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Abstract A new iterative method based on the quasi-Newton approach for solving systems of nonlinear equations,
especially large scale is proposed. We used the weighted combination of the Trapezoidal and Simpson quadrature rules.
Our goal is to enhance the efficiency of the well known Broyden method by reducing the number of iterations it takes to
reach a solution. Local convergence analysis and computational results are given.
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1. Introduction

In vector notation form, consider the system of nonlinear equations

F (x) = 0, (1)

where the function F : Rn → Rn, is continuously differentiable in an open neighbourhood Ω ⊂ Rn. One of the
prominent methods used to solve (1) is Newton’s method as a result of its convergence property. However, the
method has some challenges such as computation and storage of Jacobian matrix at every iteration as well as
inefficiency in handling large scale systems. In an attempt to overcome these challenges, quasi-Newton methods
have been introduced. Among the successful variants of quasi-Newton method is the Broyden’s method that
generate a reasonable approximation of the Jacobian matrix with no additional evaluation of the function, (see [15]
and references therein). Broyden’s method is given by

xp+1 = xp −B−1
p F (xp), (2)

where matrix Bp is the approximation of F (xp), such that the quasi-Newton equation

Bp+1(xp+1 − xp) = F (xp+1)− F (xp) (3)

is satisfied for each p. On the other hand, Broyden method needs n2 (n is the length of vector x) storage locations,
therefore, for large scale systems, this might lead to severe memory constraints [14].

Over the years, development of algorithms cheaper than Newton’s method and some of its variants has been an
area of intense research. Among others, several modifications of Newton’s method and its variants were proposed
to reduce computational cost, accelerate the convergence and reduce evaluations of functions in each step of the
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iterations (see [3–5,7,17,22] and references therein). Just like quadrature rules have been used to propose Newton-
like methods [17, 19–22], some efforts at using quadrature formulas to propose Broyden-like methods includes
those of [13,14], all of which are directed towards the development of cost effective approaches. Based on this fact
and frequent occurrence of systems of nonlinear equations in science and engineering, it is interesting to present an
approach which will improve further the Jacobian approximation using weighted combination of Trapezoidal and
Simpson (TS) quadrature formulas.

The paper is organized as follows: Section 2 is for the development of the proposed method; in Section 3, the
convergence result is discussed; the numerical results are shown in Section 4; and Section 5 is for the conclusion.

2. Development of the Method

Let x∗ be a root of the nonlinear equation F (x) = 0, where F is sufficiently differentiable. Newton’s method
originates from the Taylor’s series expansion of the function (of a single variable) f(x) about the point x1:

f(x) = f(x1) + (x− x1)f
′
(x1) +

1

2!
(x+ x1)

2f
′′
(x1) + · · · ,

where f and its first and second derivatives, f
′

and f
′′

, are calculated at x1. For a multiple variable function F ,
from the above equation, it is obvious that

F (x) = F (xp) +

∫ x

xp

F ′(t)dt. (4)

The matrix of partial derivatives appearing in (4) is the Jacobian J , where
∫ x

xp
F ′(t)dt is multiple integrals as

follows: ∫ x

xp

F ′(t)dt =

∫ 1

xp,1

∫ 2

xp,2

· · ·
∫ n

xp,n

F ′(x1, x2, · · · , xn)dxndxn−1 · · · dx1.

The most obvious approach is to treat the multiple integral as a nested sequence of one-dimensional integrals, and
to use one-dimensional quadrature with respect to each argument in turn [11]. So we can approximate

∫ x

xp
F ′(t)dt

with the weight combination of the Trapezoidal and Simpson quadrature rules. The authors ( [9], [10], [14], etc.)
and references therein have proposed various methods by the approximation of the indefinite integral in (4) using
Newton Cotes formulae of order zero and one. Approximating the integral in (4) by the average of Trapezoidal and
Simpson (TS) quadrature rules yields:

xp+1 = xp − 3 [B(xp) +B(zp) +B(mp)]
−1

F (xp),

where zp =
(

xp+mp

2

)
and mp = xp −B−1

p F (xp), p = 0, 1, · · · Suppose we set Bp = [B(xp) +B(zp) +B(mp)].
Then we have

xp+1 = xp − 3B−1
p F (xp).

With the above formulation, we have the following two-step iterative schemes for solving the nonlinear system (1).

TS METHOD

For a given x0 using initial matrix B0 = I , compute the approximate solution xp+1 by the iterative schemes

mp = xp −B−1
p F (xp),

xp+1 = xp − 3[B(xp) +B(zp) +B(mp)]
−1F (xp)

for zp =
(

xp+mp

2

)
, p = 0, 1, · · ·

xp+1 = xp − 3B−1
p F (xp). (5)
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In the following, we recall the most common notions and results about the convergence of an iterative method
needed for subsequent development.

Definition 2.1 (q-superlinear convergence [18])
Let xp ⊂ Rn and x∗ ∈ Rn. Then xp → x∗ is q-superlinearly convergent if

limp→∞
∥xp+1 − x∗∥
∥xp − x∗∥

= 0.

Lemma 2.1 [12]
If F ′(x) is Lipschitz continuous with Lipschitz constant λ, then for any u, v ∈ D

∥F (v)− F (u)− F ′(x)(v − u)∥ ≤ λmax{∥v − x∥, ∥u− x∥}∥v − u∥.

Moreover, if F ′(x) is invertible, then there exists ϵ and ρ > 0 such that

1

ρ
∥v − u∥ ≤ ∥F (v)− F (u)∥ ≤ ρ∥v − u∥

for all u, v ∈ Ω for which max{∥u− x∥, ∥v − x∥} ≤ ϵ.

Lemma 2.2 [18]
Let xp ∈ Rn, p ≥ 0. If xp converges q-superlinearly to x∗ ∈ Rn, then

lim
p→∞

∥xp+1 − xp∥
∥xp − x∗∥

= 1.

3. Local Convergence Result

Our aim is to prove that the proposed TS method converges superlinearly. To achieve this, we consider the following
standard assumptions on the nonlinear function F :
(i) F is differentiable in an open convex set Ω ∈ Rn;
(ii) There exists x∗ ∈ Ω such that F (x∗) = 0 and F (x∗) is nonsingular and continuous for every x;
(iii) F

′
(x) is Lipschitz continuous and hence satisfies the Lipschitz condition of order 1 such that there exists a

positive constant λ such that
∥F (x)− F (w)∥ ≤ λ∥x− w∥, ∀x,w ∈ Rn.

The following is the main result, which is a modified result of [14].

Theorem 1
Let F : Rn → Rn satisfy the hypothesis of Lemma 2.1 on the set Ω. Let Bk be a sequence of nonsingular matrices
in L(Rn), the space of real matrices of order n. Suppose for some x0 the sequence xk generated by (5) remains in
Ω and limp→∞ xp = x∗ where for each p, xp ̸= x∗. Then {xp} converges q-superlinearly to x∗ and F (x∗) = 0 if
and only if

lim
p→∞

∥( 13Bp − F ′(x∗))sp∥
∥sp∥

= 0, (6)

where sp = xp+1 − xp and Bp = B(xp) +B(zp) +B(mp).

Proof
Suppose (6) holds. Then (5) becomes

0 =
1

3
Bpsp + F (xp),
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0 =
1

3
Bpsp + F (xp)− F ′(x∗)sp + F ′(x∗)sp,

0 =
1

3
Bpsp − F ′(x∗)sp + F (xp) + F ′(x∗)sp,

−F (xp+1) + F (xp+1) = (
1

3
Bp − F ′(x∗))sp + F (xp) + F (x∗)sp,

− F (xk+1) = (
1

3
Bp − F ′(x∗))sp + (−F (xp+1)) + F (xp) + F (x∗)sp. (7)

Take the norm of both sides to have:

∥−F (xk+1)∥ = ∥(1
3
Bp − F ′(x∗))sp + (−F (xp+1)) + F (xp) + F (x∗)sp∥.

Using vector norm properties, we have

∥−F (xk+1)∥ ≤ ∥(1
3
B3 − F ′(x∗))sp∥+ ∥(−F (xp+1)) + F (xp) + F (x∗)sp∥.

Divide through by ∥sp∥ to have

∥−F (xp+1)∥
∥sp∥

≤
∥( 13Bp − F ′(x∗))sp∥

∥sp∥
+

∥(−F (xp+1)) + F (xp) + F (x∗)sp∥
∥sp∥

.

Using Lemma 2.1,

∥−F (xp+1)∥ ≤
∥( 13Bk − F ′(x∗))sp∥

∥sp∥
+ λmax{∥xp+1 − x∗∥, ∥xp − x∗∥}.

Since xp → x∗ ∀ p, then, from (6), we have

lim
p→∞

∥(F (xp+1))∥
∥sp∥

≤ lim
p→∞

∥( 13Bp − F ′(x∗))sp∥
∥sp∥

+ λ lim
p→∞

max{∥xp+1 − x∗∥, ∥xp − x∗∥} = 0. (8)

Therefore,
F (x∗) = F ( lim

p→∞
xp) = lim

p→∞
F (xp) = 0.

But F ′(x∗) is nonsingular. Thus, by Lemma 2.1, ∃ ρ > 0, p0 ≥ 0 such that we have

∥F (xp+1)∥ = ∥F (xp+1)− F (x∗)∥ ≥ 1

ρ
∥xp+1 − x∗∥. (9)

For all p ≥ p0, (8) and Equation (9) gives

0 = lim
p→∞

∥F (xp+1)∥
∥sp∥

≥ lim
p→∞

1

ρ

∥xp+1 − x∗∥
∥sp∥

≥ lim
p→∞

1

ρ

∥xp+1 − x∗∥
∥xp − x∗∥+ ∥xp − x∗∥

= lim
p→∞

1
ρ tp

1 + tp
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and tp =
∥xp+1−x∗∥
∥xp−x∗∥ . This implies that

lim
p→∞

tp = 0.

Therefore, xp converges q-superlinearly to x∗. Conversely, suppose that xp converges q-superlinearly to x∗ and
F (x∗) = 0. Then, by Lemma 2.1, there exists ρ > 0 such that we have

∥F (xp+1)∥ ≤ ρ∥xp+1 − x∗∥.

Then,

0 = lim
p→∞

∥xp+1 − x∗∥
∥xp − x∗∥

≥ lim
p→∞

∥F (xp+1)∥
ρ∥xp − x∗∥

= lim
p→∞

∥F (pp+1)∥
ρ∥sp∥

.
∥sp∥

∥xp − x∗∥
.

Using Lemma 2.2, we have

lim
p→∞

∥F (xp+1)∥
∥sp∥

= 0.

From (7), we have

∥( 13Bp − F ′(x∗))sp∥
∥sp∥

≤ lim
p→∞

∥F (xp+1)∥
∥sp∥

+ lim
p→∞

∥(−F (xp+1)) + F (xp) + F (x∗)sp∥
∥sp∥

≤ 0 + λ lim
p→∞

max{∥xp − x∗∥, ∥xp+1 − x∗∥}.

Since xp converges to x∗, then
lim
p→∞

∥xp − x∗∥ = 0,

which proves that
∥( 13Bp − F ′(x∗))sp∥

∥sp∥
= 0. (10)

The proof is complete.

4. Numerical Results

We used six test functions with eight instances of dimension n = 5 to n = 1065, which makes a total of 48
problems, in order to check the effectiveness of the proposed methods. The x0 stands for the initial approximation
to the solution in all the tested problems.

Stopping criterion
We have to stop the program if any of the following conditions are met.
(1) no xp satisfies ∥F (xp)∥ ≤ 10−12.
(2) the number of iterations reaches 500. (We do not want the program to run indefinitely)
A comparison of the numerical test results of our two-step methods is made with these well-known methods:
Classical Broyden Method [2], Trapezoidal Broyden Method [13] and Midpoint-Simpson Broyden Method [14].

Table 1 shows the results on the number of iterations (NI) and the time (CPU) needed to converge to a solution.
A failure is reported (denoted by ’-’) in the tabulated results. All the methods were implemented using MATLAB
R2012b. All computations were carried out on a PC with Intel(R) Pentium(R) processor with 4GB of RAM
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and CPU 2.20 GHz. The comparison of the tested methods is based on the performance profile of [8] and the
comparison indices of [1].

Set of Test Problems
Problem 1 [5]
Fi(x) = xixi+1 − 1,
Fn(x) = xnx1 − 1.
i = 1, 2, · · · , n− 1 and x0 = (0.8, 0.8, · · · , 0.8)T .

Problem 2 [16]
Fi(x) = xixi+1 − 1,
Fn(x) = xnx1 − 1.
i = 1, 2, · · · , n− 1 and x0 = (0.7, 0.7, · · · , 0.7)T .

Problem 3 [16]
Fi(x) = xixi+1 − 1,
Fn(x) = xnx1 − 1.
i = 1, 2, · · · , n− 1 and x0 = (2, 2, · · · , 2)T .

Problem 4 [14]
Fi(x) = (cos(xi)− 1)2 − 1,
i = 1, 2, · · · , n and x0 = (1, 1, · · · , 1)T .

Problem 5 [6]
Fi(x) = x2

i − cos(xi − 1),
i = 1, 2, · · · , n and x0 = (1.5, 1.5, · · · , 1.5)T .

Problem 6 [6]
Fi(x) = exp(x2

i − 1)− cos(1− x2
i ),

i = 1, 2, · · · , n and x0 = (0.5, 0.5, · · · , 0.5)T .

The Robustness index measures the performance of the algorithm on a wide variety of problems in their
class for all reasonable values of the starting point. The Efficiency index records the use of low amount of overall
resources involved in the programming, while the combined Robustness and Efficiency index measures both
robustness and efficiency performances. The Robustness (R), Efficiency (E) and Combined Robustness and
Efficiency (CER) performance of each solver are shown as proposed by [1].

Discussion

The Tables show the results obtained for the benchmark problems. The Figures show the performance profile of
each of the methods for small value of τ , the best possible ratio. We assume that we have ns solvers and np

problems, the performance profile P : R → [0; 1] is defined as follows: let P and S be the set of problems and set
of solvers respectively. For each problem p ∈ P and for each solver s ∈ S, we define tp;s := (number of iterations
required to solve problem p by solver s) and tp;s := (computing time required to solve problem p by solver s) for
Figures 1 and 2 respectively. The performance ratio is given by rp;s =

tp;s
min tp;s,s∈S . Then the performance profile

is defined by P (τ) := 1
np

sizep ∈ P : log2(rp,s) ≤ τ ,∀τ ∈ R, where P (τ) is the probability for solver s ∈ S that a
performance ratio rp,s is within a factor τ ∈ R of the best possible ratio.

In both Figures, TS climb off the graph and this indicates that it solves all of the test problems successfully. MSB
has the highest probability of 0.83 and 0.57 in Figures 1 and 2 respectively followed by the proposed method with
0.27 and 0.22, TB with 0.17 and 0.18 and CB with 0.02 and 0.04. In Figure 1, TS competes with MSB for τ ≥ 0.4.
For factor τ ≥ 0.3, MSB and TS have the best probabilities in Figure 2. On the set of benchmark problems, TS is
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Table 1. Comparison of Numerical Results

1 2 3 4
Prob n CB TB MSB TS

NI CPU NI CPU NI CPU NI CPU
1 5 6 0.051 4 0.048 3 0.039 4 0.051

15 6 0.065 4 0.084 3 0.062 4 0.099
35 5 0.155 5 0.164 3 0.103 4 0.164
65 5 0.215 5 0.389 3 0.247 4 0.222

165 5 0.515 5 0.574 4 0.437 4 0.484
365 6 1.521 5 1.424 4 1.648 4 1.136
665 6 2.794 5 2.469 4 2.351 4 2.067

1065 6 5.131 5 4.463 4 4.225 4 3.666
2 5 6 0.038 5 0.049 4 0.032 4 0.037

15 6 0.083 5 0.278 4 0.096 4 0.089
35 6 0.152 5 0.165 4 0.114 4 0.149
65 6 0.245 5 0.249 4 0.189 4 0.254

165 6 0.700 5 0.784 4 0.449 4 0.525
365 6 1.791 5 1.236 4 1.752 4 1.206
665 6 3.097 5 2.422 4 2.571 4 2.252

1065 6 5.253 5 4.369 4 4.017 4 3.711
3 5 - - - - 5 0.058 6 0.046

15 - - - - 5 0.063 6 0.094
35 - - - - 5 0.131 6 0.191
65 - - - - 5 0.241 6 0.439

165 - - - - 5 0.510 6 0.642
365 - - - - 5 2.895 6 1.547
665 - - - - 5 2.663 6 2.939

1065 - - - - 5 5.648 6 5.174
4 5 6 0.045 5 0.086 4 0.034 4 0.051

15 6 0.081 5 0.118 4 0.069 5 0.082
35 6 0.157 5 0.183 4 0.137 5 0.204
65 6 0.294 5 0.301 4 0.218 5 0.499

165 6 0.795 5 0.668 4 0.525 5 1.018
365 6 2.117 5 1.527 4 1.819 5 1.475
665 6 3.359 5 2.781 4 2.557 5 2.812

1065 6 5.571 5 4.841 4 4.195 5 5.169
5 5 11 0.068 6 0.062 4 0.035 5 0.059

15 11 0.131 6 0.123 4 0.066 5 0.122
35 11 0.290 6 0.279 4 0.136 5 0.201
65 11 0.495 6 0.520 4 0.258 5 0.317

165 11 1.334 6 0.982 4 0.817 5 0.836
365 13 3.807 6 1.788 4 1.418 5 1.569
665 13 6.799 6 3.754 4 2.656 5 5.203

1065 13 11.412 6 8.567 4 4.639 5 6.756
6 5 - - 5 0.075 - - 7 0.078

15 - - 5 0.089 - - 7 0.194
35 - - 5 0.280 - - 7 0.335
65 - - 5 0.453 - - 7 0.656

165 - - 5 0.982 - - 7 1.365
365 - - 5 3.596 - - 7 5.606
665 - - 5 6.012 - - 7 7.632

1065 - - 5 8.088 - - 7 9.729

Table 2. Summary of Robustness, Efficiency and Combined Robustness and Efficiency Measures

CB TB MSB TS
Successes 32 40 40 48

R 67% 83% 83% 100%
E 50% 80% 100% 84%

CER 38% 67% 83% 84%

superior in terms of robustness over other methods. The number of iterations obtained is promising and competitive,
the CPU time is also encouraging. The results of the proposed method are better than one of CB and TB. However,
MSB is more efficient than the proposed method. In conclusion, the numerical tests have shown that our new
method is comparable with the well known existing Broyden-like methods.
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Figure 1. Performance Profile by number of iterations

Figure 2. Performance Profile by CPU

5. Conclusion

The Broyden method was introduced to overcome the shortcomings of the Newton’s method but still requires a
higher number of iterations than the Newton’s method. The Broyden-like method proposed is a promising and
competitive alternative to quasi-Newton and Broyden method, especially for large scale systems.
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