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M-Band Extensions and
Perfect-Reconstruction

Techniques

Abstract

In this paper, quadrature mitror filters (QMF) are reviewed.
After a brief introduction to multirate building blocks, the
two-band QMF bank is discussed. Various dlstortlons caused
by the structure, and methods to.eliminate these distortions

are-outlined. Perfect-reconstruction structures. for the two-

band case are reviewed, and the results are extended to the

case of ‘arbitrary number of channels. The relation between_

perfect-reconstruction QMF banks, and the concept of
losslessness in transfer-matrices ‘is indicated. New lattice
structures are presented, which perform the perfect recon-
struction, sometimes even under coefficient quantization.

" INTRODUCTION

UADRATURE MIRROR FILTER (QMF) banks. have
been of great interest during the past decade, ever
since their introduction:by Croisier, Esteban a'nd Galand
(11, [2]. These find applications in situations where a
discrete-time. signal x(n) is to be split into a number of
consecutive bands in the frequency domain, so that each

subband signal x«(n) can be prOcessed in an independent

manner. Typical ‘processing’ includes undersampling the
subband signals, encoding them and transmitting over a
channel, or merely storing the coded signals. Eventually,
at some point in the process, the subband signals should
somehow be recombined so that the original signal is
. properly reconstructed. Typlcal applications of such
signal-splitting include subband coders for speech signals
'[2], 31, [29], digital transmultiplexers [26] used in
FDM/TDM conversion, and frequency domain speech-
scramblérs [30].

.In this paper we look at the QMF problem purely as a
signal-processing problem. The exact signal character-
istics and the nature of the application are not given any
emphasis. This blissful freedom from specific aspects of

the external world enables us to concentrate on the basic .

science of the problem from the viewpoint of signal-

reconstruction. Our purpose here is to outline the signal-
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processing issues and mathematics mvolved We address
issues suchas this: what kinds of errors are involved in'the
implementation of a QMF bank? Which of these errors can
be reduced to acceptable levels? Which of these. ertors
can be completely eliminated (at finite cost)? Is:it possible
to completely eliminate all errors that result due to the
transmission of a signal through a QMF analyms/synthesns
bank? If so, what constraints does this impose on the fil-

" fers that take part in the filter-bank?

The QMF problem, basically simple lookmg, is in fact a
fundamental signal reconstruction problem, and opens up
several ‘intriguing. pOSSIbllltles when addressed from a
theoretical viewpoint, It is related, surpnsmgly, tothe the-
ory of lattice structures and orthogonal matrix- functions,
even though these relations are not explicit from the prob-
lem statement. Our attempt here is to tie up several ap-
parently unrelated results in a unified manner, so as'to
place in evidence the enormous scope and.implicit beauty
of this problem. :

THE TWO. CHANNEL QMF BANK

The QMF bank is a multirate digital filter bank The term
multirate signifies that the sampling rate is not constant
throughout the system [3]; there are decimators in' the
system which. down-sample a sequence, and there are
interpolators which perform up-sampling. Since deci-
mators and interpolators are the building blocks of any
multirate digital system, let us briefly review their charac-

teristics. Details and proofs can be found in the text by

Crochiere and“Rabiner’ {31.
Decimators

An ‘M-fold decimator.is shown in Fig. 1(a). Its.input is a
sequence x(n), and the output sequence y(n) is.a.com-
pressed version of x(n). More specifically, the output is
obtained by retaining only those samples of x(n) which
occur at times which are multiples of the integer M. The

‘input-output refation is y(n) = x(Mn). The figure demon-
. ‘strates the decimation operation for M = 2 and also shows

that a decimator is a time-varying device, even though it is
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linear. Accordingly, it cannot be represented by a transfer
function; we should seek other means. of describing the
decimator in the transform-domain. Since a decimator
causes a compression in the time-domain, we expect a
‘stretching’ in the frequency domain. For example, with
M =2, the quantity X(e/“?) is a stretched version of X(e/*).
However, since X(e’*?) has a period of 47 rather than 2,
it is not a valid transform of a sequence. It can be verified

that Y(e/*) in fact has two terms. The first is X(e/?), and the

second term is X(=e/*?) which is a shifted version of the
first term (shifted by an amount 27). More formally,
the input-output relation for a two-fold decimator can be
written in the transform .domain as [3]

Y(e) = 0.5[X(e™?) + X(—e?)]. ().

Note that Y(e’*) given as above does have a period of 27.
This is demonstrated in Fig. 1(b), (¢ ) where x(n nyisassumed
to be a lowpass type of signal. If the transform of x(n) is

(a) x(n) ; y{n)=x(Mn)
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Figure 1. A decimator is a system which takes in a se-

quence x(n) and produces a time-compressed sequence
y{n) = x(Mn). The compression ratio M is an integer. This’
operation is denoted by the downgoing arrow (indicative of
“down-sampling): The figure demonstrates the operation
of a two-fold decimator. In general the output y(n) of an
M-fold decimator is obtained by retaining only the samples
.of the input sequence occurring at times that are integer-
multiples of M. A decimator is a time-varying system
even though linear). The figure demanstrates this, by
showing that a shifted version of the input does not pro-
duce a shifted version of the output. The effect of
compression in: the time domain is an expansion (or
stratchmg] in the frequency domain. The guantity
X&) in the figure represents this, while 2X(~g/%)
represents aliasing caused by downsampling. For arbi-
trary M, equation (2) gives the transform of the deci-
mated sequence.

}has twao components proportional to Xte/*/®) and

not bandlimited to — /2 < w = 7/2, there is an overlap
of the two terms in (1) as shown by the shaded area in

“Fig.“1(c). This overlap is the aliasing effect, caused by un-

dersamplmg There is no way we can get back the original
signal x(n) from y(n), once aliasing has taken place. In
order to convince ourself that the scale factor of 0.5 is
required in the expression (1), let us imagine, as an exam-
ple, that x(n) is the unit pulse 8(n). Then X(z)-is unity for
all values of the argument z, hence from (1) we have
Y(e/*) = 0.5(1 + 1) = 1.0 for all w, which is consistent
with the fact that y(n) = 8(n) in this case.

For an M-fold decimator we have y(n) = x(Mn), and the
transform-domain relation is precisely an extehsion
of (1). Instead of two terms, we now have M.terms; the
first term is merely a stretched version of X(e’*) (by a factor
of M), namely X(e/*/™), The remaining terms‘are uniformly
shifted versions of the first term (the amount of shift being
integer multiples of 2#). Thus, it can be shown that -
M-1

; 1 M o 1
.Y(e,m) = _M kE X(e/(w—z-n-k)/M), Y(Z) [ 2 X(Z1/M Wk)
=0

(2)

where W = e 2™ and z = e/, The scale factor.of 1/M in

- (2) can be understood in a manner analogous to the factor

0.5in (1). :
What happens if we deamate a highpass signal, say by
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‘Flgure 2. What happens when a hlghpass sngnal gets
decimated? Fig. 2(a) represents the transform X(e™)
(assumed to be real for simplicity) of a highpass signal. If
this signal is deCImated two-fold, the resulting transform

‘X(—~e™2), as shown in Fig. 2(b). Accordingly, the deci- |
‘mated signal looks like a regular lowpass signal. In fact if
'a lowpass signal with transform as in Fig. 2(c) were deci-
‘mated by a factor of two, the result would again have
-appearance as in Fig. 2(b). This ‘means that given the
‘transform in Fig. 2{b), it is |mp055|ble to tell whether is

,y.came from Flg 2[a] or 2(0)
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a factor of two? Since it is not bandlimited to ~7/2 = w =
/2, the first impression is that there will be aliasing. Let
us refer to Fig. 2. Assuming the highpass signal to be band-
limited to 7/2 = o = 37 /2 (Fig. 2(a)),. the decimator out-

-put Y(e’*) is as shown in Fig. 2(b). Thus, the decimated

- version of the highpass signal looks like a lowpass signal,
Notice that if a signal having a lowpass spectrum as in°
Fig. 2(c) were decimated, we would obtain precisely the -

spectrum-of Fig. 2(b) again. In other words, simply by
looking at Fig. 2(b), it is not possible to tell'whether it
came from Fig. 2(a) or Fig. 2(c). This is.a'kind of aliasing;
theoretically speaking, we have undersampled a highpass
~ signal. However, since there is no overlap between the

“two curves in Fig. 2(b), we can, in-principle, reconstruct .

the signal x(n) from y (n), as long as we have the additional
information ‘as to whether x(n) is a lowpassor hlgh-
pass signal.

In practice, before a srgnal is passed through a deci-
mator, it is first bandlimited (by using a bandpass filter,

of ‘which lowpass filtering is a special case), so as to re-
duce the effects of allasmg Such fllters are called deci-
mation filters:

- Interpolators .

An’ M-fold rnterpolator, schematically shown in Fig. 3,
inserts M — 1 zeros between adjacent samples. its input
output relation is given in Fig. 3. The effect of this stretch-
ing in the time domain is a compressron in the frequency
domain, as demonstrated in Fig. 3(b). Since Y(e/®) has
M = T replica (or images) of the basic prototype spectrum,

the interpolator is said to cause an imaging effect (which

is the dual of the aliasing effect of a decimator). The trans-
.form domain relation-is simple, given by

Y(e) = = X(e™*M), -~ Y(z) =

- polator is also a time-varying, linear system.

In practice, an interpolator is followed by a filter called - (b)
the interpolation filter, which eliminates the images in | -

Fig. 350 that the result is a simple bandpass srgnal (or
lowpass signal, as desired).
Itis' interesting to see what: happens when a decrmator

and an interpolator are cascaded (Fig.4(a)). The decimator | X

causes stretching and aliasing, whereas the mterpolator

“ causes compression, all‘in the frequency domain. The
end result'is shown in Fig. 4(c)."If the spectrum of xk(n)\

is bandlimited to —7/M = @ = /M, then F|g 4(c)-i

an:imaged version: of Frg 4(b) with no stretchmg or

compressron

Noticein paésmg, that If the decimator. and interpolator

in the cascade are interchanged, the result is just an iden-
‘tity system; the decimator simply gets rid of the zeros
~thrown.in by the mterpolator

The Two-Channel Quadrature Mirror Filter (QMF) Bank

The two-channel. QMF bank, shown in Fig. 5, is'one of

the earliest and most. commonly employed structures
[1], [2]. The analysis bank is composed of a lowpass filter
Ho(z) and a highpass filter H;(z), which split the incoming
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It.can‘be verified through srmple examples, that an mter- i

' fi‘omglnal spectrum are caused by this operation. The term

‘ i‘produce the spectrum of Fig. 3(c).

sequence x(n) into-two frequency bands.. The lowpass
signal x(n) and the highpass signal x:(n) are then deci-
mated by factors of two. The decimated signals are typi-
cally encoded [31], and transmitted. At the receiver end,

.the signals are decoded, and passed through the ifter-

polators.-The decimator-interpolator cascade causes
aliasing and imaging as discussed in Fig. 4 earlier. The
purpose of the synthesis filters Fo(z) and Fi(2) is to elimi-
nate the images. Fy(z) is a lowpass filter so that the
highpass image of the interpolated lowpass signal xo(n) is

suppressed. Similarly, Fi(2) is highpass so that the lowpass

image of the interpolated highpass signal is ellmmated As
a result, the signals- vo(n) and v4(n) are’ good approxi-
mations of xq(n) and x:(n), and the réconstructed signal
X@) (hopefully) resembles X(z) closely. Note in passing

‘that the name quadrature mirror filter derives from the

fact that, the response of Hi(z) is the mirror-image of
the response of Ho(z), with respect to frequency /2
(which is a quarter of the sampling frequency).

Now what makes the QMF problem nontrivial and fasci-

“nating? In.order to avoid aliasing (due to decimation), the

responsés of Ho(z) and H(z) must be disjoint as in
Fig. 6(a). On the.other hand, in order that rio freqUency

‘range shall be ‘left out’ by the analysis bank, the responses

should be overlapping as in Fig. 6(b). The only obvious

‘solution to this dilemma is to make the responses very
‘sharp (approxrmatmg the ideal response in Fig. 6(c)), but

,y(n)= x (&) ,.n= rul 'of M
o, orherwrse

Exr:h\pleleZl :
n 24 =3
*(n)’ 2.4 "3 5

y(n) esp. 147003700 B 0 P

Verswn '
: The spectrum after filtering y(n)with =
an upproprlote bandpass fiiter {Called an
rmerpolanon filter). .

f‘;Flgur'e 3. An M fold /nter'polator' merely inserts M B ‘I
'-‘vzerfo—valued samples between adjacent samples of the in:
_put sequence x(n). An upgoing arrow with M written on |
the side indicates this (Fig. 3(a)). The: effect of this
vji;stretchlng in- the time domain is a compression in the
frequency domain as shown. Thus, M — 1 images of the

“imaging is often used 131 to ‘describe this, and is the dual ||
of the aliasing effect caused by'a decimator, Interpolators -
inear, time-varying ‘operators, An: mter‘polatmn filter
rdlnary digital filter, which rejects the images. in:
lg ‘3(b) and retains a single, desired image. For example,
“abandpass filter canbe used on the lnterpolated s1gnal to




it is well known that sharp cutoff filters require very high
order, are highly sensitive to quantization, and often cause
instability problems (if IIR).

The philosophy adopted [1], [21, [5] in the QMF bank in

order to overcome this problem is to permit aliasing at the
output of the decimator, by designing the analysis filters as
in Fig. 6(b), and then choosing the synthesis'filters Fo(z)
and Fi(z) such that the imaging produced by the inter-
polators cancels the aliasing. 'In fact exact cancelation is

possible. This observation relieves the designer of a very’

stringent analysis-filter design problem.

Based on the relations (2) and (3) for a decimator and an
interpolator respectively, it is possible to express X@) in
- Fig. 5 as

A

X(z) = %[HQ(Z)FO(Z) + H{(2)Fi(2)]1X(2)

+ —;—[Ho(—z)F;](z) + Hi(~2)F(2)]X(=2)

(4)
Because of the second term in (4) involving X(-z), we
cannot write'down an expression for X(z (2)/X(z) that is'inde-

pendent of X(z) itself. This is not surprising, since the QMF
bank is not time:invariant (as the decimators and inter-
_polators are time-variant). The second term in (4) repre-
sents the effects of aliasing and imaging. This term can be
made to disappear simply by choosing the synthesis filters
to be

Fi2) = Hh(~2),  Fiz) = ~Hol(~2) ®)

Once the aliasing is so canceled, the QMF bank becomes
a (linear and) time-invariant system with transfer function

X 1
1) =22 - L2 - H@H-2] @
X@)
Ideally, we would like T{z) to be a delay, ie., T(z) =z7",

so that the reconstructed signal is a delayed version of

x(n). Since .T(z) is in general not a delay, it represents a
distortion and is called the distortion function or the over-
all transfer function. The quantity |T(e/*)| is the amplitude
distortion and arg[T(e’*)] is the phase distortion. If T(z) is
an allpass function, i.e., if [T(e/*)| = constant for all o,
then there is no amplitude distortion. If T(z) is.a linear-
phase FIR function, then a rg[T(e}”’)].= Kw, and there is no
phase distortion. Barnwell [29] has shown that there are
several interesting ways in which the filters Ho(z), H:(2),
Fo(z) and Fi(z) can be related, so'as to obtain an approprlate
functional form for T(z).

It is typical to choose H4(z). =
lowpass/highpass pair. Then

Ho(~2), so that we have a

1. S 1
T@2) = 5 [Hiz) - Hi@2)] = - [Hs@) - Hy(-2)1 @)
which' represents the distortion function. Suppose Ho(z)
and H(z) are linear phase FIR filters, then T(z) given by (7)

clearly has linear phase, and phase distortion is easily

eliminated. In summary, the choice of transfer functions
according to

Hi(2) = Ho(-2),  F(2) = Hoz),  F(2) = =Hi(2)

®)

leads to complete elimination of aliasing; if Ho(z) has
linear phase, then phase distortion is also eliminated.
Assuming Hy(z) to be a linear phase lowpass FIR filter of
order N — 1, we can write Ho(e/®) = e *N"12H, (/)
where Ho,a(€”) is the (real-valued) amplitude response
[32]. With this, T(e/*) takes on a nice form: .

m ~jw(N—1)
T(e/®) =

[[Ho(e’)]? = (=DN"|Ha(e™)PT  (9)
If N — 1 is even, then referring to Fig. 6(b), at the fre-
quency w =.m/2, T(e’®) given by (9) is zero! This implies
severe amplitude distortion. Accordingly, with the choice
of filters as in (8), we must always pick the order N — 1 of
the linear phase FIR filter Ho(z) to be odd*. Equation (9)
then yields
Te™)| = ™) + e (10)
which represents the residual amplitude distortion. Since
T(z) has linear phase, phase-distortion is absent.. ,
Now comes the bad news: if two /inear phase transfer
functions Ho(z) and Hq(z) are such that |Ho(e/®)|* +
|Hi(e’)]? is constant for all @, then Hy(z) and Ha(z) must be
trivial transfer functions [24] with frequency responses of
the form |Ho(e/®)]* = cos*(Kw) and |H:(e/*)]? = sin*(Kw). In

*If an. even order is requtred for some other reasons, there is a trick
which.can.be employed to avoid the above distortion; see 51,

Al

w .

le) e @I L inages e b
B = NG . /=shaded dréas are.
N e 2 . : N : ; dug 1o ali_using

'Flgure 4 When a decnmator is’ followed by an |nter—i
‘polator, aliasing and imaging éffects are’simultaneously,
present; the stretching and ahasmg caused-by the deci-
“mator are followed up by the imaging process caused by
the lnterpolator It is not possible to recover xi(n) from
ylnJ, unless the shaded areas in Flg 4(0] are absent
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other words, for the choice of filters as in.(8), thére does
not exist a non-trivial linear-phase transfer function Ho(z)
such that phase distortion and amplitude distortion are
simultaneously eliminated!

To complement the above discussion, let us now see
how amplitude distortion can be completely eliminated,
when one agrees to. tolerate phase distortion. There are
many ways of doing this [111, [27], [29], [43]; let'us look at

one. In the world of IIR digital filters, there exists a béau- -

tiful subset of transfer functions which can be imple-
mented as a sum of two allpass functions [33], [34], [39],

[40], [43]. If such transfer functions.are used in the analysis* | -
bank, this automatically forces T(z) to be allpass. Without |~

getting into the theoretlcal details, let us state the essence
compactly here.

Let Ho(2) be a lowpass 1R function with numerator poly-
nomial-P(z) and denominator. polynomial D(z) of ‘orders
N,i.e.,

(11)

H(2) = P2)/D(z) = 2 paz™" [ 2 dpz™"..

A typical magnitude response of Ho(z) is indicated in.

Fig. 8(a). Let us define the highpass function Hi(z) to be
such that [Ho(e™)]* + [Hi(e/*)]* = 1, for all ». Such a pair
[Ho(z), H1(2)] is called a power-complementary pair. Given
Ho(2) such that |[Ho(e/*)| =1, we can always find such Hi(z)
by defining it to be Hi(z) = Q(z)/D(z) where Q(z)'is a
spectral factor of -

|Q(e’)f = D) — [Pe’)P. -

Usulally£ the zeros of Hy(2) are on the unit circle, hence P(z)
is a symmetric polynomial, i.e., p» = pn-n. Moreover, it is

(12)

Coding; trainsmigsion and decoding
Cx(ny;
A Input”
. signal:

voln)

R(n)
Reconstrycted
signal

Analysis bank ) Synth‘esis bank

Flgure 5. The two channel Guadratur‘e error Fllter
(QMF) bank. Here, Holz) and H,(z) represent lowpassand
highpass filters respectively (called the analysis filters). .
| The filtered signals xo(n).-and xi(n) are decimated by a
factor of two and transmitted, with possible encoding. At
the receiver, the signals are interpolated (after decoding"
if necessary); and filtered by Fg(2) and F.(2) (called the
synthesis filters), before recombination. The purpose of :
Holz) and H.(z) is to make the two frequency-bands as
' mdependent as possible, while the purpose of Folz) and
[|'F+(2) is to'eliminate the images caused by the decimator- -
‘interpolator system. The reconstructed signal &(n) is re-
lated to x(n) by equation (4), where the term involving -
X(=2) represents the effects of aliasing and imaging. The:
| first term in this equation is a filtered version of X(z).
tldeally. we would like the second term to be zerg, and the

‘(delayedJ rephca of xRl

8 - |EEE.ASSP MAGAZINE - JULY 1987

(@)

overal/ transfer' functlon
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Flgure B In the two-channel QMF structure, itisa non-

trivial task to design Hal2) and H,(2), If the responses are
d|5]0|nt, as’in Fig. 6(a); then'there is pr‘actlcally a spectral
‘hole" which is Undesirable. If they overlap as in Fig. 6(b),
‘then there'is aliasing due to subsequent decimation, be--
‘cause the filters have bandwidths exceedlng /2. Since a
brickwall response as in Fig. 6(c) is not practicable, the
_response shown in Fig. B(b) is usually chosen. The aliasing
' caused by decimation is then canceled by judicious choice
of the' synthesis filters Fo(2) and F1(z). If these filters are
chosen as in ‘equation (5) then aliasing is . completely can-
celed (no matter how Hal2) and H,(2) are chosen).and the
QMF system becomes a (linear and) time-invariant. sys-
tem, characterized by the transfer function T(z) in (B).
T(z) is called the distortion transfer functmn or the‘

very common for H(z) to have all zeros on the unit circle

too (Fig. 8(a)). For example, if Ho(z) is a digital Butter-

worth, Chebyshev or e'Iliptic filter, this is always the case;

~accordingly, Q(z) is d symmetric or antisymmetric poly-
‘nomial: It is antisymmetric (i.e., g»-= —qn=n) if Q(z) has a

zero at w = 0, which usually is the case when N is odd.
Now, there is a result [34], [39] which says that if two trans-
fer functions Ho(z) = P(z)/D(z) and H4(z) = Q(z)/D(z)
with symmetric P(z) and antisymmetric Q(z) are such that

Ho(e™)P + |Ha( e”" )? =1, for aII w, then they must be of

the form

Hul@) = (Ao2) + A(2)/2, H1(z> = (Ao(2) — Ad(2))/2

(13)

where Ap(z) and A+(z) are allpass functions, in other words,
we can implement the analysis bank as in Fig. 8(b). As-
sume that in addition to all the abové conditions; Hi(z z)
also satisfies. H1(z) = Hs(—z). You can ensure this by de-
signing Ho(2) such that the response |Ho(e’*)|* has.a sym-
metry around w = 7/2, i.e., wp + ws = mand &1 = £, as
shown in Fig. 8(c). Simply by employmg such Ho(z) and
Hi(z) in the QMF bank of Fig. 5, and picking Fy(z) and Fi(z)
as in (5) so as to cancel aliasing, we end up ‘with the
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“'Typical phase-distortion function
(0]
arg[ T(eiw)]

Figure 7. - Once: aliasing-error: has been gliminated by

bank suffers.from two errars, viz., the amplitude: dis-
tortion | Tle’™}| and the phase distortion arg| T(e™)|; which
‘can.be evaluated from equation (7) when the filters are’
: related by equatlon (8). There is.no amplltude distortion if
|Tte)| is constant for all w; there is no phase distortion
if arg| Tte’)| is of the form Kw for constant K. If Ho(2) is
a linear-phase: FIR filter, then T(z) in (7) has linear-phase
too. Phase. dIStDPtIDn can therefore be completely -elimi-
‘nated The remamlng :amplitude, distortion is given by (10}
‘Wwith (N = 1) odd; seé text..

distortion: function T(z) = Au(2)A+(2)/2 whichis allpass!
In other words, amplitude distortion is completely
-eliminated (and so is aliasing, of course). The phase re-
sponse of T(z) leads to some phase distortion. A dis-
cussion on how to design transfer functions Ho(z) and
H.(2) satisfying (13)-and the condition H(z) = Ho(—
- be found in [11],[43].

It is:worth pointing out some of the good features of
implementations based on allpass decompositions, such
as (13). The allpass filters A¢(z) and A:(z) can be imple-
mented using the Gray-and-Markel fattice structures [38]

which come. in various convenient forms. All of these

forms can be made free from limit cycles [44] (which are
parasitic oscillations .under zero-input, caused by
quantizer-nonlinearities ‘in feedback loops of IR filters).
Moreover, instability’ problems due to. coefficient quan-
tization -are absent in these lattice structures. It is also
known that implementations based on the decomposition
of (13) have low passband sensitivity [34] (even though this
is hot very crucial for. QMF applications).

The relations (13) imply that Ag(z) = Ho(z) + H1(z), and
Aq(z) = Ho(z) — Hi(2). Since 'in addition Hi(z) = Ho(—2),
you can verify that Ao(z) in fact has the formrao(z?) and A:(2)
has the formz "a+(z?). Accordmgly, the QMF bank can be
implemented as in Fig. 8(d). If as(z) and a:(z)'are imple-
mented using a cascade of the one-multiplier Gray-Markel
lattice structure [38], then the entire QMF bank (i.e., all
-four transfer functions Hy(z), H1(z), Fo(2) and F(z)) can be
“implemented with a total of about N multipliers, where N

choice of synthesis filters as in equetlon (5), the QOMF {

z), can

is .the order of Hy(z)! In other words; the structure of

- Fig. 8(d) is dramatically efficient.
. ‘.‘I[;g_:{_‘Igg‘rf‘ect-ke'construction Two Channel QMF Bank

So we see that either phase distortion or amplitude dis-
tortion can be completely eliminated, according to choice.

" The remaining distortion can be either minimized using

computer-aided techniques, or equalized by cascading
with a filter,

For example, once phase distortion has been elimi-
nated, amplitude distortion can be minimized by use of
nonlinear optlmlzatlon software [23]. Usually, an objectlve
furiction is’formulated which is a sum of the stop-
band error of Hy(z) and the amplitude distortion error

- JITe?)P - 11%dw; the coefficients of Ho(z) are found
© such that this objective function’is’ minimized. The re-

maining filters H:(z), Fo(2) and Fi(z) are found from (8). An

{a)

Typical magnitude rospense

{H(ei®)|
for TIR Holz) and Hy(2)

“ |Hote¥)”

. , g
o /2 r

(c) ey

Figure 8. Once aliasing is canceled in Fig. 5, it is possible
to completely eliminate amplitude distortion rather than
phase distortion. For this, let Ho(2) = P(z)/D(z) and.
Hi(z) = Q(z)/D(z) be lIR transfer functions, with typical
magnitude responses as in Fig. Bla). All zeros of P(z) and
Q(z) are on the unit circle, and moreover Q(z) has a zero
at w = 0. Hence, Plz} is a symmetmc polynomlal G.e.;
Pn = Pn-r) 8nd Q(2) is antisymmetric (i.e., g, = ~gn=nl.
Such pairs of transfer functions [Ho(2), H{z)] can be i im=
plemented [34] as a sum and difference of two allpass.
functions Ag(z) and A,(2) [Flg 8(b)), as long as they form
a power complementary pair (See text). In addition, if:
'Halz) = Hol~2) (which is required in (8)) the response
[Hole’™)|? exhibits symmetry with respect to. /2. This in
‘turn forces Au[Z) to be of the farm a0(Z?) and A4(z) to be.
of the form z™"a,(z%) whence [43] the entire GMF bank
-can be drawn as in"Fig. 8(d). This GMF structure which’
involves four transfer functions Holz), Hi(2), Fo(zl and-
: F1(z) each of order N, can be lmplemented with a total of -
.;about N multipliers, and in addition has very low passband
“sensitivity. The all-pass functions can be |mplemented
such that, under quantized environment, there are no in-
stability problems, and no limit cycles [38]; (441,

9
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alternative to this optimization would be to cascade a

linear-phase FIR filter to the output £(n) and equalize the
amplitude distortion:

Now comes the crucial question: can we simultanéously
eliminate both amplitude and phase distortions.in. a two-
channel QMF bank? In an inter_esting article,.Smith and
Barnwell have shown. [6] that the answer is. yes.:Such a
QMEF bank is said to have perfect-reconstruction property,
because.x(n) is a replica of x(n) except for a delay. We can
accomplish this by exploiting.a property.of linear-phase
FIR halfband filters. Assuming that the required order of

‘Ho(z) is N =1, let us first design a linear-phase FIR half-

band filter G(z) of order 2(N.— 1) with amplitude response

Ga(e’”) as'in Fig. 9(a); the response exhibits a symmetry -

with respect to /2 (i.e., the passband ripple'is equal to
the stop band ripple, and w, + s = 7). From G(z) we can
constructa new halfband filter G.(z) = G(z) + 8z~ s0
that the amplitude response of G.(z) is nonnegative (as

shown in Fig. 9(b)). (The term ‘amplitude response’ has

been defined. earlier; see, for example, discussion pre-
ceding equation (9)). We. can therefore find a spectral
factor* Hy(z) of G.(z) having only real coefficients. Be-
cause:of symmetry around.7/2 we have,

G.(2) + (~)NGo(—2) = dz~™ (14)

#i.e:, afunction Hy(z) such that G, () =z NP Hy(z T Ho(2).

where d is a'constant, hence

'HO(Z—1>H0(Z) + Ho("Z_1)H0(_Z) = d . (15)

‘Our objective is to pick Ho(z) and Hi(z) such that, after

aliasing ‘has been canceled (by the choice of (5)), the dis-
tortion T(z) in (6) is-a delay. Since. Hq(z) satisfies (15), we
can accomplish our goal srmply by choosing'N —1.to be
odd and H.(z) = z" ™ DHy(~z7"). This is therefore a neat
solution to the perfect reconstructlon problem! In sum-
mary, let Hy(z) be a spectral factor of a linear-phase FIR half
band filter G.(z) having a positive. amplitude response.
Choose the remammg filters according to

Hi(z) = 27N PHo(=2z "), = Fo(z) = 2"V He(z ™),
F1(Z) = Z—(N_1)H1(Z_1)v. (16)

Then we have perfect reconstruction in'the QMF bank of
Flg 5, and X(n) = cx(n = N+ 1), where ¢ is a constant.
The expressmns for Fo(z) and Filz) in.(16) come from the
alias-cancelation -condition (5). It is important to notice
that the stopband-attenuation and stopband edge ws. of
Ho(z) can be adjusted to any desired value, simply by

| the M-channel GMF bank. The analysis bank has M filters

' |- Fm-1(2), The analysis filters-should produce as much i |so-

S g
© - Amplitud
v {a) ReT;)po'ngeeof
M)
S 0 - -
LT Gy ,(e )
Sy Ampliud
(b) ‘Rer:pc;nuseeof :
s : ‘ +(Z)v 28
20 > W
e by
B ( ') ’4222‘;‘;‘3; C Mo N/ H bk possband ripple % 8/2__
12 ACY - ofAnalysis Pedk stopband ripple’=', /28 "
: yFllfers e :
g ‘ I/ 28
R bkl s :
Figure'9. ' If the QMF bark is such that all three distar-
tigns (viz:, aliasing, -amplitude distortion and phase dis-|
tortion) are eliminated,; then we have &(n) = cx(n — ng). 5 5
Such a system ‘is said to have Perfect ‘Reconstruction.
-Pmper'ty (PRP for short). For the two-channel GMF bank; .
a system with PRP can be constructed by designing Ho(2) -
to'be a spectral factor of an appropriately. conditioned FIR.
-half-band filter, and then choosing the remalnmg transfer :
functlons as in (163); see text. :

The M=-chonnel,
moximally-decimoted .
parallel QMF bank

Rn)
reconsiruc'ed
signal

© S Aralysis bank Synthesis bank

Typical rasponses of
analysis ' filters

Cw/ |

> ()

‘F|gure O An extensnon of the two channel DMF bank 1s
Hol2) Hi(2), .. . Hu-1(2) which split-the signal into M fre-
guency bands These subband signals x.(n) are maximally
decimated, i.e., decimated by the factor M, and trans-
‘mitted’ (after pOSSIb|e encodingl. ‘At the receivar end,;

each ‘signal is decoded, interpolated and recombined-
through: the set of M synthesis filters Fol2), Fi(z)..

lation between bands'as possible, while-at the same time-
not creat;mg spectral gaps. Usually, their spectra overlap -
{Fig. 10thY), and hence aliasing is inevitable. The choice of:,
F.(z) should be such that the imaging produced by the

'~|nterpolat:0rs ‘tends to caricel aliasing as accurately as;
possible. The complicated relation between the signals

‘x(n).and Xn) makes the design problem more challengmgf
and mterestlng, as compared to the two-channel problem. -
The adjectlve parallel in Fig. 10(a) is meant to dlstlngwshg'
11: from a tree structured bank [:3] [B]

’IO
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designing the: halfband filter G(z). approprlately, by usmg'

the McClellan-Parks’ algorrthm (35].

THE M-CHANNEL QMF BANK

Figure 10 shows the M-channel QMF bank for arbitrary
M. The analysis filters Ho(z), H(2), .. . Hy(2) split-the sig-
nal x(n):into M frequency bands, and each subband signal
xk(n) is. decimated by a factor of M. This is called a max-
imally decimated structure because, the decimation fac-
tors-are equal to M, which is the number of bands. The

signals xx(n) are encoded and transmitted, At the syn-’

thesizer end, they are decoded, interpolated, and filtered
by the synthesis filters Fo(2), Fi(2), . .., Fu—1(2). The signal

X(n) is.a reconstructed version of x(n ) and we wish it to be"

‘close’ to.x(n) in some:sense,

In‘analogy with the two-channel QMF problem £(n)
suffers from three types of errors. First, there is aliasing.
Figure 10(b) shows the typical analysis filter responses®.
Since there is an overlap between adjacent filters, the sig-

nals are not strictly bandlimited to a sufficient extent. This
- case, we saw that perfect-reconstruction is a tricky issue,:

‘causes aliasing. And then there are amphtude and phase
distortions.

[n absence of the decimators and interpolators, the
relation between X(z)-and X(z) is nice and simple:
X(z) = X(2) SE5 He(2)Fe(z). The decimators and inter-
polators cause aliasing and imaging; by applying the rela-
tions in (2) and (3) we' can arrive at the following key
expression for )?(z)': '

A 1 M—1 " M=t el Sy R
X@) =+ > Xzwn) kZ He(zW")F(2) ~ (17a)
‘n=0 =0 . A R

*The cutoff frequency-of the lowpass filter Hy(2) is not a quarter of
27 unless M = 2. Thus; the name quadrature mirror filter is a mis-
nomer, when-M > 2.:However, this has become more or less stan-

dard, and there is no. reason to change the name as !ong as-we,’

remember its orlgln

S 6@RG)

The rules for moving a transfer function
; nd a decimator or interpolator are simple; the figure

' shows some useful identities, Figure 11(a) says that a |
‘transfer funotlon G(z) followmg an. M-fold decimator is'
‘equivalent to a transfer function G(z") preceding an
' M-fold decimator. Figure 11(b)is the correspondmg iden-
ity for interpolators. If a transfer function S(z) is sand-
“;wmhed between a decimator and an interpolator, then the
-structure. can be rearranged as shown in Fig. 11(c),
,;where G(z)H(zJ is any arbltrary factorlzatron of S(z)

re 11

“where {(z)

If the boldfaced quantities in (17a) are drbpped‘,‘it is equiv- -
alent to dropping the decimators and interpolators. The

. term corresponding to n = 0 represents the genuine out-

put which would result if the decimators and interpolators
were absent. The terms corresporidingto1=n =M —1

“are unwanted aliasing terms. If we wish to cancel aliasing '
- completely, we should choose Fi(2) such that these.terms

are equal to zero for every possible input signal x(n).
Assuming that aliasing is somehow canceled, we have
the relation

X(z) M3 o

= =— Ee( 17
X2 M § ;Hk(z) 2) o (7b)
where T(z) represents the overall transfer funcbtion, orthe
distortion function. If Hi(2) and F(z) are Such‘that T(z)4s

allpass, thenthere is no amplitude distortion; on the other -

~ hand, if you force T(z) to be a linear phase FIR function;

there is no phase distortion. Finally, if T(z) isa pure delay,
(and if aliasing has already been canceled) then we have a
perfect-reconstruction QMF bank.. For the two-channel

the solution being not really obvious. For the M-band
case, it is even more challenging. Our purpose here is to
indicate a few steps towards the solution to the perfect-
reconstruction’ problem for arbitrary M. A scheme shall
eventually be presented, whrch is an attractive candidate
for study and research. )
Equation (17a) gives rise to M equatrons whrch can be
looked upon as conditions. for perfect reconstruction,
These in turn can be wrltten m ‘matrix form

H(z)f(z) =v

= [R(z) F(2).. . Fu-1@)], '

v.=[cz™"00...0]", and H(z) has elements H,7 o=
Hi(zW"). The matrix H(z) is known as the alias-cancelation
matrix (AC-matrix for short). In principle, inversion of this -

(18)

- matrix leads to a solution for the ‘synthesis filters- Fi(z) in

terms: of the analysis filters Hi(z). However, there are

- problems associated with such an approach: first, the re- ,'

sulting synthesis filters are unlikely to be stable for a given .
set of Hx(2). It is a tricky issue to try to restrict H(z) to be
such that the above approach gives rise to stable synthesis
filters. Second, even if they are stable, they tend to have

. véry high orders, Finally, since H{(z):is'a functron ofz rather

than a constant, its inversion is difficult. Accordingly,
there is considerable interest in finding other procedures
to attack the perfect reconstruction problem

A Couple of Useful Identities . «
In Fig. 1(a), imagine that we wish to pass the decimated

“signal y(n) through a delay-z~". This is equlvalent to de-
laying the sighal x(n) by M units and then decimating the
-result. Extending this idea further, we can show that a_

transfer function G(z) following -a decimator (Fig. 11(a)) -
can be equivalently moved to the /eft of the decimator;, as.
long as each z is replaced with z¥. In an analogous man-.
ner, a transfer function R(z) preceding an mterpolator can

-be moved to the right by replacing z with z", as shown in

-JULY:1987 - IEEE ASSP MAGAZINE : 1 1



Fig. 11(b). Thése identities are exact, and can, be proved
based on the. input-output relations of decimators and
.interpolators.
Now consider Fig. 11 (c), where 5(z) is a transfer function
sandwiched between a decimator and an mterpolator Let
S(z) = G(z)R(z) be an arbitrary factorization. Then we.can
move G(z) and R(z) around to obtain the equivalent
~ diagram shown in the figure. Such manipulations are
very useful in obtaining a quick understanding of certain
important issues in the QMF problem.

R(z) w7 M= N5 x(2); Stz) = G2 Ry(2) for all k.

'Flgure 12 Smce the relatmn between X(z] and X(z) in
the M- .chanriel mammally ‘decimated parallel GMF bank is
comphcated it is difficult to see how to gancel aliasing
‘completely. (Perfect: reconstruction is even more diffi-
cult). However, certain fundamental observations- enable
|oneto obtain complete and correct answers in a simple
‘manner. In Fig. 12(8), it can be shown that X(z) is free of -
aliasing if ‘and only' if- Si(2) are independent. of channel
1numberk i.e., 8(2) = .5(z) forall k. Under this condition, :
Lif S(2) is factorlzed as 8(2) = G2)R(2), for k.= 0;1.
M=1inM arbltrary ways, and the structure rearranged ;
;(wn:h the help of ‘the identities in ‘Fig.:11), we get i

If an arbitrary nonsingular matrix T is inserted ag, shown '
‘,(mmfjlg 12(c), the system still satisfies X(z) =

{l‘s chosen as the DFT matrix, the analysis and syntheens ]
;banks are unlfor'm DFT banks' ,

12
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“transfer functions So(z), S1(2), . .

‘other words, for a given x(n),

Fig. "12(b), which represents a general alias- free system. f -

S(zM]X(z] and is free of aliasing. In particular, if T |

A General M-Band Alias-Free System ; ‘
For a minute, let us.switch our minds to a completely
different picture, viz. Fig. 12. Figure 12(a) shows a set of
. Sm-1(Z) sandwiched be-
tween M-fold decimators and interpolators. The deci-
mators are preceéded by a chain of delays, whereas the
interpolators are followed by a chain of delays. Since deci-
mation is not preceded by filtering, there is in general
severe allasmg in the structure, for arbitrary x(n). How-
ever, it may be possible to pick the functions Si(2) such
that the aliasing is somehow canceled by ‘the .imaging
effect of the mterpolators Letus probe deeper into thls
possibility. :
. First, suppose that Sk(z) are not there (i.e., S¢(z) = 1for
all k.) Then the decimators and interpolators do not do
any harm to the signal x(n); we can formally prove in this .

‘case [37], that (n) = x(nh =M + 1). Next suppose that
- S«(z) are present, but the following relation holds:

Se(z) = S(z),  forall k

i.e., Sk(z) is independent of k, but otherwise arbitrary. By
making use of the identity (b) in Fig. 11, we can move 5(z)
past the interpolators, and then past the delay chain, to
show that X(z) = z~™~P5(z")X(z). Thus; the system is rep-
resehted by a transfer function T(z) = z~*="5(z"), and is
therefore (linear and) time-invariant. In partlcular, aliasing

(19)

" has been completely canceled. More formally, it is pos-

sible to prove that, in Fig. 12(a), £(n) is free from aliasing
if and only if (19) holds. V

Let us now assume that (19) holds, and factorize S(z) in’
M arbitrary ways:

5(2) = G(2Re(2) mf

By makmg use of the identities in Fig. 11, we can then
redraw Fig..12(a) as-in Fig. 12(b). If we now insert an arbi-
trary nonsingular constant matrix T and its inverse into the
structure as shown in Fig. 12(c), an observer observing
£(n) will not even know that we have inserted these! In
R(n) in Fig. 12(a) is exactly
same as %(n) in Fig. 12(c), no matter what T is. Accordmgly,
as long as G(2)R«(2) is independent of k, (n) in Fig. 12(c)

is entirely free of aliasing for any T. The effective analysis

and synthesis. ﬁlters in Fig: 12(c) can be verlfled to be

M—1

Hk(z) = E

=0

Z_'[T‘1]k/ Gi(z"),

M

F(z) = -

i

I
=y

z _(M—i—’).T/k Ri(z™). (21

0

Baeed on this observation, how do we construct some '
useful QMF banks? As a possible example, let us imagine

that T is related to the DFT matrix, i.e., Tm, = W™"/M
where W = e "M In particular this means,
Ho(Z) = [Go(z") + 27'Gs(2") - ‘ :
+272G5(zM) + .+ 27 MTICLEY] (22)

and Hy(z) = Ho(zW"). In other words, we have the fol-
lowing situation: suppose somebody gives us a lowpass -



—“mo-—

- Figure 13, In this figure, the analysis and synthesis
- banks are of the uniform: DFT type. The lowpass
. filter Hol2) |5Ng|ven by Golz™) + z7'Ga(z") + ,

+ 77 M-1G,, (2™ whereas H(z) = HolzW9. With ka[zJ
defined as in (25), aliasing is completely canceled, and the

. system is ‘characterized by the transfer function
| T2) = z™ MIIiG" G(z™). Such schemes for alias cancel-
- “ation, ‘though perfect give rise to complicated synthesis

- filters (in terms of filter order). In practice, if aliasirig due

V_yto nonad acent channels |s neghglble cer‘tam elegant and

—Mo

/M

kvpractlca! solutions are pDSSIblE as shown by Rothweiler
_[9] and Chu [8].

Note that, both in this flgure and |
in Fig. 12, .if A(z) are chosen to be equal to 1/G(z),
we would have perfect reconstruction, and f(n) =
xtn = M+ 1): However, unless all the zeros of the nu-
‘merator polynomials of G(z) are strictly inside the unit

“circle: {i.e., these numerators are minimum-phase poly— @

nomials) Ri(z) become unstable, So, such perfect recon-
struction structures are not very-useful. o

transfer function

Ho@) = 3 h(mz™ 23)
n=0

We can write Ho(z) in the form (22) simply by defining?®

Gi(2) = h(l) + h(l + M)z™" + h(l + 2M)z™2
(24)

That is, the impulse responses of G,(z) are decimated ver-
sions of the impufse_ response_h(n). Having done so, let
us take the remaining analysis filters as Hx(z) = Ho(zW*).
The frequency responses of Hi(z) are uniformly shifted
versions -of ‘the prototype Ho(e/®), i.e., Hi(e/®) =
Ho(e#@~@mkMD)y " Such a set of analysis filters is very com-

monly used; the analysis bank is then called the uniform

DFT bank. Now, what we learned from the exercise of
Fig. 12 is that, in a QMF bank with such analysis filters, we
can completely eliminate aliasing simply by choosing the
synthesis filters Fi(z) to be as'in (21) with Ty = W*/M, and
with Ri(2) such that the product G (2)R«(2) is independent
of k. For example we could choose " '

: M=1 . .
Rk(Z) =. H G/(Z)
i

or, as an aiternative,:
Ri(z) =

1/Gil2) (26)

With the choice (25) it is clear that the synthesis filters are

stable as long as the analysis filters are stable; but the
disadvantage is that the ‘transfer functions Fr(z) tend to
have much higher orders than: Hi(z). The choice in (26)

*Gi(z) are called polyphase components [3] of Hy(z).

M.+ 1), ie.,

(25)

overcomes this problem and in addition leads to perfect
reconstruction since S(z) = 1 here; but it does not give
rise to stable synthesis filters, unless the numerators of the
polyphase components G,(z) have minimum phase.

PERFECT RECONSTRUCTION M-CHANNEL QMF BANKS

For an M-band QMF bank with arbitrary M, we saw at
least one technique for obtaining perfect reconstruction, '
namely Fig. 12(c) or Fig. 13 with Ri(z) as.in (26). As pointed
out, such a scheme works under the constraint that Gi(z)

“should have minimum-phase numerators. A different

scheme.is now outlined, which is free from such a require-.

~“ment. Consider again the structure of Fig. 12(a), redrawn

in Fig. 14(a), with Sk(z) =1 for all k. This is then an ultra-
simple QMF bank, with Hi(z) = z7%and Fi(z) = z= ™10,
We' know from ‘earlier dlscussmns that X(n) = x(n -
the structure has perfect-reconstruction
property Let us now insert the matrices R and R* into the
structure as shown in Fig. 14(b)* where Ris.a'M . xX'M

“unitary matrix (i.e.; any matrix satisfying R'R = cl), where

c is a scalar. Eviden‘rly, this does not affect the output £(n)

_since ‘the matrices R and R* simply cancel. Since R is

memoryless we can obviously move. the matrices to ob-
tain the perfect reconstruction system. of Fig. 14(c). This
works for any unitary R; the only disadvantage is that the
FIR filters Hi(z) and Fi(z) in Fig. 14(c) are of order M —"1.

In order to accomplish higher orders, and hence sharper

filters, let us extend this idea further. Thus, referito”

Fig. 14(d) which is obtained from Fig. 14(a) by inserting the
matrix fu'nctions E(z) and E’(z™"). The matrix E(z) is unitary

* Superscrlpt + stands for transposed conjugate and: superscnpt T

13

) stands for transpose.
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on the unit circle-of the z-plane, i.e.,

E'(z7)E(z) = cl, 27)

‘where ¢ is a scalar:.constant. (Note that, assuming E(z) is
real for real z, E'(z ") is precisely the transpose-conjugate
of E(z) on the unit circle). If E(z) has complex coeffi'c’ients,

forz = €/,

then E"(z™") should be replaced with EX(z™") where sub-

script ‘*' means’ coefficient conjugation. As a result, the
output X(n).in Fig. 14(d) continues to be same as that in
Fig. 14(a), except for a scaling constant. We can now in-
voke the identities in Fig. 11, and rearrange Fig. 14(d) as in
Fig. 14(e), which is therefore a perfect reconstruction
system! As such, unless E(z) is FIR, E'(z™") is unstable, so
we assume E(z) is-FIR. To avoid non causal operations, in
practice, we insert a delay. in front of E(z™") so that
there-are no positive powers of z anywhere. From
Fig.-14(e) you can deduce that the analysis and synthesis
filters are effectively

ponents Ew(z) such that thé matrix E(z) =

He(z) = 'Mf 27 E(2™) (28a)
I=0

and
Fi(z) = z7PH(zTT

where B is a large enough positive integer to ensure that
there are no positive powers of z in Fi(z),

Now, if (27) holds everywhere on the unit circle, then it
must be true for-all z, by analytlc continuation. Such ma-
trices E(z) are said to be paraun/tary For our dlscu55|on

‘paraunitary’ will therefore be used as a synonym to
‘unitary on the unit circle’. We can thus state the following -
result: let He(z) be FIR analysis filters with polyphase com-
[Ew(z)] is para-

(28b) .

* The concept of . paraunltarlness is well-known: in classical,

‘continuous-time network theory; scattering matrices that describe

lossless multiports satisfy this property [19],[20].

Hh(l) =gk

-t
 Fyla) = 2210

Rin)=cx(n-M+1)

g )

sn‘npte analysis and synthes18 filters. This structure
the basis for constructmg more useful filter banks.
b asily vemfled that, in Flg 144(a), we have perfect
C .., &n) = x{n = M + 1). Now consider
4(b) which is'a modification of .Fig. 14(a), with ma-
‘and B! mtr‘oduced where superscript dagger indi-
ISE gation. If R is a unitary matrix (i.e.;

= ¢l, for some scalar ¢); then Fig. 14(b)
quxvaient to Flg 141(a), except for the scale factor ¢.

, h’d Fz),, can bs written in terms of the elements
s shown in the ﬁgure 17 Fig. 14(cl; the system is

" 'to be FIR with order M — 1. To abtain better and higher-'
" unit circle of the z-plane where z = ¢’°} the tilde oper-,

_an.extension of the idea in Fig. 14(b). If E(z).is unitary on;

he mal:mces Rand R* (whlch are not, functlons ofz).

-struction property! In- practice, to ensure stability of.

restricted because the filters H,(z) are constrained.

unitary on
unit circle

E'C™)

(e). -y

e R 1 ? ;
z-" .. ‘ . o ) '/v z-.l :
: M s’ —->—}—wi Rndscxin=M+0 .

R T A e Ve L LR
Hl2) = 3 2-4E, i Rylz) = 7™ 3 M- flp M
5 £=0 . £20

order filters, we can push our imagination one step fur-
ther. In Fig. 14{d), we have inserted the matrix. functions::
E(z) and E(2), where the tilde accent is defined such that’,
(E(z) = ET[z’U For steady state frequencies, (i.e., on the;

ation is same as transpose conjugatlon 50 Flg 14(d) is

the unit circle of the z-plane, (i.e., if E'(e*)E(e’*) = cl for .
all w, where ¢ is a constant), the system is still a' perfect
reconstruction system [371. By using the identities in-
Fig. 11, we can move these matrices to obtain the struc-~
ture of Fig. 14(e), which satisfies the perfect recon::

‘E"(z""), the entries .Ex(2) of the miatrix E(z) are.r
stricted to be FIR. Mareover, & delay element z™"is -
thrown in front of E’(z") soas to avoid noncausality.
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unitafy. If we pick the synthesis filters to be as in (28b) then
aliasing is:completely canceled, and there are no ampli-

tude and phase-distortions, i.e., the structure has perfect‘

reconstruction property.
_ So! Perfect-reconstruction for QMF banks; in prmc:ple,
is as simple as that!'Now comes the important question:

how do we construct an- M. x-M matrix of FIR functions. =

such that it is- paraunitary? One procedure would be to
construct E(z) as a product of simple unitary building
blocks, as indicated .in Fig. 15(a). In_ this figure, K, are
constant ‘M x: M ‘orthogonal matrices (a unitary matrlx
with real entries is called an orthogonal matrix). The ma-
trices A,(z) are diagonal matrices of delays, so that they
are unitary on the unit circle. Since a product of ‘unitary
matrices’is unitary, the cascade in Fig. 15(a) realizes the
desired E(z). More general methods for synthesizing E(z)
can be found in. [41].

The Design Problem

What are the design issues now? In practice, we wish

~Hi(z) to have good stopband attenuation, so that adjacent
frequency bands are well isolated (this is important, even
though aliasing is eventually canceled anyway, because,

(A e I = T I =
I T IR
L T R E Ll el o b
ey f S

L Typical Aglz)=[1 O
S P
0.0,z

Typiccl Kpi. :

- ~ .
k; = cos8;; Kj=sing;.

Flgure 15. How,do we deS|gn a M mput M output F!R
itransfer matrix E(z) slch.that it is_ paraunitary? In"
the figure, K, are constant orthogonal matrices whereas |
‘AnlZz) are dlagonal matrlces with delays along the di-
-agonal. Accordlngly, A,,(z) is paraunitary, and the overall
‘cascaded systemis: paraumter‘y The figure shows typical
‘buﬂdlng blocks for M = 3: The 3 X 3 orthogonal matrix -
K, is merely a combmatmn of three planar-rotation opera-
‘tors. In general an' M X M orthogonal matrix is a com-
bmamon of (¥) planar‘ rotation operators [22] The planar
‘r‘otatlon angles can be optimized to maximize stop band
-attenuation of the analysus filters. Each "building block
K, has the appear'ance of ‘a generalized Iattice, hence
the above structure is called a cascaded FIR lattice

Flgure 18 An example of a'perfect reconstruction sys-"e

; of the cascade of Fig. 1B(a), the relation” |Hole™) +

found’ m 41 ]

.1171,1371], More general ways to synthesnze E(zJ can be a

when the subband signals are encoded, maximum free-

dom from adjacent-channels is.desired [3]). So the filters

Hi(z) .should have good stopband -attenuation. We ‘can

now set up am optimization problem: find the orthogonal

“matrices in-Fig, 15(a) such-that the stopbands of the anal-’

ysis filters have minimum possible energy. We rieed not
worry about the passbands because the unitary nature
of E(z) ensures-.that |Ho( e’“’)|2 + |Hi(e/*)? + o+
|H- 1(&"“’)|2 = constant for all w. Accordmgly, if the stop-
bands are good, and:if the passbands are defined to be
disjoint, then the passbands. are automatically good.
Figures 15 and 16 provide further d|5CU5510ns and ex-
amples on this issue. :

An M XM orthogonal matrix can be represented in
terms of (¥) planar rotations. In Fig. 15, an example of the
choice of building blocks is shown for the case of M = 3.

_Atypical 3 X 3 orthogonal matrix, constructed as shown in”

Fig. 15(c), has (3) = 3 degrees of freedom which can be
adjusted so as to obtain good stopband attenuation. The .
criss-cross nature of the orthogonal building block sug-
gests the name lattice structures for these circuits. A’
meaningful objective function to be minimized would be
the sum of the stopband energies of the analysis filters.
Fig. 16 shows a design example for the case of M = 3, with:

L =1 =31, Figure 16(b) shows the optimized frequency

response -plots.: The. transfer functions Hy(z), Hi(z) and

m@gg

RORVALIZED.FREQUERCY

.The coefﬁclents of the 3 x 3 orthogonal matrices K., |
ptimized to yield good stopband attenuation for the
ysis filters. Since E(z) is paraunitary simply by virtue:

e [HM 1[e"")|2 = constant holds for all w; |
( e;the stopband atten—;

15
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Hy(z) have orders N = 1 = 3(L — 2) +2 = 92. The opti-
mization. of the lattice coefficients was performed using
software available in [23]F..

In the case of M .= 2, the lattice structure can be drawn

in .a particularly simple form, by considering a de-
normalized orthogonal matrix. This is indicated in Fig. 17.
Notice that this lattice is different from the linear-
prediction lattice structure because of the:minus sign on
one.of the a's. This sign-difference is very crucial, and
is what enables us to employ the structure for the QMF
application. '
" This lattice structure has several unique properties:[42].
First, the transfer functions Ho(z) and H(z) generated by
“the lattice satisfy-the condition of equation (16); second,
the synthesis-bank lattice, which is the transpose of the
analysis bank has transfer functions Fo(z) and Fi(z) satis-

fying (16). Moreover, Ho(z) is a spectral factor of a linear-.

phase halfband FIR filter. Finally, the condition of equation
(15) is satisfied. These four propetties hold, regardiess
of the values of a used in the structure! (The quantities
ax determine only the sharpness of cutoff.and stopband
attenuation of Ho(2)). In summary, if these lattice struc-
tures are-used in the analysis and synthesis banks of the
two-channel - QMF circuit, then perfect reconstruction is
guaranteed even if a, are quantized to arbitrarily small

number of bits (in a digital implementation). In other

‘words, perfect-reconstruction is structurally induced -by
the lattice.

* This example was generated by Truong Q.:Nguyen, ‘at Caltech.-

> Hole)

3 1) 2N Dy
N-152(L-2)+]

; "},-r ‘
=3 % (n)
g - =Reconstructed
signal )

scx(n=N+1}-

" {c) The latficestructure bullding blobk

‘Figure 17.. In'the two-channel lattice structure,
‘regardless of the values of a, the following property.
‘holds; &(n).= cx(n — N + 1) (perfect recanstruction).
The, lattlce structure is therefore robust [42] and is
: active for lmplementatmn purposes. n partlcular
have perfect reconstruction even if. a; are guantized
e powers of two! f the transfer functions Hi(2)
f-,;and Fil2) were lmplemented in direct-form, then coeffi--
O quanmzatlon would have destroyed. the perfect-
‘truct:lon property). Notice that, the above lattice
from the I/near-predlctlon lattice [36],

This unique nature of the lattice encourages us to
design the two-channel perfect reconstruction analysis
filter Ho(z) in a different way rather than by spectral-
factorizing a half-band filter (see Fig. 18). We simply
formulate an objective function

p= f |Ho(e joo )2k,

s

(29)

and find the set of parameters ax that minimizes P: The
lattice structure automatically ensures the rest; in particu-
lar the passband of Hs(z) comes out to be good because;
firstly, |H:(e’*)| is an image of |Ho(e/*)| (because of (16)),
and furthermore, |Ho(e’)]* + |Hai(e’*)]* = constant holds.
In Fig. 19, we can see plots of [Ho(e’*)| and |Hi(e’*)| ob-
tained by such an optlmlzatlon The reconstruction error.
is expected to be zero. Figure 19(b) shows a plot of [T (/)|
with the lattice coefficients quantized to 5 bits. Because of
structural perfect-reconstructlon property, the plot is con-
stant for all w. Instead of quantizing the lattice co-
efficients, if we quantize the direct-form coefficients, the
resulting |T(e’*)| is not completely flat, because the quan-
tized Hs(z) is'then no longer a spectral factor of a half-band
filter. The lattice structure in Fig. 17, therefore, seems to
be desirable both from the viewpoint of designing Ho(z)
and from:the viewpoint of implementing the analy5|s and
synthes;s banks.

It'is worth pointing out yet another feature of the lattice -
structure; viz., the' modular property. What we mean by

this is the following: suppose we drop (i.e., simply elimi-

hate) the lattice sections labeled a; -1 and. i~ along with

* This design example was generated by Phuong-Quan Hoang at
Caltech.

> minus S|gn in the criss- cross..

’ "of values of ak] [42]

|Hotei®)]

> Hol Z) : . .
E(z®)| Aq = -20£0g1082
""‘"‘) H|(‘Z) 5
. "Lunlice'f structure . : 0w w

. 'to be optimized

R Objective-fuhéﬁon to\ be minimi'zed < f [ Ho (>e"“')|2 dw

Gy . s !
F:gur'e 18 An optlmlzatton problem can be set up [42] S0
88 to maximize the stopband attenuation provided by
Ho(2) in the two-channel lattice. Such an approach is dif- |
ferent from the more standard approach, ‘wherg a half-:
,band FIR filter of ordér 2(N - 1) is first designed and"
then spectra! factorized. For high order filters with Iarge
'stopband attenuations, such spectral factarization is:|.
, numerl -cally inaccurate and difficult. The lattice-based de--
sign not only avoids such factorization, but in addition, |
produces a monotone- mcr‘easmg peak stopband attenu: | -
“ation. (often desired in QMF appllcatlonsl Moreover,
Ho(z) resultmg out of the lattice structure are alito-’
: matsc,ally spectral factors of a half-band filter (regardless

16
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the associated delays (z72 elements). Then the resulting
smaller lattice structure continues to have perfect recon-

struction property. In other words, the effect of adding
more sections or-deleting sections is to change the attenu- -

ation characteristics of Ho(z), but the signal X(n) continues
to be a perfect replica of x(n) except for a delay. Such a
modular property is of course, not available with the
direct-form structure.

CONCLUDING REMARKS

The purpose of this paper has been to outline some of
the issues involved in the QMF-bank design:problem. The
relation of the QMF problem to the concept.of loss-
lessness (or unitariness) has been emphasized in this arti-
cle. It is encouraging to know that perfect-reconstruction

can be accomplished for arbitrary number of channels in’

-« Hg

MaLysis BANK

RESPONSE AFTER:
*opTTRiZATION,

Hu(z) “AS ORDER 48,

g lS 06T

-20.900

-00,000

RESPONSE -IN DB

-68.000

+80.000

it

T PR - IR IR R X

~100.008
"

TUNDRHATIZED FREQUENCY

1 DISTORTION FURCTION

0,061

QuanTizEp
LATTICE

.00
| QUANTIZATION LEVEL
1s 5 B17S PER

T R e ¥ R e TR T R R
, . 3 L canontc S cope.

W

|T<e S mz;";

0,002 - R\
»QUANTIZED "
DIRECT FORM

“<,000

0,006 b — - - .
S D XY N IR 5 T T

"Flgure 19 Example of an opttmlzed Iattlce response

“The attenuation’ prowded by Ho(2) exceeds 70 dB. NOtICE‘
that the number of zeros on the unit circle (for Helz)) is,
_equal to 25, which is the maximum permissible for the
-spectral factor of any half band filter of order 2 x 49, The
wdistortion function: T(Z) cantinues ta be a pure delay even"
‘after coefﬂcnent quantlzatlon ‘provided the filters are im-
‘plemented in lattice form rather than in direct form.

.Figure 19(b) shows. the ‘plot of ]T(e"“][ for an @ple--
rientation with 5 bits per coefficient in canonic sign-digit
‘Gode, both with the Iattlce structure and the dlrect form
',strueture .

a-maximally decimated parallel QMF bank. Moreover,
such reconstruction is possible even when the analysis

filters Hi(z) and synthesis filters Fi«(z) are all FIR, and of the
\'s\a'me;'len”gth: N. Certain new lattice structures, funda-
mentally different from the linear-prediction lattice, are

naturally placed in evidence when we attempt to do per-

‘fect reconstruction based on unitary building blocks.

Moreover, for the case of two channels, these lattice struc-
tures give rise.to transfer functions which have all the
properties required for perfect reconstruction even when
the lattice coefficients are quantized. to “arbitrarily small
number of bits.
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“More results on the perfect récon- .

P.P. Vaidyanathan and V. Liu, “An lmproved suf-.

P.P. Va«dyanathan (5'80--M’83) was born in Cal-

Tech and M. Tech. degrees in radiophysics and * and) (IR, Fi(z ) given by Eqn. (B) are necessarlly unstable.

SUMMARY .OF KEY RESULTS | |
The M-channel Quadrature Mirror Filter (QMF) bank in

-Fig: .10 is.called the maximally decimated, parallel QMF.
bank. In order to avoid spectral gaps while splitting the

signal x(n) into M bands, the frequency responses of the
analysis filters Hi(z) are permitted to overlap. Con-
sequently; there is aliasing at the output of the decimators.

- This aliasing can be canceled by the imaging effects of the

interpolators, if the synthesis filters Fi(z) are chosen
appropriately. Some schemes [10], (11] for perfect cancel-
ation of aliasing are shown in Fig. 12 and Fig. 13, and
typically require high orders for Fi(z). Approximate can-
celation of dliasing can be achieved by use of suitable
synthesis filters of low order [8], [9].

Once aliasing has been canceled, the reconstructed
signal is given by X(z) = T(z)X(z) where T(z) is the -
overall transfer function-or the distortion transfer func-
tion. If [T(e/*)| is constant independent of w (i.e., if T(z) is
an allpass function) there is no amplitude distortion; if
arg[T(e/*)] = Ko (i.e., if T{(z) is a linear-phase (FIR) func-
tion) then there is no phase distortion. In fact it has been
possible in the past to thus eliminate either amplitude
distortion or phase distortion completely [1],(5],[10],

"[111, [29]. Simultaneous elimination of all three distortions

(i.e., aliasing, amplitude and phase distortions) is difficult
but can be done. Such a QMF structure will be a perfect-
reconstruction structure and satisfies £(n) = cx(n — ng). If
Exn(z), 0. =n =M — 1represent the M polyphase com-
ponents of the analysis filters Hx(z), 0 < k = M — 1, (see
discussions around equations (23), (24) for meaning of -
polyphase components) and if the matrix function .

E(z) = [Ei.n(2)] (A)

is unitéry on the unit circle of the z-plane (Fig. 14), then it
is possible to obtain perfect reconstruction simply by tak-
ing the synthesis filters to be

Fz) = 2 PH(z™) - (®)
where B is an\integer large enough so that there are no

positive powers of z in the expressions for Fi(z)'s
Such perfect ‘reconstruction is practicable provided

.Hi(z) are FIR; notice that, the poles of Hi(z “1.) are the

reciprocals of those of Hi(z), hence if Hi(z) are (stable -

When H,(z) are FIR, the above perfect-reconstruction
scheme has FIR synthesis filters Fi(z) having the same
order -as the analysis filters, and there is an ultrasimple
closed form expression (Eqn. (B)).that gives Fi(z) in terms
of Hi(z)! No inversion of matrices and matrix-polynomials
are involved in the design. An implementation of such a

. system is shown in Fig..14(e), whereas Fig. 14(d) is a more

efficient implementation with the polyphase filters Ey, ,,( )
operating at the lowest possible rate.
A matrix which is umtary on the unit circle satlsfles
E'(z""E(z) = cl forall z = e/*, where c is a'constant sca-
lar. By analytic continuation, this implies E"(z"")E(z) =.cl

- for all z. Such matrices will be called paraunitary or simply

lossless. The term ‘lossless’ comes from the fact that if
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Y(z) = E(z)X(z), then the energy in the vector sequence
y(n) is equal to that in the vector sequence x(n). In the
continuous-time world, such paraunitary systems are well-
‘known; scattering matrices of lossless multiports are
known to have this property [19], [20].

A second way to look at the perfect-reconstruction
scheme is through the Alias Cancelation (AC-) matrix H(z)
in Eqgn. (18). If this matrix:is unitary, then we can solve
for the synthesns filter vector f(z) simply by taking
f(z) = z7PH"(z"")v (where p is large enough so that there
are no positive powers of z in the expressions for Fi(z)).

It turns out that, with this viewpoint, the same solutions
viz. Eqn. (B) results and the (para)unitariness of E(z) is
equivalent to (para)unitariness of H{z).
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