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Quadratically Convergent Algorithms for Optimal
Dextrous Hand Grasping

Uwe Helmke, Senior Member, IEEE, Knut Hüper, and John B. Moore, Fellow, IEEE

Abstract—There is a robotic balancing task, namely real-time
dextrous-hand grasping, for which linearly constrained, positive
definite programming gives a quite satisfactory solution from an
engineering point of view. We here propose refinements of this ap-
proach to reduce the computational effort. The refinements include
elimination of structural constraints in the positive definite ma-
trices, orthogonalization of the grasp maps, and giving a precise
Newton step size selection rule.

Index Terms—Dextrous hand, gradient flow, Newton algorithm,
optimal grasping, positive definite programming, Riemannian ge-
ometry, robotic hand.

I. INTRODUCTION

I N ROBOTICS, a key issue is the coordination of indepen-
dent actuators to achieve a common goal. Thus, for mul-

tiple robots lifting an object, walking robots, or a robotic hand
grasping and manipulating an object, there must be some bal-
ance and optimization of forces. The optimization, which is in
essence a mathematical task, must achieve useful grasp plans for
implementation in real time. For online dextrous hand grasping
in robotics, a requirement is to develop real-time schemes which
result in minimal and balanced contact forces satisfying friction
cone constraints.

The earlier context for this research starts with [7] and [8]
where linear programming techniques are used, but with ill-con-
ditioning problems. Nonlinear programming techniques, as ap-
plied in [9], lead to an essentially off-line approach, which is not
practical for real-time implementation.

In [1] and [2], linearly constrained positive definite program-
ming methods are developed for an online grasping optimization
task. The algorithms appear at times to be quadratically conver-
gent, although this was not guaranteed by any theory, and the
selection of the step size involved in the algorithms requires an
ad hoc line search. Nevertheless, these algorithms are one or
two orders of magnitude faster than earlier schemes proposed
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in the literature, and the optimal solutions calculated appear to
be relatively more acceptable in engineering terms. There re-
mains a challenge to achieve guaranteed quadratic convergence,
and even faster algorithms if possible. In addition, in the event
of changing external forces, or nonfeasible initial conditions,
there is a challenge to achieve robust online convergence to the
optimal solution. The cost index from [1], [2] appears to be an
appropriate one, so there is no real need to refine this aspect in
advancing the methods.

The online optimization schemes in [1] and [2] are based
on the observation that the friction inequality constraints at the
finger contacts can be viewed as a positive definiteness con-
straint of a matrix, denoted , which is linear in the contact
forces. The balancing of internal and external forces imposes ad-
ditional linear constraints. The cost function is linear in both
and either , or . The penalty term involving

or ensures that, with an initial positive definite, a
gradient algorithm achieves an optimalwhich is positive def-
inite. Slippage at the finger contacts occurs if is zero,
and there is loss of contact if becomes indefinite. The linear
cost on ensures that the totality of finger forces is minimal.

Initial insights into the optimization, outlined in [1], arose
from the study of gradient flow methods for balancing prob-
lems as in [4], and mild generalizations of these. Subsequently,
discrete-time versions of these gradient flows with guaranteed
global convergence properties have been developed using a
Dikin step size familiar to linear and quadratic programming
[2]. The approaches in [1] and [2], however, did not lead
to precise step-size selection with guaranteed convergence
properties, but were based on line-search arguments.

In more recent work [5], the cost index of [1] and [2] is opti-
mized using a generic linear matrix inequality (LMI) semi-def-
inite programming approach [3], [6], [10], [12]. This is claimed
in [5] to achieve convergence with less computational effort. Ac-
tually, key differences in the LMI approach to that of [1] and [2]
turn out to be the step-size selection in a Newton-based scheme,
and the handling of the linear constraints. There is a factor of
four or so improvement claimed for one example. This relative
success underlines the question as to whether or not there is
room to surpass the LMI algorithm performance with a more
specialized algorithm.

We introduce a number of enhancements and generalizations
of the methods of [1] and [2], some of which also apply to
enhance the Newton-type LMI approach of [5]. In this work,
global convergence is shown involving precise step size selec-
tion, with guaranteedlocal quadratic convergencein the neigh-
borhood of the unique global optimum. Thus, convergence oc-
curs to the accuracy of the computer, typically in less than 10
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iterations for generic cases, so that online systems can be im-
plemented with confidence, rather than merely relying on the
experience that they usually work well. Our main convergence
result is reminiscent of similar results in convex programming
[10]–[12]. In such a convex programming approach, the step
size is selected as unity in the vicinity of an optimum, and oth-
erwise according to a line search. The criteria for determination
of which step-size selection to take depends on whether or not
the estimate is inside a Dikin ellipsoid. There is inherent dis-
continuity in the algorithm. Our approach of deriving approxi-
mate step sizes is different, in so far as quadratic convergence is
achieved by a continuous step size selection scheme. The conti-
nuity property enables us to develop a convergence theory using
only relatively straightforward ideas from Calculus. We believe
that this technique is new in this application and may be of in-
dependent interest.

There is additional computational effort reduction resulting
from a number of specific contributions:

• Formulation of the finger force inequality constraints in
terms of a 2 2 positive definite matrix in the point con-
tact case, rather than in terms of a 33 matrix as in [1],
[2], and in terms of a 2 2 positive definite complex Her-
mitian matrix, for the soft contact case, rather than as one
4 4 real symmetric matrix. This circumvents the need
to maintain structural linear constraints, which are clearly
artifacts, as well as achieving “dramatic” computational
effort reduction for the Newton-type algorithm.

• A priori orthogonalization of the linear grasping force con-
straints, which simplifies the computations for the linear
constraints for the Euclidean gradient algorithms.

• Calculation of a step size which is guaranteed to give a
reduced cost, achieving local quadratic convergence. This
can also initialize a proposed quadratically convergent line
search algorithm. Asymptotically, the step size is unity for
quadratic convergence.

• The optimum step size is observed to be the smallest real
zero of a polynomial constructed from quadratic polyno-
mials associated with each finger, and a maximum step
size for remaining within the cone is given in terms of
the solution of quadratic equations associated with each
finger.

In Section II, the robotic dextrous hand grasping constraints are
reformulated to simplify positive definite programming. In Sec-
tion III, the cost function to optimize grasp forces is given and
its relevant properties. In Section IV, relatively simple-to-cal-
culate Newton-type algorithms, based on Riemannian gradients
are studied. Novel, explicit step size selections for our algo-
rithms appear in Section V, together with the main quadratic
convergence results. Conclusions are drawn in Section VI.

II. GRASPINGCONSTRAINTS

Consider the simplest of all grasping problems, namely that
of a statically balanced grasp using point or soft finger contacts.
See [1] for a more complete context of robotic grasping and
formulation of optimization tasks.

A. Grasping Constraints: Background

1) Constraint Equalities and Inequalities:Consider fin-
gers with thepoint contactforces at the -th finger denoted

, the normal force component, and ,
the tangential components. Coulomb’s law for a point contact
friction model (with no slippage) is that for each

(1)

where denotes the Coulomb friction at the point contact
of the th finger. Denoting as the vector

(2)

then the balance of external forces can be written as a linear
equation

(3)

The grasp map is necessarily full rank for
so-called force closure [5]. It contains the contact wrench
directions in its columns and maps forces from the contact
frames to the coordinate frame of the grasped object center of
mass.

For the case ofsoft finger contactforces, the inequality con-
straints in an elliptic approximation are

(4)

where model the
relation between torsion and shear limits, and is the
component of moment about the contact normal.

There are alsojoint effort constraint inequalities, discussed
in [5], but these are omitted from consideration for simplicity of
presentation. They present no particular difficulties to include
within the subsequent theory.

2) Constraints as Linearly Constrained Cones:Recall that
a key observation of [1] is that the inequalities (1) for the point
contact case are equivalent to the positive definiteness condition

(5)

where the are given in terms of 3 3 matrices, linear in .
There are also structural constraints inthat the diagonal el-
ements be identical and that two elements are zero. There are
thus such constraints, augmenting the constraint (3), of the
form

for (6)

where have the same block diagonal structure as

(7)

The are 3 3 real matrices.
For the soft finger contact case, the contact forces are charac-

terized by (5) where now the are 4 4. Again is linear in
the contact forces and has linear structural constraints,
in that its diagonal terms are identical and some off-diagonal
terms are zero.
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3) Simplification of Cone Constraints: Point Contact
Case: A first observation, important for computational effort
reduction, is that the inequalities (1) are equivalent to the
positive definiteness of (5), but now with the given in
terms of 2 2 matrices, rather than 33 matrices, as

(8)

This constraint is equivalent to (1), since the trace and determi-
nant of are both positive. The number of linear constraints
is reduced by to . Similarly, the matrices are now
block diagonal with 2 2 symmetric subblocks .

4) Cone Constraints Simplification: Soft Finger
Case: Computational savings can be made as well for
this case, and robustness achieved, by working with the com-
plex Hermitian block diagonal matrix

(9)

(10)

There is a corresponding block diagonal structure for complex
Hermitian , with 2 2 submatrices . Note that the diag-
onal elements of are real, and that when , the point
contact case is recovered. These soft finger cone constraints (10)
are identical to (4), since the trace and determinant ofare both
positive. Again there is a reduction of the dimensions ofand
the number of constraints is reduced by to .

5) Computational Effort and Robustness Implica-
tions: There is a factor of two reduction in effort for
block multiplication. The main computational effort in the
Riemannian gradient update equations in [2] [see also (31),
(32), and (38)] is in calculating an matrix and its inverse.
Thus reducing , for example from to 6, amounts
to considerable computational savings. Also, any potential
numerical difficulties staying on the constraint submanifold
associated with the structural constraints are removed.

6) Orthogonalizing the Grasp Maps:We assume
throughout the paper that the grasp map is full rank, that
is are linearly independent. An observation which
leads to computational effort reduction for calculating Eu-
clidean gradients, but not for the Riemannian metric gradients,
is to organize the constraints (6) so that the are
orthogonal, i.e.,

(11)

where is if and unity otherwise.
For the point contact case, define

(12)

where

(13)

The constraint can then be rewritten in terms of
and and a matrix with orthonormal rows as

(14)

where , and

(15)

Now denote the elements of as and the th row of (14)
as . Then, by working with one row at a time, (14) can
be written as (6) where

for

(16)

The orthogonality of ensures the orthogonality of the .
That is, (11) holds. Notice that, in order to derive orthogonality,
we have chosen not to work with symmetric. However, re-
placing by the symmetric matrix , and noting
that , we can assume without loss of gen-
erality that is symmetric. Therefore, we assume this subse-
quently.

The corresponding soft finger results follow likewise.
7) Computational Effort Reduction From Orthogonaliza-

tion: One implication of orthogonalization is that working
with the six constraints (17), there is a computational reduction
in calculating the Euclidean gradient (25) and (27). There is not
any reduction for the Riemannian metric gradient calculation
(31), (32), and (38). The Riemannian metric gradient turns out,
as we show below, to be a Newton direction.

It is known that Newton algorithms, although quadratically
convergent in the neighborhood of the optimum, are usually not
faster than the linearly convergent gradient algorithms outside
this neighborhood. The computational savings from orthogonal-
ization of the grasp map, by a factor of 3 to 5 on typical grasping
examples, are an incentive to use a Euclidean gradient scheme
initially, for say three or four iterations at the cost of one Newton
iteration. Then, it is best to switch to the more expensive Newton
algorithm for the last few iterations.

III. GRASPINGCOST FUNCTION AND PROPERTIES

For simplicity, we focus on the point contact case. The anal-
ysis for the soft finger case follows along similar lines. Let

denote the set of block diagonal, real or complex Hermi-
tian positive definite matrices , consisting
of 2 2 blocks . Of course, . Denote the affine
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constraints as ,
and the constraints on as .

Consider the cost index

(17)

More general indices with positive definite weighting matrices
on in each of the terms of (17) can be considered as well
along the lines of the following theory. However, we will not do
so here.

We now consider, in turn, some features of the cost function
which lead to an optimization with guaranteed convergence.

A. Convexity of the Cost Function

It is known from [1] and [2] that such cost functions as in (17)
have compact sublevel sets on , ensuring the existence of
global minima. Moreover, the cost function on is strictly
convex. This implies that there are no critical points other than
a unique global minimum, denoted . A proof of this result is
included for completeness and to set up some notation.

The tangent space of is the -dimensional space
. That is,

for all

(18)

where denotes the set of block diagonal, real or complex
Hermitian matrices , consisting of 2 2 blocks .
For any , consider the cost function and its deriva-
tives with respect to

(19)

Clearly, , implying strict convexity of at any .
We show next that the optimization task is well posed.
Theorem III.1: The function is strictly

convex with compact sublevel sets and

The Hessian of at any point is

(20)

and is positive definite. In particular, there is a unique local and
global minimum

of . Moreover, depends smoothly on and
.

Proof: By the above argument, is a sum of the convex
function and the strictly convex function
and is therefore strictly convex.

The Hessian of in coincides with that of
and is thus given as in the theorem. The formula for the Hessian

on follows, since the restriction of a Hessian to a linear
subspace is the Hessian of the restriction to the subspace.

The last claim follows from a simple application of the Im-
plicit Function Theorem. To this end, let

Clearly, where .
Consider the smooth function
defined as

(21)

where the Euclidean gradient is defined subsequently
in (25). Thus, if and only if

. The claim follows from the Implicit Function Theorem,
once it is verified that the partial derivative of with respect
to induces a linear isomorphism from onto .
To see this we decompose any tangent vector as

where and . Obviously,
for all , and the restriction

(22)

is a linear isomorphism. In fact, for unique
and

(23)

is a linear isomorphism.
Finally, the linearization of in the direction is seen

from (25) as the linear map , defined by

(24)

where . Suppose is in the
kernel of . Then

and thus for

By positive definiteness of the 66 matrix with th entry
equal to , this implies , and
therefore . This shows that the linearization is injective,
and hence is invertible at any. The result follows.
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B. Euclidean Gradient Algorithm

The Euclidean gradient is

(25)

Here we have assumed that theare orthogonalized as in (17).
Both gradients are in the tangent space of (18). To verify
this, first observe that for all . Moreover,

. Also, the directional derivative
satisfies

for all (26)

The standard Euclidean gradient algorithm for convex
is

(27)

This clearly goes in a “downhill” direction, if . For
and sufficiently small, this step achieves a reduced

cost. The step size is chosen small enough to preserve positive
definiteness of . More precisely, and referring to [2, Theorems
4–6], it is chosen so that the mapping is a
continuous map with the property

for all (28)

In [1] and [2], an explicit choice of a step size guaranteeing
convergence is not given, and the line search arguments have
been implicit, rather than explicit. We will not consider this al-
gorithm any further, as our step size selections do not lead to a
quadratically convergent algorithm.

C. Newton Algorithm

Quadratic convergence rates for optimizing the strictly
convex function can be achieved by working with the
Hessian matrix and a Newton algorithm, as

(29)

For suitable step-size selection , we prove global and local
quadratic convergence to the optimal solution.

In applying the Newton algorithm, the computation of the
inverse of the Hessian requires arithmetic operations of order

for the point contact case, and for the soft finger
case. To see this, rewrite the algorithm in terms of vectors rather
than matrices, and note the vector dimensions areor ,
respectively. We revisit this algorithm below, showing that the
Newton step can be effectively calculated as a Riemannian gra-
dient step using only order multiplications.

D. Riemannian Metric and Gradients

Let us endow with the Riemannian metric

(30)

where are block diagonal matrices with the same structure
as and , with 2 2 sub blocks . The explicit gradient

with respect to this metric [11], being in the tangent space of
is

(31)

where the come from the solution of

...
... (32)

Here the matrix with th entry equal to is
necessarily full rank for and the are linearly indepen-
dent for all . Note that

for all (33)

Note also that there is no computational simplification due
to thea priori orthogonalization of the grasp map, as for the
Euclidean gradient. We would need to “orthogonalize” at every
step the products , in the same way as we “orthog-
onalized” , in order to achieve the simplification . For
the Euclidean gradient, the correspondingis simply

.

IV. NEWTON ALGORITHM VIA RIEMANNIAN GRADIENT

A. The Hessian

For on , the Hessian is the quadratic form, given
from (20), as . The restriction
of the Hessian on satisfies, noting (33)

(34)

for all tangent vectors .
As a consequence of (34), we obtain

(35)

where is the linear isomorphism between
tangent spaces, defined by

(36)

with

for all (37)

Note that the linear map is a well-defined linear isomor-
phism, as the Hessian is nondegenerate.

B. Newton Algorithm Revisited

Now a Newton algorithm, seeking to minimize on
, is simply, via (35), a gradient algorithm with respect to

the Riemannian metric (30)

(38)
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The computations for the Riemannian metric gradient version
of the Newton algorithm are considerable simpler than for the
standard Euclidean version, being of orderarithmetic opera-
tions compared to for the point contact case.

V. EXPLICIT STEP-SIZE SELECTION FOR

QUADRATIC CONVERGENCE

In order to numerically implement the Newton algorithm, the
step-size factor has to be appropriately chosen. To this end,
we consider at each time instant the “downhill” gradient direc-
tion in the tangent space .

Consider the cost function and its derivatives with re-
spect to , as in (20). Now inherits the same block structure
of , so that

(39)

where . Convexity of ensures that
the line search is a convex minimization task, at least for step
size , where indicates the step size leading
to the cone boundary.

The critical points of on are given as the real
roots of the polynomial equation

(40)

A. Optimum Step Size

A preliminary observation is that, since and
is convex for all , then the desired line

search minimum for occurs at the smallest pos-
itive real root of the polynomial equation (40), with

. This characterization does not yield an explicit
formula for , with guaranteed regularity properties at the op-
timal solution. We therefore must search for a useful approxi-
mation of that is simple to calculate.

Another preliminary observation is that the maximum step
size , which keeps the step within , is the smallest
positive real root of

(41)

This root is found analytically by searching for the smallest real
root of the second-order polynomial equations

for . With any step size selection such that
, as , it follows that and .

This may be compared to the Dikin step-size selection used in
[1].

B. Explicit Step-Size Selection and Convergence Result

We now derive an explicit step-size selection that leads to
quadratic convergence of the Newton algorithm.

For , and
, consider

The first and the second derivative ofare

TheNewton Decrement, , is given as

(42)

Since , and recalling (35), we obtain

Moreover, since ,
for suitable , then recalling (33), we have

Therefore, the Newton decrement is .
Let denote the 2-norm, that is the largest singular

value of . For , then implies
. Therefore

and thus by monotonicity

By the Mean Value Theorem, this implies

(43)

where the desired last inequality holds only ifis chosen such
that

(44)

The smallest positive root of this quadratic polynomial is

(45)

where . Observe that, in this
case, since , we have the simplified
formula

(46)

Lemma V.1:The function

(47)
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is strictly monotonically decreasing with

Proof: Consider the Taylor series expansion

Therefore, we obtain , which proves
and . Simple manipulations show that the

derivative is zero if and only if .
By squaring up and cancellations, this is seen to be equivalent
to . But and therefore must be negative
for all , and the result follows.

Since , we conclude that ,
where is defined by (48). Note that the lemma ensures
that always

Moreover

holds if converges to a critical point of . Furthermore,
the function on is continuous.

For any , we have and hence
. Standard Lyapunov-type arguments as, for example, in

[2], shows that the recursion (49) converges to the unique global
minimum .

To show quadratic convergence, we need a lemma.
Note that the result of the following lemma is well known

from Calculus for the case of -maps. Since this assumption
is not satisfied in our application, we need to prove the result
under the weaker regularity assumption.

Lemma V.2:Let be an open subset of , and
be a -map such that the derivative is Lipschitz

continuous at any . Let denote a fixed point
of with . Then the recursion in

is locally quadratically convergent to .
Proof: Choose and such that, using the

operator norm and Euclidean norm, respectively,

holds for all with . Let
Thus, is a function and by the

Fundamental Theorem of Calculus

using the Lipschitz bound. The result follows.

We now state and prove the main convergence result of the
paper.

Theorem V.1:For any , let denote the
Newton Decrement and let

(48)

For any initial condition the algorithm

(49)

converges quadratically fast to the unique global minimum
of .

Moreover, the function is continuous on
and satisfies .

Proof: The proof goes by verifying that the map
satisfies

the assumptions of the previous lemma. First note that
is smooth for any with . Thus, is smooth
and hence is Lipschitz continuous at any . If we
could prove that is even at , we could finish off with
a simple Taylor series argument. Unfortunately, this is not true
and therefore we require a more complicated argument.

A first step is to show that the derivative of at
is the identity transformation. For arbitrary tangent vectors

, we have

Thus, for all which proves the
claim.

Note that the Newton decrement is the norm of
a smooth function and therefore is Lipschitz continuous.
Moreover, is the composition of the smooth function

of (47) with the Newton decrement and therefore
is Lipschitz continuous as well. Furthermore, the deriva-
tive of the Newton decrement, where

is bounded as

for all . Since is a smooth function of , the
derivative of is locally bounded around . Applying the
chain rule to , we conclude that the same
assertion holds for the derivative of . The derivative of at
any is

The second summand is the product of a Lipschitz continuous
function with a smooth function. Therefore, the second sum-
mand is Lipschitz continuous. The third summand is a product
of a locally bounded function and a smooth function vanishing at

. Therefore, the third summand is also Lipschitz continuous
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at . This shows the local Lipschitz continuity of the deriva-
tive of . Moreover

since and . In particular,
is a -function with vanishing derivative at the optimum. The
desired result follows from the previous lemma.

C. Iterative Step-Size Selection

An improved estimate for the desired line-search
minimum of on can be found by
iterating the construction of the previous section.

Proceeding inductively from ,
with the previous construction, replacing by

we obtain iterative step-size selections as

(50)

(51)

Here is found by working with second-order polyno-
mials, as in (39). The second derivative requires very
little extra effort since

(52)

Notice that is a constant independent of. In
general, except when .

Theorem V.2:The sequence of step sizesdefined by (52)
and (51) is monotonically increasing and converges quadrati-
cally fast to the optimal step size .

Proof: By construction, for all and also
. Moreover, . Therefore . By

monotonicity exists. Thus, is a fixed
point of the algorithm, and therefore . Since is
the smallest positive root of , we conclude . In par-
ticular, and thus .

Since is smooth on ,
having derivative zero at , we conclude local quadratic con-
vergence, as claimed.

Inevitably, there are some ad hoc aspects to any line search,
weighting the cost of additional iterations against improvement
in accuracy. Typically, between one and four steps are used in a
line search for grasping problems. There is up to an order of
magnitude savings in the line search, because of the explicit
formulas involved.

VI. CONCLUSION

A new construction of a quadratically convergent Newton al-
gorithm for dextrous hand grasping has been proposed. The new
algorithm is being currently imported into robotic hands, and
this work will be reported subsequently by others. Matlab sim-
ulations have been done for “verification” of the upper bound on

iteration number, this being about 10, which is about the same
as for the best algorithm of the earlier paper [2] using the same
cost function. The improved efficiency of our algorithm is con-
firmed by operation counts per iteration. For example, for four
fingers, and focusing on the easiest to calculate improvements,
we achieve improvement factors of more than 15 for the point
contact case and more than 75 for the soft finger contact case,
respectively.
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