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Quadrature rules and distribution of points on
manifolds

Luca Brandolini Christine Choirat Leonardo Colzani
Giacomo Gigante Raffaello Seri Giancarlo Travaglini

Abstract

We study the error in quadrature rules on a compact manifold. Our estimates are
in the same spirit of the Koksma Hlawka inequality and they depend on a sort of
discrepancy of the sampling points and a generalized variation of the function. In
particular, we give sharp quantitative estimates for quadrature rules of functions in
Sobolev classes.

Keywords. Quadrature, discrepancy, harmonic analysis

1 Introduction

In what follows, M is a smooth compact d dimensional Riemannian manifold with-
out boundary, with Riemannian measure dx, normalized so that the total volume of the
manifold is 1, and ∆ is the Laplace Beltrami operator. This operator is self-adjoint in
L2(M), it has a sequence of eigenvalues {λ2} and an orthonormal complete system of
eigenfunctions {ϕλ(x)}, ∆ϕλ(x) = λ2ϕλ(x). The eigenvalues, possibly repeated, are
ordered with increasing modulus. In particular, the first eigenvalue is 0 and the associ-
ated eigenfunction is 1. An example is the torus Td = Rd/Zd with the Laplace opera-
tor−

∑
∂2/∂x2

j , eigenvalues
{

4π2 |k|2
}
k∈Zd and eigenfunctions {exp (2πikx)}k∈Zd . An-

other example is the sphere Sd =
{
x ∈ Rd+1, |x| = 1

}
with dx the normalized surface

measure and with ∆ the angular component of the Laplacian in the space Rd+1, eigenval-
ues {n(n+ d− 1)}+∞

n=0 and eigenfunctions the restriction to the sphere of homogeneous
harmonic polynomials in space. With a small abuse of notation and in analogy with the
Euclidean space, the Riemannian distance between x and y will be denoted |x− y|.

A classical problem is to approximate an integral
∫
M f(x)dx with Riemann sums

N−1
∑N

j=1 f (zj), or weighted analogues
∑N

j=1 ωjf (zj), and what follows will be con-
cerned with the discrepancy between integrals and sums for functions in Sobolev classes
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Wα,p (M) with 1 ≤ p ≤ +∞ and α > d/p. The assumption α > d/p guarantees the
boundedness and continuity of the function f (x), otherwise the point evaluations f (zj)

may be not defined. As a motivation, assume there exists a decomposition ofM into N
disjoint piecesM = U1∪U2∪...∪UN and these pieces have measuresN−1 and diameters
at most cN−1/d. In what follows, as usual, the constants a, b, c, . . . may change from step
to step. Choosing a point zj in each Uj , one obtains the estimate∣∣∣∣∣N−1

N∑
j=1

f (zj)−
∫
M
f(x)dx

∣∣∣∣∣
≤

N∑
j=1

∫
Uj

|f (zj)− f(x)| dx ≤ sup
|y−x|≤cN−1/d

|f (y)− f(x)| .

In particular, since functions in Wα,p (M) with α > d/p are Hölder continuous of
degree α− d/p, one obtains∣∣∣∣∣N−1

N∑
j=1

f (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ cN−(α−d/p)/d ‖f‖Wα,p(M) .

On the other hand, it will be shown that suitable choices of the sampling points {zj}Nj=1

improve the exponent 1/p − α/d to −α/d and this is best possible. More precisely, the
main results of this paper are the following:

(A) For every d/2 < α < d/2+1 there exists c > 0 such that if M = U1∪U2∪...∪UN
is a decomposition of the manifold in disjoint pieces with measure |Uj| = ωj , then there
exists a distribution of points {zj}Nj=1 with zj ∈ Uj such that for every function f(x) in
the Sobolev space Wα,2 (M),∣∣∣∣∣

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ c max
1≤j≤N

diameter (Uj)
α ‖f‖Wα,2 .

(B) Assume that the points {zj}Nj=1 and the positive weights {ωj}Nj=1 give an exact
quadrature for all eigenfunctions with eigenvalues λ2 < r2, that is

N∑
j=1

ωjϕλ (zj) =

∫
M
ϕλ(x)dx =

{
1 if λ = 0,
0 if 0 < λ < r.

Then for every 1 ≤ p ≤ +∞ and α > d/p there exist c > 0, which may depend onM, p,
α, but is independent of r, {zj}Nj=1 and {ωj}Nj=1, such that∣∣∣∣∣

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ cr−α ‖f‖Wα,p .
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(C) If 1 ≤ p ≤ +∞, if α > d/p and if κ ≥ 1/2, then there exists c > 0 with the
following property: let {zj}Nj=1 be a distribution of points onM with

supx∈Mminj |x− zj|
mini 6=j |zi − zj|

≤ κ.

Then there exist positive weights {ωj}Nj=1 such that∣∣∣∣∣
N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ cN−α/d ‖f‖Wα,p .

(D) For every 1 ≤ p ≤ +∞ and α > d/p there exists c > 0 such that for every distri-
bution of points {zj}Nj=1 and numbers {ωj}Nj=1 there exists a function f(x) in Wα,p (M)

with ∣∣∣∣∣
N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≥ cN−α/d ‖f‖Wα,p .

In (C) the quantity supx∈Mminj |x− zj| is the mesh norm, mini 6=j |zi − zj| is the
separation distance, and their ratio is the mesh-separation ratio of the distribution of
points {zj}Nj=1. See [16]. An explicit example is the following. The torus Td can be par-
titioned into N = nd congruent cubes with sides 1/n and this partition generates the
mesh of points

(
n−1Zd

)
∩ Td, which gives an exact quadrature at least for all exponen-

tials exp (2πikx) with k in the hypercube {maxj=1,...,d |kj| < n}. In this case, (A) and (B)
give an upper bound for the error in numerical integration of the order of N−α/d. More
generally, if a manifold is decomposed into N disjoint piecesM = U1 ∪ U2 ∪ ... ∪ UN
with diameters ≤ cN−1/d, then (A) gives the upper bound N−α/d. Moreover, by Weyl’s
estimates on the spectrum of an elliptic operator, for every r > 1 there are approximately
crd eigenfunctions with eigenvalues λ2 < r2 and there exist N ≤ crd nodes {zj}Nj=1 and
positive weights {ωj}Nj=1 which give an exact quadrature for these eigenfunctions. Then
in this case (B) gives the above upper bound N−α/d. Hence both (A) and (B) give the
bound N−α/d, and by (D) this latter is optimal. Similarly, observe that if r > 0 and if
{|x− zj| < r}Nj=1 is a maximal set of pairwise disjoint spheres in M, then the centers
{zj}Nj=1 satisfy the assumption of (C) with κ = 1 and N ≈ r−d. Hence, by (C) and (D),
these nodes give an optimal cubature rule. When the manifold is a torus or a sphere these
results are essentially known, and indeed there is a huge literature on this subject. See [29]
for deterministic and stochastic error bounds in numerical analysis. In particular, (B) and
(D) for p = 2 and for spheres are contained in [7], [17], [18], [19] and [20]. For Besov
spaces on spheres some results slightly more precise than (B) and (D) are in [21], while
a result slightly weaker than (D) for compact two point homogeneous spaces is in [25].
See also [10] and, for a survey on related results, [15] and [30]. Beside the proofs of (A),
(B), (C), (D), which are contained in the following section, the paper contains also a final
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section with a number of further results and remarks. Among them it is proved that if a
quadrature rule achieves optimal error bounds in the Sobolev space Wα,2 (M), then this
quadrature rule is optimal also in all spaces W β,2 (M) with d/2 < β < α. Moreover, it is
proved that there is a relation between quadrature rules and geometric discrepancy:

(E) If dν(x) is a probability measure onM, then the norm of the measure dν(x)− dx
as a linear functional on Wα,2 (M) decreases as α increases. Moreover, if the norm of
dν(x)− dx on Wα,2 (M) is r−α for some r > 1,∣∣∣∣∫

M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤ r−α ‖f‖Wα,2 ,

then for every d/2 < β < α there exists a constant c which may depend on α, β,M, but
is independent of r and dν(x), such that∣∣∣∣∫

M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤ cr−β ‖f‖Wβ,2 .

(F) Assume that for some r ≥ 1 the discrepancy of the probability measure dν(x) with
respect to the balls B (y, δ) with center y and radius δ satisfies the estimates∣∣∣∣∫

B(y,δ)

dν(x)−
∫
B(y,δ)

dx

∣∣∣∣ ≤ { r−d if δ ≤ 1/r,
r−1δd−1 if δ ≥ 1/r.

Then for every 1 ≤ p ≤ +∞ and α > d/p, there exists a constant c, which may depend
on α and p, but is independent of dν(x) and r, such that

∣∣∣∣∫
M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤


cr−α ‖f‖Wα,p if 0 < α < 1,
cr−1 log(1 + r) ‖f‖Wα,p if α = 1,
cr−1 ‖f‖Wα,p if α > 1.

Observe that while (A) and (B) hold for specific quadrature rules, (E) is a result for
arbitrary quadratures. Actually, (E) is only one way, from α to β < α. The estimate
r−α for an α does not necessarily imply the estimate cr−β for β > α. Moreover, the
sets B (y, δ) in (F) are not precisely geodesic balls, but level sets of suitable kernels on
the manifold. However, for spheres or compact rank one symmetric spaces these sets are
geodesic balls, and the discrepancy of the measure is the spherical cap discrepancy. See
[4] or [28], and for other relations between quadrature and discrepancy on spheres see
also [2]. Finally, we would like to point out that our paper is (almost) self-contained, it
does not rely on explicit properties of manifolds or special functions, and it may provide
a unified perspective and simple alternative proofs of some known results.

We would like to thank the referee for some useful suggestions and especially for
bringing to our attention the papers [14] and [27], which have led us to improve the
original draft, in particular Corollary 2.15.
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2 Main results

The eigenfunction expansions of functions and operators are a basic tool in what follows.
The system of eigenfunctions {ϕλ(x)} is orthonormal complete in L2(M) and every
square integrable function has a Fourier transform and a Fourier expansion,

Ff(λ) =

∫
M
f(y)ϕλ(y)dy, f(x) =

∑
λ

Ff(λ)ϕλ(x).

Since the Laplace operator is elliptic, the eigenfunctions are smooth and it is possible
to extend the definition of Fourier transforms and series to distributions. In particular,
these Fourier expansions are always convergent, at least in the topology of distributions.
One can write the discrepancy between integral and Riemann sum as a single integral
with respect to a signed measure dµ(x) =

∑N
j=1 ωjdδzj(x) − dx, with dδy(x) the Dirac

measure concentrated at the point y and dx the Riemannian measure,

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx =

∫
M
f(x)dµ(x).

Then the estimate of the numerical integration error reduces to the estimate of the
norm of a linear functional dµ(x) on a space of test functions f(x). Some of the results
which follow will be stated for generic finite complex valued measures dµ(x), for signed
measures of the form dµ(x) = dν(x) − dx with dν(x) a probability measure, and also
for atomic probability measures dν(x) =

∑N
j=1 ωjdδzj(x). The following is an easy and

straightforward extension to compact manifolds and p norms of some abstract results for
reproducing kernel Hilbert spaces. See, e.g., [1], [6], [12], [13].

Theorem 2.1. Let {ψ(λ)} be a complex sequence indexed by the eigenvalues {λ2}, with
{ψ(λ)} and {ψ(λ)−1} slowly increasing, that is |ψ(λ)| ≤ a (1 + λ2)

α/2 and |ψ(λ)−1| ≤
b (1 + λ2)

β/2. Let the operatorsA andB and the associated adjointsA∗ andB∗ be defined
by

Af(x) =
∑
λ

ψ(λ)Ff (λ)ϕλ(x), A∗g(x) =
∑
λ

ψ(λ)F (g) (λ)ϕλ(x),

Bf(x) =
∑
λ

ψ(λ)−1Ff (λ)ϕλ(x), B∗g(x) =
∑
λ

ψ(λ)−1F (g) (λ)ϕλ(x).

All these operators are well defined and continuous on test functions, and they can be
extended by duality to tempered distributions. Finally, let f(x) be a continuous function
and let dµ(x) be a finite complex measure onM. If 1 ≤ p, q ≤ +∞ and 1/p + 1/q = 1,
then ∣∣∣∣∫

M
f(x)dµ(x)

∣∣∣∣ ≤ {∫
M
|Af(x)|p dx

}1/p{∫
M
|B∗µ(x)|q dx

}1/q

.
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In particular, when p = q = 2, if B∗µ (x) is square integrable and if f(x) = B
(
B∗µ

)
(x)

is continuous, then the above inequality reduces to an equality.

Proof. Integration by parts shows that λ2nFf (λ) = F (∆nf) (λ). It follows that the
space of test functions is characterized by the rapid decay of the Fourier transform. In
particular, if {ψ(λ)} is slowly increasing and {Ff (λ)} is rapidly decreasing, then also
{ψ(λ)Ff (λ)} is rapidly decreasing, hence it is the Fourier transform of a test function.
This implies that the operator A is well defined on test functions, and the same for A∗, B,
B∗. In what follows the pairing between a test function and a distribution is denoted with
an integral, even when the distribution is not a function and the integral is divergent. In
particular, if f (x) is a test function, by Hölder inequality with 1/p + 1/q = 1, since the
operators A and B are inverses of each other,∣∣∣∣∫

M
f(x)dµ(x)

∣∣∣∣ =

∣∣∣∣∫
M
BAf(x)dµ(x)

∣∣∣∣
=

∣∣∣∣∫
M
Af(x)B∗µ(x)dx

∣∣∣∣ ≤ {∫
M
|Af(x)|p dx

}1/p{∫
M
|B∗µ(x)|q dx

}1/q

.

The general case of f (x) continuous follows by approximation with test functions. Fi-
nally, when p = q = 2 the Cauchy inequality reduces to an equality if the functions
Af (x) and B∗µ (x) are square integrable and proportional.

In what follows the operators A and B will be fractional powers of the Laplace Bel-
trami operator: (I + ∆)±α/2.

Definition 2.2. The Sobolev space Wα,p (M), −∞ < α < +∞ and 1 ≤ p ≤ +∞, is the
set of all distributions onM with (I + ∆)α/2 f(x) in Lp (M), that is with

‖f‖Wα,p =

{∫
M

∣∣∣∣∣∑
λ

(
1 + λ2

)α/2Ff (λ)ϕλ(x)

∣∣∣∣∣
p

dx

}1/p

< +∞, 1 ≤ p < +∞,

‖f‖Wα,∞ = sup ess
x∈M

∣∣∣∣∣∑
λ

(
1 + λ2

)α/2Ff (λ)ϕλ(x)

∣∣∣∣∣ < +∞.

An equivalent definition is the following.

Definition 2.3. Let Bα(x, y), −∞ < α < +∞, be the Bessel kernel

Bα(x, y) =
∑
λ

(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).

A distribution f(x) is in the Sobolev spaceWα,p (M) if and only if it is a Bessel potential
of a function g(x) in Lp (M),

f(x) =

∫
M
Bα(x, y)g(y)dy.

Moreover, ‖f‖Wα,p = ‖g‖Lp .
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In particular, when p = 2,

‖f‖Wα,2 =

{∑
λ

(
1 + λ2

)α |Ff (λ)|2
}1/2

.

Another equivalent definition is a localization result: A distribution f(x) is inWα,p (M)

if and only if for every smooth function g(x) with support in a local card x = ψ(y) : Rd  

M, the distribution g(ψ(y))f(ψ(y)) is in Wα,p
(
Rd
)
. In particular, if α is a positive even

integer, then f(x) is in Wα,p (M) if and only if the p-th power of f(x) and of ∆α/2f(x)

are integrable. Moreover, distributions in Wα,p (M) with α > d/p are Hölder continuous
of degree α − d/p. When applied to functions in Sobolev classes, Theorem 2.1 gives the
following corollary.

Corollary 2.4. (1) If Bα(x, y) is the Bessel kernel, if dµ(x) is a finite complex measure
on M, and if f(x) is a continuous function in Wα,p (M), with 1 ≤ p, q ≤ +∞ and
1/p+ 1/q = 1, then∣∣∣∣∫

M
f(x)dµ(x)

∣∣∣∣ ≤ {∫
M

∣∣∣∣∫
M
Bα(x, y)dµ(x)

∣∣∣∣q dy}1/q

‖f‖Wα,p .

In particular, if α > d/p then every element inWα,p (M) has a continuous representative
and the above integrals are well defined and finite. On the contrary, the spaces Wα,p (M)

with α ≤ d/p contain unbounded functions and, if the measure dµ(x) does not vanish on
the set where f(x) =∞, then

∫
M f(x)dµ(x) may diverge.

(2) When p = q = 2 and α > d/2, then the above inequality simplifies to∣∣∣∣∫
M
f(x)dµ(x)

∣∣∣∣ ≤ {∫
M

∫
M
B2α (x, y) dµ(x)dµ(y)

}1/2

‖f‖Wα,2 .

Equivalently, by the Fourier expansion of the Bessel kernel,∣∣∣∣∫
M
f(x)dµ(x)

∣∣∣∣ ≤
{∑

λ

(
1 + λ2

)−α |Fµ (λ)|2
}1/2

‖f‖Wα,2 .

Moreover, with f(x) =
∫
MB2α (x, y) dµ(y) the above inequalities reduce to equalities.

(3) If dµ(x) = dν(x)− dx is the difference between a probability measure dν(x) and
the Riemannian measure dx, then∣∣∣∣∫

M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤ {∫
M

∫
M
B2α (x, y) dν(x)dν(y)− 1

}1/2

‖f‖Wα,2 .

Equivalently,∣∣∣∣∫
M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤
{∑
λ>0

(
1 + λ2

)−α |Fν (λ)|2
}1/2

‖f‖Wα,2 .
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Proof. (1) is an immediate corollary of Theorem 2.1. In order to prove (2), observe that∫
M
Bα(x, y)Bβ(y, z)dy = Bα+β (x, z) .

Moreover, this Bessel kernel is real and symmetric, see Lemma 2.6 below. Hence,∫
M

∣∣∣∣∫
M
Bα(x, y)dµ(x)

∣∣∣∣2 dy
=

∫
M

∫
M

∫
M
Bα(x, y)Bα(z, y)dydµ(x)dµ(z)

=

∫
M

∫
M
B2α(x, z)dµ(x)dµ(z).

(3) is a corollary of (1) and (2). Indeed, sinceB2α (x, y) = B2α (y, x) and
∫
MB2α (x, y) dy =

1, it follows that ∫
M

∫
M
B2α (x, y) (dν(x)− dx) (dν(y)− dy)

=

∫
M

∫
M
B2α (x, y) dν(x)dν(y)−

∫
M

∫
M
B2α (x, y) dν(x)dy

−
∫
M

∫
M
B2α (x, y) dxdν(y) +

∫
M

∫
M
B2α (x, y) dxdy

=

∫
M

∫
M
B2α (x, y) dν(x)dν(y)− 1.

Finally, by Sobolev imbedding theorem, functions in Wα,p (M) with α > d/p are contin-
uous and all the above integrals are well defined and finite. The Sobolev imbedding also
follows from the estimates on the Bessel kernel provided in Lemma 2.6, as explained in
Remark 3.3 below.

The above corollary leads to estimate the energy integrals{∫
M

∣∣∣∣∫
M
Bα(x, y)dµ(x)

∣∣∣∣q dy}1/q

,

which for q = 2 and dµ(x) = dν(x)− dx simplifies to

{∫
M

∫
M
B2α (x, y) dν(x)dν(y)− 1

}1/2

=

{∑
λ>0

(
1 + λ2

)−α |Fν (λ)|2
}1/2

.

By the last formula, the energy attains a minimum if and only if Fν (λ) = 0 for all
λ > 0. Hence dν(x) has the eigenfunction expansion Fν (0)ϕ0(x), and since ϕ0(x) = 1

this gives the Riemannian measure dx. The meaning of the corollary is that measures with
low energy are close to the Riemannian measure and they give good quadrature rules. In
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order to provide quantitative estimates for the above integrals, one has to collect some
properties of the Bessel kernels. The norm of the function y  Bα(x, y) in W γ,2 (M) is

‖Bα(x, ·)‖W γ,2 =

{∑
λ

(
1 + λ2

)γ−α |ϕλ(x)|2
}1/2

.

By Weyl’s estimates on the spectrum of an elliptic operator, see [9, Chapter 6.4] and
[22, Theorem 17.5.3 and Corollary 17.5.8], for every r > 1 there are approximately crd

eigenfunctions ϕλ(x) with eigenvalues λ2 < r2 and
∑

λ≤r |ϕλ(x)|2 ≤ crd. It then follows
that the norm in W γ,2 (M) of Bα(x, y) is finite provided that γ < α − d/2 and, by
Sobolev imbedding theorem, it also follows that Bα(x, y) is Hölder continuous of degree
δ < α − d. Indeed, we shall see that a bit more is true: Bα(x, y) is Hölder continuous of
degree α− d.

Lemma 2.5. The heat kernel

W (t, x, y) =
∑
λ

exp
(
−λ2t

)
ϕλ(x)ϕλ(y),

which is the fundamental solution to the heat equation ∂/∂t = −∆ on R+ × M, is
symmetric real and positive: W (t, x, y) = W (t, y, x) > 0 for every x, y ∈M and t > 0.
Moreover, for all non negative integers m and n there exists c such that, if |x− y| denotes
the Riemannian distance between x and y, and∇ the gradient,{

|∇mW (t, x, y)| ≤ ct−(d+m)/2
(
1 + |x− y| /

√
t
)−n

if 0 < t ≤ 1,
|∇mW (t, x, y)| ≤ c if 1 ≤ t < +∞.

Proof. All of this is well known, see, e.g., [9], [23], [33] and [35]. Anyhow we want
to provide a proof for the torus and a hint for the general case. The idea is that heat
has essentially a finite speed of propagation and diffusion on manifolds is comparable to
diffusion on Euclidean spaces, at least for small times. The heat kernel in the Euclidean
space Rd is a Gaussian,

W (t, x, y) =

∫
Rd

exp
(
−4π2t |ξ|2

)
exp (2πi (x− y) ξ) dξ

= (4πt)−d/2 exp
(
− |x− y|2 /4t

)
.

By the Poisson summation formula, the heat kernel on the torus Td = Rd/Zd is the
periodization of the kernel in the space,∑

k∈Zd
exp

(
−4π2 |k|2 t

)
exp (2πik (x− y))

=
∑
k∈Zd

(4πt)−d/2 exp
(
− |x− y − k|2 /4t

)
.
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Periodicity allows to assume that x− y ∈ [−1/2, 1/2)d, and in this case the Riemannian
distance between x and y coincides with the Euclidean distance. An explicit computation
shows that the term k = 0 in the above series satisfies the required estimate,

(4πt)−d/2 exp
(
− |x− y|2 /4t

)
≤
{
ct−d/2

(
1 + |x− y| /

√
t
)−n

if 0 < t ≤ 1,
c if 1 ≤ t < +∞.

The sum for k 6= 0 is negligible. Indeed, since exp (−z) ≤ cz−N for z > 0,∑
k 6=0

(4πt)−d/2 exp
(
− |x− y − k|2 /4t

)
≤ ctN−d/2

∑
k 6=0

|x− y − k|−2N ≤ ctN−d/2,

and this satisfies the required estimate when 0 < t ≤ 1. When t > 1 it suffices to observe
that ∑

k 6=0

(4πt)−d/2 exp
(
− |x− y − k|2 /4t

)
≤ c

∫
Rd

(4πt)−d/2 exp
(
− |z|2 /4t

)
dz ≤ c.

The estimates for the derivatives are analogous. This proves the lemma for the torus. The
heat kernel on a compact manifold is similar, in particular it has an asymptotic expansion
with Euclidean main term. See, e.g., [9, Chapter VI]. More precisely, by the Minakshisun-
daram Pleijel recursion formulas, there exist smooth functions uk (x, y) such that, if t is
small and |x− y| denotes the distance between x and y,

W (t, x, y) ≈ (4πt)−d/2 exp
(
− |x− y|2 /4t

)( n∑
k=0

tkuk (x, y) +O
(
tn+1

))
.

On the other hand, W (t, x, y) → 1 as t → +∞. The estimates on the size of this kernel
and its derivatives follow from this asymptotic expansion. The positivity W (t, x, y) >

0 is a consequence of the maximum principle for the heat equation and the symmetry
W (t, x, y) = W (t, y, x) follows from this positivity and the eigenfunction expansion.

Lemma 2.6. (1) The Bessel kernelBα(x, y) with α > 0 is a superposition of heat kernels
W (t, x, y):

Bα(x, y) = Γ (α/2)−1

∫ +∞

0

tα/2−1 exp (−t)W (t, x, y) dt.
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(2) The Bessel kernel Bα(x, y) with α > 0 is real and positive for every x, y ∈ M,
and it is smooth in {x 6= y}. Moreover, for suitable constants 0 < a < b,

a |x− y|α−d ≤ Bα(x, y) ≤ b |x− y|α−d if 0 < α < d,

a log
(
1 + |x− y|−1) ≤ Bα(x, y) ≤ b log

(
1 + |x− y|−1) if α = d,

a ≤ Bα(x, y) ≤ b if α > d.

(3) If d < α < d+ 1, then Bα(x, y) is Hölder continuous of degree α− d, that is there
exists c such that for every x, y, z ∈M,

|Bα(x, y)−Bα(x, z)| ≤ c |y − z|α−d .

(4) If d < α < d+ 2, then there exists c such that for every x, y ∈M,

|Bα(x, x)−Bα(x, y)| ≤ c |x− y|α−d .

Proof. When the manifold is a torus and the eigenfunctions are exponentials the proof
is elementary. The Bessel kernel on the torus Td is an even function, and thus a sum of
cosines,

Bα(x, y) =
∑
k∈Zd

(
1 + 4π2 |k|2

)−α/2
exp (2πikx) exp (−2πiky)

=
∑
k∈Zd

(
1 + 4π2 |k|2

)−α/2
cos (2πk (x− y)) .

Hence,

Bα(x, x)−Bα(x, y) = 2
∑
k∈Zd

(
1 + 4π2 |k|2

)−α/2
sin2 (πk (x− y))

≤ 2π2 |x− y|2
∑

|k|≤|x−y|−1

|k|2
(
1 + 4π2 |k|2

)−α/2
+ 2

∑
|k|>|x−y|−1

(
1 + 4π2 |k|2

)−α/2

≤


c |x− y|α−d if d < α < d+ 2,
c |x− y|2 log

(
1 + |x− y|−1) if α = d+ 2,

c |x− y|2 if α > d+ 2.

Also observe that the series which defines Bα(x, x)−Bα(x, y) has positive terms and the
above inequalities can be reversed. This proves (4) for a torus, and the proof of (3) and (2)
is similar. A proof for a generic manifold follows from the representation of Bessel kernels
as superposition of heat kernels and the estimates in the previous lemma. In particular, (1)
follows from the identity for the Gamma function

(
1 + λ2

)−α/2
= Γ (α/2)−1

∫ +∞

0

tα/2−1 exp
(
−t
(
1 + λ2

))
dt.
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Since the manifold is compact its diameter is bounded. For ease of notation, in what
follows we shall assume that |x− y| ≤ 1. By Lemma 2.5, for every n,

0 < W (t, x, y) ≤


ct(n−d)/2 |x− y|−n if 0 < t ≤ |x− y|2 ,
ct−d/2 if |x− y|2 ≤ t ≤ 1,
c if t ≥ 1.

Hence, if 0 < α < d and n > d− α,

Bα(x, y) = Γ (α/2)−1

∫ +∞

0

tα/2−1 exp (−t)W (t, x, y) dt

≤ c |x− y|−n
∫ |x−y|2

0

t(α+n−d)/2−1dt+ c

∫ 1

|x−y|2
t(α−d)/2−1dt+

∫ +∞

1

tα/2−1 exp (−t) dt

≤ c |x− y|α−d .

Indeed it follows from the estimates of the heat kernel from below (see [9] and [35]) that
these inequalities can be reversed. Hence Bα(x, y) ≈ c |x− y|α−d. This proves (2) when
0 < α < d, and the proofs of the cases α = d and α > d are similar. Also the proof of (3)
is similar. Write

Bα(x, y)−Bα(x, z)

= Γ (α/2)−1

∫ +∞

0

tα/2−1 exp (−t) (W (t, x, y)−W (t, x, z)) dt.

Then recall that, by Lemma 2.5,

|W (t, x, y)−W (t, x, z)| ≤


ct−d/2 if 0 < t ≤ |y − z|2 ,
ct−(d+1)/2 |y − z| if |y − z|2 ≤ t ≤ 1,
c |y − z| if t ≥ 1.

Hence,

|Bα(x, y)−Bα(x, z)| ≤ c

∫ |y−z|2
0

t(α−d)/2−1 exp (−t) dt

+c |y − z|
∫ 1

|y−z|2
t(α−d−1)/2−1 exp (−t) dt+ c |y − z|

∫ +∞

1

tα/2−1 exp (−t) dt

≤ c |y − z|α−d .

Finally, the estimate for |Bα(x, x)−Bα(x, y)| in (4) is analogous to the previous one, but
it holds in a larger range of α. It suffices to observe that W (t, x, y) is stationary at x = y

and it satisfies the estimates

|W (t, x, x)−W (t, x, y)| ≤


ct−d/2 if 0 < t ≤ |x− y|2 ,
ct−d/2−1 |x− y|2 if |x− y|2 ≤ t ≤ 1,
c |x− y|2 if t ≥ 1.
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The following is Result (A) in the Introduction.

Theorem 2.7. For every d/2 < α < d/2 + 1 there exists c > 0 with the following
property: If M = U1 ∪ U2 ∪ ... ∪ UN is a decomposition of M in disjoint pieces with
measures |Uj| = ωj , then there exists a distribution of points {zj}Nj=1 with zj ∈ Uj such
that ∣∣∣∣∣

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ c max
1≤j≤N

diameter (Uj)
α ‖f‖Wα,2(M) .

Proof. By Corollary 2.4 (3), with dν(x) =
∑N

j=1 ωj dδzj(x),

∣∣∣∣∫
M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤
{

N∑
i=1

N∑
j=1

ωiωjB
2α (zi, zj)− 1

}1/2

‖f‖Wα,2 .

It suffices to compute the average value of
∑N

i=1

∑N
j=1 ωiωjB

2α (zi, zj)− 1 on U1×U2×
... × UN with respect to the probability measures ω−1

j dzj uniformly distributed on Uj .
First observe that (

N∏
k=1

ω−1
k

)∫
U1

...

∫
UN

dz1...dzN = 1,

1 =

∫
M

∫
M
B2α (x, y) dxdy =

N∑
i=1

N∑
j=1

∫
Ui

∫
Uj

B2α (x, y) dxdy.

Then,

(
N∏
k=1

ω−1
k

)∫
U1

...

∫
UN

(
N∑
i=1

N∑
j=1

ωiωjB
2α (zi, zj)− 1

)
dz1...dzN

=
∑
j

ωj

∫
Uj

B2α (zj, zj) dzj +
∑∑

i 6=j

∫
Ui

∫
Uj

B2α (zi, zj) dzidzj

−
∑
j

∫
Uj

∫
Uj

B2α (x, y) dxdy −
∑∑

i 6=j

∫
Ui

∫
Uj

B2α (x, y) dxdy

=
N∑
j=1

∫
Uj

∫
Uj

(
B2α (x, x)−B2α (x, y)

)
dxdy.

Since, by Lemma 2.6 (4), |B2α (x, x)−B2α (x, y)| ≤ c |x− y|2α−d when d < 2α < d+2,
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and since |Uj| ≤ c diameter (Uj)
d,

N∑
j=1

∫
Uj

∫
Uj

∣∣B2α (x, x)−B2α (x, y)
∣∣ dxdy

≤
N∑
j=1

|Uj|2 sup
x,y∈Uj

∣∣B2α (x, x)−B2α (x, y)
∣∣

≤ c
N∑
j=1

|Uj|2 diameter (Uj)
2α−d ≤ c

N∑
j=1

|Uj| diameter (Uj)
2α .

For the next result we shall need estimates for partial sums of Fourier expansions of
the Bessel kernels.

Lemma 2.8. Let −∞ < α < +∞, let χ (λ) be an even smooth function on −∞ < λ <

+∞ with support in 1/2 ≤ |λ| ≤ 2, and let

Pα(r, x, y) =
∑
λ

χ (λ/r)
(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).

Then for every positive integer n there exists c such that for every r > 1 and x, y ∈M,

|Pα(r, x, y)| ≤ crd−α (1 + r |x− y|)−n .

Proof. The numerology behind this estimate is quite simple. The approximation of the
Bessel kernelBα(x, y) by linear combinations of eigenfunctions with eigenvalues λ2 < r2

is localized and only points x and y with |x− y| ≤ 1/r really matter. In particular, since
Bα(x, y) is smooth away from the diagonal, at distance |x− y| ≤ 1/r the approximation
is rough, but at distance |x− y| ≥ 1/r it is quite good. The analogue of Pα(r, x, y) in the
Euclidean setting is the kernel

Q (r, x− y) =

∫
Rd
χ (2π |ξ| /r)

(
1 + 4π2 |ξ|2

)−α/2
exp (2πi (x− y) ξ) dξ

= rd
∫

Rd
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ.

Since χ (2π |ξ|) has support in 1/2 ≤ 2π |ξ| ≤ 2, for every r > 1 and x, y ∈ Rd one has∣∣∣∣rd ∫
Rd
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ

∣∣∣∣
≤ rd−α

∫
Rd

(2π |ξ|)−α |χ (2π |ξ|)| dξ ≤ crd−α.
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This estimate can be improved in the range |x− y| ≥ 1/r. Indeed, integration by parts
gives

rd
∫

Rd
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ

= rd
∫

Rd
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2
∆n
ξ

((
4π2r2 |x− y|2

)−n
exp (2πir (x− y) ξ)

)
dξ

= rd
(
4π2r2 |x− y|2

)−n ∫
Rd

exp (2πir (x− y) ξ) ∆n
ξ

(
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2)
dξ.

Hence, ∣∣∣∣rd ∫
Rd
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2
exp (2πir (x− y) ξ) dξ

∣∣∣∣
≤ rd

(
4π2r2 |x− y|2

)−n ∫
Rd

∣∣∣∆n
ξ

(
χ (2π |ξ|)

(
1 + 4π2r2 |ξ|2

)−α/2)∣∣∣ dξ
≤ crd−α−2n |x− y|−2n .

Now it suffices to transfer these estimates from the Euclidean space to the manifold. For
the torus, this can be done via the Poisson summation formula. If Q (r, x− y) is the
truncated Bessel kernel in Rd defined above, then the truncated Bessel kernel in Td is∑

k∈Zd
χ (2π |k| /r)

(
1 + 4π2 |k|2

)−α/2
exp (2πik (x− y)) =

∑
k∈Zd

Q (r, x− y + k) .

When |xj − yj| ≤ 1/2, the main term in the last sum is the one with k = 0, while the
contribution of terms with k 6= 0 is negligible,

|Q (r, x− y)| ≤ crd−α (1 + r |x− y|)−n ,∑
k∈Zd−{0}

|Q (r, x− y − k)| ≤ crd−α−n.

Finally, the estimate for the truncated Bessel kernel on a generic manifold can be obtained
by transference from Rd via pseudodifferential techniques. For more details, see, e.g., [34,
Chapter XII], or [5]. For a more general approach on metric measure spaces see [14] and
[27].

The following is a result on the homogeneity of measures which appear in quadrature
rules and it gives sharp estimates of the discrepancy of such measures. Similar estimates
on spheres are in [2].

Lemma 2.9. Assume that dν(x) is a probability measure onM with the property that
for every eigenfunction ϕλ(x) with eigenvalues λ2 < r2,∫

M
ϕλ(x)dν(x) =

∫
M
ϕλ(x)dx.
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Then for every positive integer n there exists c, which may depend on n and M, but is
independent of r and dν(x), such that for every measurable set Ω inM,∣∣∣∣∫

Ω

dν(x)−
∫

Ω

dx

∣∣∣∣ ≤ c

∫
M

(1 + r distance {x, ∂Ω})−n dx.

In particular, the discrepancy between the measures dν(x) and dx with respect to balls
{x : |x− y| ≤ s} is dominated by∣∣∣∣∫

{|x−y|≤s}
dν(x)−

∫
{|x−y|≤s}

dx

∣∣∣∣ ≤ { cr−d if s ≤ 1/r,
cr−1sd−1 if s ≥ 1/r.

Proof. It is proved in [11] that given n, there exists c such that for every measurable set
Ω inM and every r > 0 there exist two linear combinations of eigenfunctions A(x) =∑

λ<r a (λ)ϕλ(x) and B(x) =
∑

λ<r b (λ)ϕλ(x) which approximate the characteristic
function χΩ(x) from above and below,

A(x) ≤ χΩ(x) ≤ B(x), B(x)− A(x) ≤ c (1 + r distance {x, ∂Ω})−n .

In particular, the properties of the function A(x) and of the measure dν(x) give∫
Ω

dν(x) ≥
∫
M
A(x)dν(x) =

∫
M
A(x)dx

≥
∫
M
χΩ(x)dx− c

∫
M

(1 + r distance {x, ∂Ω})−n dx.

Similarly, by the properties of B(x) and dν(x),∫
Ω

dν(x) ≤
∫
M
B(x)dν(x) =

∫
M
B(x)dx

≤
∫
M
χΩ(x)dx+ c

∫
M

(1 + r distance {x, ∂Ω})−n dx.

In particular the choice of Ω = {x : |x− y| ≤ s} gives the estimate for the discrep-
ancy of balls. We omit the details.

Lemma 2.10. Assume that dν(x) is a probability measure onM which gives an exact
quadrature for all eigenfunctions ϕλ(x) with eigenvalues λ2 < r2,∫

M
ϕλ(x)dν(x) =

∫
M
ϕλ(x)dx.

If 1 ≤ q ≤ +∞ and α > d (1− 1/q), then there exists c, which may depend on q, α,M,
but is independent of r and dν(x), such that{∫

M

∣∣∣∣∫
M
Bα(x, y)dν(x)− 1

∣∣∣∣q dy}1/q

≤ cr−α.
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Proof. Let χ (λ) be an even smooth function on −∞ < λ < +∞, with support in 1/2 ≤
|λ| ≤ 2 and with the property that

∑+∞
j=−∞ χ (2−jλ) = 1 for every λ 6= 0. Also, let

Pα(s, x, y) =
∑
λ

χ (λ/s)
(
1 + λ2

)−α/2
ϕλ(x)ϕλ(y).

Hence, Bα(x, y) = 1 +
∑+∞

j=−∞ P
α(2j, x, y). Since dν(x) annihilates all eigenfunctions

with 0 < λ < r, it also annihilates all Pα(2j, x, y) with 2j ≤ r/2 and this gives

∫
M
Bα(x, y)dν(x)− 1 =

∑
2j>r/2

∫
M
Pα(2j, x, y)dν(x).

When q = 1, by Lemma 2.8 with n > d,

∫
M

∣∣∣∣∫
M
Pα(s, x, y)dν(x)

∣∣∣∣ dy
≤ csd−α

∫
M

∫
M

(1 + s |x− y|)−n dν(x)dy

≤ cs−α sup
x∈M

{∫
M
sd (1 + s |x− y|)−n dy

}
≤ cs−α.

When q = +∞ and s ≥ r and n > d, by Lemma 2.8 and Lemma 2.9,

sup
y∈M

{∣∣∣∣∫
M
Pα(s, x, y)dν(x)

∣∣∣∣}
≤ csd−α sup

y∈M

{∫
M

(1 + s |x− y|)−n dν(x)

}
≤ csd−α sup

y∈M

{∫
{|x−y|≤1/r}

dν(x)

}
+ csd−α sup

y∈M

{
+∞∑
j=0

(
2js/r

)−n ∫
{2j/r<|x−y|≤2j+1/r}

dν(x)

}
≤ csd−αr−d + csd−α−nrn−d ≤ csd−αr−d.

Hence, when s ≥ r and 1 < q < +∞, by interpolation between 1 and +∞,

{∫
M

∣∣∣∣∫
M
Pα(s, x, y)dν(x)

∣∣∣∣q dy}1/q

≤ sup
y∈M

{∣∣∣∣∫
M
Pα(s, x, y)dν(x)

∣∣∣∣}(q−1)/q {∫
M

∣∣∣∣∫
M
Pα(s, x, y)dν(x)

∣∣∣∣ dy}1/q

≤ csd(1−1/q)−αr−d(1−1/q).
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When α > d(1− 1/q) these estimates sum to{∫
M

∣∣∣∣∫
M
Bα(x, y)dν(x)− 1

∣∣∣∣q dy}1/q

≤
∑

2j>r/2

{∫
M

∣∣∣∣∫
M
Pα(2j, x, y)dν(x)

∣∣∣∣q dy}1/q

≤ cr−d(1−1/q)
∑

2j>r/2

2j(d(1−1/q)−α) ≤ cr−α.

Finally, the existence of exact quadrature rules associated to any system of continuous
functions is a simple result in functional analysis, or in convex geometry.

Lemma 2.11. Given any collection ϕ1(x), ϕ2(x),..., ϕn(x) of real continuous functions
on M, there exist an integer N ≤ n + 1, points {zj}Nj=1 in M and positive weights
{ωj}Nj=1 with

∑N
j=1 ωj = 1, such that for every such ϕi(x),

∫
M
ϕi(x)dx =

N∑
j=1

ωjϕi (zj) .

If the functions ϕi(x) are complex valued then the same holds with N ≤ 2n+ 1.

Proof. Define

Φ(x) = (ϕ1(x), ϕ2(x), ..., ϕn(x)) ,

E =

∫
M

Φ(x)dx =

(∫
M
ϕ1(x)dx,

∫
M
ϕ2(x)dx, ...,

∫
M
ϕn(x)dx

)
.

If all functions ϕi(x) are real valued, then Φ(x) and E are vectors in Rn. If the ϕi(x) are
complex, then Φ(x) and E can be seen as vectors in R2n. Moreover, E is in the convex
hull of the vectors Φ(x) with x ∈ M. It then follows from Carathéodory’s theorem that
E is also a convex combination of at most n + 1 vectors Φ(x) in the real case, or 2n + 1

in the complex case, E =
∑N

j=1 ωjΦ (zj) with ωj > 0 and
∑N

j=1 ωj = 1.

The above result is simple but non constructive. See [32, Theorem 3.1.1], or [31], or
[8] for explicit constructions on spheres. The following is Result (B) in the Introduction.
Note that in the case of the sphere it is contained in [21].

Theorem 2.12. Assume that the probability measure dν(x) onM gives an exact quadra-
ture for all eigenfunctions ϕλ(x) with eigenvalues λ2 < r2,∫

M
ϕλ(x)dν(x) =

∫
M
ϕλ(x)dx.
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Then, for every 1 ≤ p ≤ +∞ and α > d/p there exists a constant c > 0 independent of
dν(x) and r, such that for every function f(x) in Wα,p (M),∣∣∣∣∫

M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤ cr−α ‖f‖Wα,p .

Proof. By Corollary 2.4 (1) with dµ(x) = dν(x)− dx and 1/p+ 1/q = 1,∣∣∣∣∫
M
f(x)dµ(x)

∣∣∣∣ ≤ {∫
M

∣∣∣∣∫
M
Bα(x, y)dν(x)− 1

∣∣∣∣q dy}1/q

‖f‖Wα,p .

By the assumption
∫
M ϕλ(x)dµ(x) = 0 for every λ < r, and Lemma 2.10,

{∫
M

∣∣∣∣∫
M
Bα(x, y)dν(x)− 1

∣∣∣∣q dy}1/q

≤ cr−α.

Corollary 2.13. If 1 ≤ p ≤ +∞ and α > d/p, then there exists c > 0 with the property
that for every N there exist a point distribution {zj}Nj=1 and associated positive weights
{ωj}Nj=1, such that for every function f(x) in Wα,p (M),∣∣∣∣∣

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ cN−α/d ‖f‖Wα,p .

Proof. It suffices to show that the above bound holds for infinitely many integers N , say
N1 < N2 < N3 < . . . satisfying Nr+1 ≤ cNr. Indeed, introducing multiple nodes and
distributing the associated weights among them, gives the result for every positive integer
N . Let r = 1, 2, 3, . . . and let nr be the number of eigenfunctions ϕλ(x) with λ2 < r2.
By Weyl’s estimates on the spectrum of an elliptic operator, see [9, Chapter 6.4] or [22,
Corollary 17.5.8], we have c1r

d ≤ nr ≤ c2r
d. By Lemma 2.11, possibly introducing

multiple nodes, there are Nr = nr + 1 nodes {zj}Nrj=1 and positive weights {ωj}Nrj=1 such
that for all λ2 < r2,

Nr∑
j=1

ωjϕλ (zj) =

∫
M
ϕλ(x)dx.

Finally, by Theorem 2.12∣∣∣∣∣
Nr∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ cr−α ‖f‖Wα,p ≤ cn−α/dr ‖f‖Wα,p ≤ cN−α/dr ‖f‖Wα,p .
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The above corollary relies on Lemma 2.11 and guarantees the existence of nodes and
weights that give good bounds for the corresponding quadrature rule, but it gives no in-
formation on how to find these nodes and weights. In [14] there is a less elementary but
somehow stronger result than Lemma 2.11, that essentialy says that any choice of well
distributed nodes works. For our purposes this result can be restated as follows.

Lemma 2.14. Let {zj}Nj=1 be a distribution of points. Define the mesh norm δ and the
minimal separation q of this collection by

δ = sup
x∈M

min
j
|x− zj| , q = min

i 6=j
|zi − zj| .

Then there exist positive constants a and b depending only onM and on κ = δ/q, and
positive weights {wj}Nj=1 with wj ≥ aδd, such that for all eigenfunctions ϕλ(x) with
eigenvalues λ2 < bδ−2, ∫

M
ϕλ(x)dx =

N∑
j=1

ωjϕλ (zj) .

By applying Theorem 2.12 to a point distribution as in the above lemma, one obtains
the following corollary, which is result (C) in the Introduction.

Corollary 2.15. Let 1 ≤ p ≤ +∞ and α > d/p. Let {zj}Nj=1 be a distribution of points
with mesh norm δ and minimal separation distance q. Then there exist a positive constant
c depending only on κ = δ/q and onM, and positive weights {ωj}Nj=1 such that∣∣∣∣∣

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ cN−α/d ‖f‖Wα,p .

Proof. By the above lemma and Theorem 2.12 with r2 = bδ−2, there exists c1 such that∣∣∣∣∣
N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ c1δ
α ‖f‖Wα,p .

By the definition of mesh norm δ and minimal separation distance q, the balls {|x− zj| < δ}Nj=1

coverM with finite overlapping, that is for some constant c2 depending only on κ = δ/q,

N∑
j=1

χ{|x−zj |<δ} (x) ≤ c2.

See Lemma 4.4 in [14] for the details. It follows that

c3Nδ
d ≤

∫
M

N∑
j=1

χ{|x−zj |<δ} (x) dx ≤ c2.

Therefore δ ≤ c4N
−1/d.



Quadrature rules 21

Finally, easy examples show that the above estimates for the error in approximate
quadrature are, up to constants, best possible. Again, see [21] for the case of the sphere.
In particular, the following is Result (D) in the Introduction.

Theorem 2.16. For every 1 ≤ p ≤ +∞ and α > 0 there exists c > 0 with the fol-
lowing property: For every distribution of points {zj}Nj=1 there exists a function f(x) in
Wα,p (M) which vanishes in a neighborhood of these points and satisfies

‖f‖Wα,p ≤ cNα/d,

∫
M
f(x)dx = 1.

As a consequence, for every distribution of points {zj}Nj=1 and complex weights {ωj}Nj=1,
there exists a function f(x) with∣∣∣∣∣

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≥ cN−α/d ‖f‖Wα,p .

Proof. If ε is small, then one can choose 2N disjoint balls inM with diameters εN−1/d

and, given N points {zj}Nj=1, at least N balls have no points inside. On each empty ball
construct a bump function ψj(x) supported on it with

sup
x

∣∣∆kψj (x)
∣∣ ≤ cN2k/d,

∫
M
ψj(x)dx = N−1.

The construction of such functions in Rd can be done by translating and dilating any
fixed smooth function with compact support and integral 1. Then one can transport and
normalize these functions to the local charts of the manifold and, by compactness, the
constant c can be chosen independent of j and N . Define f(x) =

∑N
j=1 ψj(x). Then,

‖f‖Wα,p ≤ cNα/d,

∫
M
f(x)dx = 1.

The estimate of the Lp (M) norms of (I + ∆)α/2 f(x) when α/2 is an integer follows
from the fact that (I + ∆)α/2 is a differential operator and the terms (I + ∆)α/2 ψj(x)

have disjoint supports. The case of α/2 not an integer follows from the integer case. The
proof when p = 2 is elementary. If n is an integer greater than α/2, then by Hölder
inequality,

‖f‖Wα,2 =

{∑
λ

(
1 + λ2

)α |Ff(λ)|2
}1/2

≤

{∑
λ

|Ff(λ)|2
}(2n−α)/4n{∑

λ

(
1 + λ2

)2n |Ff(λ)|2
}α/4n

≤ cNα/d.
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In the general case, let r > 0 be a parameter to be fixed later, let n be an integer greater
than α/2 and, with the same notation as in Lemma 2.8 and Lemma 2.10, decompose
(I + ∆)α/2 f (x) into

(I + ∆)α/2 f (x)

= Ff (0) +
∑
2j≤r

∑
λ

χ
(
2−jλ

) (
1 + λ2

)α/2Ff (λ)ϕλ (x)

+
∑
2j>r

∑
λ

χ
(
2−jλ

) (
1 + λ2

)(α−2n)/2 (
1 + λ2

)nFf (λ)ϕλ (x)

= Ff (0) +
∑
2j≤r

∫
M
P−α

(
2j, x, y

)
f (y) dy

+
∑
2j>r

∫
M
P 2n−α (2j, x, y) (I + ∆)n f (y) dy.

By Hölder inequality,

|Ff (0)| ≤
∫
M
|f (x)| dx ≤

{∫
M
|f (x)|p dx

}1/p

≤ c.

By Lemma 2.8, 
∫
M

∣∣∣∣∣∣
∑
2j≤r

∫
M
P−α

(
2j, x, y

)
f (y) dy

∣∣∣∣∣∣
p

dx


1/p

≤
∑
2j≤r

{
sup
y

∫
M

∣∣P−α (2j, x, y)∣∣ dx}{∫
M
|f (x)|p dx

}1/p

≤ c
∑
2j≤r

2αj
{∫
M
|f (x)|p dx

}1/p

≤ crα.

Again, by Lemma 2.8,{∫
M

∣∣∣∣∣∑
2j>r

∫
M
P 2n−α (2j, x, y) (I + ∆)n f (y) dy

∣∣∣∣∣
p

dx

}1/p

≤
∑
2j>r

{
sup
y

∫
M

∣∣P 2n−α (2j, x, y)∣∣ dx}{∫
M
|(I + ∆)n f (x)|p dx

}1/p

≤ c
∑
2j>r

2−(2n−α)j

{∫
M
|(I + ∆)n f (x)|p dx

}1/p

≤ crα−2nN2n/d.

Choosing r = N1/d, so that rα = rα−2nN2n/d = Nα/d, one obtains the desired result.
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3 Further results

The following is Result (E) in the Introduction and it states that a quadrature rule which
gives an optimal error in the Sobolev space Wα,2 (M) is also optimal in all spaces
W β,2 (M) with d/2 < β < α.

Theorem 3.1. If dν(x) is a probability measure on M, then the norm of the measure
dν(x) − dx as a linear functional on Wα,2 (M) decreases as α increases. Moreover, if
the norm of dν(x)− dx on Wα,2 (M) is r−α for some r > 1,∣∣∣∣∫

M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤ r−α ‖f‖Wα,2 ,

then for every d/2 < β < α there exists a constant c which may depend on α, β,M, but
is independent of r and dν(x), such that∣∣∣∣∫

M
f(x)dν(x)−

∫
M
f(x)dx

∣∣∣∣ ≤ cr−β ‖f‖Wβ,2 .

Proof. By Corollary 2.4 (2) and (3), the norm of the measure dν(x) − dx as a linear
functional on Wα,2 (M) is{∫

M

∫
M
B2α (x, y) dν(x)dν(y)− 1

}1/2

=

{∑
λ>0

(
1 + λ2

)−α |Fν (λ)|2
}1/2

.

Since (1 + λ2)
−α ≤ (1 + λ2)

−β when β < α, it follows that this norm is a decreasing
function of α. Write dν(x)− dx = dµ(x). By Lemma 2.6 (1), the norm of the functional∫
M f(x)dµ(x) on Wα,2 (M) can be written as{∫

M

∫
M
B2α (x, y) dµ(x)dµ(y)

}1/2

=

{
Γ (α)−1

∫ +∞

0

tα−1 exp (−t)
(∫
M

∫
M
W (t, x, y) dµ(x)dµ(y)

)
dt

}1/2

.

Note that∫
M

∫
M
W (t, x, y) dµ(x)dµ(y) =

∑
λ

exp
(
−λ2t

)
|Fµ (λ)|2 ≥ 0.

Assuming that this norm is r−α, one has to show that the corresponding expression with
β instead of α is at most cr−β . Since β < α, the integral over 1 ≤ t < +∞ satisfies the
estimate ∫ +∞

1

tβ−1 exp (−t)
(∫
M

∫
M
W (t, x, y) dµ(x)dµ(y)

)
dt

≤
∫ +∞

1

tα−1 exp (−t)
(∫
M

∫
M
W (t, x, y) dµ(x)dµ(y)

)
dt

≤ Γ (α) r−2α.
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Similarly, if β < α the integral over r−2/2 ≤ t ≤ 1 satisfies the estimate∫ 1

r−2/2

tβ−1 exp (−t)
(∫
M

∫
M
W (t, x, y) dµ(x)dµ(y)

)
dt

≤
(
r−2/2

)β−α ∫ 1

r−2/2

tα−1 exp (−t)
(∫
M

∫
M
W (t, x, y) dµ(x)dµ(y)

)
dt

≤ 2α−βΓ (α) r−2β.

Finally, by the small time Gaussian estimate on the heat diffusion kernel in [35], if 0 <

t < r−2/2 then
td/2W (t, x, y) ≤ cr−dW

(
r−2, x, y

)
.

It then follows that if β > d/2 the integral over 0 ≤ t ≤ r−2/2 satisfies the estimate∫ r−2/2

0

tβ−1 exp (−t)
(∫
M

∫
M
W (t, x, y) dµ(x)dµ(y)

)
dt

≤ cr−2β

∫
M

∫
M
W
(
r−2, x, y

)
d |µ| (x)d |µ| (y).

It remains to show that the last double integral is uniformly bounded in r. Since d |µ| (x) ≤
dν(x) + dx and since

∫
MW (r−2, x, y) dx = 1, replacing d |µ| (x) with dµ(x) it suffices

to show that ∫
M

∫
M
W
(
r−2, x, y

)
dµ(x)dµ(y) ≤ c.

By the assumption on dµ(x) and the eigenfunction expansion of W (r−2, x, y),∫
M

∫
M
W
(
r−2, x, y

)
dµ(x)dµ(y)

≤ r−α
∥∥∥∥∫
M
W
(
r−2, ·, y

)
dµ(y)

∥∥∥∥
Wα,2

= r−α

{∑
λ

(
1 + λ2

)α
exp

(
−2 (λ/r)2) |Fµ(λ)|2

}1/2

≤ r−α

{∑
λ

(
1 + λ2

)−α |Fµ(λ)|2
}1/2

sup
λ

{(
1 + λ2

)α
exp

(
− (λ/r)2)} .

Finally, the last sum with {Fµ(λ)} is the norm of the measure dµ(x) as a functional on
Wα,2 (M), hence by assumption it equals r−α, and the last supremum is dominated by
cr2α.

As we said, the above result is only one way, from α to β < α. If the norm of dν(x)−
dx on Wα,p (M) is r−α and if β > α, then one cannot conclude that the norm of dν(x)−
dx on W β,p (M) is at most cr−β . As a counterexample, it suffices to perturb a good
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quadrature rule with nodes {zj}Nj=1 and weights {ωj}Nj=1 by moving the last point zN
into a new point tN , so that the new quadrature differs from the old one by the quantity
ωN |f (zN)− f (tN)|. If α > d/p+1 then the function f is differentiable and, by the mean
value theorem, ωN |f (zN)− f (tN)| ≈ ωN |zN − tN | . Then, by choosing |zN − tN | =

r−α/ωN one obtains a quadrature rule which gives an error≈ r−α in all spacesW β,p (M)

with β > α. The counterexample when d/p < α ≤ d/p+ 1 is slightly more complicated
but similar.

In all the above results, the accuracy in a quadrature rule has been estimated in terms
of the energy of a measure. It is also possible to estimate this accuracy in terms of a
geometric discrepancy. Let B (y, t) be the level sets of the Bessel kernel,

B (y, t) = {x ∈M : Bα (x, y) > t} .

Then the Bessel kernel can be decomposed as superposition of the characteristic func-
tions of these level sets,

Bα(x, y) =

∫ +∞

0

χB(y,t)(x)dt.

If 1 ≤ p, q ≤ +∞ and 1/p+ 1/q = 1, by Corollary 2.4 (1) and Minkowski inequality,
the following Koksma Hlawka type inequality holds:∣∣∣∣∫

M
f(x)dµ(x)

∣∣∣∣ ≤ ‖f‖Wα,p

{∫
M

∣∣∣∣∫
M
Bα(x, y)dµ(x)

∣∣∣∣q dy}1/q

≤ ‖f‖Wα,p

∫ +∞

0

{∫
M

∣∣∣∣∫
M
χB(y,t)(x)dµ(x)

∣∣∣∣q dy}1/q

dt.

The quantity
∣∣∫
M χB(y,t)(x)dµ(x)

∣∣ is the discrepancy of the measure dµ(x) with re-
spect to the level set B (y, t). It can be proved that, for specific measures and at least in
the range 0 < α < 1, the above estimates are sharp and they can lead to optimal quadra-
ture rules. In particular, the following is Result (F) in the Introduction.

Theorem 3.2. Denote by δ(t) the supremum with respect to y of the diameters of the
level sets {B (y, t)} and assume that there exists r ≥ 1 such that the discrepancy of the
measure dµ(x) with respect to {B (y, t)} satisfies the estimates∣∣∣∣∫

M
χB(y,t)(x)dµ(x)

∣∣∣∣ ≤ { r−d if δ(t) ≤ 1/r,
r−1δ(t)d−1 if δ(t) ≥ 1/r.

Also assume that 1 ≤ p ≤ +∞ and α > d/p. Then there exists a constant c, which may
depend on α and p and on the total variation of the measure |µ| (M), but is independent
of r, such that ∣∣∣∣∫

M
f(x)dµ(x)

∣∣∣∣ ≤


cr−α ‖f‖Wα,p if 0 < α < 1,
cr−1 log(1 + r) ‖f‖Wα,p if α = 1,
cr−1 ‖f‖Wα,p if α > 1.
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Proof. If 1 ≤ p, q ≤ +∞ and 1/p + 1/q = 1, by Corollary 2.4 (1) and Minkowski
inequality,∣∣∣∣∫

M
f(x)dµ(x)

∣∣∣∣ ≤ ‖f‖Wα,p

∫ +∞

0

{∫
M

∣∣∣∣∫
M
χB(y,t)(x)dµ(x)

∣∣∣∣q dy}1/q

dt.

By Lemma 2.6 (2), when 0 < α < d then Bα (x, y) ≈ |x− y|α−d, and the level sets
B (y, t) have diameters of order min

{
1, t1/(α−d)

}
. Hence, writing q = (q − 1) + 1, the

estimate of the discrepancy of small level sets with t ≥ rd−α gives{∫
M

∣∣∣∣∫
M
χB(y,t)(x)dµ(x)

∣∣∣∣q dy}1/q

≤
{

sup
y∈M

∣∣∣∣∫
M
χB(y,t)(x)dµ(x)

∣∣∣∣}(q−1)/q {∫
M

∫
M
χB(y,t)(x)d |µ| (x)dy

}1/q

≤
{

sup
y∈M

∣∣∣∣∫
M
χB(y,t)(x)dµ(x)

∣∣∣∣}(q−1)/q {
c |µ| (M)td/(α−d)

}1/q

≤ cr−d(q−1)/qtd/q(α−d).

Hence, if α > d/p the integral over rd−α ≤ t < +∞ satisfies the inequality∫ +∞

rd−α

{∫
M

∣∣∣∣∫
M
χB(y,t)(x)dµ(x)

∣∣∣∣q dy}1/q

dt

≤ cr−d(q−1)/q

∫ +∞

rd−α
td/q(α−d)dt ≤ cr−α.

Similarly, the integral over 0 ≤ t ≤ rd−α, that is the discrepancy of large level sets,
satisfies the inequality∫ rd−α

0

{∫
M

∣∣∣∣∫
M
χB(y,t)(x)dµ(x)

∣∣∣∣q dy}1/q

dt

≤ r−1

∫ rd−α

0

min
{

1, t(d−1)/(α−d)
}
dt ≤


cr−α if 0 < α < 1,
cr−1 log(1 + r) if α = 1,
cr−1 if α > 1.

The proof in the case α = d is similar and it follows from the estimate Bα(x, y) ≈
− log (|x− y|). The proof in the case α > d is even simpler, since in this case Bα(x, y)

is bounded and it suffices to integrate on 0 ≤ t ≤ supx,y∈MBα (x, y) the inequality∣∣∫
M χB(y,t)(x)dµ(x)

∣∣ ≤ cr−1.

Observe that the hypotheses on the discrepancy in the above theorem match the esti-
mates in Lemma 2.9. Indeed, by this lemma, the measures dν(x) which give exact quadra-
ture for eigenfunctions with eigenvalues λ2 < r2 have discrepancy∣∣∣∣∫

{|x−y|≤s}
dν(x)−

∫
{|x−y|≤s}

dx

∣∣∣∣ ≤ { cr−d if s ≤ 1/r,
cr−1sd−1 if s ≥ 1/r.
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Actually, these estimates hold not only for balls {|x− y| ≤ s}, but also for sets with
boundaries with finite d − 1 dimensional Minkowski measure, such as the level sets
{B (y, t)}. Also observe that these estimates are natural, since the discrepancy of large
sets is qualitatively different from the one of small sets. In particular, it follows from
Lemma 2.9, Theorem 2.12, Theorem 2.16, that, at least in the range 0 < α < 1, Theorem
3.2 gives an optimal quadrature. We conclude with a series of remarks.

Remark 3.3. As we said, the assumption α > d/2 with p = 2 in Theorem 2.7, or α > d/p

with 1 ≤ p ≤ +∞ in Theorem 2.12, guarantees the boundedness and continuity of f (x),
otherwise the point evaluation f (zj) may be not defined. This follows from the Sobolev
imbedding theorem. Indeed, the imbedding is an easy corollary of Lemma 2.6. A function
f(x) is in the Sobolev space Wα,p (M) if and only if there exists a function g(x) in
Lp (M) with

f(x) =

∫
M
Bα(x, y)g(y)dy.

When 1 ≤ p, q ≤ +∞, 1/p + 1/q = 1, d/p < α < d, then Bα(x, y) ≤ c |x− y|α−d is in
Lq (M) and this implies that distributions in the Sobolev space Wα,p (M) with α > d/p

are continuous functions. Indeed they are also Hölder continuous of order α− d/p.

Remark 3.4. When the manifold is a Lie group or a homogeneous space, one can restate
Theorem 2.1 in terms of convolutions. In the particular case of the torus Td = Rd/Zd, let

A(x) =
∑
k∈Zd

ψ(k) exp (2πikx) , B(x) =
∑
k∈Zd

ψ(k)−1 exp (2πikx) .

Then, if 1 ≤ p, q, r ≤ +∞ with 1/p+ 1/q = 1/r + 1,{∫
Td

∣∣∣∣∫
Td
f (x− y) dµ(y)

∣∣∣∣r dx}1/r

=

{∫
Td
|B ∗ A ∗ f ∗ µ(x)|r dx

}1/r

≤
{∫

Td
|A ∗ f(x)|p dx

}1/p{∫
Td
|B ∗ µ(x)|q dx

}1/q

.

In the case of the sphere Sd =
{
x ∈ Rd+1, |x| = 1

}
, let {Zn (xy)} be the system of

zonal spherical harmonics polynomials and let

A(xy) =
+∞∑
n=0

ψ(n)Zn (xy) , B(xy) =
+∞∑
n=0

ψ(n)−1Zn (xy) .

Then, if 1 ≤ p, q ≤ +∞ with 1/p+ 1/q = 1,∣∣∣∣∫
Sd
f (x) dµ(x)

∣∣∣∣
≤
{∫

Sd

∣∣∣∣∫
Sd
A(xy)f(y)dy

∣∣∣∣p dx}1/p{∫
Sd

∣∣∣∣∫
Sd
B(xy)dµ(y)

∣∣∣∣q dx}1/q

.

Both results on the torus and the sphere follow from Young inequality for convolutions.
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Remark 3.5. A result related to Theorem 2.1 and to the previous remark is the following.
Identify Td with the unit cube {(x1, . . . , xd) : 0 ≤ xj < 1} and denote by χP (y)(x) the
characteristic function of the parallelepiped P (y) = {(x1, . . . , xd) : 0 ≤ xj < yj}. Then
define

B(x) =

∫
Td
χP (y)(x)dy − 2−d =

d∏
j=1

(1− xj)− 2−d

=
∑

k∈Zd−{0}

∏
kj=0

2

∏
kj 6=0

2πikj

−1

exp (2πikx) .

Also, define the differential integral operator

A ∗ f(x) =
∑
k 6=0

∏
kj=0

2

∏
kj 6=0

2πikj

 f̂(k) exp (2πikx)

= 2d−1
∑

1≤j≤d

∫
Td−1

∂

∂xj
f(x)

∏
i 6=j

dxi + 2d−2
∑

1≤i 6=j≤d

∫
Td−2

∂2

∂xi∂xj
f(x)

∏
h6=i,j

dxh

+ . . .+
∂d

∂x1 . . . ∂xd
f(x).

Observe that, as in Theorem 2.1, the Fourier coefficients of the distribution A(x) and
of the function B(x) are one inverse to the other, however here the Fourier coefficients
are indexed by the lattice points 2πik, and not by the eigenvalues 4π2 |k|2. If dν(x) =

N−1
∑N

j=1 dδzj (x), and if 1 ≤ p, q, r ≤ +∞ with 1/p+ 1/q = 1/r + 1, then{∫
Td

∣∣∣∣∣N−1

N∑
j=1

f (x− zj)−
∫

Td
f(y)dy

∣∣∣∣∣
r

dx

}1/r

≤
{∫

Td
|A ∗ f(x)|p dx

}1/p{∫
Td
|B ∗ ν(x)|q dx

}1/q

.

The norm of A ∗ f(x) is dominated by an analogue of the Hardy Krause variation,{∫
Td
|A ∗ f(x)|p dx

}1/p

≤ 2d−1
∑

1≤j≤d

{∫
T

∣∣∣∣∣
∫

Td−1

∂

∂xj
f(x)

∏
i=j

dxi

∣∣∣∣∣
p

dxj

}1/p

+2d−2
∑

1≤i 6=j≤d

{∫
T2

∣∣∣∣∣
∫

Td−2

∂2

∂xi∂xj
f(x)

∏
h6=i,j

dxh

∣∣∣∣∣
p

dxidxj

}1/p

+ . . .+

{∫
Td

∣∣∣∣ ∂d

∂x1 . . . ∂xd
f(x)

∣∣∣∣p dx}1/p

.
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The norm of B ∗ ν(x) is dominated by the discrepancy of the points {zj}Nj=1 with respect
to the family of boxes P (y), {∫

Td
|B ∗ ν(x)|q dx

}1/q

≤
∫

Td

{∫
Td

∣∣∣∣∣N−1

N∑
j=1

χP (y) (zj + x)−
d∏
j=1

yj

∣∣∣∣∣
q

dx

}1/q

dy.

In particular, the case p = 1 and q = +∞ is an analogue of the Koksma Hlawka inequal-
ity. See [24]. A generalization of this classical inequality is contained in [6].

Remark 3.6. By Lemma 2.6 (1), the Bessel kernelBα(x, y) with α > 0 is a superposition
of heat kernels W (t, x, y). Indeed, it is possible to state an analogue of Corollary 2.4 in
terms of the heat kernel, without explicit mention of Bessel potentials: If {zj}Nj=1 is a
sequence of points inM, if {ωj}Nj=1 are positive weights with

∑
j ωj = 1, and if f(x) is

a function in Wα,p (M) with α > d/2, then∣∣∣∣∣
N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣
≤

{
Γ (α)−1

∫ +∞

0

∣∣∣∣∣
N∑
i=1

N∑
j=1

ωiωjW (t, zi, zj)− 1

∣∣∣∣∣ tα−1 exp (−t) dt

}1/2

‖f‖Wα,2 .

This suggests the following heuristic interpretation: Mathematically, a set of points on
a manifold is well distributed if the associated Riemann sums are close to the integrals.
Physically, a set of points is well distributed if the heat, initially concentrated on them, in
a short time diffuses uniformly across the manifold.

Remark 3.7. In order to minimize the errors in the numerical integration in Corollary 2.4
(3), one has to minimize the energies∫

M

∫
M
B2α (x, y) dν(x)dν(y),

N∑
i=1

N∑
j=1

ωiωjB
2α (zi, zj) .

These are analogous to the energy integrals in potential theory∫
M

∫
M
|x− y|−ε dν(x)dν(y).

See [15]. When d < α < d + 1 the kernel B2α (x, y) is positive and bounded, with
a maximum at x = y and a spike A − B |x− y|2α−d when x → y. In particular, the
gradient at x = y is infinite. This implies that in order to minimize the discrete en-
ergy

∑
i,j ωiωjB

2α (zi, zj) the points {zj} have to be well separated. This suggests the
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following heuristic interpretation: Mathematically, a set of points on a manifold is well
distributed if the energy is minimal. Physically, a set of points, free to move and repelling
each other according to some law, is well distributed when they reach an equilibrium.

Remark 3.8. It can be proved that if 2α > d+ 2 then∣∣B2α (x, x)−B2α (x, y)
∣∣ ≤ c |x− y|2 .

This estimate in the proof of Theorem 2.7 yields that for most choices of sampling points
zj ∈ Uj ,∣∣∣∣∣

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx

∣∣∣∣∣ ≤ c max
1≤j≤N

{
diameter (Uj)

d/2+1
}
‖f‖Wα,2(M) .

The same result holds if 2α = d+ 2, with a logarithmic transgression. Observe that these
estimates hold for most choices of sampling points, but not for all choices. Indeed, if the
manifold M is decomposed in disjoint pieces M = U1 ∪ U2 ∪ ... ∪ UN with measure
a1N

−1 ≤ |Uj| = ωj ≤ a2N
−1 and b1N

−1/d ≤ diameter (Uj) ≤ b2N
−1/d, if f(x) is a

smooth non constant function and if the points zj ∈ Uj are the maxima of f(x) in Uj ,
then

∑N
j=1 ωjf (zj) is an upper sum of the integral

∫
M f(x)dx and

N∑
j=1

ωjf (zj)−
∫
M
f(x)dx =

N∑
j=1

∫
Uj

(f (zj)− f(x)) dx ≥ cN−1/d.

Remark 3.9. Theorem 3.2 gives an estimate of the accuracy in a quadrature rule in
terms of the discrepancy of a measure with respect to level sets of the Bessel kernel. The
following argument shows that when the manifold is a sphere, or a rank-one compact
symmetric space, then the level sets of the heat kernel {W (t, x, y) > s}, and hence of the
Bessel kernels {Bα (x, y) ≤ t}, are geodesic balls {|x− y| ≤ r}. The Laplace operator
on the sphere Sd with respect to a system of polar coordinates x = (ϑ, σ), with 0 ≤ ϑ ≤ π

the colatitude with respect to a given pole and σ ∈ Sd−1 the longitude, is

∆x = ∆(ϑ,σ) = − sin1−d (ϑ)
∂

∂ϑ

(
sind−1 (ϑ)

∂

∂ϑ

)
+ sin−2 (ϑ) ∆σ.

Let u (t, x) be the solution of the Cauchy problem for the heat equation{
∂

∂t
u (t, x) = −∆xu (t, x) ,

u (0, x) = f (x) .

If f (x) depends only on the colatitude ϑ, and if it is even and decreasing in 0 < ϑ < π,
then also u (t, x) depends only on the colatitude and it is even and decreasing in 0 < ϑ <
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π. In order to prove this, set u(t, x) = U(t, ϑ), f (x) = F (ϑ), and sind−1 (ϑ) ∂U(t, ϑ)/∂ϑ =

V (t, ϑ). Then
∂

∂ϑ

∂

∂t
U(t, ϑ) =

∂

∂ϑ

{
sin1−d (ϑ)

∂

∂ϑ

(
sind−1 (ϑ)

∂

∂ϑ
U(t, ϑ)

)}
,

∂

∂ϑ
U(0, ϑ) =

∂

∂ϑ
F (ϑ) ,

∂

∂t
V (t, ϑ) =

∂2

∂ϑ2
V (t, ϑ) + (1− d)

cos(ϑ)

sin(ϑ)

∂

∂ϑ
V (t, ϑ),

V (0, ϑ) = sind−1 (ϑ)
∂

∂ϑ
F (ϑ) ,

V (t, 0) = V (t, π) = 0.

If F (ϑ) is decreasing in 0 < ϑ < π, then V (0, ϑ) ≤ 0 and, by the maximum principle,
V (t, ϑ) ≤ 0, hence U(t, ϑ) is decreasing in 0 < ϑ < π. In particular, by considering
a sequence of initial data {fn (x)} which depend only on the colatitude ϑ, even and de-
creasing in 0 < ϑ < π, and which converge to the Dirac δ(x), one proves that the heat
kernel W (t, cos (ϑ)) is decreasing in 0 < ϑ < π. Since Bessel kernels are superpositions
of heat kernels, they are also superpositions of spherical caps.

Remark 3.10. In [3] and [26] the discrepancy of orbits of discrete subgroups of rotations
of a sphere are studied. Let G be a compact Lie group, K a closed subgroup,M = G/K a
homogeneous space of dimension d. Also, let H be a finitely generated free subgroup in
G and assume that the action of H onM is free. Given a positive integer n, let {σj}Nj=1

be an ordering of the elements inH with length at most n and for every function f(x) on
M, define

Tf(x) = N−1

N∑
j=1

f (σjx) .

This operator is self-adjoint and it has eigenvalues and eigenfunctions in L2(M). More-
over, since the operators T and ∆ commute, they have a common orthonormal system
of eigenfunctions, ∆ϕλ(x) = λ2ϕλ(x) and Tϕλ(x) = T (λ)ϕλ(x). All eigenvalues of T
have modulus at most 1 and indeed 1 is an eigenvalue and the constants are eigenfunc-
tions. Assume that all non constant eigenfunctions have eigenvalues much smaller than 1.
Then, if α > d/2,∣∣∣∣∣N−1

N∑
j=1

f (σjx)−
∫
M
f(x)dx

∣∣∣∣∣ =

∣∣∣∣∣∑
λ 6=0

T (λ)Ff(λ)ϕλ(x)

∣∣∣∣∣
≤
{

sup
λ 6=0
|T (λ)|

}{∑
λ

(
1 + λ2

)α |Ff(λ)|2
}1/2{∑

λ

(
1 + λ2

)−α |ϕλ(x)|2
}1/2

≤ c

{
sup
λ 6=0
|T (λ)|

}{∫
M

∣∣∣(I + ∆)α/2 f(x)
∣∣∣2 dx}1/2

.
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The absolute convergence of the above series is consequence of the Sobolev’s imbeddings,
or the Weyl’s estimates for eigenfunctions. In particular, when M = SO(3)/SO(2) is
the two dimensional sphere and H is the free group generated by rotations of angles
arccos(−3/5) around orthogonal axes, it has been proved in [26] that the eigenvalues of
the operator T satisfy the Ramanujan bounds

sup
λ 6=0
{|T (λ)|} ≤ cN−1/2 log(N).

Hence, for the sphere, ∣∣∣∣∣N−1

N∑
j=1

f (σjx)−
∫
M
f(x)dx

∣∣∣∣∣
≤ cN−1/2 log(N)

{∫
M

∣∣∣(I + ∆)α/2 f(x)
∣∣∣2 dx}1/2

.

All of this is essentially contained in [26]. Although this bound N−1/2 log(N) is worse
than the bound N−α/2 in Corollary 2.13, the matrices {σj} have rational entries and the
sampling points {σjx} are completely explicit.
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