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Abstract 

Objectives: The present paper describes a new algorithm to find a root of non-linear transcendental equations. It is 

found that Regula-Falsi method always gives guaranteed result but slow convergence. However, Newton–Raphson 

method does not give guaranteed result but faster than Regula-Falsi method. Therefore, the present paper used these 

two ideas and developed a new algorithm which has better convergence than Regula-Falsi and guaranteed result. 

One of the major issue in Newton–Raphson method is, it fails when first derivative is zero or approximately zero.

Results: The proposed method implemented the failure condition of Newton–Raphson method with better conver-

gence. Error calculation has been discussed for certain real life examples using Bisection, Regula-Falsi, Newton–Raph-

son method and new proposed method. The computed results show that the new proposed quadratically conver-

gent method provides better convergence than other methods.
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Introduction

Most of the real life-problems are non-linear in nature 

therefore it is a challenging task for the mathematician 

and engineer to find the exact solution of such problems 

[1, 2]. In this reference, a number of methods have been 

proposed/implemented in the last two decades [1, 3–8]. 

Analytical solutions of such non-linear equations are very 

difficult, therefore only numerical method based iterative 

techniques are the way to find approximate solution. In 

the literature, there are some numerical methods such as 

Bisection, Secant, Regula-Falsi, Newton–Raphson, Mul-

lers methods, etc., to calculate an approximate root of 

the non-linear transcendental equations. It is well known 

[1, 3–11, 14] that all the iterative methods require one or 

more initial guesses for the initial approximations.

In Regula-Falsi method, two initial guesses are taken in 

such a way that the corresponding function values have 

opposite signs. �en these two points are connected 

through the straight line and next approximation is the 

point where this line intersect the x-axis. �is method 

gives guaranteed result but slow convergence therefore 

several researchers have improved this standard Regula-

Falsi method into different hybrid models to speed up the 

convergence [1, 3–5, 7, 10, 11, 15, 16]. �us previously 

published works have revised/implemented Regula-Falsi 

method in several ways to obtain better convergence. 

However, it is found that modified form of Regual-Falsi 

method becomes more complicated from computational 

point of view. �erefore, in the present work Regual-Falsi 

method has been used as its standard form with New-

ton–Raphson method and found better convergence. 

Newton–Raphson method is generally used to improve 

the result obtained by one of the above methods. �is 

method uses the concept of tangent at the initial approxi-

mation point. �e next approximate root is taken those 
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value where the tangent intersect the x-axis. So this 

method fails where tangent is parallel to x-axis, i.e. the 

derivative of the function is zero or approximately zero. 

�e order of convergence of Newton–Raphson method is 

two, therefore it converges very rapidly than other meth-

ods (Bisection, Regula-Falsi, etc.). However it does not 

always give guaranteed root. Many scientists and engi-

neers have been proposed different hybrid models on 

Newton–Raphson method [8, 9, 12–14, 17–22].

It is clear from the survey [1–22], that the most of new 

algorithms are either based on three classical methods 

namely Bisection, Regula-Falsi and Newton–Raphson 

or created by hybrid processes. In the present work, the 

proposed new algorithm is based on standard Regula-

Falsi and Newton–Raphson methods, which provides 

guaranteed results and higher order convergence over 

Regula-Falsi method. �e new proposed algorithm will 

work even the first derivative equals to zero where New-

ton–Raphson method fails.

Main text

Consider a continuous function f(x) between a and b such 

that f(a) and f(b) having opposite signs, consequently 

f (a) · f (b) < 0 . Without loss of generality, assume that 

f(a) is negative and f(b) is positive, and |f (a)| < |f (b)| , 

hence at least one root lies between a and b. From Reg-

ula-Falsi method, the first approximate root can be calcu-

lated by using the formula

and, the first approximate root by using Newton–Raph-

son method is

where f ′(a) indicates the derivative of f(x) at x = a.

Now, in the present proposed algorithm, we take the 

average of the iterations in Eqs.  (1) and  (2) as our first 

approximate root x̂ and follow the conditions given 

below for further iterations:

• Choose two values a and b where the root exists as in 

Regula-Falsi method.

• Select the value such that the corresponding func-

tion is closer to zero as a and the other one as b, i.e. 

|f (a)| < |f (b)|.

• If first derivative at a is zero (i.e., f ′(a) = 0 ) then 

interchange the values of a and b i.e., interchange (a, 

b) to (b, a).

(1)x =

af (b) − bf (a)

f (b) − f (a)
,

(2)x = a −

f (a)

f ′(a)
,

�e generalization of this process is described in the fol-

lowing section.

Formulation of proposed algorithm

Recall the Eqs.  (1) and  (2) in terms of iteration formu-

lae by replacing a,  b,  x by xn−1, xn+1, xn respectively, as 

follows

and

where n is the iteration number and |f (xn−1)| < |f (xn+1)| . 

Now the average of Eqs. (3) and (4) is

After simplification of (5), we get

�e value xn in Eq.  (6) gives the iterative formula with 

|f (xn−1)| < |f (xn+1)| . If f ′(xn−1) = 0 , then Eq.  (6) gives 

undefined value, then we have to interchange the values 

xn−1 and xn+1.

�e following �eorem gives the generalization of 

above formulation.

Lemma 1 Let f(x) be a continuous function and (a, b) be 

a sufficiently small interval such that f (a)f (b) < 0, and 

f ′(x) exists on [a, b]. �en the approximation of a root of 

f(x) can be find using the iterative formula given in Eq. (6).

Steps for calculating a root

 I. Select two initial approximations xn−1 and xn+1 

such that product of the corresponding function 

values must be negative, i.e. f (xn−1)f (xn+1) < 0.

 II. Now calculate xn using the formula given in Eq. (6). 

Check f (xn) = 0 , if so, then xn is required root and 

process stop. Otherwise we check the following 

possible conditions. 

 (i) For f (xn)f (xn−1) < 0 , suppose |f (xn−1)| <

|f (xn)| then xn replace by xn−1 and xn−1 replace 

by xn.

(3)xn =
xn−1f (xn+1) − xn+1f (xn−1)

f (xn+1) − f (xn+1)

(4)xn = xn−1 −

f (xn−1)

f ′(xn−1)
,

(5)

xn =
1

2

[(

xn−1f (xn+1) − xn+1f (xn−1)

f (xn+1) − f (xn−1)

)

+

(

xn−1 −
f (xn−1)

f ′(xn−1)

)]

(6)

xn = xn−1 −
f (xn−1)

2f ′(xn−1)
(

f (xn−1) − f (xn+1) + (xn−1 − xn+1)(f
′(xn−1))

f (xn−1) − f (xn+1)

)

.
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 (ii) For f (xn)f (xn+1) < 0 , suppose |f (xn)| <

|f (xn+1)| then xn+1 replace by xn.

 III. If f ′(xn−1) ≈ 0 then interchange xn−1 and xn+1.

 IV. Repeat steps I, II and III until we get required 

approximate solution.

�e implementation of the proposed algorithm in Mat-

lab is also discussed (See, Additional file  1). �is algo-

rithm would help to implement the manual calculations 

in commercial packages such as Maple, Mathematica, 

SCILab, Singular,etc.

Order of convergence

�e order of converges of any iterative method is defined 

as

where p is the order of convergence and c is a positive 

finite constant. �e following �eorem shows the order 

of convergence of the proposed algorithm is quadratic.

�eorem 2 Let β be a exact root of a continuous func-

tion f(x) and [a, b] be a sufficiently small neighbourhood 

of β. �en the sequence {xn} generated by the iterative for-

mula (6) is at least quadratically convergent.

Proof If xn is an approximate value of β and en is the 

error of the xn then

In the similar way, xn+1 = β + en+1 and xn+2 = β + en+2 . 

By proposed algorithm,

putting values of xn, xn+1 and xn+2 in above equation, we 

get

After simplification of above equation using Taylor’s 

series, we get

(7)|en+1| ≤ c|en|
p
,

xn = β + en.

xn+2 = xn −
f (xn)

2f ′(xn)
(

f (xn) − f (xn+1) + (xn − xn+1)(f
′(xn))

f (xn) − f (xn+1)

)

,

β + en+2 = β + en −
f (β + en)

2f ′(β + en)

(

f (β + en) − f (β + en+1) + (β + en − β − en+1)(f
′(β + en))

f (β + en) − f (β + en+1)

)

.

en+2 =

[

enen+1

f ′′(β)

2f ′(β)
+ e2n

f ′′(β)

2f ′(β)

]

=
f ′′(β)

2f ′(β)

[

enen+1 + e2n

]

,

Putting 
f ′′(β)

2f ′(β)
= A (constant), then

We have, |en+2| = c|en+1|
p , c > 0 ; |en+1| = c|en|

p ; and 

|en| = c−1/p|en+1|
1/p . Substituting in  Eq.  (8) and after 

simplification, we get

If p = 1 , then

where c∗ = c
∗

1
+ c

∗

2
 . From Eq. (7), it shows that the itera-

tive formula (6) has quadratic convergent. �

Results

�is section provides three examples to discuss the algo-

rithm presented in “Main text” section  and comparisons 

are taken into account to conform that the algorithm is 

more efficient than other existing methods. Moreover, it 

is also observed that the proposed method takes less time 

in comparison of Regula Falsi method but takes more 

convergence time in comparison of Newton–Raphson 

method.

Example 3 Consider a transcendental equation of the 

form

We compute a root of Eq.  (9) in the interval (0,1) using 

Bisection, Regula-Falsi, Newton–Raphson and proposed 

algorithm.

Table  1 shows that the comparison between Bisection, 

Regula-Falsi, Newton–Raphson and proposed method. 

�e errors given in table are indicating the difference 

between two consecutive iterations. It is clear that the 

proposed method rapid convergence towards exact root 

than bisection and Regula-fasi method. It is not as speed 

(8)en+2 = A

[

enen+1 + e
2

n

]

= Aenen+1 + Ae
2

n.

c1e
p
n+1 = c2e

1+1/p
n+1 + c3e

2
n

= c′2e
p+1
n + c3e

2
n, where c′2 = c1c

|en+1|
p ≤ c∗1 |en|

p+1 + c∗2 |en|
2
, where c∗1 = c′2c

−1
1 , c∗2 = c3c

−1
1

|en+1| ≤ c
∗|en|

2
,

(9)xe
x

= cos(x).
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convergent as Newton–Raphson method, but provide 

guaranteed result.

It is found that bisection and Regula-Falsi methods con-

verged after 22 and 14 iterations respectively (Table  1), 

while the proposed algorithm converged in 7th itera-

tion. �us proposed method is efficient over bisection 

and Regula-Falsi methods. It is also clear that both of 

the methods (proposed and Newton–Raphson) are con-

verged in 7th iteration. But one of the main advantage of 

proposed method is that it gives guaranteed result over 

the Newton–Raphson method. �erefore, the proposed 

method is not only reduce the computational affords but 

also provide the guaranteed result for solving the real life 

problem.

�e error estimation after the 3rd iteration (Table  1), 

show that the proposed method having 5.4% error in 

comparison to Bisection ( 20% ), Regula-Falsi ( 9.57% ) and 

Newton–Raphson ( 22.91% ) methods. �us, the proposed 

method is also efficient for error estimation.

Most of the real life problems take too much computa-

tional time for convergence because of the complex flow 

physics and higher degree polynomial equations. �ere-

fore, the proposed method is useful also for solving such 

the real life problem.

Example 4 Consider a transcendental equation of the 

form

We compute a root of above equation in the interval (1,3) 

using Bisection, Regula-Falsi, Newton–Raphson and pro-

posed algorithm.

Table  2 shows that bisection method converged in 21st 

iteration however the remaining three methods (Regula-

Falsi, Newton–Raphson, proposed) converged after 3rd 

iteration. �us, as similar to the Example  3, proposed 

method is efficient to solve this logarithmic problem.

Example 5 Consider the real root of f (x) = 1 − x2 in 

the interval (0, 2).

(10)x log10(x) − 1.2 = 0.

Table 1 Comparison between di�erent methods with errors for Example 3

Italic values indicate the approximate root at 00.00 % of the deviation using the various methods

Ite no. BM approx. root % deviation R-F approx. root % deviation N–R approx. root % deviation PM approx. root % deviation

1 0.5000 – 0.3147 – 1.0000 – 0.6573 –

2 0.7500 100 0.4467 100 0.6531 100 0.4886 100

3 0.6250 33.33 0.4940 29.56 0.5313 53.12 0.5165 34.52

4 0.5625 20.00 0.5099 09.57 0.5179 22.91 0.5176 05.40

5 0.5313 11.11 0.5152 03.12 0.5178 02.59 0.5177 00.23

6 0.5156 05.88 0.5169 01.02 0.5178 00.03 0.5177 00.01

7 0.5234 03.03 0.5177 00.10 0.5178 00.00 0.5178 00.00

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

14 .
.
.

.

.

.
0.5178 00.00

.

.

.

.

.

.

.

.

.

22 0.5178 00.00

Table 2 Comparison between di�erent methods with errors for Example 4

Italic values indicate the approximate root at 00.00% of the deviation using the various methods

Ite no. BM approx. root % deviation R-F approx. root % deviation N–R approx. root % deviation PM approx. root % deviation

1 2.0000 – 2.6767 – 3.7631 – 3.2199 –

2 2.5000 50.00 2.7392 62.64 2.8067 73.43 2.6935 68.94

3 2.7500 20.00 2.7406 02.28 2.7410 34.08 2.7398 19.54

4 2.6250 09.09 2.7406 00.05 2.7406 02.39 2.7406 01.69

5 2.6875 04.76 2.7406 0.001 2.7406 00.01 2.7406 00.03

6 2.7188 02.33 2.7406 00.00 2.7406 00.00 2.7406 00.00

.

.

.

.

.

.

.

.

.

21 2.7406 00.00
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In this example, Newton–Raphson method unable to find 

the real root because of f ′(x) is zero at initial approxima-

tion x = 0 as in Eq.  (2). However, the proposed method 

give approximate root with any range of initial approxi-

mation as given in Table 3. �us, the proposed method is 

also applicable to such equation where f ′(x) is zero with 

any one of the initial approximations. Since f ′(x) = 0 at 

a = 0 , therefore according to the proposed method, the 

initial approximations automatically interchange i.e., 

a = 2 and b = 0 as shown in Table 3.

Limitations

�e order of the presented method is quadratic. Even 

though there are methods with a higher order of conver-

gence, the proposed method is simple and efficient quad-

ratic convergence method.

Additional �le

Additional �le 1. Implementation of the proposed method in Matlab. 

In the Additional file, we provide the implementation of the proposed 

method inMatlab code similar to Regula-Falsi method in [23] by creating a 

data type NewAlgorithm (f, a, b, esp, n),as given in Additional file, where f 

is a given transcendental equation, a, b are the initial approximationof the 

root, esp is the relative error and n is the number of iterations required.

Abbreviations

BM: Bisection method; R-F: Regula-Falsi; N–R: Newton–Raphson; PM: proposed 

method.
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