

$ ( 5 Δ), since C1 ≤ �() + 2Δ + 12( 5 + 1)Δ and C2 ≤ C1 + 12(E1 + 1)Δ.

Statement (⋄2) follows straight from the definition of the protocol – correct replicas only carry out at most one

change of epoch (from 40 to 40 +1) in the time interval (GST+Δ, C2], and each of the$ (=) many views within an epoch

has the correct replicas combined sending $ (=) many messages.

Next we show (⋄3). This now follows essentially just as in Hotstuff. Suppose, towards a contradiction, that no block

corresponding to view E1 is confirmed by time C1 + 12(E1 + 1)Δ. By (⋄0), it follows that all correct replicas will be in

epoch 40 + 1 by time C1 + Δ. By (⋄0) and (⋄1), it follows that all correct replicas will be in view E1 of epoch 40 + 1 by

time C1 + 3Δ + 12E1Δ (and within time Δ of each other). Before broadcasting the VC for view E1, the leader receives

view E1 messages from at least = − 25 correct replicas, and each of these messages includes the highest QC that the

replica has seen at the point that the message is sent. When correct replicas wish to enter view E1 and send a view E1

message, they cease executing instructions for previous views. Now consider the highest lock of any correct replica 8

before receiving the block � from the leader of view E1. This lock was set because 8 saw a stage 2 QC for a block � ′.

This means that at least = − 25 correct replicas must have produced stage 2 votes for � ′ (prior to any point at which

5Here, it is to be understood that the view previous to view 0 of epoch 4 is view 5 of epoch 4 − 1.
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they wished to enter view E1 and stopped executing instructions for views < E1), and so must have seen a stage 1 QC

for � ′ by that time. Since any two sets of =−25 correct replicas have a correct replica in the intersection, it follows that

one of the view E1 messages seen by the leader of E1 must be from a correct replica who had already seen the stage 1

QC for � ′. This means that all correct replicas will then produce stage 1,2 and 3 votes for the block proposed by the

leader of view E1, and this block will be confirmed before time C1 + 12(8 + 1)Δ, giving the required contradiction. �

The fact that the protocol is optimistically responsive is clear from the protocol description, so we are left to consider

mean message complexity.

Lemma 3.3. The protocol described in Section 2 has $ (=) mean message complexity.

Proof. Let 40 be as defined in the proof of Lemma 3.2, i.e. let 40 be the greatest epoch that any correct replica is in

at any time < GST. The proof of Lemma 3.2 actually suffices to establish that all correct leaders for views in epochs

> 40 will produce confirmed blocks (just redefine C1 in the proof to be the first time at which any correct replica enters

the relevant epoch and omit the parts of the proof that are now not relevant). The lemma therefore follows, since

epochs > 40 will confirm Ω(=) many blocks on average and will each require correct replicas to send $ (=2) many

signatures. �

4 COMMUNICATION COMPLEXITY

4.1 The issue in dealing with communication complexity.

All messages sent by replicas in the protocol of Section 2 would be of length $ (^), were it not for the fact that the

instructions required some messages to have attached the message state of the replica.6 When replicas send a view E

message, for example, they are required to attach their message state. In fact, the instructions differ from the original

Hotstuff protocol in that regard – in the Hotstuff protocol, replicas are only required to attach the highest QC they

have seen to the message (which is called a NEW-VIEW message in that paper). The question then becomes, if one

follows the instructions for Hotstuff, is the information received by the leader actually enough to produce the next

block? If the leader is to produce a block which does not repeat requests from earlier in the blockchain, then it isn’t

enough just to see the highest QC, they also need to know all blocks which are predecessors of the block to which that

QC corresponds. One could allow that requests be repeated in the blockchain, and dictate that only the first instance

of a request should count (with clients numbering different instances of requests to avoid confusion), but this does not

negate the fact that any replica actually needs to know all blocks in the chain to carry out the requests in order. So,

there is a subtle difference between the information that is required to build the blockchain and the information that is

actually required to execute the requests, in that case. Generally, one has the issue that (even after GST), faulty leaders

may confirm 5 consecutive blocks, with up to 5 many of the correct replicas not being aware of those blocks. If the

protocol is to remain live, then those correct replicas certainly have to be made aware of the confirmed blocks at some

point. If one has leaders routinely broadcasting 5 many predecessors each time they broadcast a new block, then each

view will have communication complexity Θ(^=2). If one has previous blocks only sent upon demand by the relevant

replica, then it seems difficult to avoid faulty replicas making demands that cause communication complexity Θ(^=2)

per view.

6Recall from Section 1.1 that the written versions of epoch numbers are$ (^) .
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4.2 Byzantine Agreement.

To deal with this issue, we first observe that such considerations become unproblematic in the case that we only wish to

satisfy Byzantine Agreement [LSP82]. Recall that, in the task of reaching Byzantine Agreement, each replica is given

an input (which we assume to have length $ (^)), that all correct replicas are required to terminate with the same

output, and that if all correct replicas are given the same input D , then D must be their common output.

To prove Theorem 1.3, we make the following changes to the protocol of Section 2:

• The protocol begins with an extra instruction that has each correct replica broadcast a signed message with its

input.

• Blocks no longer contains requests. Any block that has the genesis block as parent must contain signed inputs

from = − 5 processors. The decision value corresponding to this set of signed inputs is the most common signed

value, with ties broken by least hash. If a correct replica is unable to propose a new block when instructed to

do so, it waits for time Δ and then omits the instruction if still unable to proceed.

• Blocks which do not have the genesis block as parent contain only their epoch and view number and a hash of

their parent block, together with a decision value, which must be the same as the decision value for their parent

block (otherwise the block is not valid and will be ignored by correct replicas).

• When a replica sends a view E message, it now attaches only the highest QC it has seen, together with the block

corresponding to that QC.

• When a leader proposes a new block � with parent block � ′ other than the genesis block, it now broadcasts

only �, � ′ and the QC for � ′, together with the relevant VC. Correct replicas will ignore the new block unless it

arrives with � ′, a QC for � ′, and unless the decision and hash values match. If � has the genesis block as parent,

then the leader broadcasts only the signed block �, together with the relevant VC.

• When a correct replica sees a confirmed block with decision value D , it broadcasts the block together with the

stage 3 QC, before terminating with output D .

Verification. Since correct replicas will ignore a new proposed block unless either it has parent the genesis block or

else they are able to verify that it has the same decision value as its parent, it follows that no block can receive a QC

unless it records the same decision value as its parent or has the genesis block as parent. For any block � with a QC,

it follows inductively that all predecessors (other than the genesis block) also receive QCs, and so all record the same

decision value. The proof of Lemma 3.1, which was oblivious to the content of blocks beyond the fact that they should

satisfy certain structural properties to be valid, suffices to show that incompatible blocks cannot be confirmed, which

means that all confirmed blocks must have the same decision value. Since all signed inputs from correct replicas will

be delivered by GST+Δ, the proof of Lemma 3.2 suffices to show that a confirmed block will be produced and all correct

replicas will terminate within time $ ( 5 Δ) after �() . Since $ (=2) messages will be sent after GST+Δ and prior to the

first point at which a correct replica sees a confirmed block, and since all messages are of length $ (^), the worst-case

communication complexity is $ (^=2). If all correct replicas receive the same input D , then the decision value of any

(valid) block with the genesis block as parent must be D . It follows that any block receiving a QC must have decision

value D .

4.3 Proving Theorem 1.2.

In the following proof, we assume either that all requests are of length $ (^), or else that the length of requests is

discountedwhen counting communication complexity. As described in Section 1.1, we also suppose that blocks contain
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a constant bounded number of requests. The basic idea is that we carry out repeated instances of Byzantine Agreement,

using a protocol like that described in the proof of Theorem 1.3. We make the following changes to the protocol of

Section 2.

(1) We consider super-epochs:

• As before, each epoch contains 5 + 1 views. Now, though, we consider also super-epochs, which may contain

any number of epochs. Each super-epoch will guarantee the confirmation of one new block.

• The genesis block corresponds to view 0 of epoch 0 of super-epoch 0.

• We consider QCs ordered by super-epoch, then by epoch, then by view, and then by stage number within the

view.

• Replicas begin in super-epoch 1. Upon entering any super-epoch, replicas immediately wish to enter epoch 1 of

that super-epoch.

• Within each super-epochwe rotate leaders as before, and also rotate so that the leaders of epoch 1 of super-epoch

B are replicas B mod =, . . . , B + 5 mod =.

• Upon first seeing any confirmed block � corresponding to super-epoch B , correct replicas broadcast �, together

with a stage 3 QC for �, and then immediately begin super-epoch B + 1.

(2) We stipulate how requests should be included in blocks as follows:

• A block whose parent corresponds to a previous super-epoch cannot contain requests included in any predeces-

sor block (otherwise it fails to be valid).

• Blocks whose parent belongs to the same super-epoch must contain the same ordered set of requests as their

parent block to be valid.

(3) We change the information attached to messages as follows:

• When a replica sends a view E message, it now attaches only the highest QC it has seen, together with the block

corresponding to that QC.

• When a leader proposes a new block � with parent block � ′ other than the genesis block, it now broadcasts

only �, � ′ and the QC for � ′, together with the relevant VC. Correct replicas will ignore the new block unless it

arrives with � ′, a QC for � ′, and until they can verify that the conditions on requests included in � (described

above) are satisfied. If � ′ is the genesis block, then the leader just broadcasts �, together with the relevant VC.

(4) The rest of the instructions while within any given view or epoch are exactly as before, except that (just as replicas

will not enter any view unless already in the corresponding epoch) replicas will not enter any epoch unless already in

the corresponding super-epoch. Replicas will also cease carrying out the instructions for any super-epoch as soon as

they leave that super-epoch.

Verification. First of all, we consider the structure of blocks and the relationship with super-epochs.

The requests inside blocks in a chain. Just as in the proof of Theorem 1.3, it follows inductively that for any block

� that receives a QC, all predecessors (other than the genesis block) receive QCs, and all predecessors that belong

to the same super-epoch record the same ordered set of requests. Again, the proof of Lemma 3.1 suffices to show

that incompatible blocks cannot be confirmed. All confirmed blocks corresponding to the same super-epoch must

therefore record the same ordered set of requests. When a correct replica first sees a block corresponding to super-

epoch B confirmed, it follows inductively that, for each previous super-epoch, at least one correct replica must have
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seen a block corresponding to that super-epoch confirmed, and will have broadcast that block together with a stage 3

QC for the block. This means that, when any correct replica first sees a block corresponding to a given super-epoch

confirmed, within time Δ it will know at least one confirmed block from each previous super-epoch, and will therefore

have the information it needs to execute the requests in order.

Liveness. To establish liveness, we follow almost exactly the same proof as for Lemma 3.2. Let B0 and 40 be the greatest

super-epoch and epoch that any correct replica is in at any time < GST (so that 40 is an epoch within B0). Let C1 be the

first time (if there exists such) at which any correct replica enters either super-epoch B0 + 1 (meaning that they have

seen a block corresponding to B0 confirmed) or epoch 40 + 1 of B0. Whenever we refer to epoch 40 + 1 (or epoch 40) in

the following, it is always to be assumed that this means epoch 40 + 1 (or 40) of super-epoch B0. Let E1 be the least view

of epoch 40 + 1 which has a correct leader.

We produce a bound on C1, by much the same argument as in the proof of Lemma 3.2. All correct replicas will see

confirmed blocks corresponding to all super-epochs < B0 and an EC for epoch 40 by �() + Δ, and so will either be in

a super-epoch > B0 or else in an epoch ≥ 40 of B0 by this time. The same reasoning as in the proof of Lemma 3.2 then

suffices to show that C1 ≤ �() + 2Δ + 12( 5 + 1)Δ. Let C∗ be the first time (if it exists) at which a correct replica sees a

block corresponding to super-epoch B0 confirmed, and let C2 = min{C∗, C1 + 12(E1 + 1)Δ}. Note that:

(⋄0) No correct replica can enter an epoch > 40 + 1 prior to C2.

(⋄1) No correct replica can enter any view E > E1 of epoch 40 + 1 prior to C2.

We claim that:

(⋄2) The number of bits sent by correct replicas (combined) in the time interval (GST + Δ, C2] is $ (^=2).

(⋄3) A block corresponding to super-epoch B0 will be confirmed and seen by a correct replica by time C2.

From (⋄2) and (⋄3) it follows that$ (^=2) bits are sent by all correct replicas combined after�() +Δ and before the

first block confirmation. It also follows that the time to first confirmation after �() is $ ( 5 Δ), since C1 ≤ �() + 2Δ +

12( 5 + 1)Δ and C2 ≤ C1 + 12(E1 + 1)Δ.

As before, statement (⋄2) follows straight from the definition of the protocol. We are left to establish (⋄3), which

again follows essentially just as in Hotstuff. Suppose, towards a contradiction, that no block corresponding to super-

epoch B0 is confirmed and seen by a correct replica by time C1 + 12(E1 + 1)Δ. By (⋄0), it follows that all correct replicas

will be in epoch 40 + 1 by time C1 + Δ. By (⋄0) and (⋄1), it follows that all correct replicas will be in view E1 of epoch

40 + 1 by time C1 + 3Δ + 12E1Δ (and within time Δ of each other). Before broadcasting the VC for view E1, the leader

receives view E1 messages from at least = − 25 correct replicas, and each of these messages includes the highest QC

that the replica has seen at the point that the message is sent, together with the corresponding block. When correct

replicas wish to enter view E1 and send a view E1 message, they cease executing instructions for previous views. Now

consider the highest lock of any correct replica 8 before receiving the block � from the leader of view E1. This lock

was set because 8 saw a stage 2 QC for a block � ′. This means that at least = − 25 correct replicas must have produced

stage 2 votes for � ′ (prior to any point at which they wished to enter view E1 and stopped executing instructions for

views < E1), and so must have seen a stage 1 QC for � ′ by that time. Since any two sets of = − 25 correct replicas have

a correct replica in the intersection, it follows that one of the view E1 messages seen by the leader of E1 must be from

a correct replica who had already seen the stage 1 QC for � ′. This means that all correct replicas will then produce

stage 1,2 and 3 votes for the block proposed by the leader of view E1, and this block will be confirmed before time

C1 + 12(8 + 1)Δ, giving the required contradiction.
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5 DIRECTIONS FOR FUTUREWORK

We close by pointing out some weaknesses in the proofs we have presented here, and asking to what extent those

weaknesses are necessary. First of all, consider the protocol described in Section 2, for the proof of Theorem 1.1. A

weakness of this protocol is that, after GST, a single faulty replica can produce a delay of length Ω( 5 Δ) in the production

of confirmed blocks. For example, if the first 5 leaders of an epoch are all correct and produce 5 confirmed blocks in

close to zero time, then a faulty leader for view 5 of the epoch can cause a delay of length Ω( 5 Δ) simply by failing to

propose any block. The following (slightly imprecise) question naturally arises:

�estion 1. Can one improve the protocol of Section 2 so that it still establishes the claims of Theorem 1.1, while also

ensuring that any set of : consecutive faulty leaders can only cause a delay of length$ (:Δ) in the production of confirmed

blocks?

Next, we consider two weakness in the proof of Theorem 1.2. The protocol of Section 2 actually produced something

stronger than explicitly claimed in the statement of Theorem 1.1, in that the claims of Theorem 1.1 are all shown to

hold if we restrict attention to confirmed blocks produced by correct leaders, e.g. at most$ (=2) many messages are sent

after GST+Δ and prior to the first confirmation of a block produced by a correct leader. In the proof of Theorem 1.2, on

the other hand, a block containing a set of requests that are proposed by a correct leader will be produced whenever

the first leader of a super-epoch is correct, but super-epochs for which the first leader is faulty may confirm a set of

requests that are proposed by a faulty leader (even if it is a correct leader that eventually produces a confirmed block).

This means that $ (^=2) many bits need to be sent for each block confirmation after GST, but if 5 consecutive super-

epochs produce blocks confirming a set of requests proposed by a faulty leader, then$ (^=3) many bits are required to

be sent before the first confirmation of a block containing requests proposed by a correct leader.

�estion 2. Can one modify the proof of Theorem 1.2 so that the result still holds when we restrict attention to blocks

that confirm sets of requests proposed by correct leaders?

Another obvious weakness of Theorem 1.2, is that we dropped the requirement for $ (^=) mean communication

complexity:

�estion 3. Consider the partial synchrony model. Does there exist a BFT SMR protocol with optimal resiliency, and

worst-case communication complexity$ (^=2), which is also optimistically responsive, with $ ( 5 Δ) time to first confirma-

tion after �() and $ (^=) mean communication complexity?
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