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linear. Accordingly, it cannot  be  represented by a transfer 
function; we  should seek other means of  describing  the 
decimator in  the transform-domain. Since a 'decimdtor 
causes a compression in the time-domain, we expect a 
'stretching' in  the  frequency  domain. For  example, with 
M = 2, the  quantity X(ei"/') is a stretched  version of X(&"). 
However, since X(e'"'')  has a period  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4rr rather  than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2rr, 
it, is  not a valid  transform of'a sequence. It can be  verified 
that Y(ej") in fact has two terms. The first is X(ej"/2),  and the 
second term is X(-e'"/') which is a shifted  version of  the 
first  term  (shifted  by an amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ~ ) .  More formally, 
the  input-output  relation  for a two-fold decimator can be 
written  in  the transform  .domain as [31 

Y(ejw) = 0.5[X(ejw/2) + X(-ei"")]. (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Note that Y(ejw) given as above does  have a period  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2rr. 
This is demonstrated in Fig. l(b), (c) where x(n) is assumed 
to be a lowpass type of signal. If  the  transform  of x(n) is  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I M-fold declmator 

Example (M.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 0 1 2 3 4 5 6 7  

x(n) I 4 8 -I 2 6 3 15 ::: 
y(n1 I ' 8  2 3 e . .  

x'(n) 0 I 4 8 -I 2 6 3 (shlfted input) 

y'(n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 4 -I 6 - (completely new oulput) 

I Example (M.2) 

I x(n) I 4 8 -I 2 6 3 15 ::: 
y(n1 I ' 8  2 3 e . .  

n 0 1 2 3 4 5 6 7  

x'(n) 0 I 4 8 -I 2 6 3 (shlfted input) 

y'(n) 0 4 -I 6 - (completely new oulput) 

I t. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.W 

-277 ? 277 

Figure 1. A  decimator is a system which takes in a se- 
quence x ln )  and  produces a time-compressed  sequence 
y[nI = x [Mn l .  The compression ratio M is an integer. This 
operation is denoted by the downgoing arrow (indicative  of 
'down-sampling):  The figure demonstrates  the operation 
of a two-fold decimator.  In  general the  output y[nl of an 
M-fold decimatar is obtained by retaining only the samples 
of the input sequence occurring at times that are integer- 
multiples  of M. A  decimator is a time-varying system 
[even  though  linear). The figure  demonstrates this, by 
showing that a shifted version  of the input does not pro- 
duce a shifted  version of the  output. The effect of 
compression in the time .domain is an  expansion [or 
stretching)  in  the  frequency domain. The quantity 
I;Xte'"/21 in the figure represents this, while  $X[-ej"/21 
represents aliasing  caused  by  downsampling,  For  arbi- 
trary M, equation (21 gives the  transform of the deci- 
mated  sequence. 

not  bandlimited to -7r/2, 5 w 5 rr/2, there is an overlap 
of  the  two terms in (1) as shown  by  the shaded  area in 
'Flg.",I(c): This.overlap is the aliasing effect, caused by  un- 
dersampling. There is no way we can  get  back the original 
signal x(n) from  y(n),  once aliasing has taken  place. In 

order to convince  ourself  that the scale factor of 0.5 is 
required in the expression (I), let us imagine, as an  exam- 
ple, that x(n) is  the  unit pulse S(n). Then X(z),is  unity  for 
all values of  the  argument z, hence from ( I )  we have 
Y(ej") = 0.5(1 + 1) = 1.0 for all w ,  which is consistent 
with  the fact that y(n) = S(n) in this case. 

For  an M-fold decimator we have y(n) = x(Mn), and  the 
transform-domain  relation i s  precisely an extension 
of (I). Instead of two terms, we  now have M.terms; the 
first term is  merely a stretched  version of X(ej") (by a factor 
of M ) ,  namelyX(e'"/''").  The remainingtermsare  uniformly 
shifted versions of  the  first  term  (the  amount  of shift  being 
integer  multiples of 2rr). Thus, it can be  shown  that 

(2) 

where W = e-'wj'M and z = e'". The  scale factor,of 1 / M  in 
(2) can be  understood in a manner analogous to  the factor 
0.5 in (I) .  

What happens if  we decimate a highpass  signal, say by 

Figure 2. What. happens  when a highpass  signal gets 
decimated?  Fia. 2[al reoresents  the  transform X[e'"l 
[assumed to bgreal  for simplicity)  of a highpass  signal. If 
this signal is decimated two-fold, the resulting transform 
has tw.0 ,components,  proportional t o  XtJe/"/21 and 
X[-e'W/21,  as  shown  in  Fig. 2[bl. Accordingly, the deci- 
mated  signal looks like a regular lowpass signal. In fact  if 
a lowpass  signal with  transform Bs in Fig. 2[cl were  deci- 
mated  by a 'factor of two,  the  result would  again  have 
.appearance as in Fig. 2[bl. This  means that given the 
transform in  Fig. 2[bl, it is impossible t o  tell whether is 
came fro,m  Fig. 2[al  or  2[cl. 

' ,  
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it is well  known that sharp cutoff  filters  require  very'high 
order, are highly  sensitive to quantization,  and often cause 
instability,problems (if IIR). 

The philosophy  adopted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I], [21, [51 in  the  QMF  bank  in 
order  to overcome  this problem is  to  permit aliasing at the 
output of  the  decimator, by designing  the analysis filters as 
in Fig. 6(b), and  then  choosing  the synthesis filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFo(z) 
and Fl(z) such that  the  imaging  produced  by  the inter- 
polators cancels the aliasing. In fact exact cancelation is 
possible. This observation  relieves  the  designer  of  a very 
stringent analysis-filter design  problem. 

Based on  the relations (2) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) for a decimator y d  an 
interpolator  respectively, it is possible to express X(z) in 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 as 

k z )  = -[Ho(z)Fo(z) + H1(z)F1(z)]X(z) 
1 

2 

+ y[Ho(-~)Fo(z) + HI(-Z)FI(Z)IX(-~) 
1 

(4) 

Because of  the  second  term  in (4) involving X(-z), we 
cannot write  down an expression for X(z)/X(z) that is inde- 
pendent of X(z) itself. This is not surprising, since the  QMF 
bank is not  time-invariant (as the  decimators  and intes- 
polators are time-variant). The second  term in (4) repre- 
sents the  effects of aliasing  and  imaging. This term can be 
made to disappear simply  by  choosing  the synthesis filters 
to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F ~ ( z )  = H ~ ( - z ) ,  F ~ ( z )  = - H ~ ( - z )  (5) 

Once  the  aliasing is so canceled, the QMF  bank becomes 
a (linear and) time-invariant system with transfer function 

i ( z )  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T(z)  = - = -[Ho(z)HI(-z) - Hl(z)Ho(-z)] (6) 

X(z) 2 

Ideally, we would  like T(z) to be a delay,  i.e., T(z) = z-"O, 
so that  the  reconstructed signal is a delayed  version of 
x(n). Since T(z) is  in general not a delay, it represents a 

distortion and is called  the  distortion function  or the  over- 
al l  transfer function. The quantity )T(e'"')) is the  amplitude 
distortion and  arg[T(e'")l is the phase distortion. If T(z) is 
an allpass function, i.e., if IT(e'")l = constant  for all w ,  
then  there is  no amplitude  distortion.  If T(z) is a linear- 
phase FIR function,  then a rg[T(ej")] = Kw, and  there is no 
phase distortion. Barnwell [29] has shown  that  there are 
several interesting ways in  which  the  filters Ho(z),  Hl(z), 
Fo(z) and Fl(z) can be  related, m a s  to  obtain an appropriate 
functional  form  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT(z). 

It is typical to choose Hl(z). = Ho(-z), so that we  have a 
lowpass/highpass pair. Then 

1 1 
2 2 

T(z) = - [H i ( z )  - H?(z)] = --[HZ(z) - HS(-Z)] (7) 

which  represents the  distortion  function. Suppose Ho(z) 
and Hl(z) are linear phase FIR filters, then T(z) give,n by (7) 

clearly has linear phase, and phase distortion is easily 

eliminated. In summary, the  choice  of  transfer  functions 

according to 

H,(z) = Ho(-z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFo(2) = Ho(z), FI(Z) = -H1(z) 

(8) 

leads to  complete  elimination  of aliasing; if Ho(z) has 
linear phase, then phase distortion i s  also eliminated. 
Assuming Ho(z) t o  be  a  linear phase  lowpass FIR filter  of 
order N - 1, we can write Hdej") = e-''(N-l)'ZHO , a  (e'") 

where Ho,.(d") is  the  (real-valued)  amplitude response 
[32] .  With this, T(ej") takes on a  nice  form: 

e-jo(N-l) 

T(ei")' = - [IHo(ejW)12 - (-1)N-11Hl(e'")/2] (9) 

If N - 1 is  even, then.  referring  to Fig. 6(b), at the  fre- 
quency w = ~ / 2 ,  T(e'") given by (9) is zero! This implies 
severe amplitude  distortion. Accordingly, with the  choice 
of  filters as in (8), we  must always pick  the.order N - 1 of 
the  linear phase FIR filter Ho(z) to be odd*. Equation (9) 

then  yields 

2 

IT(ej")l ,= Y[/Ho(ej")l2 + IHl(ei")12] (10) 

which  represents  the  residual  amplitude distortion. Since 
T(z) has linear phase,, phase-distortion is absent. 

Now comes the bad  news:  if two linear phase transfer 

functions Ho(z) and H7(z )  are  such  that IHo(eiW)/2 + 
(Hl(e'")I2 is  constant for all w ,  then Ho(z) and HI(z) must be 
trivial  transfer  functions [24] with frequency responses  of 
the form IHo(ej")J2 = cos2(Kw) and IHl(e'")12 = sin2(Ko). In 

1 

'If an  even order i s  required  for some other reasons, there is a trick 
which can be  employed to avoid  the above distortion; see [51. 
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other  words, for  the choice  of  filters as in (8), there zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdoes 
not exist a  non-trivial linear-phase  transfer function Ho(z) 
such that phase distortion and  amplitude  distortion are 
simultaneously  eliminated! 

To complement  the  above  discussion,  let us now see 
how amplitude  distortion can be  completely  eliminated, 
when  one agrees to.  tolerate phase distortion.  There are 
many  ways of doing  this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ I l l ,  [27],  [29],  [431; let us zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlook at 

one. In the world  of IIR digital filters, there exists a  b6au- 
tiful subset of transfer  functions  which can be  imple- 
mented as a sum of  two allpass functions [331,  [341,[391, 
[40],  [43]. If such transfer  functions.are  used  in  the analysis. 
bank, this  automatically  forces T(z) to be allpass. Without 
getting into  the  theoretical details, let us state the essence 
compactly  here. 

Let Ho(z) be  a lowpass I IR function  with  numerator  poly- 
nomial. P(z) and  denominator  polynomial D(z) of  orders 
N, i.e., 

N N 

Ho(z) = P(z)/D(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx p,z-"/C.  dnz-". (11) 
n=O n=O 

A typical  magnitude response of Ho(z) is indicated  in 
Fig.  8(a).  Let us define the highpass function Hl(z) to be 
such that lHo(ejw)12 + lHl(e'")12 = 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor a//  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw. Such a pai.r 
[Ho(z), H1(t)] is called a power-complementary pair. Given 
Ho(z) such that JHo(ej")l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1, we can always find such Hl(z) 
by defining-it  to  be H1(z) = Q(z)/D(z) where Q(z) is  a 
spectral  factor of 

IQ(ej")12 = lD(ej")l' - lP(ejw)12. (12) 

Usually, the zeros of Ho(z) are on  the  unit circle, hence P(z) 
is a  symmetric  polynomial, i.e., pn = pNTn. Moreover, it is 

L 

Non-overlapping 
analysis filters 

( b )  IHo(eiW)[ lHl(elW)I A 

Overlapping 
analysis filters 

,W 
0 lr/2 lr 

Ideal "brickwall" 
characteristics  for 
analysis filters 



6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_I Typical amplitude-distortion function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 

~ Typical  phase-distortion function 

distortion  function T(z) = Ao(z)Al(z)/2 which is  allpass 

is the  order  of  Ho(z)!  In  other  words,  the  structure  of 

Fig.  8(d) is dramatically  efficient. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The.,,Perfe,ct-Reconstruction Two Channel QMF Bank 

So we see that  either phase distortion  or  amplitude dis- 
tortion can be  completely  eliminated,  according  to  choice. 
The remaining  distortion can be either  minimized  using 
computer-aided  techniques,  or  equalized by  cascading 
with  a  filter. 

For  example, once phase distortion 'has been elimi- 
nated, amplitude,distortion can be  minimized  by use  of 
nonlinear  optimization software zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[23]. Usually, an objective 
fu'nction  is.'formulated  which i s '  a  sum of t t ie stop- 
band  error of Ho(z)  and the  amplitude  distortion  error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J[IT(ej")12 - 1j2do; the  coefficients  of  Ho(z) are found 
such that this objective  function is minimized. The re- 
maining  filters Hl(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFo(z) and Fl(z) are found  from (8). An 

, r 

In  other  words,  amplitude  distortion i s  completely 
eliminated  (and so is aliasing, of course). The  phase re- 
sponse of T(z)  leads to some phase distortion.  A dis- 
cussion ,on how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto design  transfer  functions Ho(z) and 
Hl(z) satisfying (13) and  the condition Hl(z) = Ho(-z), can 
be found  in [ I l l ,  [431. 

It is  worth  pointing  out some of  the  good features of 
implementations based on allpass decompositions, ,such 
as (13). The  allpass filters  Adz) and A,(z) can be  imple- 
mented  using  the  Gray-and-Markel lattice structures [381 
which come in various  convenient  forms.  All  of these 
forms can be  made  free from  limit cycles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[MI (which are 
parasitic  oscillations  under  zero-input,  caused  by 
quantizer-nonlinearities in feedback loops of IIR filters). 
Moreover,  instability  problems  due to coefficient  quan- 
tization are absent in these lattice  structures. It is  also 
known  that  implementations based on  the  decomposition 
of (13) have low passband sensitivity [341 (even though this 
is  not very  crucial for  QMF applications). 

The relations (13) imply that  Ao(z) = Ho(z) + Hl(z), and 
Al(z)*=  Ho(z) - Hl(z).  Since in addition Hl(z) = Ho(-z), 
you can verify  that  Ao(z)  in fact has the  form.ao(z2) and Al(z) 
has the  form z-1a1(z2).  Accordingly, the QMF  bank can be 
implemented as in Fig. 8(d); If ao(z) and  al(z)'are  imple- 
mented  using,a cascade of  the  one-multiplier Gray-Markel 
lattice structure [381, then  the  entire  QMF  bank (i.e., all 
four transfer  functions Ho(z),  H1(z); Fo(z) and Fl(z)) can be 
implemented with a total of about N multipliers,  where N 

A 

( a )  

Typical rnagnilude responte. 
for I I R  Ho(2I and H,(rI 

JULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1987 IEEE ASSP MAGAZINE 9 



alternative to this optimization  would be to cas,cade a where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti constant,  hence 

linear-phase FIR filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the  output 2(n) and  equalize the 
amditude  distortion. 

i-+)[z-l)Ho(z) + Ho(-z-')Ho(-z) = d ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(15) 

cause of symmetry  around ?r/2 we have, 

G+(z) + (-l)N-lG+(-z) = dZ-'N-l' (14) 

*i.e., a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH&) such that G+(z) = Z- '~-~'H~(~- ' )H~(~).  
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*The cutoff frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the lowpass filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis not  a quarter of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2a unless zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = 2. Thus, the name quadrature mirror filter is a mis- 

nomer, when M > 2. However, this  has become more or less  stan- 
dard, and there is no reason to change the name as long as we 
remember its origin. 
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Fig. I l(b). These identities are  exact, and can  be proved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA General  M-Band Alias-Free zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASystem 
based on the  input-output relations  of  decimators and For a  minute,  let us switch  our  minds to a completely 

interpolators. different picture, viz. Fig.  12. Figure  12(a)  shows a set of 

Now con'sider  Fig. 11 (c), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(z) is a  transfer function ' transfer  functions So(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASl(z), . . . S,&(z) sandwiched  be- 
sandwiched  between  a  decimator  and an interpolator.. Let tween M-fold decimators  and  interpolators. The deci- 
S(z) = G(z)R(z) be  an arbitrary  factorization. Then  we.can mators  are preceded  by  a  chain of delays,  whereas the 
move G(z) and R(z) around  to  obtain  the equivalent interpolators are followed by a chain  of delays. Since'deci- 
diagram  shown in  the  figure. Such manipulations are mation is  not preceded  by  filtering,  there is in general 

very  useful in  obtaining  a  quick understanding  of  certain severe aliasing in  the structure, for arbitrary x ( n ) .  How- 

important issues in  the QMF problem. ever, it may be  possible to  pick  the  functions Sdz) such 
that ,the aliasing i s  somehow  canceled  by ?he imaging 
effect of  the  interpolators. Let  us probe deeper into this 
possibility. 

Based on  this  observation, how  do  we  construct some 
useful QMF banks? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a possible example, let us imagine 
ttiat T is related to  the DFT matrix, i.e.,, T,, = Wmn/M 
where W = e-'"j", In particular, this means, , .  

&(z) = [Go(zM) + z - ' G I ( z ~ )  

+ z-2G2(zM) + . . * + Z-(M-l)GM-l(ZM)I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22) 

and &(z) = Ho(zWk). In. other  words, we  have the fol- 
lowing  situation:  suppose  somebody gives us a lowpass 
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transfer function overcomes  this problem and in  addition leads to  perfect 

m reconstruction  since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS(z) = 1 here; but  it does not give 

Ho(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 h(n)z-" (23) rise to stable  synthesis filters, unless the numerators of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n=O polyphase  components Gk(z) have minimum phase. 

We  can write Ho(z) in  the  form (22) simply  by  defining* 

G,(Z) = h ( / )  + h(/ + M)z- l  + h( /  + 2M)Z+ + . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPERFECT RECONSTRUCTION M-CHANNEL QMF BANKS 



on the  unit  circle of the  z-plane, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ET(z-’)E(z) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcl, for z = eiw, (27) 

where  c is  a scalar constant. (Note that,  assuming E(z) i s  

real for real z,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAET(z-’) is  precisely  the  transpose-conjugate 
of E(z) on the unit  circle). If E(r) has complex  coefficients, 
then ET(z-’) should be replaced with ES(z-’) where  sub- 
script ’*’ means coefficient  conjugation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result, the 
output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ( n )  in Fig. 14(d)  continues  to be same as that in 
Fi.g.  14(a), except for a scaling  constant. We  can now  in- 
voke  the  identities  in Fig. 11, and rearrange  Fig.  14(d) as in 
Fig. 14(e),, which is therefore a perfect  reconstruction 
system! As such,  unl.ess E(z) is FIR, ET(z-’) is unstable, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso 
we  assume E(z) is  FIR. To avoid non causal operations, in 
practice, we insert a delay in  front  of ET(z-’) so that 
there  are  no  positive  powers  of z anywhere.  From 
Fig.  14(e) you can deduce  that  the analysis  and  synthesis 
filters are effectively 

and 

F k ( Z )  = z-PHk(z-’) (28b) 

where p is a large enough  positive  integer to ensure that 
there are no positive  powers of z in Fk(z). 

Now, if (27)’holds  everywhere on the unit circle, then  it 
must  be true  for all z, by  analytic  continuation. Such  ma- 
trices E(z) are said to be paraunikry*. For our discussion, 
‘paraunitary’ will  therefore  be  used as a synonym to 
’unitary on the unit circle’. We  can thus state the  following 
result: let Hk(z) be FIR analysis filters with polyphase com- 
ponents €k/(z) such that  the  matrix E(z) = [€k/(z)I is  para- 

* The  concept of paraunitariness i s  well-known,, in classical, 
continuous-time  network theory;  scattering matrices that  describe 
lossless multiports satisfy this property [191,[201. 

1 4 IEEE ASSP MAGAZINE JULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1987 





This unique  nature  of  the  lattice encourages us to 
design  the  two-channel  perfect  reconstruction analysis 
filter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) in a different way rather  than  by  spectral- 
factorizing a half-band  filter (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. 18). We simply 
formulate an objective  function 

p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiy: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIHo(e jm’ /zdm8 (29) 

* This example was generated  by  Truong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. Nguyen, at Caltech. 



the associated  delays (z-' elements). Then the  resulting 
smaller lattice structure  continues to have perfect  recon- 
struction  property. In other words,  the  effect  of  adding 
more  sections ordeleting sections is to change the attenu'- 
ation  characteristics  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z), but  the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2(n) conti,nues 
to be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa perfect replica of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ( n )  except for  a delay.  Such a 
modular  property is of  course, not available with the 
direct-form  structure. 

CONCLUDING REMARKS 

The purpose of this paper has been to  outline some of 
the issues involved  in  the QMF-bank  design  problem. The 
relation  of the QMF  problem  to  the  cdncept  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloss- 
lessness (or uni,tariness) has been  emphasized in this arti- 
cle. It is encouraging to  know that  perfect-reconstruction 
can be accomplished for  arbitrary  number of channels in 
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SUMMARY.OF KEY RESULTS 

The M-channel  Quadrature Mirror Filter (QMF) bank in 
Fig,.. IO,,is, Called the maximally decimated, parallel QMF 
bank..in  order to avoid spectral gaps while  splitting the 
signal x(n)  into M bands, the frequency responses of the 
analysis filters Hk(z )  are permitted  ,to  overlap.  Con- 
sequently, there is  aliasing at the output  of the decimators. 
This aliasing can be canceled by the  imaging effects of the 
interpolators, if  the synthesis filters Fdz) are chosen 
appropriately. Some  schemes [IO], [Ill for perfect cancel- 
ation  of aliasing are shown in Fig. 12 and Fig. 13, and 
typically require  high orders for F k ( z ) .  Approximate can- 
celation of aliasing can be achieved by use of suitable 
synthesis filters  of low order [8], [9]. 

Once aliasing hasAbeen canceled, the  reconstructed 
signal i s  given  by X(z) = T(z)X(z) where T(z) is the 
overall transfer function  or  the  distortion transfer func- 
tion. if If(e’”)l.is.constant independent of w (i.e., if  T(z) is 
an, allpass function)  there is no amplitude  distortibn; if 
arg[T(ej”)] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKw, (i,e,, if T(z)  is a linear-phase (FIR) func- 

tion)  then  there is no, phase distortion. In fact it has been 
possible in  the past to thus eliminate either amplitude 
distortion  or phase distortion  completely [I], [5], [1.0], 

’ [Ill, [291. Simultaneous elimination of al l  three  distortions 
(i.e., aliasing, amplitude and phase distortions) is difficult 
but can be done. Such a  QMF  structure will be a  perfect- 
reconstruction structure and satisfies 9(n)  = cx(n - no). If 
€k,n(~),  0, I n I M - 1 represent the M polyphase com- 
ponents of the analysis filters Hk(z), 0 .I k I M - 1, (see 
discussions around equations (23), (24) for meaning of 
polyphase components) and if  the matrix function 

E(z) = [ k n  (z)l (A 1 
April 1987 (to  be  published). 

[MI P. P. Vaidyanathan and V. Liu, “An  improved suf- 
ficient  condition  for absence of  limit cycles in digital ing the synthesis filters to be 
filters,’’ IEEE Trans. on Circuits and Systems, vol. 
CAS-34, pp. 319-322, March 1987. Fk(Z) = z-PHk(Z-’) ( B  1 

is  unitary on  the unit circle  of  the  z-plane (Fig. 141, then it 
is possible to obtain  perfect  reconstruction simply by tak- 

where p is an integer large enough so that there are no 
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Y(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= E(z)X(z), then  the energy in the vector sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y ( n )  is  equal to that in the, vector sequence x (n ) .  In  the 

continuous-time  world, such paraunitary systems  are well- 
known; scattering, matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof lossless multiports are 
known to have this property zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[19], [20]. 

A second way to  look at the  perfect-reconstruction 
scheme is  through  the Alias Cancelation (AC-) matrix H(z) 

in Eqn. (18). If this matrix is unitary, then  we can solve 
for  the synthesis filter  vector f(z) simply  by  taking 
f(z) = Z-~H'(Z-')V (where p is large enough so that there 
are no positive powers of z in the expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF&)). 

It turns out that, with this  viewpoint,  the same solutions 
viz. Eqn. (B) results and the (paralunitariness of E(z) is  
equivalent to (para)unitariness of H(z). 
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