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Abstract

While there exist effective methods for univariate highly oscillatory quadra-

ture, this is not the case in a multivariate setting. In this paper we embark on

a project, extending univariate theory to more variables. Inter alia, we demon-

strate that, subject to a nonresonance condition, an integral over a simplex can

be expanded asymptotically using only function values and derivatives at the

vertices, a direct counterpart of the univariate case. This provides a convenient

avenue towards the generalization of asymptotic and Filon-type methods, as for-

merly introduced by the authors in a single dimension, to simplices and, more

generally, to polytopes. The nonresonance condition is bound to be violated once

the boundary of the domain of integration is smooth: in effect, its violation is

equivalent to the presence of stationary points in a single dimension. We further

explore this issue and propose a technique that can be used in this situation.

1 Introduction

Let Ω ⊂ R
d be a connected, open, bounded domain with sufficiently smooth boundary.

We are concerned in this paper with the computation of the highly oscillatory integral

I[f,Ω] =

∫

Ω

f(x)eiωg(x)dV, (1.1)

where f, g : R
d → R are smooth, g 6≡ 0, dV is the volume differential and ω À 1.

Integrals of this form feature frequently in applications, not least in applications of the
boundary element method to problems originating in electromagnetics and in acoustics
(Schatz, Thomee & Wendland 1990). Another important source of highly oscillatory
integrals is geometric numerical integration and methods for highly oscillatory differ-
ential equations that expand the solution in multivariate integrals (Degani & Schiff
2003, Iserles 2002, Iserles 2004a).
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Building upon earlier work in (Iserles 2004b, Iserles 2005), we have recently devel-
oped two general methods for the integration of univariate highly oscillatory integrals
using just a small number of function values and derivatives at the endpoints and at
the stationary points of g (Iserles & Nørsett 2005a, Iserles & Nørsett 2005b). The out-
standing feature of these methods, which they share with an earlier method of Levin
(1996), is that their precision grows with increasing oscillation. Indeed, judiciously
using derivatives, it is possible to speed up the decay of the error arbitrarily fast for
large ω. The purpose of this paper is to extend this work into the realm of multivariate
integrals of the form (1.1). To this end we provide in Section 2 a brief overview of the
univariate theory and of the asymptotic and Filon-type methods.

In Section 3 we commence the main numerical part of this paper by examining
product rules for integration in parallelepipeds. Although results of this section can be
alternatively obtained by techniques introduced in the sequel, there are valid reasons
to examine product rules first, since they represent the most obvious extension of
univariate theory, while demonstrating difficulties peculiar to multivariate quadrature.

Our point of departure in Section 4 is a d-dimensional regular simplex Sd with ver-
tices at the origin and at the unit vectors e1,e2, . . . ,ed ∈ R

d, combined with a linear
oscillator. We demonstrate how, subject to a nonresonance condition, it is possible
to represent highly oscillatory integration in Sd in terms of surface integrals across
its d + 1 faces, themselves (d − 1)-dimensional simplices. Iterating this procedure
ultimately leads to an asymptotic expression of the integral I[f,Sd] as a linear com-
bination of function and derivative values of f at the vertices of Sd. This allows for a
straightforward generalization of univariate highly oscillatory quadrature methods to
this setting.

The theme of Section 4 is continued in Section 5, except that we allow there more
general, nonlinear oscillators. This requires a more elaborate nonresonance condition
and more subtle analysis.

In Section 6 we develop a Stokes-type formula, which allows, subject to nonres-
onance conditions, to express a highly oscillatory integral in Sd as an asymptotic
expansion on its boundary. As well as providing an alternative tool for the analysis
of Section 5, this expansion is interesting in its own sake.

Finally, in Section 7 we consider multivariate highly oscillatory quadrature in poly-
topes. Each polytope can be tiled by simplices and this tessellation allows us to infer
from earlier material in this paper to general (neither necessarily convex, nor even
simply connected) polytopes. Thus, subject to nonresonance, we express a highly
oscillatory integral over a polytope asymptotically as a sum of function and deriva-
tive values at its vertices. The outcome are two general quadrature techniques, the
asymptotic method and the Filon-type method.

A multivariate domain with smooth boundary can be approximated by polytopes,
hence it might be tempting to use the dominated convergence theorem and gener-
alize our results from polytopes to such domains. Unfortunately, the nonresonance
condition breaks down once we consider smooth boundaries. We explore these issues
further, identify this breakdown with lower-dimensional stationary points and present
a technique, a combination of an asymptotic expansion and a Filon-type method,
which can be used in a bivariate setting.

A major issue in univariate computation of highly oscillatory integrals is possi-
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ble presence of stationary points, where the derivative of oscillator g vanishes (Olver
1974, Stein 1993). In that instance the integral cannot be expanded asymptotically
in integer negative powers of ω. The expansion employs fractional powers of ω and
is considerably more complicated. The standard means of analysis is the method of
stationary phase (Olver 1974), except that it is insufficient for our needs. A con-
siderably simpler, yet more suitable from our standpoint, alternative is a technique
originally introduced in (Iserles & Nørsett 2005a). The same distinction is crucial in
a multivariate setting. As long as ∇g 6= 0 in the closure of Ω, we can expand I[f,Ω]
in negative integer powers of ω and exploit this asymptotic expansion in construction
of numerical methods. However, once we allow nondegenerate critical points ξ ∈ Ω
where ∇g(ξ) = 0, det∇∇

>g(ξ) 6= 0, the situation is considerably more complex
(Stein 1993). In this paper we do not pursue this issue, since critical points are explic-
itly excluded from our setting by the nonresonance condition. Having said this, as we
have already mentioned, breakdown of nonresonance for smooth boundaries is equiv-
alent to the presence of univariate stationary points. Thus, even if we require that
∇g(x) 6= 0 in the closure of Ω, problems associated with the presence of stationary
points are generic to domains with smooth boundaries. Our present understanding of
univariate quadrature methods for oscillators with stationary points is unequal to this
task and this calls for further research.

2 The univariate case

Let d = 1 and Ω = (a, b). In other words, we consider

I[f, (a, b)] =

∫ b

a

f(x)eiωg(x)dx. (2.1)

Let us consider first strictly monotone oscillators g. In that case it has been proved
in (Iserles & Nørsett 2005a) that for any f ∈ C∞[a, b] the integral in (2.1) admits the
asymptotic expansion

I[f, (a, b)] ∼ −
∞∑

m=0

1

(−iω)m+1

{
eiωg(b)

g′(b)
σm[f ](b) − eiωg(a)

g′(a)
σm[f ](a)

}
, ω À 1,

(2.2)
where

σ0[f ](x) = f(x),

σm[f ](x) =
d

dx

σm−1[f ](x)

g′(x)
, m = 1, 2, . . . .

Note that each σm[f ] is a linear combination of f (i), i = 0, 1, . . . ,m, with coefficients
that depend upon g and its derivatives.

Truncating (2.2) results in the asymptotic method

QA

s [f, (a, b)] = −
s−1∑

m=0

1

(−iω)m+1

{
eiωg(b)

g′(b)
σm[f ](b) − eiωg(a)

g′(a)
σm[f ](a)

}
(2.3)
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and it follows immediately that

QA

s [f, (a, b)] − I[f, (a, b)] ∼ O
(
ω−s−1

)
.

The information required to attain this rate of asymptotic decay, which improves as
the frequency ω grows, is just the values of f, f ′, . . . , f (s−1) at the endpoints of the
interval.

An alternative to the asymptotic method (2.3) which, while requiring identical
information and producing the same rate of asymptotic decay, is typically more accu-
rate, is the Filon-type method. (Iserles & Nørsett 2005a). In its basic reincarnation
we construct a degree-(2s − 1) Hermite interpolating polynomial ψ, say, such that
ψ(j)(a) = f (j)(a), ψ(j)(b) = f (j)(b), j = 0, 1, . . . , s − 1, and set

QF

s [f, (a, b)] = I[ψ, (a, b)]. (2.4)

It readily follows, applying (2.2) to ψ − f , that

QF

s [f, (a, b)] − I[f, (a, b)] = I[ψ − f, (a, b)] = O
(
ω−s−1

)
, ω À 1.

The Filon-type method can be enhanced by interpolating f not just at a and b but
also at intermediate points. Although the asymptotic rate of decay remains the same,
the size of the error is significantly reduced. We refer to (Iserles & Nørsett 2005a)
for details and examples and to (Iserles & Nørsett 2005b) for techniques to estimate
the error and an explanation why usually (but not always) Filon is likely to produce
smaller error than the asymptotic method.

Both (2.3) and (2.4) can be generalized to cater for oscillators g with stationary
points in (a, b). For example, suppose that g′(y) = 0, g′′(y) 6= 0, for some y ∈ (a, b)
and g′(x) 6= 0 for x ∈ [a, b] \ {y}. In that case the asymptotic expansion of I[f, (a, b)]
does not depend any longer just on f and its derivatives at the endpoints. Let

µ0(ω) =

∫ b

a

eiωg(x)dx

be the zeroth moment of the oscillator g. Then (2.2) need to be replaced by the
asymptotic expansion

I[f, (a, b)] ∼ µ0(ω)

∞∑

m=0

1

(−iω)m
ρm[f ](y)

−
∞∑

m=0

1

(−iω)m+1

(
eiωg(b)

g′(b)
{ρm[f ](b) − ρm[f ](y)} (2.5)

− eiωg(a)

g′(a)
{ρm[f ](a) − ρm[f ](y)}

)
ω À 1,

where

ρ0[f ](x) = f(x),

ρm[f ](x) =
d

dx

ρm−1[f ](x) − ρm−1[f ](y)

g′(x)
, m = 1, 2, . . . .
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Note that ρm for m ≥ 1 has a removable singularity at y, but, as long as f is smooth in
[a, b], so is each ρm However, while each ρm depends on f, f ′, . . . , f (m) at the endpoints
a and b, it also depends on f, f ′, . . . , f (2m) at the stationary point ξ (Iserles & Nørsett
2005a).

The expansion (2.5) can be easily generalized to stationary points of degree r, i.e.
when g′(y) = · · · = g(r)(y) = 0, g(r+1)(y) 6= 0, to several stationary points in (a, b)
and to stationary points at the endpoints.

Once the expansion (2.5) is truncated, we obtain for every s ≥ 1 the asymptotic
method

QA

s [f ] = µ0(ω)

s−1∑

m=0

1

(−iω)m
ρm[f ](y)

−
s−1∑

m=0

1

(−iω)m+1

(
eiωg(b)

g′(b)
{ρm[f ](b) − ρm[f ](y)} (2.6)

− eiωg(a)

g′(a)
{ρm[f ](a) − ρm[f ](y)}

)
,

a generalization of (2.3) to the present setting. Since µ0(ω) ∼ O
(
ω− 1

2

)
(Stein 1993),

we can prove that

QA

s [f ] − I[f, (a, b)] = O
(
ω−s− 1

2

)
, ω À 1.

Observe that QA

s [f ] depends on f (i)(a), f (i)(b), i = 0, 1, . . . , s − 1, but also on f (i)(y),
i = 0, 1, . . . , 2s − 2.

The Filon-type approach can be generalized to the present setting in a natural
way. Specifically, we choose nodes c1 = a < c2 < · · · < cν−1 < cν = b such that
y ∈ {c2, c3, . . . , cν−1} and multiplicities m1,m2, . . . ,mν ∈ Z. Let ψ be a polynomial
of degree

∑
ml − 1 which interpolates f and its derivatives at the nodes,

ψ(i)(ck) = f (i)(ck), i = 0, . . . ,mk − 1, k = 1, . . . , ν.

The Filon-type method is given, again, by (2.4). Note that n1, nν ≥ s and mr ≥ 2s−1,

where cr = y, imply that QF

s [f ] − I[f, (a, b)] = O
(
ω−s− 1

2

)
for ω À 1. Thus, we

again replicate the asymptotic order of decay of the asymptotic method, use the same
information but have access to extra degrees of freedom that typically allow for higher
precision.

3 Product rules

The simplest generalization of univariate quadrature to multivariate setting is by us-
ing product rules and it is applicable to the case when Ω ⊂ R

d is a parallelepiped.
Although we will consider in the sequel much more general domains, it is useful to
commence with a simple example since it illustrates many issues that will be at the
centre of our attention.
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Without loss of generality we may assume that Ω is a unit cube. We consider
just the case d = 2 but general dimensions can be treated by identical means at the
price of more elaborate algebra. Thus, we wish first to expand asymptotically and
subsequently to approximate the integral

I[f, (a, b)2] =

∫ b

a

∫ b

a

f(x, y)eiωg(x,y)dydx, (3.1)

where f and g are smooth functions and g is real. We assume that the oscillator g is
separable,

g(x, y) = g1(x) + g2(y), x, y ∈ [a, b],

and that
g′1(x), g′2(y) 6= 0, x, y ∈ [a, b]. (3.2)

The separability condition is stronger than absolutely necessary and will be relaxed
in the sequel but it renders the algebra considerably simpler and, for the time being,
will suffice to illustrate salient points of our analysis.

We commence by expanding the inner integral in (3.1) into asymptotic series (2.2),
a procedure justified by the assumptions (3.2). Thus, exchanging integration and
summation,

I[f, (a, b)2] ∼ −
∞∑

m2=0

1

(−iω)m2+1

∫ b

a

{
eiωg(x,b)

g′2(b)
σ0,m2

[f ](x, b)

− eiωg(x,a)

g′2(a)
σ0,m2

[f ](x, a)

}
dx,

where

σ0,0[f ] = f, σ0,m2
[f ] =

∂

∂y

σ0,m2−1[f ]

g′2
, m2 ≥ 1.

Next, we expand the remaining integral in asymptotic series (2.2) and rearrange terms,

I[f, (a, b)2] ∼
∞∑

m1=0

∞∑

m2=0

1

(−iω)m1+m2+2

{
eiωg(b,b)

g′1(b)g
′
2(b)

σm1,m2
[f ](b, b)

− eiωg(b,a)

g′1(b)g
′
2(a)

σm1,m2
[f ](b, a) +

eiωg(a,a)

g′1(a)g′2(a)
σm1,m2

[f ](a, a)

− eiωg(a,b)

g′1(a)g′2(b)
σm1,m2

[f ](a, b)

}

=
∞∑

m=0

1

(−iω)m+2

m∑

k=0

{
eiωg(b,b)

g′1(b)g
′
2(b)

σk,m−k[f ](b, b) (3.3)

− eiωg(b,a)

g′1(b)g
′
2(a)

σk,m−k[f ](b, a) +
eiωg(a,a)

g′1(a)g′2(a)
σk,m−k[f ](a, a)

− eiωg(a,b)

g′1(a)g′2(b)
σk,m−k[f ](a, b)

}
,
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where

σm1,m2
[f ] =

∂

∂x

σm1−1,m2
[f ]

g′1
, m1 ≥ 1.

Let h ∈ C[(a, b)2] and

∂1[h] =
∂

∂x

h

g′1
, ∂2[h] =

∂

∂y

h

g′2
.

Separability of g implies that

∂1∂2[h] =
1

g′1g
′
2

∂2h

∂x∂y
− g′′2

g′1g
′
2
2

∂h

∂x
− g′′1

g′1
2g′2

∂h

∂y
+

g′′1 g′′2
g′1

2g′2
2 h = ∂2∂1[h].

Therefore the two operators commute and we can redefine the function σm1,m2
,

σm1,m2
[f ] = ∂m1

1 ∂m2

2 [f ], m1,m2 ≥ 0,

where ∂1 and ∂2 can be applied in any order.
A number of observations are in order. As will be evident in the sequel, they reflect

a more general state of affairs and illustrate how the univariate theory of (Iserles &
Nørsett 2005a) generalizes to multivariate setting.

• In the important special case g(x, y) = κ1x + κ2y, where κ1, κ2 are nonzero
constants, we have g′1 ≡ κ1, g′2 ≡ κ2,

σk,m−k[f ] =
1

κk
1κm−k

2

∂mf

∂xk∂ym−k

and the asymptotic expansion (3.3) simplifies to

I[f, (a, b)2] ∼
∞∑

m=0

1

(−iω)m+2

m∑

k=0

1

κk
1κm−k

2

[
ei(bκ1+bκ2)

∂mf(b, b)

∂xk∂ym−k

− ei(bκ1+aκ2)
∂mf(b, a)

∂xk∂ym−k
+ ei(aκ1+aκ2)

∂mf(a, a)

∂xk∂ym−k

− ei(aκ1+bκ2)
∂mf(a, b)

∂xk∂ym−k

]
.

• The asymptotic expansion (3.3) depends solely upon f and its derivatives at the
vertices of the square [a, b]2.

• Each σk,m−k can be expressed as a linear combination of ∂i+jf/∂ix∂jy, i =
0, . . . , k, j = 0, . . . ,m − k, with coefficients that depend solely on the oscillator
g and its derivatives.
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• The asymptotic method

QA

s+1[f ] =

s−1∑

m=0

1

(−iω)m+2

m∑

k=0

{
eiωg(b,b)

g′1(b)g
′
2(b)

σk,m−k[f ](b, b) (3.4)

− eiωg(b,a)

g′1(b)g
′
2(a)

σk,m−k[f ](b, a) +
eiωg(a,a)

g′1(a)g′2(a)
σk,m−k[f ](a, a)

− eiωg(a,b)

g′1(a)g′2(b)
σk,m−k[f ](a, b)

}
,

depends on ∂i+jf/∂ix∂jy, i, j = 0, . . . , s − 1, at the vertices of the square.
Moreover,

QA

s+1[f ] − I[f, (a, b)2] = O
(
ω−s−2

)
, ω À 1,

hence the asymptotic method has asymptotic rate of decay of O
(
ω−s−2

)
.

• Let ψ : [a, b]2 → R be any Cs function that obeys the Hermite interpolation
conditions

∂i+jψ(vk)

∂ix∂jy
=

∂i+jf(vk)

∂ix∂jy
, i, j = 0, . . . , s − 1, k = 1, 2, 3, 4,

where
v1 = (b, b), v2 = (b, a), v3 = (a, a), v4 = (a, b)

are the vertices of the square [a, b]2. We define a Filon-type method

QF

s+1[f ] = I[ψ, (a, b)2]. (3.5)

Thus, QF

s [f ] is exploiting exactly the same information as QA

s [f ]. Since

QF

s+1[f ] − I[f, (a, b)2] = I[ψ − f, (a, b)2]

the asymptotic expansion (3.3), applied to ψ − f , in tandem with the above
interpolation conditions, proves at once that

QF

s+1[f ] − I[f, (a, b)2] = O
(
ω−s−2

)
, ω À 1,

thereby matching the rate of asymptotic error decay of the asymptotic method
(3.4).

Note that much smaller error can be attained with Filon’s method once we inter-
polate f at other points in [a, b]2, a procedure which we have already mentioned
in the univariate context and to which we will return in the sequel.

• It follows at once from the asymptotic expansion (3.3) that I[f, (a, b)2] = O
(
ω−2

)

for ω À 1, in variance with the one-dimensional case, I[f, (a, b)] = O
(
ω−1

)
.

This is a reflection of the general scaling I[f,Ω] = O
(
ω−d

)
for Ω ⊂ R

d (Stein
1993). Therefore the relative error of both QA

s and QF

s is O(ω−s), regardless of
dimension: for the time being, we proved it only for a square in R

2 but this will
be generalized in the sequel.
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Figure 1: The absolute value of error for QA

1 and QF

1, on the left and right respectively,
scaled by ω3, for f(x) = (x − 1

2 ) sin(π(x + y)/2) and g(x, y) = 2x − y, a = 0, b = 1
and 10 ≤ ω ≤ 100.

As an example, we let (a, b) = (0, 1), set g(x, y) = 2x − y and consider the sim-
plest methods, with s = 1. In other words, we use just the function values, but no
derivatives, at the vertices. The asymptotic method is

QA

1 [f ] =
1

2ω2
[eiωf(1, 1) − e2iωf(1, 0) + f(0, 0) − e−iωf(0, 1)].

We interpolate at the vertices with the standard pagoda function (linear spline in a
rectangle)

ψ(x, y) = f(0, 0)(1 − x)(1 − y) + f(1, 0)x(1 − y) + f(0, 1)(1 − x)y + f(1, 1)xy.

Therefore

QF

1[f ] = b1,1(ω)f(1, 1) + b1,0(ω)f(1, 0) + b0,0(ω)f(0, 0) + b0,1(ω)f(0, 1),

where

b1,1(ω) = − 1
2

eiω

(−iω)2
− 1

4

(1 − e−iω)(1 + eiω + 2e2iω)

(−iω)3
− 1

4

(1 + e−iω)(1 − eiω)

(−iω)4
,

b1,0(ω) = 1
2

e2iω

(−iω)2
− 1

4

(1 − eiω)(1 + 3eiω)

(−iω)3
+ 1

4

(1 + e−iω)(1 − eiω)

(−iω)4
,

b0,0(ω) = − 1
2

1

(−iω)2
− 1

4

(1 − e−iω)(2 + eiω + e2iω)

(−iω)3
− 1

4

(1 + e−iω)(1 − eiω)

(−iω)4
,

b0,1(ω) = 1
2

e−iω

(−iω)2
+ 1

4

(1 − e−iω)(3 + eiω)

(−iω)3
+ 1

4

(1 + e−iω)(1 − eiω)

(−iω)4
.
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In Fig. 1 we present the errors (in absolute value) scaled by ω3. Each point on
the horizontal axis corresponds to a different value of ω: this mode of presentation,
originally used in (Iserles 2004b), allows for easy comparison of methods. It is evident
that both the asymptotic and Filon-type methods behave according to the theory
above, with the error of QF

1[f ] somewhat smaller.

4 Quadrature over a regular simplex, g(x) = κ>x

We denote by Sd(h) ⊂ R
d the d-dimensional open, regular simplex with vertices at 0

and hek, k = 1, 2, . . . , d, where ek ∈ R
d is the kth unit vector and h > 0. Thus,

S1(h) = {x ∈ R : 0 < x < h},
Sd(h) = {x ∈ R

d : x1 ∈ (0, h), (x2, . . . , xd) ∈ Sd−1(h − x1)}, d ≥ 2. (4.1)

We need to consider not just the standard regular simplex with h = 1, say, but all
values of of h ∈ (0, 1) because of the method of proof of Theorem 1.

Given κ ∈ R
d, we say that it obeys the nonresonance condition if

κi 6= 0, i = 1, 2, . . . , d, κi 6= κj , i, j = 1, 2, . . . , d, i 6= j.

In other words, κ is not orthogonal to the faces of Sd(h). Moreover, the faces of each
simplex are themselves simplices of one dimension less and that this procedure can
be continued iteratively until we reach zero-dimensional simplices: the vertices of the
original simplex. It is easy to see that κ is not orthogonal to the faces of any of these
simplices of dimension greater than one.

Let
vd,0 = 0, vd,k = ek, k = 1, 2, . . . , d.

We will be employing in the sequel a multi-index notation. Thus,

fm(x) =
∂|m|f(x)

∂xm1

1 ∂xm2

2 · · · ∂xmd

d

,

where each mk is a nonnegative integer and |m| = 1>m.
We commence our discussion by considering the highly oscillatory integral

I[f,Sd(h)] =

∫

Sd(h)

f(x)eiωκ
>

xdV. (4.2)

Theorem 1 Suppose that κ obeys the nonresonance condition. There exist linear
functionals αd

m
[vd,k]; Rd → R, k = 0, 1, . . . , d, |m| ≥ 0, such that for ω À 1 it is true

that

I[f,Sd(h)] ∼
∞∑

n=0

1

(−iω)n+d

d∑

k=0

eiωhκ
>

vd,k

∑

|m|=n

αd
m

[vd,k](κ)f (m)(hvd,k). (4.3)
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Proof By induction on d. For d = 1 we use the univariate asymptotic expansion:
the asymptotic expansion (2.2) reduces for g(x) = κ1x to

I[f, (0, h)] ∼
∞∑

n=0

1

(−iωκ1)n+1

1

κn+1
1

[−f (n)(0) + eiωhf (n)(h)],

hence (4.3) holds with

α1
n[v1,0](κ1) = − 1

κn+1
1

, α1
n[v1,1](κ1) =

1

κn+1
1

, n ≥ 0.

Because of (4.1), it is true that

I[f,Sd(h)] =

∫ h

0

I[f,Sd−1(h − x)]eiωκ1xdx.

Let
κ̃ = [κ2, κ3, . . . , κd]

> ∈ R
d−1, m̃ = [m2,m3, . . . ,md]

> ∈ Z
d−1
+

and

F k,r

m̃

(x) =
dr

dxr
f (0,m̃)(x, (h − x)dd−1,k).

(By f (0,m̃) we really mean f (0,m̃
>

)> except that it is arguably better to abuse notation
in a transparent fashion rather than unduly overburdening it.) Then, by induction,

I[f,Sd(h)] ∼
∞∑

n=0

1

(−iω)n+d−1

d−1∑

k=0

eiωhκ̃
>

vd−1,k

∑

|m̃|=n

αd−1

m̃

[vd−1,k](κ̃)

×
∫ h

0

f (0,m̃)(x, (h − x)dd−1,k)eiω(κ1−κ̃
>vd−1,k)xdx

∼
∞∑

n=0

1

(−iω)n+d−1

d−1∑

k=0

eiωhκ̃
>

vd−1,k

∑

|m̃|=n

αd−1

m̃

[vd−1,k](κ̃)

×
∞∑

r=0

1

(−iω)r+1

1

(κ1 − κ̃

>
vd−1,k)r+1

[
dr

dxr
f (0,m̃)(x, (h − x)vd−1,k)

x=0

− eiωh(κ1−κ̃
>

vd−1,k) dr

dxr
f (0,m̃)(x, (h − x)vd−1,k)

x=h

]

=

∞∑

n=0

∞∑

r=0

1

(−iω)n+r+d




d−1∑

k=0

eiωhκ̃
>

vd−1,k

(κ1−κ̃

>
vd−1,k)r+1

∑

|m̃|=n

αd−1

m̃

[vd−1,k](κ̃)F k,r

m̃

(0)

− eiωkκ̃
>

vd−1,k

d−1∑

k=0

eiωhκ̃
>

vd−1,k

(κ1−κ̃

>
vd−1,k)r+1

∑

|m̃|=n

αd−1

m̃

[vd−1,k](κ̃)F k,r

m̃

(h)


.

The nonresonance condition ensures that we never divide by zero.
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Note however that F 0,r

m̃

(0) is evaluated at 0 = hvd,0, while F k,r

m̃

(0) for k =

1, 2, . . . , d − 1 is evaluated at hvd,k+1 and, finally, F k,r

m̃

(h) is evaluated at hvd,1.

Each F k,r

m̃

(x) can be written using the Leibnitz rule in the form

F k,r

m̃

(x) =
r∑

j=0

(−1)r−j

(
r

j

)
f (je1+(r−j)ek+1+(0,m̃))(x, 0, . . . , 0, h − x, 0, . . . , 0).

In other words, F k,r

m̃

(x) is a linear combination of f (mj)(ψj(x)), where

mj = je1 + (r − j)ek−1 + (0, m̃), |mj | = r + |m̃| = r + n

and ψj(x) = xe1 + (h − x)ek+1, j = 0, 1, . . . , r. Observe, though, that ψj(0) =
hek+1 = hvd,k+1 and ψj(h) = 0 = hvd,0.

Substitution of F k,r

m̃

(0) and F k,r

m̃

(h) with the above linear combination of deriva-

tives of f and regrouping terms completes the proof. 2

Note that, although in principle the method of proof generates recursive rules
for the evaluation of the functionals αd

m
[vd,k], the latter are fairly complicated, in

particular for large d. They can be computed, though, for d = 2. In that instance the
condition that κ is not normal to ∂S2(h) is equivalent to κ1, κ2 6= 0 and κ1 6= κ2. The
asymptotic expansion (4.3) can be written in the form

I[f,S2(h)] ∼
∞∑

n=0

1

(−iω)n+2

2∑

k=0

eiωκ
>

v2,k

n∑

m=0

a2
n,m[v2,k](κ)f (m,n−m)(v2,k),

where

a2
n,m[(0, 0)](κ1, κ2) =

1

κm+1
1 κn−m+1

2

,

a2
n,m[(1, 0)](κ1, κ2) =

n∑

l=m

(−1)l−m

(
l

m

)
1

κn−l+1
2 (κ1 − κ2)l+1

− 1

κm+1
1 κn−m+1

2

,

a2
n,m[(0, 1)](κ1, κ2) = −

n∑

l=m

(−1)l−m

(
l

m

)
1

κn−l+1
2 (κ1 − κ2)l+1

.

Strictly speaking, explicit form of ad
m

is hardly necessary for the practical purpose
of computing I[f,Sd(h)]. Of course, had we wanted to use a multivariate generalization
of the asymptotic method QA

s , we would have needed to know (4.3) in an explicit form.
However, all we need to generalize a Filon-type method QF

s is that, using directional
derivatives of total degree ≤ s − 1 at the d + 1 vertices of the simplex, an asymptotic
method produces an error of O

(
ω−s−d

)
.

Theorem 2 Suppose that κ obeys the nonresonance condition. Let ψ : R
d → R be

any Cs function such that

ψ(m)(vd,k) = f (m)(vd,k), |m| ≤ s − 1, k = 0, 1, . . . , d. (4.4)

12



Set
QF

s [f ] = I[ψ,S(h)].

Then
QF

s [f ] = I[f,S(h)] + O
(
ω−s−d

)
, ω À 1.

Proof Follows at once, in a similar vain to the univariate case, replacing f by
ψ − f in (4.3). 2

In practice, we use polynomial functions ψ and the basic rules of their construction
can be borrowed virtually intact from the finite element method (Iserles 1996). For
example, in two dimensions we need to interpolate f (and possibly its derivatives) at
the vertices of the 2-simplex, v2,0 = (0, 0), v2,1 = (1, 0) and v2,2 = (0, 1). We may
also interpolate at additional points, whether to equalize the number of interpolation
conditions to the number of degrees of freedom or to decrease the approximation error.
The four interpolation patterns which will concern us are displayed in Fig. 2.
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(a) (b) (c) (d)

Figure 2: Patterns of interpolation in two dimensions. A disc denotes an interpolation
to f , while a disc in a circle denotes interpolation to f , ∂f/∂x and ∂f/∂y.

To interpolate f at the vertices (the leftmost pattern in Fig. 2) we use

ψ1(x, y) = a0,0 + a1,0x + a0,1y,

while to interpolate f both at the vertices and at the centroid (1
3 , 1

3 ) we employ

ψ2(x, y) = a0,0 + a1,0x + a0,1y + a1,1xy.

This leads to two QF

1 methods. In Fig. 3 we display the scaled error for both: the
one corresponding to ψ1 on the left. The function in question is f(x, y) = ex−2y and
κ = (2,−1), but many other computational experiments with different fs and κs have
led to identical conclusions. Thus, numerical calculations confirm the theory (as they
should) and the use of extra information – in our case, the extra function evaluation
at the centroid – usually reduces the mean magnitude of the error.

In order to interpolate to f and its directional derivatives at the vertices, nine
conditions altogether, we let

ψ(x, y) = a0,0+a1,0x+a0,1y+a2,0x
2+a1,1xy+a0,2y

2+a3,0x
3+a2,1x

2y+a1,2xy2+a0,3y
3.

Altogether we have ten degrees of freedom and we need an extra condition to define ψ
uniquely. One option, corresponding to (c) in Fig. 2 and the left-hand side of Fig. 4,
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Figure 3: The absolute value of error for the two QF

1 methods, on the left and right
respectively, scaled by ω3, for f(x) = ex−2y and g(x, y) = 2x − y.

is to require that the coefficients of cubic terms sum up to zero,

a3,0 + a2,1 + a1,2 + a0,3 = 0,

another obvious possibility, widely used in finite element theory, is to interpolate at
the centroid. As evident from Fig. 4, the first option leads to smaller mean error, and
this is confirmed by a welter of other numerical experiments. It is not clear why this
should be so.

It remains to investigate what happens when the nonresonance condition fails.
The two-dimensional case is sufficient in shedding light on this case. Without loss of
generality, let us assume that κ1 = κ2 and set h = 1. Specializing (2.2) to g(x) = x,
we have

I[f, (a, b)] ∼ −
∞∑

m=1

1

(−iω)m
[eiωbf (m−1)(b) − eiωaf (m−1)(a)]. (4.5)

We repeat the iterative procedure from the proof of Theorem 1 explicitly, using (4.5)
to expand univariate integrals,

I[f,S2(1)] =

∫ 1

0

∫ 1−x

0

f(x, y)eiω(x+y)dydx

∼ −
∞∑

n=0

1

(−iω)n+1

∫ 1

0

[eiω(1−x)f (0,n)(x, 1 − x) − f (0,n)(x, 0)]eiωxdx

= −eiω
∞∑

n=0

1

(−iω)n+1

∫ 1

0

f (0,n)(x, 1 − x)dx

−
∞∑

n=0

∞∑

m=0

1

(−iω)m+n+2
[eiωf (m,n)(1, 0) − f (m,n)(0, 0)]
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Figure 4: The absolute value of error for the two QF

2 methods, scaled by ω4, for
f(x) = ex−2y and g(x, y) = 2x − y.

= −eiω
∞∑

n=0

1

(−iω)n+1

∫ 1

0

f (0,n)(x, 1 − x)dx (4.6)

−
∞∑

n=0

1

(−iω)n+2

n∑

m=0

[eiωf (m,n−m)(1, 0) − f (m,n−m)(0, 0)].

Therefore – and this explains the phrase “nonresonance condition” – we have a rate
of decay which is associated with a lower-dimensional problem: I[f,S1(1)] = O

(
ω−1

)

for ω À 1, rather than O
(
ω−2

)
.

It is interesting to examine what happens once we disregard above analysis and
apply Filon’s method in the presence of resonance. Thus, we revisit the calculations
of Fig. 3, except that we let κ1 = κ2 = 1. As Fig. 5 demonstrates, the integral
indeed decays like O

(
ω−1

)
. We considered two Filon-type methods with s = 1: one

that interpolates to f at the vertices and the second that interpolates to f both at
the vertices and at ( 1

2 , 1
2 ), the midpoint of the “offending” face. (For completeness,

ψ(x, y) = a0,0+a1,0x+a0,1y in the first case, while ψ(x, y) = a0,0+a1,0x+a0,1y+a1,1xy
in the second.) As evident from Fig. 6, both methods produce errors that are just
O

(
ω−1

)
but, while the error of the first is of the same order of magnitude as the

integral itself, the second method produces an error which is about 40 times smaller.
For the record, interpolating at the centroid (1

3 , 1
3 ) rather than at (1

2 , 1
2 ) does not help

at all: it is the midpoint that apparently matters, although, as things stand, we cannot
underpin this observation by general theory.

An alternative is to truncate (4.6), producing an asymptotic method

QA

s [f ] = −eiω
s∑

n=0

1

(−iω)n+1

∫ 1

0

f (0,n)(x, 1 − x)dx

15
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Figure 6: The absolute value of error for the two QF

1 methods, scaled by ω, for f(x) =
ex−2y and g(x, y) = x − y.

−
s−1∑

n=0

1

(−iω)n+2

n∑

m=0

[eiωf (m,n−m)(1, 0) − f (m,n−m)(0, 0)].

This allows us to approximate the error to an arbitrarily high rate of asymptotic decay,

provided that we can evaluate exactly the non-oscillatory integrals
∫ 1

0
f (0,n)(x, 1−x)dx

for relevant values of n. Fig. 7 confirms that this approach works for s = 1 and s = 2,
producing an asymptotic rate of error decay of O

(
ω−3

)
and O

(
ω−4

)
respectively.

16



ω

0.6

1.4

1.2

1

0.4

100806020 40

0.8

1.6

2.5

ω

2

3.5

4

100806020 40

3

Figure 7: The absolute value of error for the QA

1 (on the left) and QA

2 methods, scaled
by ω3 and ω4, respectively, for f(x) = ex−2y and g(x, y) = x − y.

5 Quadrature over a regular simplex, general

oscillators

In the last section we investigated highly oscillatory quadrature over a regular simplex
and restricted our attention to the linear oscillator g(x = κ>x. Still keeping to a
regular simplex, we presently extend the scope of our analysis to nonlinear oscillators.
In other words, in place of (4.1) we consider the integral

I[f,Sd(h)] =

∫

Sd(h)

f(x)eiωg(x)dV, (5.1)

where g : R
d → R is a sufficiently smooth oscillator.

The multivariate equivalent of a stationary point is a critical point ξ ∈ cl Ω such
that ∇g(ξ) = 0. We henceforth assume that there are no critical points in the closure
of Sd(h). The nonresonance condition in this, more general, situation is that ∇g(x)
is never orthogonal to the boundary of the simplex. In other words,

∂g(x)

∂xi
6= 0,

∂g(x)

∂xi
6= ∂g(x)

∂xj
, i, j = 1, 2, . . . , d, i 6= j, x ∈ clSd(h). (5.2)

Note that (5.2) automatically precludes critical points in the closure of the simplex.
Theorem 1 can be generalized to the present setting in fairly straightforward man-

ner. We will demonstrate this in detail for the case d = 2: the proof for general d ≥ 2
follows in a similar vain. Thus, consider S2(h), namely the triangle with vertices
(0, 0), (h, 0) and (0, h). Since, consistently with the nonresonance condition (5.2),
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∂g(x, y)/∂y 6= 0, we apply (2.2) to the inner integral,

I[f,S2(h)] =

∫ h

0

∫ h−x

0

f(x, y)eiωg(x,y)dydx

∼ −
∫ h

0

∞∑

m=0

1

(−iω)m+1

[
eiωg(x,h−x)

gy(x, h − x)
σ0,m[f ](x, h − x)

− eiωg(x,0)

gy(x, 0)
σ0,m[f ](x, 0)

]
dx

= −
∞∑

m=0

1

(−iω)m+1

[∫ h

0

σ0,m[f ](x, h − x)

gy(x, h − x)
eiωg(x,h−x)dx

−
∫ h

0

σ0,m[f ](x, 0)

gy(x, 0)
eiωg(x,0)dx

]
,

where

σ0,0[f ] = f, σ0,m[f ] =
∂

∂y

σ0,m−1[f ]

gy
, m ≥ 1.

Each term in the asymptotic expansion is made out of two highly oscillatory uni-
variate integrals, which we expand using (2.2). Specifically,

∫ h

0

σ0,m[f ](x, h − x)

gy(x, h − x)
eiωg(x,h−x)dx

∼ −
∞∑

n=0

1

(−iω)n+1

{
eiωg(h,0)

[gx(h, 0) − gy(h, 0)]gy(h, 0)
σ̃n,m[f ](h, 0)

− eiωg(0,h)

[gx(0, h) − gy(0, h)]gy(0, h)
σ̃n,m[f ](0, h)

}

∫ h

0

σ0,m[f ](x, 0)

gy(x, 0)
eiωg(x,0)dx

∼ −
∞∑

n=0

1

(−iω)n+1

[
eiωg(h,0)

gx(h, 0)gy(h, 0)
σn,m[f ](h, 0) − eiωg(0,0)

gx(0, 0)gy(0, 0)
σn,m[f ](0, 0)

]
,

where

σn,m[f ] =
∂

∂x

σn−1,m[f ]

gx
, n ≥ 1,

σ̃0,m[f ] = σ0,m[f ], σ̃n,m[f ] =
∂

∂x

σ̃n−1,m[f ]

gx − gy
− ∂

∂y

σ̃n−1,m[f ]

gx − gy
, n ≥ 1.

Nonresonance conditions imply that we never divide by zero.
We can assemble all this into an asymptotic expansion of the bivariate integral in

inverse powers of ω, but this is really not the point of the exercise. All that matters is
that we can expand I[f,S2(h)] asymptotically and that, as can be easily verified, each
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ω−n−2 term depends on f (k,m−k), k = 0, 1, . . . ,m, m = 0, 1, . . . , n, at the vertices.
Therefore, if ψ is an Cs−1 function such that

ψ(i)(0, 0) = f (i)(0, 0), ψ(i)(h, 0) = f (i)(h, 0), ψ(i)(0, h) = f (i)(0, h), i = 0, 1, . . . , s−1

and

QF

s [f ] = I[ψ,S2(h)] =

∫

S2(h)

ψ(x, y)eiωg(x,y)dV

then QF

s [f ] − I[f,S2(h)] ∼ O
(
ω−s−2

)
, ω À 1.

Theorem 3 Suppose that g obeys the nonresonance conditions (5.2) and that ψ is an
arbitrary Cs[clSd(h)] function such that

ψ(m)(vd,k) = f (m)(vd,k), k = 0, 1, . . . , d, |m| ≤ s − 1.

Set
QF

s [f ] = I[ψ,Sd(h)].

Then
QF

s [f ] − I[f,Sd(h)] ∼ O
(
ω−s−d

)
, ω À 1. (5.3)

Proof Using the method of proof of Theorem 1, we can extend the above expan-
sion from d = 2 to arbitrary d ≥ 2. The asymptotic rate of decay in (5.3) then follows
similarly to the proof of Theorem 2. 2

6 A Stokes-type formula

The proof of Theorems 1 and 3 depended on progressive ‘slicing’ of regular simplices
along hyperplanes parallel to their ‘diagonal’ face. In the present section we develop
an alternative approach which ‘pushes’ a highly oscillatory integral from a regular
simplex to its boundary – itself a union of lower-dimensional simplices. It ultimately
leads to an asymptotic expansion which is vaguely reminiscent of the familiar Stokes
and Green formulæ.

All the complexities of the proof being present already for d = 2, we develop our
expansion for S2 = S2(1): its generalization to all d ≥ 2 is trivial. Note that there is
no advantage in considering general h > 0, hence we let h = 1.

We assume again the nonresonance conditions (5.2) and, integrating by parts,
compute

I[g2
xf,S2] =

∫ 1

0

∫ 1−y

0

g2
x(x, y)f(x, y)eiωg(x,y)dxdy

=
1

iω

∫ 1

0

gx(1 − y, y)f(1 − y, y)eiωg(1−y,y)dy

− 1

iω

∫ 1

0

gx(0, y)f(0, y)eiωg(0,y)dy − 1

iω
I

[
∂

∂x
(gxf),S2

]
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=
1

iω

∫ 1

0

gx(x, 1 − x)f(x, 1 − x)eiωg(x,1−x)dx

− 1

iω

∫ 1

0

gx(0, y)f(0, y)eiωg(0,y)dy − 1

iω
I

[
∂

∂x
(gxf),S2

]

I[g2
yf,S2] =

∫ 1

0

∫ 1−x

0

g2
y(x, y)f(x, y)eiωg(x,y)dydx

=
1

iω

∫ 1

0

gy(x, 1 − x)f(x, 1 − x)eiωg(x,1−x)dx

− 1

iω

∫ 1

0

gy(x, 0)f(x, 0)eiωg(x,0)dx − 1

iω
I

[
∂

∂y
(gyf),S2

]
.

Therefore, adding,

I[‖∇g‖2f,S2] = I[(g2
x + g2

y)f,S2]

=
1

iω
(M1 + M2 + M3) −

1

iω
I

[
∂

∂x
(fgx) +

∂

∂y
(fgy)

]
,

where

M1 =

∫ 1

0

f(x, 0)n>
1 ∇g(x, 0)eiωg(x,0)dx,

M2 =
√

2

∫ 1

0

f(x, 1 − x)n>
2 ∇g(x, 1 − x)eiωg(x,1−x)dx,

M3 =

∫ 1

0

f(0, y)n>
3 ∇g(0, y)eiωg(0,y)dy.

Here n1 = [0,−1], n2 = [
√

2
2 ,

√
2

2 ] and n3 = [−1, 0] are the outward unit normals along
the edges extending from (0, 0) to (1, 0), from (1, 0) to (0, 1) and from (1, 0) to (0, 0)
respectively. Therefore

M1 + M2 + M3 =

∫

∂S2

f(x, y)n>(x, y)∇g(x, y)eiωg(x,y)dS,

where dS is the surface differential: note that the length of the edges is 1,
√

2 and 1,
respectively, and this is subsumed into the surface differential. The vector n(x, y) is
the unit outward normal at (x, y) ∈ ∂S2. We deduce the formula

I[‖∇g‖2f,S2] =
1

iω

∫

∂S2

f(x, y)n>(x, y)∇g(x, y)eiωg(x,y)dS − 1

iω
I[∇>(f∇g),S2].

Finally, we replace f by f/‖∇g‖2: since there are no critical points in the simplex,
this presents no difficulty whatsoever. The outcome is

I[f,S2] =
1

iω

∫

∂S2

n>(x, y)∇g(x, y)
f(x, y)

‖∇g(x, y)‖2
eiωg(x,y)dS (6.1)

− 1

iω

∫

S2

∇
>

[
f(x, y)

‖∇g(x, y)‖2
∇g(x, y)

]
eiωg(x,y)dV.
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The formula (6.1) can be generalized from d = 2 to general d ≥ 2. The method of
proof is identical: we express I[‖∇g‖2f,Sd], where Sd = Sd(1), as a linear combination
of integrals along oriented faces of the simplex, minus (iω)−1I[∇>(f∇g),Sd]. The
outcome is

I[f,Sd] =
1

iω

∫

∂Sd

n>(x)∇g(x)
f(x)

‖∇g(x)‖2
eiωg(x)dS (6.2)

− 1

iω

∫

Sd

∇
>

[
f(x)

‖∇g(x)‖2
∇g(x)

]
eiωg(x)dV.

Theorem 4 For any smooth f and g and subject to the nonresonance condition (5.2),
it is true for ω À 1 that

I[f,Sd] ∼ −
∞∑

m=0

1

(−iω)m+1

∫

∂Sd

n>(x)∇g(x)
σm(x)

‖∇(x)‖2
eiωg(x)dS. (6.3)

where

σ0(x) = f(x),

σm(x) = ∇
>

[
σm−1(x)

‖∇g(x)‖2
∇g(x)

]
, m ≥ 1.

Proof Follows by an iterative application of (6.2) with f replaced by σm for
increasing m. 2

Corollary 1 Subject to the conditions of Theorem 4, we can express I[f,Sd] as an
asymptotic expansion of the form

I[f,Sd] ∼
∞∑

n=0

1

(−iω)n+d
Θn[f ], (6.4)

where each Θn[f ] is a linear functional and depends on ∂|m|f/∂xm, |m| ≤ n, at the
vertices of Sd.

Proof The boundary of Sd is composed of d+1 faces which are (d−1)-dimensional
simplices and each can be linearly mapped to the regular simplex Sd−1. Thus, em-
ploying the requisite linear transformations, the terms on the right in the asymptotic
expansion (6.3) are each of the form I[f̃ ,Sd−1] for some function f̃ . We apply (6.3) to
each of these integrals, thereby expressing I[f,Sd] as a linear combination of integrals
over Sd−2. Continue by induction on descending dimension until the original integral
is expressed using point values and derivatives at the vertices. 2

Note that the functionals Θn depend upon the frequency ω: as a matter of fact, it
is easy to verify that they are almost-periodic functions of ω.
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The expansions (6.3) and (6.4) are the multivariate generalization of (2.2). We
note in passing that Corollary 1 leads to an alternative proof of Theorem 3, hence
is relevant to the theme of this paper, multivariate quadrature of highly oscillatory
integrals.

The expansion of (6.3) is reminiscent of other theorems that express an integral
over a volume in terms of surface integrals on its boundary: the most famous of these
is the familiar Stokes theorem. Yet, it is subject to completely different conditions:
while the divergence of the integrand need not vanish, the oscillator g must obey the
nonresonance condition (5.2)). Moreover, the surface integrals are embedded into an
asymptotic expansion. We note in passing that the aforementioned feature of the
Stokes theorem, ‘pushing’ an integral from a domain to its boundary, plays funda-
mental part in algebraic and combinatorial topology. It is unclear at present whether
(6.3) has any topological relevance.

7 Quadrature in polytopes and beyond

Suppose that the domain Ω ⊂ R
d can be written as a union of a finite number of

disjoint subsets, Ω =
⋃r

k=1 Ωr, where Ωk ∩ Ωl is either an empty set or a set of lower
dimension for k 6= l. Then

I[f,Ω] =
r∑

k=1

I[f,Ωk].

Therefore, once we have effective quadrature methods in each Ωk, we can trivially
extend them to Ω.

The term polytope has several subtly-different definitions in literature. In this
paper we follow Munkres (1991) and say that Ω is a polytope if it is the underlying
space of a simplicial complex. We recall that a simplicial complex is a collection C of
simplices in R

d such that every face of a simplex in C is also in C and the intersection
of any two simplices in C is a face of each of them. Thus, a polytope is a union of
simplices forming a simplicial complex. In other words, a polytope is a domain with
piecewise-linear boundary. It need be neither convex not, indeed, singly connected.
We define a face of a polytope in an obvious manner.

We assume that Ω ⊂ R
d is a bounded polytope and extend the results of the last

three sections in two steps. Firstly, we note that Corollary 1 remains true if Sd is
subjected to an affine map. Since any simplex in R

d can be obtained from Sd by an
affine map, it means that (6.4) remains valid once we replace Sd by any simplex T in
R

d. Of course, the nonresonance conditions (5.2) need be replaced by the requirement
that ∇g(x) is not orthogonal to the faces of T for any x ∈ cl T .

Secondly, we interpret Ω ⊂ R
d as the underlying space of a simplicial complex.

Since we can change the complex by smoothly moving internal vertices, thereby
amending angles of internal faces, we can always choose a tessellation so that the
nonresonance condition is satisfied for every simplex T therein, except possibly on an
external face, i.e. a face of of the polytope Ω.

The nonresonance condition for polytopes

We say that the oscillator g obeys the nonresonance condition in the polytope Ω if
∇g(x) is not orthogonal to any of the faces of Ω for all x ∈ cl Ω.

22



Subject to the above nonresonance condition, we can readily generalize both (6.3)
and (6.4) to Ω. To this end we note that the internal faces of the tessellation make no
difference to I[f,Ω], since the latter is independent of the choice of internal tessellation
vertices. In other words, the contributions of internal vertices cancel each other once
we stitch simplices together in a manner consistent with a simplicial complex. (Thus,
we are not allowed, using the language of finite element theory, ‘hanging nodes’.) It
follows at once that, subject to the nonresonance condition,

I[f,Ω] ∼ −
∞∑

m=0

1

(−iω)m+1

∫

∂Ω

n>(x)∇g(x)
σm(x)

‖∇g(x)‖2
eiωg(x)dS.

Insofar as highly oscillatory quadrature is concerned, the more useful result is a
generalization of Corollary 1,

Theorem 5 Let Ω ⊂ R
d be a bounded polytope and suppose that the oscillator g obeys

the nonresonance condition. Then

I[f,Ω] ∼
∞∑

n=0

1

(−iω)n+d
Θn[f ], (7.1)

where each linear functional Θn[f ] depends on ∂|m|f/∂xm, |m| ≤ n, at the vertices
of the polytope.

Note that the functionals Θn are, in practice, unknown. They can be computed, in
generally at great effort, but this is not necessary. All we need to know for generalizing
the Filon-type method is that the Θns depend on derivatives at the vertices of Ω.

Theorem 6 Suppose that Ω ⊂ R
d is a bounded polytope and g obeys the nonresonance

condition. Let ψ ∈ Cs[cl Ω] and assume that

ψ(m)(v) = f (m)(v), |m| ≤ s − 1

for every vertex v of Ω. Set QF

s [f ] = I[ψ,Ω]. Then

QF

s [f ] − I[f,Ω] ∼ O
(
ω−s−d

)
, ω À 1. (7.2)

Proof Identical to the proof of Theorem 3. Thus, QF

s [f ]−I[f,Ω] = I[ψ−f,Ω] and
the result follows by replacing f with ψ − f in (7.1) and using Hermite interpolation
conditions at the vertices. 2

Having generalized Filon-type methods from a regular simplex to a general poly-
tope, the next step seems to be to approach a general bounded domain Ω ⊂ R

d with
sufficiently ‘nice’ boundary by a sequence of polytopes and use the dominated con-
vergence theorem to generalize (7.1), say, to a curved boundary. There is an obvious
snag in this idea: it is impossible for ∇g(x) for any x ∈ Ω to be orthogonal to any
boundary point if ∂Ω is smooth. The simplest example is the semi-circle

Ω = {(x, y) : x2 + y2 < 1, y > 0}.
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Obviously, given any vector emanating from a point in Ω, we can form a parallel vector
emanating from the origin which is normal to a point on the boundary. Yet, on the
face of it, this example contains within it the seeds of its own resolution. Assume for
simplicity’s sake that g(x) = κ>x, where κ2 6= 0. Given ε > 0, we partition Ω into
three sets,

Ω = Ωε,−1 ∪ Ωε,0 ∪ Ωε,1,

where

Ωε,−1 =

{
(x, y) : x2 + y2 < 1, y > 0,

x

y
< arctan

(
κ1

κ2
− ε

)}
,

Ωε,0 =

{
(x, y) : x2 + y2 < 1, y > 0, arctan

(
κ1

κ2
− ε

)
≤ x

y
≤ arctan

(
κ1

κ2
+ ε

)}
,

Ωε,1 =

{
(x, y) : x2 + y2 < 1, y > 0, arctan

(
κ1

κ2
− ε

)
<

x

y

}
.

Note that κ is never orthogonal to the boundary in Ωε,±1 and that I[f,Ωε,0] = O(ε).
It is thus tempting to approximate both Ωε,−1 and Ωε,1 as unions increasingly small
triangles a vertex at the origin and the remaining vertices on the boundary of Ω. Since
the nonresonance condition is valid in each such triangle, we hope that, at the limit
ε ↓ 0, we can confine resonance to a vanishingly small circular wedge and extend at
least some of the theory to Ω. It is a moot point what are the vertices v from Theorem 6
in this setting, but we will not pursue it since the above procedure, although tempting
and ‘natural’, is flawed. Too many limiting processes are in competition, ω À 1 is
pitted against ε ↓ 0, and this renders intuition wrong. (The correct approach, which

we will not pursue further, is to take ε = O
(
ω− 1

2

)
: in that instance we obtain the

right rate of asymptotic decay, as computed underneath.)
We evaluate I[f,Ω] with g(x, y) = κ1x + κ2y directly, integrating by parts in the

inner integral,

I[f,Ω] =

∫ 1

−1

∫ √
1−x2

0

f(x, y)eiω(κ1x+κ2y)dydx

=
1

iωκ2

∫ 1

0

[f(x,
√

1 − x2)eiω(κ1x+κ2

√
1−x2) − f(x, 0)eiωκ1x]dx

− 1

iωκ2

∫ 1

0

∫ √
1−x2

0

fy(x, y)eiω(κ1x+κ2y)dydx

=
1

iωκ2

∫ 1

0

f(x,
√

1 − x2)eiωg1(x)dx − 1

iωκ2

∫ 1

0

f(x, 0)eiωκ1xdx − 1

iωκ2
I[fy,Ω],

where
g1(x) = κ1x + κ2

√
1 − x2.

Note however that g′(x0) = 0, g′′(x0) = −κ2/(1−x2
0)

3/2 6= 0 for x0 = κ1/
√

κ2
1 + κ2

2 ∈
(−1, 1). In other words, the oscillator in the first integral has a single stationary point
of order one in (0, 1). It this follows from the van der Corput theorem (Stein 1993)

that such integral is O
(
ω− 1

2

)
for ω À 1. Since the second integral is O

(
ω−1

)
and the
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third is at least O
(
ω−1

)
– actually, it is easy to prove that it is O

(
ω− 3

2

)
– we deduce

that
I[f,Ω] = O

(
ω− 3

2

)
, ω À 1.

In other words, in this particular instance a violation of the nonresonance condition
‘costs’ us an extra factor of ω

1
2 . This, however, is not necessarily true for all domains Ω,

not even in R
2. A crucial observation, though, is that a multivariate smooth boundary

has similar effect as a univariate stationary point. Thus, suppose that

Ω = {(x, y) : φ(x) < y < θ(x), 0 < x < 1}, (7.3)

where θ is a sufficiently smooth function of x. Assume further that gy(x, y) =
∂g(x, y)/∂y 6= 0 for (x.y) ∈ Ω. Then, integrating by parts,

I[f,Ω] =

∫ 1

0

∫ θ(x)

φ(x)

f(x, y)eiωg(x,y)dydx =
1

iω

∫ 1

0

∫ θ(x)

φ(x)

f(x, y)

gy(x, y)

d

dy
eiωg(x,y)dydx

=
1

iω

∫ 1

0

f(x, θ(x))

gy(x, θ(x))
eiωg(x,θ(x))dx − 1

iω

∫ 1

0

f(x, ψ(x))

gy(x, θ(0))
eiωg(x,ψ(x))dx

− 1

iω
I

[
∂

∂y

f

gy
,Ω

]
.

Now, let

g1(x) = g(x, θ(x)), g2(x) = g(x, ψ(x)), g̃1(x) = gy(x, θ(x)), g̃2(x) = gy(x, ψ(x))

and

I1[f, (0, 1) =

∫ 1

0

f(x, θ(x))eiωg1(x)dx, I2[f, (0, 1) =

∫ 1

0

f(x, ψ(x))eiωg1(x)dx.

We next apply the same method as has been already used in (Iserles & Nørsett 2005a)
to derive the expansion (2.2). Iterating the above expression for I[f,Ω], we obtain the
asymptotic expansion

I[f,Ω] ∼ −
∞∑

m=0

1

(−iω)m+1
{I1[σm[f ], (0, 1)] − I2[ρm[f ], (0, 1)]}, ω À 1, (7.4)

where

σ0[f ] =
f

g̃1
, ρ0[f ] =

f

g̃2
,

σm[f ] =
∂

∂y

σm−1

g̃1
, ρm[f ] =

∂

∂y

ρm−1

g̃2
,

m ≥ 1.

The individual terms in (7.4) are themselves integrals I1 and I2, If θ and φ are linear
functions all is well: we integrate over a trapezium and the theory of Sections 3–
6 applies. However, unless both θ and φ are linear, at least one of the integrals
I1 and I2 has stationary points. Hence, these integrals must be treated in turn by
the asymptotic formula (2.5) or its generalization to several stationary points and to
stationary points of different degrees.

25



ω
10080604020

0.45

0.4

0.35

0.3

0.25

0.2

250

ω

0.46

200

0.52

0.48

0.5

10050 150

Figure 8: The absolute value of I[f,Ω] (on the left) and of error in the combination

of QA

1,1 and Filon, scaled by ω
3
2 and ω

5
2 , respectively, for f(x) = sin[π(x + y)/2] and

g(x, y) = x − 2y.

Our analysis leads to a method for bivariate highly oscillatory integrals where the
domain of integration Ω is given by (7.3). We truncate (7.4),

QA

s1,s2
[f ] = −

s1−1∑

m=0

1

(−iω)m+1
I1[σm[f ], (0, 1)] +

s2−1∑

m=0

1

(−iω)m+1
I2[ρm[f ], (0, 1)]},

say, where s1 and s2 are chosen according to the nature of the stationary points of g1

and g2, |s1−s2| ≤ 1. We next apply the Filon method (2.4) to the individual integrals
above, taking care to interpolate to requisite order at the stationary points: typically,
we use different interpolants in I1 and I2.

As an example, let

Ω = {(x, y) : 0 < y < x2, 0 < x < 1},

hence φ(x) ≡ 0 and θ(x) = x2. We take g(x, y) = x − 2y, therefore

QA

1,1[f ] = − 1

2iω

{∫ 1

0

f(x, x2)eiω(x−2x2)dx −
∫ 1

0

f(x, 0)eiωxdx

}
.

Thus, the first oscillator has a single simple stationary point at 1
4 , while g2 has no

stationary points. We let ψ1 be a cubic that interpolates the first integrand at 0, 1
4 , 1

with multiplicities 1, 2, 1 respectively and choose ψ2 as a linear approximation to f at
the endpoints in the second integral. This replaces the two integrals with Filon-type

methods, with errors O
(
ω− 3

2

)
and O

(
ω−2

)
respectively. The extra power of ω−1

in front means that the overall error of this combined asymptotic–Filon method is

O
(
ω− 5

2

)
.
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Fig. 8 illustrates our discussion. Thus, we let f(x, y) = sin[π(x+y)/2] and g(x, y) =

x − 2y. The plot on the left verifies that, indeed, I[f,Ω] ∼ O
(
ω− 3

2

)
for ω À 1, while

the plot on the right shows that, once we use the method of the previous paragraph,

the error decays asymptotically like O
(
ω− 5

2

)
.

Note that this combination of an asymptotic expansion and a Filon-type quadra-
ture can deal with bivariate highly oscillatory integrals but obvious problems loom
once we try to apply it in, say, three dimensions. We can ‘reduce’, for example, a
triple integral to an asymptotic expansion in double integrals similarly to (7.4): Given

Ω = {(x, y, z) : φ2(x, y) < z < θ2(x, y), φ1(x) < y < θ1(x), 0 < x < 1},

we have

I[f,Ω] =
1

iω

∫ 1

0

∫ θ1(x)

φ1(x)

f(x, y, θ2(x, y))

gz(x, y, θ2(x, y))
eiωg(x,y,θ2(x,y))dydx

− 1

iω

∫ 1

0

∫ φ1(x)

φ1(x)

f(x, y, φ2(x, y))

gz(x, y, φ2(x, y))
eiωg(x,y,φ2(x,y))dydx − 1

iω
I

[
∂

∂z

f

gz
,Ω

]
].

This approach, unfortunately, is prey to a problem that already plagues the bivariate
method: the calculation of moments. In order to use the Filon method, we must
be able to calculate the first few moments exactly, and, once there are stationary
points, this is also the case if, in place of Filon, we use an asymptotic expansion á la
(2.6). Now, even ‘nice’ oscillators g lead in (7.4) to new oscillators g̃1 and g̃2 whose
moments, in general, are impossible to compute exactly in terms of known functions
and the situation is bound to be considerably worse in higher dimensions. A case
in point is an attempt to integrate in a two-dimensional disc, φ(x) = −

√
1 − x2,

θ(x) =
√

1 − x2. An alternative to Filon might be the Levin method (Levin 1996),
which does not require the explicit computation of moments. However, the latter is not
available in the presence of stationary points. Thus, before we combine asymptotic,
Filon’s and possibly Levin’s methods into an effective tool for multivariate highly
oscillatory integration in general domains, we must understand more comprehensively
the calculation of univariate integrals with stationary points.
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