
Quadrature Formulas for Infinite Integrals

By W. M. Harper

1. Introduction.  Since  the  advent  of high-speed  computers,   "mechanical"

quadratures of the type

(1) f w(x)f(x)dx^¿Hif(aj)
Ja 3=1

have become increasingly important. The only quadrature generally available for

the case b = — a = °° is the Hermite-Gauss formula although the Laguerre-

Gauss formula can also be used if f(x) is an even function of x. The latter would,

however, require computation of twice the number of ordinates for a corresponding

degree of precision and would therefore rarely be preferred. In either case the in-

tegrand is supposed to behave like the product of an exponential function and a

polynomial. For purely algebraic integrands it would appear to be more appropriate

to use a quadrature based on an algebraic weight function even though the degree

of the polynomial approximation to f(x)  is limited.

In this paper, formulas of type (1) are derived with weight function w(x) =

(1 + x2)~k^ for the range b = —a= ». In a modified form they are shown to

be superior to the Hermite-Gauss and Laguerre-Gauss quadratures for a particular

class of statistical integrals.

2. Derivation of Quadratures. In the quadrature formula

(2) f (1 + xTk-](x) dx = £ Hi fiai) + En,k,
J— OC J=l

the abscissas a, will be the zeros of the nth degree polynomial <bn¡k(x) which satis-

fies the orthogonality condition

(3) (1 + x2) k l<pm,k(x)<t>n,k(x) dx = 0, (m ^ n, m + n < 2k + 1).

By standard methods given for example in [2], [4], it is easily shown from (3)

that the orthogonal system of polynomials is given by the Rodrigues formula

t  \      i    iv» r(2fc — 2n -f 2) ,_2,1,4-1 d   ,t   ,    2\«-*-i
(4) *.,<«)-<-i) r(2fc_w + 2) (i + s)   dj»d + *)    -

(n <k+ l)

where the standardizing constant is chosen to make the coefficient of xn unity.

By direct manipulations with (4) and repeated use of Leibnitz' formula, the re-

currence relations (5)-(10) are easily established. They are

/-\ i  \ r  \ n(2k — n + 2) ,       ,  »
(o) <*>„+i,*(z) = **„,*(*) - (2fc - 2n + l)(2fc - 2¡T+3) ^ÁX)'

(6)     (1 + x2)<t>'n,k(x) = (2fc - n + l)x<bn,k(x) - (2k - 2n + l)cbn+i,k(x),
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(7) (1 + x2)<¡>'n,k(x) = nx<bn,k(x) + nHk ~ n t f *.-w(«),
2/c — 2n + 3

,   . 2k - 2n + 3
<K.M-lW   =

(2fc - n + 2)(2fc - n +3)

•[{(4fc - 2m + 3) + (2* - 2m + l)x2} <j>n,k(x)

- (2fc - 2n + 1)(1 + a;2)*„.*_i(x)],

a;(l + x2)<ti'n,fc(.-c) = [nx2 — (2k — n + 2)]<bn,k(x)

(9) ,   (2k -n + 2)(2k - n + 3) ,   .
+ ~ 2k - 2n + 3 -*»^l»)»

(10) z*».*(a;) = (2* - m + l)*».t(x) - (2fc - 2n -f l)0„.*_i(a;).

The polynomial system can now be extended to include values of n excluded in (4).

For n > k + f however, complex zeros make their appearance so that no useful

quadratures are available for this range of n.

It is similarly easily shown that <bn>k(x) is a solution of the differential equation

(11) (1 + x2)y" - 2kxy' + n(2k - n + l)y = 0

whence the relation

r(k + |)
/lO\ Í     \ /A"      , T(fc   —   M  +   |)   „ -t-1/2/ -
(12) <?n,k(x)   =   Ul    »!'      w,.     ,     » Cn (tx)

can be established where in the notation of [1], Cn (z) (designated by Pn( \z) in

[7]) is the Gegenbauer or ultraspherical polynomial of degree n and parameter X.

Relations with Legendre functions can also be established, namely:

*..»(*) = (-ir+V/2lim

(13)
. r2S-v+n+1 r(s-M + f) cosec sx(1 + xyi*+mp.tiÁix)l

|_ T(2s — n + 2) J

where PJ'(z), in the notation of [1], is the associated Legendre function of the first

kind with parameters ß and v, and

(14) *„,*(*) = 2k-n+ll2r(k - n + #)(1-+ ^2)fc/2+1/4P¿Í7rI/2[x(l + x2)~m\

where P/(z) is the associated Legendre function of the first kind with definition

suitable for the cut in the real axis from z = — 1 to z = 1. The limit in (13) caters

to integer values of k (see [3]).

The weight coefficients and error term in (2) can be determined by standard

methods with the results

(15) Hi = 22—n! {l%~_n++% (1 + a/n*U«;)r,

(16)

E».k = Cat f (1 + ^r*"l[*».*(x)]2da;
(2n)!   J-x(2i»)!

f " /(2n)(S),. (« < * + i)22'"2"+in![r(fc - n + |)]2

(2fc - 2n + l)(2n)!T(2fc - n + 2)
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The restriction on n is necessary to ensure convergence of the error estimate but

does not ensure that a close upper bound to the actual error can be obtained (see,

for example, [2]).

For practical purposes a more convenient form of the quadrature is

(17) [   f(x)dx^J2Kjf(aj);
«i-oo y=i

here the weight coefficients are given by

(18) Kj = Hj(l + a2)k+1.

The values of a, and Kj for four- and six-point formulas for some integral values

of k are given in Table 1.

The right-hand side of (17) is a function of k as well as of n; for a given value

of n, therefore, there will be a value or values of k depending on f(x) which will

give the "best" approximation to the integral on the left. The determination of

such values and the corresponding parameters appears to be too formidable a

task for practical applications. For the special cases k = n — 1, k = n, however,

solution of (11) with x = cot 0 enables d>n¡k(x) to be obtained in the forms

(19) <j>n,n-i(x) — cosec" (arc cot x) cos (n arc cot x),

(20) <t>n,n(x) = (n + 1)_1 cosec"+1 (arc cot x) sin [(n + 1) arc cot x].

The zeros are now simple cotangents and the weight coefficients H¡ assume simple

trigonometric form; the resulting quadratures can be written as

(21) f ( 1 + sT'/(») dx~*±f [cot (2j ~ 1 Vl, (t-n-1),
J-oo                                     n j=i    L             ¿n      j

(22) ['(1 +xTlf(x)dx-t—£f(c<A-£-), (k = n).
J-oo n + 1 J-i    \      n + 1/

These formulas can also be deduced from the Chebyshev-Gauss quadratures

(23) f(l-y2)-U2g(y)dy~l±g\COS{ÏL^l],
J-1 n y=i    |_ ¿n      j

m />-^''V«%~^g9(eo%-A_)

by the substitutions y = x(\ + x2)~112, g(y) = f(x).

3. Practical Application. An example of a useful application for the quadratures

is the evaluation of integrals arising in the determination of the statistical distribu-

tion of the ratio of two quadratic forms in normal variâtes. If the quadratic forms

are independent mean half-square successive differences based on sample sizes of

p and q respectively, one of the integrals which require evaluation can be written

in the form

7(2) -  f" (1 + x2)-1 H (a2 + x2)-112 H (1 + biz'' + x2)~w dx,
(¿O) J-x r-2 s-1

(p even),
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Table 1

Abscissas and Weights for Quadrature (17)

A. n = 4

iffy Kj

0.41421
2.41421

0.32491
1.37638

0.27618
1.06005

0.24436
0.89298

0.22150
0.78587

0.20405
0.70979

0.19017
0.65220

0.17879
0.60665

35624
35624

96962
19205

30252
79874

83118
76737

78137
59159

97869
86678

76238
46710

14705
77372

0.92015 11845
5.36303 41227

0.69465
1.81862

18830
22399

0.58086 65620
1.17945 11502

0.50932 47880
0.90816 46087

0.45903
0.75578

0.42121
0.65698

0.39142
0.58705

94023
97944

27662
70999

46836
73261

0.36717 90805
0.53455 96626

B. n = 6

±<z¿

0.26794 91924
1.00000 00000
3.73205 08076

0.22824 34744
0.79747 33889
2.07652 13966

0.20219 80919
0.68370 47228
1.57850 04858

0.18342 80037
0.60816 30047
1.31884 38384

0.16907 35256
0.55326 32106
1.15411 46518

0.15763 63749
0.51101 94490
1.03809 74230

K¡

0.56119 14763
1.04719 75512
7.81638 89333

0.47217
0.73421
2.38399

0.41550
0.58969
1.44716

0.37535
0.50404
1.06492

0.34499
0.44635
0.85743

0.32098
0.40432
0.72680

91694
88392
35955

76425
00381
80133

93234
67421
43997

40643
57833
60559

68394
69556
65190
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Table 2

Comparison of Quadrature Formulas in Evaluating 7(1)

Quadrature

Series
Algebraic, k = 5
Algebraic, k = 6
Algebraic, k = 7
Algebraic, fc = 8
Algebraic, A; = 9
Algebraic, fc = 10
Hermite
Hermite
Hermite
Laguerre

No. Abscissas

6
6
6
6
6
6
6
8

10
6

Result

1.2106
1.2106
1.2106
1.2106
1.2081
1.2025
1.1942
1.1610
1.1879
1.1994
1.1674

5423
4384
5381
5415
0423
0816
4044
8623
0738
3337
2007

E X 108

1039
42
8

25   5000
81    4607

164    1379
495   6800
227   4685
112   2086
432   3416

where the ar and bs are constants. In order to compare methods (25) was evaluated

by various quadratures for the case p = 4, ç = 3, z = 1 when the test integral

becomes

(26)

/(!)-£(! + XT1 [Q V2 + s2) (2V2 - 2 + x2)

-1/2

I (7 - 2V2) + *j ji (13 - 2V2) + sjj

The quadrature (17) was applied for the values k = 5(1)10 using six abscissas

in each case. The Hermite-Gauss quadrature was used with six, eight and ten

abscissas, and the Laguerre-Gauss formula for six abscissas (which requires the

same number of evaluations of the integrand as the other formulas for twelve

abscissas but which is of degree of precision eleven as against twenty-three for the

others). The abscissas and weights for the Hermite formula were taken from the

values tabulated in [6] and those for the Laguerre method from [5]. The results

together with the correct value of 7(1) determined by a series method are tabu-

lated to eight decimal places in Table 2 which also shows the errors of the methods.

The table shows the superiority of the "algebraic" quadratures over the Her-

mite and Laguerre formulas for this integral ; even the use of ten abscissas for the

Hermite quadrature leaves an error much greater than the algebraic quadratures

with only six abscissas except for the case k = 10. The best algebraic quadrature is

for k = 7 but the advantage over those for k = 5 and k = 6 is too small to com-

pensate for the simplicity of the latter two cases when used in the equivalent forms

shown in (21) and (22) respectively. In addition, the quadrature (22) evaluates

7(1) correctly to eight decimal places for n — 8 as does (21) for n = 9.
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