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Abstract

Many applications in computer graphics and related fields can benefit from
automatic simplification of complex polygonal surface models. Applications are
often confronted with either very densely over-sampled surfaces or models too
complex for the limited available hardware capacity. An effective algorithm
for rapidly producing high-quality approximations of the original model is a
valuable tool for managing data complexity.

In this dissertation, I present my simplification algorithm, based on itera-
tive vertex pair contraction. This technique provides an effective compromise
between the fastest algorithms, which often produce poor quality results, and
the highest-quality algorithms, which are generally very slow. For example, a
1000 face approximation of a 100,000 face model can be produced in about 10
seconds on a PentiumPro 200. The algorithm can simplify both the geome-
try and topology of manifold as well as non-manifold surfaces. In addition to
producing single approximations, my algorithm can also be used to generate
multiresolution representations such as progressive meshes and vertex hierar-
chies for view-dependent refinement.

The foundation of my simplification algorithm, is the quadric error metric
which I have developed. It provides a useful and economical characterization of
local surface shape, and I have proven a direct mathematical connection between
the quadric metric and surface curvature. A generalized form of this metric can
accommodate surfaces with material properties, such as RGB color or texture
coordinates.

I have also developed a closely related technique for constructing a hierarchy
of well-defined surface regions composed of disjoint sets of faces. This algorithm
involves applying a dual form of my simplification algorithm to the dual graph
of the input surface. The resulting structure is a hierarchy of face clusters which
is an effective multiresolution representation for applications such as radiosity.
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Chapter 1

Introduction

Numerous applications in computer graphics and related fields rely on polygonal
surface models for both simulation and display. Traditionally, such models have
been fixed sets of polygons, providing a single level of detail. However, this
single level of detail may often be ill-suited for the diverse contexts in which a
model of this type will be used.

The central focus of this work is the automatic simplification of highly de-
tailed polygonal surface models into faithful approximations containing fewer
polygons (see Figure 1.1). I will describe the simplification algorithm which I

(a) Original (b) 83% fewer faces (c) 95% fewer faces

Figure 1.1: Polygonal model with automatically produced approximations.

have developed, and I will examine the hierarchical structure that is induced on
the surface as a result of simplification. This resulting hierarchy can be used as
a multiresolution model — a surface representation which supports the recon-
struction of a wide range of approximations to the original surface model. Some
authors use the term “multiresolution” to refer specifically to wavelet-based rep-
resentations. I use the term in a broader sense; wavelet representations are only
one particular kind of multiresolution model.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Advances in technology have provided vast databases of polygonal surface mod-
els, one of the most common surface representations used in practice. But these
models are often very complex; surfaces containing millions of polygons are not
uncommon. Laser range scanners, computer vision systems, and medical imag-
ing devices can produce models of intricate physical objects. Many companies
now design products using computer-aided design (CAD) systems, resulting
in very complex, highly detailed surfaces. Models produced by surface recon-
struction and isosurface extraction methods can often be very densely sampled
meshes with a uniform distribution of points on the surface. Applications in
areas ranging from distributed virtual environments to finite element methods
to movie special effects rely on polygonal surface models generated by these
kinds of systems.

In all these applications, a tradeoff exists between the accuracy with which
a surface is modeled and the amount of time required to process it. To achieve
acceptable running times, we must often substitute simpler approximations of
the original model. A model which captures very fine surface detail may in
fact be desirable when creating archival datasets; it helps ensure that applica-
tions which later process the model have sufficient and accurate data. However,
many applications will require far less detail than is present in the full dataset.
Surface simplification is a valuable tool for tailoring large datasets to the needs
of individual applications and for producing more economical surface models.
Consider the model shown in Figure 1.2. The original surface, containing a little

(a) 1 million faces (b) 20,000 faces (c) 1000 faces

Figure 1.2: A scanned Buddha figurine with two approximations.

over one million triangular faces, is very densely over-sampled. By comparison,
approximation (b) contains 98% fewer triangles, but retains all the basic fea-
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tures of the model. For many applications, including interactive rendering, this
approximation would be a suitable replacement. Approximation (c) contains a
mere 1000 faces. While most of the fine detail of the surface is gone, the overall
structure remains. An application trying to measure some gross property of the
surface, say volume, could arrive at a reasonable estimate from this very simple
model.

Level of detail control is also very important in real-time rendering systems.
For any given system, available hardware capacity — such as frame buffer fill
rates, transformation and lighting throughput, and network bandwidth — is es-
sentially fixed. But the complexity of the scene to render may vary considerably.
In order to maintain a constant frame rate, of say 30 Hz, we need to keep the
level of detail in the scene from exceeding the available hardware capacity. This
need arises at the low end, where computer games and distributed virtual en-
vironments must often operate on systems where available resources are highly
constrained. But it arises at the high end as well, where realistic simulation and
scientific visualization systems typically have object databases that far exceed
the capacity of even the most powerful graphics workstations.

In order to manage the level of detail of an object, we need multiresolution
model representations which allow the surface to adapt at run time. To be
effective, these multiresolution representations must support the reconstruction
of a wide range of levels of detail to accommodate a wide range of viewing
contexts. As an example, consider a surface model such as the one shown in

(a) Close-up of fangs (b) Normal view (c) From far away

Figure 1.3: Three very different views of a dragon model.

Figure 1.3b, containing about 100,000 triangular faces. Suppose the viewer is
closely examining the surface as in Figure 1.3a; the screen is filled by a small
portion of the total surface. Under these conditions, the area being examined
may well have too few triangles while the rest of the model, which falls beyond
the field of view, can be ignored. Now consider a view like that in Figure
1.3c; the model appears as a few small dots. In this case, the model has far
too many polygons for the number of pixels being rendered. Not only must
a multiresolution model allow us to extract approximations suitable for these
three diverse circumstances, but it must also allow us to change the level of
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detail without excessive overhead. If the time necessary to switch to and render
a lower level of detail exceeds the time necessary to simply render a higher level
of detail, we would gain no advantage from the multiresolution model.

1.2 Context of Prior Work

The general idea of multiresolution modeling is not new; suggestions for such a
framework arose twenty years ago. Multiresolution models for large-scale ter-
rain surfaces appeared in flight simulators at around the same time, and new
adaptive terrain techniques continue to be developed. In contrast, multireso-
lution representations for general polygonal surfaces have only appeared fairly
recently. Early methods were based on discrete levels of detail; they maintained
a fixed set of static approximations. In the last couple of years, more adaptive
methods have been developed which can reconstruct a wider range of approxi-
mations. Closely related work has explored surface representations which allow
for efficient compression and progressive network transmission of surface models.
In all three cases, polygonal surface simplification is the underlying mechanism
used to construct multiresolution and progressive representations.

Effective algorithms for simplifying curves and height fields date back two
decades. Indeed, curves are sufficiently simple objects that feasible algorithms
exist for constructing optimal approximations. In the last eight years, polygonal
surface simplification has received much greater attention. As we will see in the
next chapter, a fairly broad range of algorithms have been developed. At one
end of the spectrum are very fast algorithms which can often produce rather
poor results. At the other end are very high quality algorithms which are also
very slow. In between are several algorithms of varying efficiency and quality.

My goal has been to produce a fast simplification algorithm that produces
high quality results.

1.3 Contributions

The primary contributions of my work as described in this dissertation are:

• Quadric Error Metric. I have developed an error metric which provides
a useful characterization of local surface shape. It requires only modest
storage space and computation time. Through a simple extension, it can
be used on surfaces for which each vertex has an associated set of mate-
rial properties, such as RGB color and texture coordinates. I have also
proven a direct connection between the quadric error metric and surface
curvature.

• Surface Simplification Algorithm. By combining the quadric error
metric with iterative vertex pair contraction, I have developed a fast al-
gorithm for producing high-quality approximations of polygonal surfaces.
This algorithm can simplify both manifold and non-manifold models. It
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is also capable of joining unconnected regions of the model together, thus
ultimately simplifying the surface topology by aggregating separate com-
ponents. In addition to producing single approximations, my algorithm
can also be used to generate multiresolution representations such as pro-
gressive meshes and vertex hierarchies for view-dependent refinement.

• Face-Hierarchy Construction. Finally, I have developed a technique
for constructing a hierarchy of well-defined surface regions composed of
disjoint sets of faces. This algorithm involves applying a dual form of
my simplification algorithm to the dual graph of the input surface. The
resulting structure is a hierarchy of face clusters which is an effective
multiresolution representation for certain applications, including radiosity.

1.4 Overview of Material

I will begin with a more detailed discussion of surface simplification and a review
of the prior work in the field (Chapter 2). Having established this background
information, I present the details of the quadric error metric and the surface
simplification algorithm built around it in Chapter 3. The quadric error metric
itself has several useful interpretations, particularly in connection with surface
curvature, and I present these in Chapter 4. The algorithm developed in Chap-
ter 3 considers surface geometry alone. In Chapter 5, I discuss the extension of
the quadric error metric to encompass surfaces with material properties (e.g.,
color and texture). Chapter 6 contains a performance analysis of my simplifi-
cation algorithm, and Chapter 7 is an overview of possible applications of the
simplification algorithm developed in earlier chapters. Finally, I present my
hierarchical face clustering algorithm, the dual of my surface simplification al-
gorithm, in Chapter 8. To highlight certain design choices and techniques, I
have included Appendix A, which contains details on my implementation of my
simplification algorithm.
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Chapter 2

Background &

Related Work

This chapter provides an overview of background material used throughout the
rest of this dissertation. Having provided a definition of polygonal models, I
will examine the need for simplification techniques in managing the complexity
of surface models. I will then describe the criteria upon which we can judge
the quality of an approximation, and review the methods which others have
developed for producing approximations.

By convention, all vectors in this text are assumed to be column vectors and
are set in lowercase bold type. Therefore, uTv = u·v denotes the inner product
of two column vectors u and v. Matrices are set in uppercase bold type; thus
A = uvT denotes the outer product matrix aij = uivj .

2.1 Surface Representation

In the most general sense, a polygonal surface model is simply a set of pla-
nar polygons in the three-dimensional Euclidean space R3. Without loss of
generality, we can assume that the model consists entirely of triangular faces1,
since any non-triangular polygons may be triangulated in a pre-processing phase
[174, 139]. A model might conceivably contain isolated vertices and edges which
are not part of any triangle. For best results in practice, we should maintain
them during simplification and render them at run-time [128, 144, 161, 167].
However, to streamline the discussion, I will assume that models consist of tri-
angles only. For most algorithms, my own included, the only effect of isolated
vertices and edges is to complicate the implementation; the underlying algo-
rithms remain the same. Finally, I will also assume that the connectivity of the
model is consistent with its geometry — if the corners of two triangles coincide
in space then those triangles share a common vertex.

1 Only a very few simplification methods relax this assumption [75, 154].

7
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Given these assumptions, I make the following definition: a polygonal surface
model M = (V, F ) is a pair containing a list of vertices V and a list of triangular
faces F . The vertex list V = (v1,v2, . . . ,vr) is an ordered sequence; each vertex
may be identified by a unique integer i. The face list F = (f1, f2, . . . , fn) is also

ordered, assigning a unique integer to each face. Every vertex vi = [xi yi zi]
T

is a column vector in the Euclidean space R3. Each triangle fi = (j, k, l) is an
ordered list of three indices identifying the corners (vj ,vk,vl) of fi.

By design, this definition of a polygonal model corresponds to a form of
simplicial complex [3]. For our purposes here, a simplex σ is either a vertex (or
0-simplex), a line segment (1-simplex), or a triangle (2-simplex). In general, a k-
simplex σk is the smallest closed convex set2 defined by k+1 linearly independent
points σk = a0a1 . . . ak which are called its vertices. We can express any point p
within this set as a convex combination of the vertices p =

∑

i tiai where
∑

i ti =
1 and ti ∈ [0, 1]. Any simplex defined by a subset of the points a0a1 . . . ak is
a subsimplex of the simplex σk. A two-dimensional simplicial complex K is a
collection of vertices, edges, and triangles satisfying the conditions:

1. If σi, σj ∈ K, then they are either disjoint or intersect only at a common
subsimplex. Specifically, two edges can only intersect at a common vertex,
and two faces can only intersect at a shared edge or vertex.

2. If σi ∈ K, then all of its subsimplices are in K. For instance, if a triangle
f is in K, then its vertices and edges must also be in K.

The surface defined by this complex is the union of the point sets defined by
its constituent simplices. While any set of vertices, edges, and faces satisfying
these conditions can be considered a two-dimensional complex, our definition
of a polygonal model is slightly different. It is only explicitly a collection of
vertices and faces. The only allowable edges are those which are implied by the
intersection of neighboring faces. The additional assumption that the model
does not contain any isolated vertices or edges implies that the model is a pure
complex.

2.1.1 Manifold & Non-Manifold Surfaces

Surfaces, in the mathematical sense, are often assumed to be manifolds. As
Henle [87] aptly points out, the intuitive concept of a manifold surface is that
people living on it, their perception limited to a small surrounding area, are
“unable to distinguish their situation from that of people actually living on a
plane.” In other words, it fits our perception of the surface of the Earth. More
formally, a manifold is a surface, all of whose points have a neighborhood which
is topologically equivalent to a disk. A manifold with boundary is a surface all
of whose points have a neighborhood which is topologically equivalent to either
a disk or a half-disk. A polygonal surface is a manifold (with boundary) if every
edge has exactly two incident3 faces (except edges on the boundary which must

2 In other words, the convex hull [147].
3 The incident faces of an edge e are all the 2-simplices fi of which e is a subsimplex.
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have exactly one), and the neighborhood of every vertex consists of a closed
loop of faces (or a single fan of faces on the boundary). Figure 2.1 illustrates
four kinds of vertex neighborhoods in a polygonal model.

Manifold Non-manifold

vertex loop

Non-manifold

edge

Manifold with

boundary

Figure 2.1: Neighborhoods of a given vertex (in black). On the left, two manifold
neighborhoods. On the right, two non-manifold neighborhoods.

Many surfaces encountered in practice tend to be manifolds, and many
surface-based algorithms require manifold input. It is possible to apply such
algorithms to non-manifold surfaces by cutting the surface into manifold com-
ponents and subsequently stitching them back together [78]. However, it can
be advantageous for simplification algorithms to explicitly allow non-manifold
surfaces. Not only does this broaden the class of permissible input models,
but it provides more flexibility during simplification. Many simplification algo-
rithms proceed by repeatedly making local simplifications to the model. These
local transformations can easily result in non-manifold regions. Consider the
example shown in Figure 2.2. The same local simplification, namely edge con-

Original

(manifold)

Approximation #2

(non-manifold)

Approximation #1

(manifold)

Figure 2.2: Two approximations of the same surface, both constructed by con-
tracting a single edge.

traction, is applied in two different ways. Depending on the choice of edge,
contraction may result in either a manifold or non-manifold result. By allowing
non-manifold surfaces, we allow the simplification algorithm to select the better
choice based on criteria such as geometric fidelity rather than artificially limit-
ing it to only apply operations which produce manifold surfaces. This issue is
of particular relevance in algorithms which seek to simplify the topology of the
model. Imagine a model of a metal plate with many small holes drilled in it.
The common contraction-based approach for removing a hole from this model
would begin by collapsing one end of the hold into a single point, resulting
in a non-manifold vertex neighborhood. While it is possible to explicitly cut
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and re-stitch the surface during simplification [171], this can add substantial
complexity to the algorithm.

2.1.2 Non-Polygonal Representations

The aim of polygonal surface simplification is to provide a mechanism for con-
trolling the complexity of polygonal surface models, but these are not the only
available surface representation. Various alternatives exist, and they each pro-
vide certain benefits and drawbacks as compared with polygonal models. How-
ever, none of these alternatives provide a solution which would obviate the need
for simplification. In fact, they suffer from some of the same problems addressed
by polygonal surface simplification.

The most important reason to focus on polygonal models is purely pragmatic:
polygonal models are both flexible and ubiquitous. They are supported by the
vast majority of rendering and modeling packages, and polygonal surface data is
widely available. Hardware acceleration of polygon rendering is also becoming
much more widely available; affordable yet reasonably powerful accelerator cards
are now available in consumer-level computers. Currently, no other single type
of model enjoys the same level of support. In fact, it is common practice in
various situations to convert other model types into polygonal surfaces prior to
processing.

Parametric spline surfaces are probably the most widely used alternative to
polygonal models. For the most part, we can view them as a generalization
of polygonal models. They are composed of piecewise-polynomial, rather than
piecewise-linear, patches. By using higher-order polynomials, we can approxi-
mate smooth surfaces much more accurately and compactly than with planar
polygons. Just as with polygonal models, a model composed of piecewise-
polynomial elements discretizes the model into a fixed set of patches. Con-
sequently, such models share the problem of static polygonal models: we are
presented with a fixed set of surface elements which may or may not be appro-
priate for the task at hand. This has led to the development of more adaptive
spline methods such as subdivision surfaces [18, 47, 125, 170] and hierarchical
splines [60]. There has also been some work done on adaptively fitting [169]
spline patch models and decimating [72] models composed of triangular Bézier
patches [55].

Volumetric models, and voxel grids in particular, are a common representa-
tion in scientific visualization. This representation is quite effective if the model
data is acquired as a volume and will be used directly as a volume. The res-
olution of voxel grids can easily be controlled via traditional image processing
techniques [160, 164]. However, if the model is not being used as a volume but
as a surface, it must be repolygonized. This is likely to produce an overly com-
plex model because most isosurface extraction algorithms generate uniformly
sampled meshes. In fact, the complexity of volume polygonizations was a moti-
vating factor behind several proposed surface simplification algorithms. There
has also been some work on simplifying tetrahedral volume meshes [24, 180, 186]
that closely parallels work on polygonal surface simplification.
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For rendering applications, image-based models are an attractive option.
Representations such as light fields [73, 121] and panoramas [184] are quite
effective at reproducing real-world scenes. Image-based modeling is also a pow-
erful technique when used in tandem with traditional geometric models. In
particular, cached images of rendered geometry can be used to decrease load
in real-time rendering systems [177, 175, 6, 151, 131, 168]. Some image-based
techniques use textured depth images and apply polygonal surface simplification
to achieve compact representations of the depth map [153].

2.2 Simplification and Multiresolution Models

Traditional polygonal models are composed of a fixed set of vertices and a fixed
set of faces (§2.1). Therefore, they provide a single fixed resolution representa-
tion of an object. But this single resolution may not be appropriate for all the
contexts in which the model will be used. Consider the three views shown in
Figure 2.4. A polygonal model of a dragon, containing 108,588 faces, is shown
flat-shaded in each view. A detailed view of the surface mesh is shown in Figure
2.3. This model contains a reasonable level of detail for view (b), although a
slightly simpler model might do just as well. In view (a), greater detail around
the fangs might be desirable, while the rest of the surface can be safely ignored.
Finally, in view (c), where the model is at a substantial distance from the viewer,
we could probably achieve identical results with fewer than 100 triangles.

Suppose we have a polygonal model M and we would like an approximation
M ′. While this approximation will have fewer polygons than the original, it
should also be as similar as possible to M (see Section 2.3 for details on mea-
suring similarity). The goal of polygonal surface simplification is to automat-
ically produce such approximations. User supervision is generally not feasible.
Simplification is naturally targeted towards large and complex datasets which
would be very cumbersome to manipulate manually.

A common application of simplification is reducing the complexity of very
densely over-sampled models. Models generated by scanning devices and isosur-
faces extracted by algorithms such as marching cubes [126] often benefit from
simplification. Such models are often uniformly tessellated (see Figure 2.3) —
an artifact of the nature of most reconstruction algorithms. Triangle density is
the same in both flat and highly curved regions. It is usually preferable to be
more economical with triangle coverage; local triangle density should adapt to
local curvature. The number of triangles can often be reduced by 50 percent or
more, and the result will be nearly identical to the original.

More generally, we may want to produce an approximation which is tailored
for a specific use. For instance, we might want to produce an approximation of
the dragon model in Figure 2.4 suitable for viewing conditions such as depicted
in Figure 2.4c. Consider an analogous situation in image processing. Suppose
we have a raster image scanned at a resolution of 300 dots per inch, but we
plan to display it on a monitor with a resolution of 72 dots per inch. We can
resample the original image at the lower resolution and produce a much smaller
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Figure 2.3: Original polygonal surface model of a dragon. This unsimplified
model contains 54,296 vertices and 108,588 triangles. Except for parts of the
feet, the surface is tessellated with uniformly sized triangles.
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(a) Close inspection (b) Normal viewing (c) Far in distance

Figure 2.4: The same model used in widely differing contexts.

representation of the image. If we resample the image well, the reduced image
should be nearly indistinguishable from the original at the output resolution of
72 dots per inch.

In other cases, we would like something more flexible than a single fixed
approximation. Suppose that, during an interactive session, a user was viewing
the model shown in Figure 2.4 in the diverse contexts shown. There is no
single set of polygons which is appropriate for all of these different viewing
conditions. Instead, we would like to have multiple different approximations
available, selecting the best one for the current viewing conditions. Rather than
a fixed resolution model, we would like a multiresolution model.

A multiresolution model is a model representation which captures a wide
range of approximations of an object and which can be used to reconstruct
any one of these on demand. The cost of reconstructing approximations should
be low because we will often need to use many different approximations at run
time. It is also important that a multiresolution representation have roughly the
same size as the most detailed approximation alone, although a small constant
factor increase in size is acceptable For the moment, I will focus on the use of
multiresolution models to control running times in real-time rendering systems.
Thus, the appropriate surface approximation for a particular model will depend
upon current viewing conditions (e.g., distance to the viewer). As we will see,
the appropriate level of detail may also vary considerably over the surface.

Image pyramids provide an important motivating example. They are a suc-
cessful and fairly easy to use multiresolution representation of raster images [160]
and are widely used as an optimization technique in texture mapping [194]. The
key idea of an image pyramid is to store, along with the original image, a series
of downsampled images as well. Figure 2.5 shows a simple example. In addition
to the original image, of 512×512 pixels, we store versions reduced by increasing
powers of 2. For the price of a 1/3 increase in size over the original image, we
can efficiently produce resampled versions at a wide range of resolutions.

An alternative type of pyramid, the Laplacian pyramid [17], actually has
more multiresolution characteristics. This type of pyramid stores a simple base



14 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.5: Four level image pyramid ranging from 512×512 to 64×64 pixels.

(a) 64×64 image (b) Difference with 512×512

Figure 2.6: Downsampled 64×64 image and difference image.
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image plus a sequence of successively larger difference images — a method quite
similar to encoding the image using a Haar wavelet basis [182]. As an example,
Figure 2.6a shows the 64×64 pixel level of the pyramid expanded to 512×512
pixels. Figure 2.6b shows the difference between this and the original 512×512
base image. As the difference image shows, the significant differences between
these two levels of the pyramid are quite sparse. By encoding the image as
a simple base image plus a set of difference images, we can achieve a more
compact representation [17]. This representation also lends itself very nicely to
applications such as multiresolution image editing [142].

I will formalize a multiresolution model as a parameterized family of models
M : C → M where the domain C is the space of viewing contexts and M is the
space of all models. Thus, M(ξ) ∈ M is the model, or level of detail, which
is appropriate for the viewing context ξ ∈ C. In the case of raster images, ξ
might be the desired image dimensions (w, h) and M(w, h) would be a suitably
filtered image of w×h pixels.

2.2.1 Discrete Multiresolution

The simplest method for creating multiresolution surface models is to generate a
set of increasingly simpler models. For any given frame, a renderer could select
which model to use and render that model in the current frame [64]. In this case,
we would be using a series of discrete levels of detail; our multiresolution model
would consist of the set of levels — such as in Figure 2.7 — and the threshold
parameters to control the switching between them. This would be analogous to

Figure 2.7: Fixed set of levels of detail for a cow model.

building an image pyramid, as in Figure 2.5 and, at any one time, selecting which
of the levels to use. The simplicity of the discrete multiresolution approach is
its primary attraction. If we can produce good surface approximations, we can
produce discrete multiresolution models.
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Level of Detail Blending

Simply switching levels of detail between frames by substituting one whole dis-
crete model will often incur negligible overhead at display time. Many systems
are designed to transmit all the geometry of the world to the graphics subsys-
tem at each frame. Thus, ignoring external factors such as paging the relevant
geometry into main memory, switching levels of detail simply involves trans-
mitting different geometry for the current frame. If the graphics subsystem
supports caching several levels of detail in pre-compiled display lists, we might
not even have to transmit any new geometry at all. However, it can potentially
cause significant visual artifacts. In most cases, the number of polygons in the
two models will differ significantly, and this will cause their appearances in the
output image to be significantly different as well. Making such a substantial
change in appearance between two consecutive frames can lead to “popping”
artifacts. This effect can be mitigated by extending the level of detail transition
over several frames and using alpha blending to perform a smooth cross-dissolve
between the images of the two models [65]. Visual artifacts are still evident, but
are much less objectionable. Unfortunately, this technique causes the overall
rendering cost to increase during transitions since the system must render two
levels of the model at the same time.

Geomorphing

Another alternative is to smoothly interpolate between the geometries of two
consecutive levels over several frames. This geomorphing technique has been
used in line-based [134] and terrain-specific systems for some time [35, 57]. Pro-
vided that we have a correspondence between the vertices of successive levels of
detail, we can also apply geomorphs to general polygonal surfaces [90]. Suppose
that we are transitioning between a model M and a simpler model M ′ and that
every vertex v ∈ V corresponds4 to a vertex φ(v) ∈ V ′. Iterative contraction
algorithms generate exactly this sort of correspondence (§3.2). During the tran-
sition, the model will have the same mesh connectivity as the more complex
model M , but its geometry will vary continuously between that of M and M ′.
For each vertex v in M , we substitute an interpolated position tv+(1− t)φ(v).
At t = 0, the model will have exactly the same shape as M , and at t = 1, the
model will have the shape of M ′. By moving t between 0 and 1 over several suc-
cessive frames, we can smoothly transition between the two models. Unlike the
alpha blending approach, the geometric complexity of the object being rendered
is the same as M . While this is less than ideal, because we have determined
that the required level of complexity is only that of M ′, it is certainly lower
than the combined size of both levels. However, there is the additional over-
head of interpolating the vertex positions for each frame. Whether this is less
expensive than blending the images of M and M ′ may depend on the hardware
architecture.

4 Since V ′ is smaller than V , this mapping is not one-to-one. There will be at least one
pair of vertices vi,vj such that φ(vi) = φ(vj).
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The principal drawback of discrete multiresolution models is that the levels
of detail available at run time are rather limited. A renderer would be forced
to pick one of our pre-generated models, even if it needed an intermediate level.
Thus, the renderer would either have to pick a model without sufficient detail
(and sacrifice image quality) or choose a model with excess detail (and waste
time). Unless the model is divided into interchangeable blocks, the renderer
would also be unable to vary the level of detail over different parts of the model.
Suppose, for example, that we are standing near the corner of a building looking
down one side. At the corner nearest the viewpoint, the renderer needs a high
level of detail to maintain image quality. However, as the walls recede into the
distance, the renderer could potentially use less and less detail. If the renderer
is forced to use the same level of detail over the whole model, it must again
choose to use an insufficient level and sacrifice quality or use an excessive level
and waste time.

Despite this limitation, discrete multiresolution models can be quite useful
in certain situations. If an object is displayed such that the entire surface is
at roughly the same scale, then discrete multiresolution models are an effective
means of controlling level of detail. For instance, the discrete method seems
to have been effective in the walkthrough system described by Funkhouser and
Séquin [64]. Support for discrete levels of detail has also been included in a
number of commercial rendering systems, including RenderMan [188], Open
Inventor [192], and IRIS Performer [157]. The RenderMan interface provides
for “mixing” successive levels of detail together, but leaves the exact mechanism
undefined. Performer provides explicit support for both alpha blending and
geomorphing. Discrete levels of detail have also been used for accelerating the
computation of radiosity solutions [163].

2.2.2 Continuous Multiresolution

As we have just seen, discrete multiresolution models are sufficient in some cir-
cumstances, but there are other cases in which they are inadequate. A large
surface, such as a terrain, being viewed at close range from an oblique angle
is particularly problematic. Consider the example shown in Figure 2.8. The

Figure 2.8: Large terrain viewed from near the surface.
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Figure 2.9: Identical view with adaptive tessellation.

viewpoint is positioned just above the surface, looking out towards the horizon.
Notice how the screen-space density of the triangulation increases as the sur-
face recedes into the distance. An approximation with a constant level of detail
would either be too dense in the distance (as in Figure 2.8) or too sparse near
the viewpoint. We would prefer an approximation where the level of detail is
allowed to vary continuously over the surface. In particular, we would like the
level of detail of a particular neighborhood to be view dependent. Figure 2.9
demonstrates the results. While the approximation shown in Figure 2.8 contains
many distant triangles whose projected screen size is minute, the approxima-
tion shown in Figure 2.9 uses a much lower level of detail for distant surface
regions. The result is an approximation which is specifically tailored to the cur-
rent viewpoint. Thus, we are looking for a multiresolution representation that
continuously adapts the surface at run time based on viewing conditions. Run-
time adaptation can be combined with the geomorphing technique described
earlier to produce smooth transitions.

The need for adaptive level of detail control is particularly pronounced in
the case of terrains, and continuous multiresolution models have been in use by
flight simulator systems for twenty years [35]. Several effective adaptive terrain
techniques are available [49, 123]. Most are based on a regular subdivision (e.g.,
quadtrees) of the terrain surface. Using regular subdivisions helps to minimize
the run-time overhead incurred by maintaining an adaptive level of detail.

There has been comparatively less work on continuous multiresolution rep-
resentations for general triangulated surfaces. Multi-triangulations [42, 41, 149]
provide a fairly general framework that can describe most commonly used mul-
tiresolution representations. Vertex hierarchies [91, 93, 130, 198] are a partic-
ular multiresolution representation that have received considerable attention.
An important feature of vertex hierarchies is that they can be constructed as
a by-product of standard surface simplification. While the associated overhead
is often acceptable, it is certainly higher than that of discrete multiresolution
models. For instance, Hoppe [91] reports that model adaptation consumed 14%
of the frame time for his implementation. I will discuss vertex hierarchies and
their construction in greater detail in Chapter 7.

Depending on the application at hand, discrete or continuous multiresolution
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models may be more appropriate. Discrete methods are simpler and require less
overhead. Continuous methods are more flexible but have higher overhead. This
flexibility is important for models such as terrains, but may not be necessary
for objects such as chairs in a room. Indeed, the best solution is to support
different multiresolution representations which are tailored to different classes of
model. Despite their differences, both types of multiresolution model share one
significant characteristic: they can be constructed using surface simplification
methods.

2.3 Evaluating Surface Approximations

As stated earlier, the primary aim of simplification is to produce a surface ap-
proximation which is as similar as possible to the original. In order to assess
the quality of an approximation, we need some means of quantifying the notion
of similarity. Suppose that we are given a polygonal model M and an approxi-
mation M ′. We would like an error metric E : M×M → R for which the value
E(M,M ′) measures the approximation error of M ′. The lower the error value
assigned by E to M ′, the greater its similarity to the original model M .

While the preferred criteria are application-dependent, similarity of appear-
ance is the natural choice for rendering applications. However, in almost all
cases, researchers in the field of simplification have chosen to use similarity of
shape as the primary criterion for evaluating approximation quality. Not only
do shape-based metrics appear to be more computationally convenient, but they
are also more appropriate in non-rendering applications such as finite element
analysis.

2.3.1 Similarity of Appearance

Rendering systems are one of the primary application areas of interest in this
work. For such systems, similarity of appearance should be the ultimate crite-
rion for evaluating the quality of an approximation [83]. As mentioned earlier,
most simplification methods are based on purely geometric criteria. However,
since similarity of appearance is often what we would like to achieve, it is im-
portant to consider how we might define it.

The appearance of a model M under viewing conditions ξ is determined by
the raster image Iξ which a renderer would produce. We may say that two
models M1 and M2 appear identical in view ξ if their corresponding images Iξ1
and Iξ2 are identical. If I1 and I2 are both m×m RGB raster images, we can
define the difference between them as the average sum of squared differences
between all corresponding pixels

‖I1 − I2‖img =
1

m2

∑

u

∑

v

‖I1(u, v) − I2(u, v)‖2 (2.1)

where ‖I1(u, v) − I2(u, v)‖ is the Euclidean length of the difference of the two
RGB vectors I1(u, v) and I2(u, v). While there are many more elaborate metrics
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for comparing images [162], this very simple definition appears suitable for the
simplification domain. IfM2 is a good approximation ofM1 for the given view ξ,
then ‖I1−I2‖img should be small. Given this image metric, we can characterize

the total difference in appearance between two models by integrating ‖Iξ1 −
Iξ2‖img over all possible views ξ. Naturally, we would expect in practice to
merely sample these per-image differences over some finite set of viewpoints.

A simplification algorithm guided by an appearance-based metric of this type
has several interesting characteristics. Its primary advantage is that it directly
measures similarity of appearance, which is precisely what we are interested in
preserving in rendering systems. It also allows us to discard occluded details.
Suppose that we have some probability distribution on the possible viewpoints
that will occur at run time. Any features which are occluded in all possible
views can be immediately removed. For example, if we have a complex model
of a submarine and we know that the viewpoint will always be outside the hull,
we can remove all polygons on the interior without introducing any error into
the approximation.

While appearance-based metrics have some appealing benefits, they also
raise some difficult issues. In particular, the foremost problem is the need to
adequately sample the possible viewpoints. If we neglect some important part of
the viewpoint space, we may very well remove perceptually significant features.
And since each sample may involve an expensive rendering step, we cannot
make many samples. Indeed, rendering the models for comparison is likely to
be quite expensive; simplification is generally performed on models which are
prohibitively expensive to render in the first place.

2.3.2 Geometric Approximation Error

While similarity of appearance is the foremost goal for approximations used
in rendering systems, it is generally easier to consider geometric measures of
error instead. We can use geometric similarity as a proxy for visual similar-
ity. By striving to produce geometrically faithful results, we can also produce
approximations that will be useful in application domains other than rendering.

Function Approximation

Before considering the full problem of measuring approximation error for polyg-
onal models, let us examine a much simpler case: function approximation. This
area of study has a long history in the mathematics literature, and it will provide
us with some intuition which will carry over into the polygonal domain.

The two most commonly used error metrics are the L∞ and L2 norms [146].
Suppose a real-valued function f(t), an approximation g(t), and an interval of
interest [a, b] are given. The L∞ norm, which measures the maximum deviation
between the original and the approximation is defined by

‖f − g‖∞ = max
a≤t≤b

|f(t) − g(t)| (2.2)
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The L2 norm5 defined by

‖f − g‖2 =

√

∫ b

a

(f(t) − g(t))
2
dt (2.3)

provides a measure of the average deviation between the two functions. A
piecewise-linear approximation g(t) composed of n segments is called optimal
if there is no other n-segment approximation having a smaller error. The L∞

norm is generally regarded as a stronger measure of error in the function ap-
proximation literature [146]. Because it provides a global absolute bound on the
distance between the original and the approximation, it is often easier to prove
quality guarantees. However, the L2 norm is somewhat more general. Certain
functions, such as f(t) = t−1/3 on the interval [0, 1], have a well-defined L2

norm but no L∞ norm.
The L∞ norm is most useful because it provides absolute distance bounds

which are a useful error guarantee. However, it can be overly sensitive to any
noise that might be present in the original model. Furthermore, there might
also be times when we are willing to allow a few sections of the model to deviate
more than some threshold distance from the original to gain a better overall
fit. In contrast, the L2 norm better reflects overall fit, but may discount large,
but highly localized, deviations. For example, consider the curves shown in

(a) (b) (c)

h

Figure 2.10: Two approximations to the same base curve.

Figure 2.10. The two approximations (b) and (c) have the same L∞ error,
namely the distance h. However, curve (c) certainly seems to be a better overall
approximation. The L2 norm would assign a higher error to curve (b) than
curve (c). Now consider the curves shown in Figure 2.11. The base curve (a)

(a) (b) (c)

h

Figure 2.11: Alternative approximations to the same base curve.

and the approximation (c) are the same as before. We can choose the size of the
tent in approximation (c) such that both (b) and (c) have the same L2 error.

5 When divided by b − a, this is also called the “root mean square” or RMS error.
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However, there are certainly cases in which (b) is a preferable approximation
given that (c) deviates significantly further from the base curve. Also, suppose
that we allow the width ǫ of the tent in (c) to approach 0. The L2 error of (c)
will also approach 0, while its L∞ error will remain h.

Neither of these error metrics is completely ideal. The L∞ norm provides
strong error bounds, but can be overly influenced by noise and local deviations.
On the other hand, the L2 norm provides a better estimate of the overall fit and
is more tolerant of noise, but it may discount local deviations. A combination
of these two metrics is preferable: we would like approximations with small L2

error for which the L∞ error is bounded by some known threshold.

Surface Approximation

We can formulate surface-based analogs of both the L2 and L∞ function approx-
imation norms. First, we need to generalize the notion of deviation between the
original and the approximation. In the functional case outlined in the previous
section, we measured deviation as the vertical distance |f(x)−g(x)|. When com-
paring general surfaces, there is no single distinguished direction along which
to measure distances. Instead, we will measure distances between closest pairs
of points. If we denote the set of all points on the surface of a model6 M by
P (M), the distance from a point v to the model M is defined to be the distance
to the closest point on the model:

dv(M) = min
w∈P(M)

‖v −w‖ (2.4)

where ‖ · ‖ is the usual Euclidean vector length operator.
One commonly used geometric error measure is the Hausdorff distance [147],

which corresponds closely to the L∞ metric. Based on the point-wise distance
measure (2.4), we can define the Hausdorff error metric Êmax(M1,M2) as

Êmax(M1,M2) = max

(

max
v∈P(M1)

dv(M2), max
v∈P(M2)

dv(M1)

)

(2.5)

The Hausdorff error measures the maximum deviation between the two models.
If Êmax(M,M ′) is bounded by ǫ, then we know that every point of the approx-
imation is within ǫ of the original surface and that every point of the original is
within ǫ of the approximation. We can also define an analog of the L2 metric,
a measure of the average squared distance between the two models.

Êavg(M1,M2) =
1

w1 + w2

(

∫

P(M1)

d2
v
(M2) dv +

∫

P(M2)

d2
v
(M1) dv

)

(2.6)

where w1, w2 are the surface areas of M1,M2. I have chosen to normalize the
sum of both integrals by the combined surface area; one could also consider

6 This set, encompassing all points on the surface, is infinite and should not be confused
with the set of vertices V .
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normalizing each individual integral by its own corresponding area. Note the
symmetric construction of both Êmax and Êavg. It is not sufficient to simply
consider every point on M1 and find the closest corresponding point on M2. We
must also do the same for every point on M2.

In practice, these error metrics can be prohibitively expensive to compute
exactly. It is common to formulate approximations of these ideal metrics based
on sampling the distance dv at a discrete set of points. Given P (M1) and
P (M2), we can select two sets X1 ⊂ P (M1) and X2 ⊂ P (M2) containing k1 and
k2 sample points, respectively. These sets should, at a minimum, contain all the
vertices of their respective models. The sampled error metrics, approximations
of (2.5) and (2.6), are

Emax(M1,M2) = max

(

max
v∈X1

dv(M2), max
v∈X2

dv(M1)

)

(2.7)

and

Eavg(M1,M2) =
1

k1 + k2

(

∑

v∈X1

d2
v
(M2) +

∑

v∈X2

d2
v
(M1)

)

(2.8)

Note that this definition of Eavg is very similar to the Edist energy term used
by Hoppe et al. [95, 90]. It differs only in using the k1 + k2 averaging term
and the symmetric construction by which it measures closest distances in both
directions between M1 and M2.

To further reduce the cost of evaluating these error metrics, others [179,
106, 22, 108] define localized versions of the underlying distance function dv.
As defined above, dv(M) finds the distance of v to the closest point on M .
However, we can restrict our search to a small region R of M and evaluate
the localized distance dv(R). Many surface simplification algorithms, including
contraction-based algorithms such as my own, produce a correspondence be-
tween vertex neighborhoods on the approximation and regions on the original
surface. Thus, we can quite naturally define a localized error metric based on
measuring distances to these corresponding regions.

I will use the sampled form of Eavg (2.8) as the basis for objective evaluation
of approximation error. Thus, the quality of an approximation M ′ to a surface
M is characterized by the magnitude of the error Eavg(M,M ′). All empirical
measurements of approximation quality, such as those in Chapter 6, will be
computed using this metric. For certain applications such as collision detection
and part-removal path planning in CAD systems, the Hausdorff distance Emax

might be preferable. However, as in the function approximation case, Eavg

generally gives a better measurement of overall fit than Emax and is less sensitive
to noise, even though it may over-discount localized deviations.

2.3.3 Mesh Quality

In addition to the geometric fidelity of the surface defined by a particular ap-
proximation M ′, we may also be interested in the quality of the mesh used to
tessellate the surface.
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Perhaps the most widely studied aspect of mesh quality is triangle shape.
This has received particular attention in the study of the finite element method.
Of common concern are sliver triangles — triangles containing a small interior
angle close to 0. When error is measured using a Hilbert norm, which penalizes
slope as well as position errors, sliver triangles can result in poor approximations
[9]. For certain problem domains, slivers can also lead to high condition numbers
during finite element analysis [146]; this leads to numerical instability during
the solution process. The Delaunay triangulation [147, 79], which maximizes the
minimum angle over all triangulations of the vertices [116], is a popular method
for producing well-shaped meshes in planar domains. Generalized Delaunay-
like methods can also be formulated for manifold surfaces [21]. However, if we
are solely concerned with minimizing an L2 or L∞ error norm, sliver-shaped
triangles can produce better results [156, 138, 37].

For the problem domains of interest here (e.g., rendering) approximation
error is indeed more important than triangle shape. Consequently, mesh quality
will be only a minor concern when evaluating approximations generated by
surface simplification.

2.3.4 Topological Validity

We must also be concerned about topological7 degeneracies in the mesh. One
of the most common forms of degeneracy that arises in practice is mesh fold-
over. Figure 2.12 shows two different tessellations with identical geometry. The
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Figure 2.12: Two planar triangulations of the same region. On the left, triangle
C is folded over onto triangle A.

geometric error measures Emax and Eavg would regard these models as identical.
But the mesh on the left is clearly problematic; triangle C is folded over onto
triangleA. This mesh would not even be considered a proper triangulation under
several common definitions. For instance, it is not a simplicial complex (§2.1)
because triangles A and C intersect in places other than in a shared vertex or
edge. For algorithms based on local operations (e.g., edge contraction) this sort
of local degeneracy can be avoided through the use of fairly simple consistency

7 The use of the term “topology” here refers to surface topology [3]. The same term is
occasionally used to refer to the structure of the mesh, but I reserve the term “connectivity”
for this purpose.
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checks. See Section 3.7 for details on detecting and preventing fold-over for 3-D
surfaces.

A more difficult problem involves avoiding non-local self-intersection. Con-
sider a model of the bones forming a human knee joint. The individual bones
are in close proximity, yet they are separate. As the surface is modified during
simplification, it is quite possible that the surfaces will be adjusted so that they
interpenetrate. In general, preventing this kind of behavior can involve rather
elaborate techniques [31]. Given its high cost, guaranteeing that self-intersection
does not occur is not feasible in fast simplification systems. We might also have
to contend with input models which may themselves contain self-intersections.

2.4 Survey of Polygonal Simplification Methods

The problems of surface simplification and multiresolution modeling have re-
ceived increasing attention in recent years. Simplification has much in common
with function approximation, which has been an area of mathematical research
for well over a century. The underlying concept of multiresolution surface mod-
els is not particularly new; Clark [28] discussed the general idea twenty-five
years ago. However, with the exception of work done on simpler objects such
as curves and height fields, most of the results in the field are fairly recent.

In this section, I will survey some of the results which are most relevant to
my own work described in later chapters. Paul Heckbert and I have written
a more complete survey [84] of prior work in the field. Data on the relative
performance of various simplification algorithms can be found in the survey of
Cignoni et al. [26] and elsewhere [124, 22].

The two most common methodologies in surface simplification are refine-
ment and decimation. A refinement algorithm is an iterative algorithm which
begins with an initial coarse approximation and adds elements at each step.
Essentially the opposite of refinement, a decimation algorithm begins with the
original surface and iteratively removes elements at each step. Both refinement
and decimation share a very important characteristic: they seek to derive an
approximation through a transformation of some initial surface.

An important distinction between algorithms is whether they perform topo-
logical simplification on the surface. Most methods fall into one of three cate-
gories. Some specifically prohibit any topological alteration [31]. The majority
of algorithms simplify the topology implicitly. In other words, they make choices
based on geometric criteria, but they may simplify the topology as a side-effect.
Finally, some algorithms explicitly consider the simplification of surface topology
[82, 53] along with geometric simplification.

Before considering general surface simplification, let us briefly examine two
lower-dimensional problem domains — the simplification of curves and height
fields.
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2.4.1 Curves and Functions

Not surprisingly, the simplification of functions and curves has the longest his-
tory. The literature on the approximation of curves satisfying an equation
y = f(x) is vast. Plane curves, usually defined parametrically as v = f(t) =

[x(t) y(t)]
T
, have also received substantial attention. The work on the sim-

plification of piecewise-linear curves is most closely related to the problem of
simplifying polygonal surfaces. It has developed in, among other areas, cartog-
raphy8, computer vision, and computer graphics.

Suppose that we have a piecewise-linear curve with n vertices, and we would
like an approximation with m < n vertices. For these simple geometric objects,
we can actually construct optimal approximations. Algorithms have been de-
veloped for constructing L∞–optimal9 approximations of functions [98], plane
curves [98], and 3-D space curves [97]. However, finding these optimal solutions
quickly becomes expensive. While the algorithm for finding optimal approxima-
tions of functions has a time complexity of O(n), the algorithms for plane curves
and space curves have much higher complexities of O(n2 logn) and O(n3 logm),
respectively. This makes them rather impractical for very large datasets.

Regular subsampling, or the nth-point algorithm, is a particularly simple
algorithm. It simply keeps every nth point of the original vertex set. This is
both very fast and trivial to implement; however, the resulting approximations
can be quite poor [136].

Perhaps the most widely used algorithm for curve simplification is a simple
refinement algorithm, commonly referred to as the Douglas–Peucker algorithm.
This algorithm begins with with some minimal approximation, normally a single
line segment from the first to last vertex. This segment is split at the point on
the original curve which is furthest from the approximation. Each of the two
new subsegments can be recursively split until the approximation meets some
termination criteria. This is evidently a rather natural algorithm for curve
approximation, since it was independently invented by a number of people [152,
50, 48, 12, 187, 141, 10].

Decimation algorithms, which in essence are the Douglas–Peucker refine-
ment algorithm in reverse, have also been developed [16, 120]. The quality of
their results is probably at least as good, if not somewhat better, than the re-
finement algorithm. However, they are almost certain to be moderately less
efficient. Broadly speaking, the time and memory requirements of these itera-
tive algorithms depend on the size of the current approximations being tracked
through successive iterations. The refinement approach begins with a minimal
approximation and gradually refines it, rather than starting with the full model
and gradually simplifying it. Therefore, the intermediate approximations which
it constructs tend to be fairly small, particularly if the target approximation is
only say 10% or less the size of the original.

8 Simplification is more commonly referred to as “generalization” in cartography.
9 An L∞–optimal approximationuses the minimum number of vertices necessary to achieve

a given L∞ error ǫ (see (2.2) for L∞ definition).
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2.4.2 Height Fields

Height fields are among the simplest types of surface. The surface is defined as
the set of points satisfying an equation of the form z = f(x, y) where x and y
range over a subset of the Cartesian plane.

In contrast to curve simplification, it is not feasible to construct optimal ap-
proximations of height fields. Agarwal and Suri [2] have shown that computing
an L∞–optimal approximation of a height field is NP-Hard [34]. In other words,
an optimal approximation cannot be computed in less than exponential time.
Polynomial time approximation algorithms have been developed [2, 1]; they can
generate approximations with some L∞ error ǫ using O(k logk) triangles, where
there are k triangles in the optimal approximation. However, their running time
is at best O(n2) for a height field with n input points — too high for practical
use on large datasets.

Refinement is the most popular approach for terrain approximation, as it
was in the case of curves. One particularly common refinement algorithm is an
analog of the Douglas–Peucker curve refinement algorithm. It begins with a min-
imal approximation and iteratively inserts the point where the approximation
and the original are farthest apart. This greedy insertion technique [67] has re-
ceived significant attention [58, 61, 62, 39, 40, 38, 86, 143, 150, 155] and has been
independently rediscovered repeatedly. Incremental Delaunay triangulation [79]
is often used to triangulate the selected vertices, but other data-dependent tri-
angulations can produce approximations with lower error [155, 67].

Decimation algorithms for simplifying height fields have also been proposed
[119, 166, 96]. However, as was the case with curves, they do not seem to be as
widely used as refinement methods. Depending on the exact algorithms chosen,
decimation may produce higher quality results than refinement. But the greater
speed and smaller memory requirements of refinement seem to have made it the
more common choice.

2.4.3 Surfaces

Successful algorithms for simplifying curves and height fields were developed
twenty years ago [48, 61], but the work on more general surface simplification
is much more recent. Since these algorithms are of the greatest relevance to my
work, I will discuss them in more detail. Note that, since height fields are a
special case of general surfaces, optimally approximating a surface is NP-Hard.

Manual Preparation

The traditional approach to multiresolution surface models has been manual
preparation. A human designer must construct various levels of detail by hand.
Manual techniques have been in use in the flight simulator field for decades [35],
and similar techniques are in use today by game developers [181]. While this
process may be aided by a specially designed surface editor [63], it can still be a
time-consuming and difficult task. The general goal of the work done on surface
simplification has been to automate this task.
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Polyhedral Refinement

Only a small number of algorithms for progressively refining polygonal surfaces
have been proposed [56, 43, 44, 45]. While refinement has traditionally been
the method of choice for approximating curves and height fields, decimation
has been much more widely used for simplifying more general surfaces. Perhaps
the primary difficulty with refinement in this case involves actually constructing
the base approximation. If we limit ourselves to refining via simple subdivision
rules, then the initial approximation must necessarily have the same topology
as the original model. However, not only does this prevent us from simplifying
the topology, but it is not always easy to discover the topology of the input
surface.

Vertex Clustering

Vertex clustering methods [161, 128, 167, 129] spatially partition the vertex set
into a set of clusters and unify all vertices within the same cluster. They are
generally very fast and work on arbitrary collections of triangles. Not only do
they generally support non-manifold objects, but they do not require complete
connectivity information. Unfortunately, they can often produce relatively poor
quality approximations.

The simplest clustering method is the uniform vertex clustering algorithm
described by Rossignac and Borrel [161]. A simple example of uniform clus-
tering is shown in Figure 2.13. This algorithm was designed for automatically

Before After

Figure 2.13: Uniform clustering in two dimensions.

constructing multiresolution models from CAD data, hence the necessity to al-
low arbitrary polygon input. The vertex set is partitioned by subdividing a
bounding box on a regular grid, and the new representative vertex for each cell
is computed using cheap heuristics based on criteria such as edge length. This
process can be implemented quite efficiently. The algorithm also tends to make
substantial alterations to the topology of the original model. Looking at Figure
2.13, we can see that the triangle in the upper left corner is reduced to a point,
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and two separate components along the top are joined together. Note that,
much like uniform subsampling of images, the results of this algorithm can be
quite sensitive to the actual placement of the grid cells. It is also incapable of
simplifying features larger than the cell size. In particular, a planar rectangle
consisting of many triangles all larger than the cell size will not be simplified at
all, even though it can be approximated using two triangles without error.

The most natural way to extend uniform clustering is to use more elaborate
spatial partitioning schemes. Luebke [129, 130] examined the generalization of
this algorithm to use a more adaptive octree partition of space. Low and Tan
[128] proposed a more flexible partitioning scheme. Cells may be any simple
shape, such as a cube or sphere, and cells are centered around the vertex of
highest importance. Vertices that fall within multiple cells are assigned to the
cell with the closest center.

Clustering methods tend to work well if the original model is highly over-
sampled and the required degree of simplification is not too great. They also
tend to perform better when the surface triangles are smaller than the cell
size. Since no vertex moves further than the diameter of its cell, clustering
algorithms provide guaranteed bounds on the Hausdorff approximation error
(§2.3.2) sampled at the vertices of M and M ′. However, to achieve substantial
simplification, the required cell size increases quite rapidly, making the error
bound rather weak. In particular, at more aggressive simplification levels, the
quality of the resulting approximations can degrade rapidly. For an example,
see Figure 6.30 in Section 6.4.

Region Merging

A handful of simplification algorithms [102, 103, 89, 75, 154] operate by merging
surface regions together. For example, the “superfaces” algorithm of Kalvin and
Taylor [102, 103] partitions the surface into disjoint connected regions based on
a planarity criterion. Each region is replaced by a polygonal patch whose bound-
ary is simplified, and the resulting region is retriangulated. These algorithms
are generally restricted to manifold surfaces, and do not alter the topology of
the model. The algorithms of Hinker & Hanson [89] and Gourdon [75] appear to
be best suited for smooth surfaces that are not highly curved. However, Kalvin
and Taylor’s algorithm seems to produce good quality results, and it provides
bounds on the approximation error.

Region merging techniques do not seem to have become widespread. This
may well be because they are somewhat more complicated to implement in com-
parison to other algorithms without offering superior approximations. And in
contrast to iterative edge contraction, they do not produce a natural multires-
olution representation.

Wavelet Decomposition

Wavelet methods [182] provide a fairly clean mathematical framework for the
decomposition of a surface into a base shape plus a sequence of successively
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finer surface details. Approximations can be generated by discarding the least
significant details. Wavelet decomposition has been used quite successfully for
producing multiresolution representations of signals and images [132, 182].

Lounsbery et al. [127] developed a method for generating a wavelet decom-
position of surfaces with subdivision connectivity10. Consequently, the resulting
approximations may be relatively far from optimal because they may use a large
number of triangles simply to preserve subdivision connectivity. Wavelet decom-
positions are also generally unable to resolve creases on the surface unless they
fall along edges in the base mesh; Hoppe [90] provides a good illustration of this
effect. Eck et al. [51] developed a procedure for producing a subdivision mesh
from a surface with arbitrary connectivity. However, this pre-process introduces
some level of error into the base shape, although this error can be limited by a
specified tolerance value. Like other subdivision-based schemes, wavelet meth-
ods cannot construct approximations with a topology different from the original
surface.

Vertex Decimation

One of the more widely used algorithms is vertex decimation, an iterative simpli-
fication algorithm originally proposed by Schroeder et al. [172]. In each step of

delete
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Figure 2.14: A vertex is removed and the resulting hole is retriangulated.

the decimation process, a vertex is selected for removal, all the faces adjacent to
that vertex are removed from the model, and the resulting hole is retriangulated
(see Figure 2.14). Since this retriangulation requires a projection of the local
surface onto a plane, these algorithms are generally limited to manifold surfaces.
The fundamental operation of vertex deletion is also incapable of simplifying the
topology of the model. Schroeder [171] was able to lift these restrictions by in-
corporating cutting and stitching operations into the simplification process. The
original vertex decimation algorithm [172] used a fairly conservative estimate of
approximation error. More recent methods [179, 106, 22, 108] use more accurate
error metrics, like the localized Hausdorff error (§2.3.2). They maintain links
between points on the original surface and the corresponding neighborhood on

10 Starting with a base mesh, such as an octahedron, triangles are repeatedly subdivided
into four subtriangles by splitting each edge and connecting these new vertices.
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the approximation, and the distances between these points and the associated
faces define the approximation error.

The algorithm of Schroeder et al. is reasonably efficient, both in time and
space, but it seems to have some difficulty preserving smooth surfaces [171, Fig.
9]. The body of the turbine blade (see §6.2 Figure 6.13) is initially smooth, but
becomes quite rough during simplification. While the other vertex decimation
algorithms produce higher quality results, they are substantially slower and
consume more space.

This methodology of vertex decimation is in fact closely related to iterative
contraction (discussed in the next section). In particular, note that the vertex
removal pictured in Figure 2.14 can just as easily be accomplished by contracting
the bottom edge. Removing a vertex by edge contraction [171] is generally more
robust than projecting the neighborhood onto a plane a retriangulating [172].
In this case, we do not need to worry about finding a plane onto which the
neighborhood can be projected without overlap.

Iterative Contraction

The final major class of algorithms is based on the iterative contraction of
edges11 [90, 144, 93, 158, 76, 77, 68, 70, 5, 124, 137, 114]. My own algorithm
[68, 69], discussed in much greater detail in Chapter 3, falls into this category.

When an edge is contracted, its end points are replaced by a single point
and triangles which degenerate to edges are removed (see Figure 2.15). Unless
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Figure 2.15: Edge (vi,vj) is contracted; two faces and one vertex are removed.

the topology is explicitly preserved, edge contraction algorithms may implicitly
alter the topology by closing holes in the surface. Hoppe et al. [95] appear to
have been the first to use edge contraction as the underlying mechanism for
accomplishing surface simplification. I [68] and others [144] have proposed a
generalization of edge contraction to permit the contraction of arbitrary ver-
tex pairs rather than just edges. This allows unconnected regions to be joined
together which also results in topological simplification. Also note that the
fundamental operation of contraction does not require the immediate neigh-
borhood to be manifold. In fact, contraction can be applied to any simplicial

11 The algorithm of Gieng et al. [70] is actually formulated using face contraction, but since
a face can be contracted by contracting two of its edges, the distinction is minor.
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complex. Thus contraction-based algorithms can more conveniently deal with
non-manifold surfaces than vertex decimation algorithms.

Hoppe’s algorithm [90] for constructing progressive meshes is based on min-
imization of an energy function. One of its primary components is a geometric
error term very much like Eavg (2.8). The algorithm maintains a set of sample
points on both the original surface and the approximation. The distances be-
tween these points and the closest point on the opposing surface determine the
geometric error. This algorithm produces some of the highest quality results
among currently available methods. However, the price of this precision is a
very long running time. Hoppe reports [91] running times of around an hour for
a model of about 70,000 faces. The original algorithm could simplify topology
by closing holes in the surface, and the extension by Popović and Hoppe [144]
can join unconnected regions.

The algorithm developed by Guéziec [76, 77] maintains a tolerance volume
around the approximation such that the original surface is guaranteed to lie
within that volume. The volume itself is defined by spheres located at each
vertex of the approximation. The convex combination of these spheres over the
faces of the model creates so called “fat triangles” which comprise the tolerance
volume. Vertices of the approximation are positioned to preserve the volume
of the object. While this algorithm appears somewhat slow, it is faster than
Hoppe’s algorithm, and it appears to generate good quality results.

Ronfard and Rossignac [158] have developed a fairly efficient simplification
algorithm. Each vertex in the approximation has an associated set of planes,
and the error at that vertex is defined by the maximum of squared distances
to the planes in this set. These sets are merged when vertices are contracted
together. Because measuring distances to planes is much cheaper than mea-
suring distances to triangles, this error metric is much cheaper than Hoppe’s,
for example. While it is necessarily less precise, Ronfard and Rossignac [159]
show that localized Hausdorff error bounds can be derived from their metric.
The resulting approximations appear to have generally good quality, and the
algorithm is fairly efficient compared to the more exact algorithms. Indeed, this
error metric is closely related to my own (see Section 3.3.1 for more details).

The “memoryless” algorithm recently developed by Lindstrom and Turk
[124] is interesting in that, unlike most algorithms, it makes decisions based
purely on the current approximation alone. No information about the original
shape is retained. They use linear constraints, based primarily on conservation
of volume, in order to select an edge for contraction and the position at which
the remaining vertex will be located. In fact, this error metric is in part a simple
variation of my own (see Section 4.1.3). The reported results suggest that it
can generate good quality results, and that it is fairly efficient, particularly in
memory consumption.

The mesh optimization algorithm of Hoppe et al. [95] is an earlier form
of Hoppe’s progressive mesh construction algorithm [90]. It performs explicit
search rather than simple greedy contraction. Consequently, it exhibits even
longer running times, but may produce the highest quality results. Edge con-
traction, edge split, and edge flip are the operators used to explore the space of



2.4. SURVEY OF POLYGONAL SIMPLIFICATION METHODS 33

possible approximations. Johnson and Hebert [100] used iterative application
of edge contraction and edge split to produce approximations that are both
geometrically faithful and that have roughly uniform edge length.

One of the major benefits of iterative contraction is the hierarchical structure
that it creates (see Chapter 7 for a more detailed discussion). This quite nat-
urally leads to a useful multiresolution surface representation [90, 91, 93, 198].
Note that similar hierarchies can be built using vertex decimation algorithms
[171, 41].

2.4.4 Material Properties

Much of the work done on simplifying surfaces has focused exclusively on the
geometry of the surface. But in practice, models may often have various material
properties. For example, models intended for use in rendering systems might
often have color and texture attached to the surface.

For restricted surface classes, such as height fields, very simple methods
can work reasonably well. My own version of the greedy insertion terrain ap-
proximation algorithm [67] can approximate terrains with color samples at each
vertex. However, more general surfaces require more advanced techniques, and
some available simplification methods do address this need.

Hoppe [90] explicitly included attributes in his error metric which supports
both per-vertex (or scalar) attributes and per-face (discrete) attributes. As was
the case with geometric fidelity, this algorithm seems to produce high quality
results at the cost of rather high running times. Certain et al. [19] outlined a
technique for adding surface color to a wavelet surface decomposition. Hughes
et al. [96] investigated the simplification of Gouraud-shaded meshes produced
by radiosity simulations; it does not appear that their method would generalize
well to other domains. My own algorithm can also be extended to consider
material properties as part of the error metric [69] (see Chapter 5).

An alternative approach is to focus more on attributes as maps on the sur-
face. In this case, we would focus on reparameterizing the maps rather than
preserving actual attribute values. Cohen et al. [30, 29] developed an algorithm
capable of reparameterizing both texture and normal maps as a surface is sim-
plified. Others — including Maruya [133], Soucy et al. [178], and Cignoni et
al. [25] — decouple attributes and geometry even further. They first compute
a simplified surface, without regard for the surface attributes. Given the final
approximation, they resample the attributes of the original into a texture map
on the approximation. However, this complete decoupling has certain disadvan-
tages. Most significantly, the final texture map is highly fragmented and this
technique would not work well for generating progressive output (see Chapter
5 for more details).

2.4.5 Summary of Prior Work

In the last few years, significant progress has been made in the field of polygo-
nal surface simplification. A range of fairly effective algorithms is now available.
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Simplification facilities have appeared in a number of commercial packages. Ef-
fective multiresolution surface representations, produced via simplification, have
begun to appear [91, 130, 198, 41].

Hoppe’s simplification algorithm [90] produces very good results, but is quite
slow. Vertex clustering (e.g., the Rossignac–Borrel algorithm [161]) is very fast
and broadly applicable to arbitrary collections of triangles. But the result-
ing approximations can be quite poor. The vertex decimation algorithm of
Schroeder et al. [172, 171] seems to be reasonably fast, but also appears to
have some difficulty preserving smooth surfaces. Related vertex decimation al-
gorithms [179, 106, 22, 108] produce higher quality results, but also appear to
be substantially slower [26].

Between the very high quality, very slow algorithm proposed by Hoppe and
the very fast, but low quality algorithms such as Rossignac & Borrel’s, there
is a need for a fast simplification algorithm that produces high quality results.
This is the role that my simplification algorithm attempts to fill. It provides a
practical mix of efficiency and quality.



Chapter 3

Basic Simplification

Algorithm

In the previous chapter, I have reviewed the various algorithms which have
been devised for automatically simplifying polygonal surface models. Now, I
will present the basic simplification algorithm which I have developed. It is
founded on two fundamental components: iterative vertex pair contraction and
the quadric error metric. In this chapter, I will focus on the description of the
algorithm itself. I will analyze the quadric error metric in much greater detail
in Chapter 4 and examine my algorithm’s performance in Chapter 6.

For the moment, I will consider the surface geometry alone. I will delay
the issue of material properties such as color until Chapter 5. At that point, I
will present an extended form of the quadric metric which can account for the
presence of such properties.

3.1 Design Goals

A fast algorithm capable of producing high-quality approximations has been the
primary goal of my work. For surface simplification, like most problems where
optimal algorithms are infeasible, a tradeoff exists between quality and efficiency.
As I stated in Section 2.4.5, there has been a gap between the very fastest al-
gorithms, which can produce poor approximations, and those algorithms which
produce very high quality approximations, but which can be rather slow. There-
fore, I have opted to compromise quality in some respects in order to create a
more efficient algorithm. For instance, my algorithm does not provide guaran-
teed error bounds for the approximations which it produces.

I have also assumed that approximations need not maintain the topology of
the original surface. Clearly, there are applications in which this is not true.
In medical imaging, for instance, topology may provide critical information;
depending on the application, preserving a hole in the heart wall may be much
more important than preserving the exact shape of the surface. However, in

35
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most rendering applications, not only can we safely simplify the topology of
models, it is often desirable to do so. Consider a model of a sponge. When
examined closely, the intricate structure of holes in the sponge is a visually
important feature. However, when viewed from a distance, these holes are
imperceptible. The entire sponge can be adequately approximated by a simple
block, particularly if we can apply an appropriate texture image to the block
that simulates the texture of the original.

As I discussed in Section 2.1.1, it is also helpful for simplification algorithms
to allow non-manifold surfaces. Not only does this broaden the class of models
which can be input to the algorithm, but it gives the algorithm more flexibility
in simplifying the surface. The process of simplification itself may well trans-
form manifold inputs into non-manifold approximations, and I allow this sort
of topological modification.

3.2 Iterative Vertex Contraction

The simplification algorithm which I have developed is a decimation algorithm.
It begins with the original surface and iteratively removes vertices and faces from
the model. Each iteration involves the application of a single atomic operation:
vertex pair contraction.

A vertex pair contraction, which I denote (vi,vj) → v̄, modifies the surface
in three steps:

1. Move the vertices vi and vj to the position v̄;

2. Replace all occurrences of vj with vi;

3. Remove vj and all faces which become degenerate — that no longer have
three distinct vertices.

The first step modifies the geometry of the surface, and the second step modifies
the connectivity of its mesh. Depending on the structure of the mesh, this may
also alter the topology of the surface. The final step simply removes elements
of the surface which are no longer needed. Pair contraction is a generaliza-
tion of edge contraction; the vertices vi,vj need not be connected by an edge.
I proposed this generalization as a means of aggregating separate topological
components during simplification [68]. Popović and Hoppe [144] independently
proposed the same generalization, which they referred to as vertex unification.
Figure 3.1 illustrates a single edge contraction in a manifold neighborhood. Note
that the effect of a contraction is small and highly localized. For the example
shown in Figure 3.1, one vertex and two faces are removed from the model.
As we will see shortly, this locality is very important for the efficiency of the
algorithm.

The effect of an edge contraction such as the one pictured in Figure 3.1 is
to remove one vertex and one or more faces from the model. In contrast, con-
tracting a non-edge pair will remove one vertex and join previously unconnected
regions of the surface (see Figure 3.2). By allowing the contraction of non-edge
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Figure 3.1: Edge (vi,vj) is contracted. The darker triangles become degenerate
and are removed.
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Figure 3.2: Non-edge pair (vi,vj) is contracted, joining previously unconnected
areas. No triangles are removed.

pairs, we are allowing the algorithm to topologically simplify the model by join-
ing separate components. This is also one reason why it is advantageous to
support non-manifold surfaces. At the instant when two separate components
are joined together, a non-manifold region will almost certainly be created. For
instance, the resulting neighborhood pictured in Figure 3.2 is non-manifold be-
cause the faces surrounding v̄ form two separate fans.

The algorithm which I have developed, like most related methods, is a simple
greedy procedure. It produces large-scale simplification by applying a sequence
of vertex pair contractions. This sequence is selected in a purely greedy fashion;
once a contraction is selected, it is never reconsidered. At a high level, the
outline of the algorithm is as follows:

1. Select a set of candidate vertex pairs (§3.2.1).

2. Assign a cost of contraction to each candidate (§3.3.1–§3.4).

3. Place all candidates in a heap keyed on cost with the minimum cost pair
at the top.

4. Repeat until the desired approximation is reached:

(a) Remove the pair (vi,vj) of least cost from the heap.

(b) Contract this pair.

(c) Update costs of all candidate pairs involving vi.
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Most of the various algorithms based on iterative contraction have this basic
structure. Each pair being considered for contraction is assigned a “cost”. The
way in which this cost is determined is the primary differentiating factor between
algorithms of this type. Generally, this cost of contraction is meant to reflect
the amount of error introduced into the approximation by the contraction of
the pair in question. At each iteration, the lowest cost pair is contracted. In
Sections 3.3.1 and 3.4 I will discuss how my algorithm calculates contraction
costs. For now, let us simply assume that some available procedure, when given
a pair (vi,vj), returns a real number E(vi,vj) which is the cost of contracting
that pair.

In general, we can not expect this simple greedy algorithm to produce op-
timal approximations. However, finding optimal approximations of surfaces is
an NP-Hard [2, 34] problem, and no methods currently exist which generate
provably good approximations. A more thorough search algorithm might con-
ceivably produce much better approximations than greedy simplification, but
it’s results would remain sub-optimal.

1 2

34

5 6

78

1 2
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5
6
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5 6

M0 M1 M2

Figure 3.3: Simplification of a simple planar object.

Figure 3.3 illustrates the simplification of a very simple model by a series of
edge contractions. The original model M0 is a square with a hole cut through
it; the total model consists of eight triangular faces. By contracting the high-
lighted pair of vertices (v5,v8), we produce the approximationM1. One vertex
and one face have been removed, and the hole is now a triangle rather than
a square. Now, by contracting the highlighted pair (v6,v7), we arrive at the
approximation M2 which has only six triangular faces. Notice that the hole
is now closed. Assuming that contractions were selected based on purely geo-
metric criteria, this example illustrates how the topology of the model may be
implicitly simplified by iterative contraction. For application domains in which
topological alterations are not desirable, the basic algorithm can be augmented
by additional mechanisms that guarantee topological preservation [31, 52].

Note that, as a result of iterative contraction, we establish a correspondence
between the vertices of the original model and the vertices of each intermediate
approximation. Table 3.1 lays out the correspondence created by the simplifi-
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Original Vertices

Model 1 2 3 4 5 6 7 8

M0 1 2 3 4 5 6 7 8
M1 1 2 3 4 5 6 7 5

M2 1 2 3 4 5 6 6 5

Table 3.1: Vertex correspondences for example shown in Figure 3.3.

cation of Figure 3.3. This correspondence can be used to construct geomorphs
(§2.2.1) between approximations. Disregarding the placement of vertices, the
list of vertex assignments completely determines the transformation of the orig-
inal model into any of the approximations1. This is important because of the
mapping it provides between the original surface and the resulting approxima-
tion. Every vertex and vertex neighborhood on the approximation corresponds
to a set of vertices and a set of faces, respectively, on the original surface. As we
will see in Chapter 7, the correspondence resulting from iterative contraction
induces a hierarchical structure on the surface which provides a useful multires-
olution surface representation.

3.2.1 Selecting Candidates

The initial step of the algorithm is to select a set of candidate vertex pairs. The
most natural choice is simply to select all edges of M0. If the model consists of
a single connected component, this may be the best choice. However, consider
the case of a model with more than one connected component. We may be
able to produce better approximations by considering non-edge pairs as well.
Figure 3.4a shows a model composed of 100 closely spaced, individual cubes

(a) Grid of 100 cubes (b) using edges only (c) with added pairs

Figure 3.4: Contrast the results of simplifying this model using edges only (b)
with the results of simplifying using edges as well as selected non-edge pairs (c).

arranged in a grid. Simplifying this model by considering edges alone produces
approximations like that shown in Figure 3.4b. As you can see, the individual

1 Consequently, it is a simplicial transformation or simplicial mapping [3, 4, 87].
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components are individually reduced to nothing. This does not provide a good
representation of the original. On the other hand, consider the approximation
shown in Figure 3.4c. By adding selected non-edge pairs for consideration, the
algorithm was able to join the separate components into a single component.
The result is a much more faithful approximation of the original.

Building a candidate set containing some non-edge pairs in addition to edges
may be beneficial; however, the question remains of how to select these non-
edge pairs. Popović and Hoppe [144] report having considered several schemes
including “binning, octrees, and k-closest neighbor graphs”. They settled on the
set of edges of the Delaunay tetrahedralization of the vertex set which connect
separate components of the model. The very simple technique which I have
proposed [68] is to select all pairs (vi,vj) which satisfy the conditions:

1. (vi,vj) is an edge, or

2. (vi,vj) is not an edge and ‖vi − vj‖ < τ

where τ is a threshold parameter specified by the user. Conceptually, I place
an open ball of radius τ around every vertex, and form pairs with all other
vertices that fall within that ball. This bears some resemblance to the parti-
tioning schemes used by vertex clustering methods [161, 167, 130], particularly
the method of Low and Tan [128]. However, instead of directly merging all
vertices within a particular cell, my algorithm simply forms pairs of vertices
for later consideration. Whether any of these pairs will actually be contracted
is determined by the cost metric at the heart of the iterative algorithm. The
Delaunay-based scheme has the advantage of providing some level of automatic
adaptation to the local scale of the model. On the other hand, the distance
threshold scheme can potentially provide more pairs for the algorithm’s consid-
eration, and the τ parameter provides strict control over the size of gaps which
may be bridged by non-edge pairs. A scheme for selecting adaptive τ values,
such as the one developed by Erikson and Manocha [54], can produce higher
quality results.

In Section 6.4 I will consider the use of non-edge pairs more closely. In
particular, we will see that the benefits of this technique are somewhat limited.
In short, I have found that greedy edge contraction produces consistently good
results on many kinds of models. Greedy contraction of arbitrary pairs is com-
paratively less robust. It is relatively more dependent on the structure of the
model and on the choice of which non-edge pairs to consider.

3.3 Assessing Cost of Contraction

Having settled on the algorithmic framework discussed in Section 3.2, an im-
portant issue remains: how to measure the cost of a contraction. Since we are
concerned with producing approximations which remain faithful to the original,
the cost of a contraction should reflect how much that contraction changes the
surface. For rendering applications, we might select a cost metric which reflects
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the extent to which the appearance of the model changes (§2.3.1). However,
for reasons outlined in Section 2.3, I will follow the common practice in the
field and adopt a cost metric which measures the amount of geometric change
introduced into the model as a result of a single edge contraction.

Recall that in Section 2.3.2 I described the Hausdorff distance Emax(M1,M2)
and the average distance Eavg(M1,M2) which measure the difference between
two polygonal models M1 and M2. One natural, and common, approach is to
use these metrics directly to measure the error introduced by individual contrac-
tions. For practical reasons, the sampled forms of Eavg (2.8) and Emax (2.7),
where distance measurements are only sampled at a discrete set of points, are
used. Hoppe et al. [95, 90] measure the non-symmetric2 Eavg error resulting
from each possible contraction. This produces high quality results, but it quite
slow. Others selected the localized form of the Hausdorff error metric Emax

[179, 106, 22]. Because of the localization of the error metric, these algorithms
are somewhat faster but the quality of their results is also somewhat lower.
These two kinds of algorithms can produce high quality results because they
explicitly track and seek to minimize the geometric error between the current
approximation and the original surface. Still, these techniques do not necessar-
ily produce approximations which minimize their chosen error metrics because
they are greedy algorithms. This type of error metric requires us to make sev-
eral expensive distance-to-surface (Eq. 2.4) measurements for each contraction
under consideration. The price we must pay for this level of accuracy is an al-
gorithm that is rather slow. Simplification of a very large surface model might
require several hours.

Another common, and generally less expensive, approach is to generate some
local surface approximant and assign contraction costs based on distances to
this approximant. For instance, the importance of a vertex might be measured
by its distance to a plane fit through its neighborhood [172]. We might also
consider higher order approximants, such as quadric patches [70], but the cost
of computing distances to the patch increases rapidly with higher orders. It
also becomes difficult to fit higher order patches to local neighborhoods. Not
only must there be enough points to uniquely determine the patch, but the
neighborhood generally needs to be plane-projectable. For instance, while we
can fit quadric surfaces to arbitrary sets of points [145], we are not guaranteed
that the result will be a patch [190]; it might be a two-sheeted hyperboloid.
Therefore, it is customary to project the local surface onto a plane, treat it as
a height field f(u, v), and fit a quadric patch to it using a least squares method
[70, 113]. Even if we only use an approximating plane, this kind of metric has a
significant drawback. It only relates the error of the current approximation to
the previous one rather than to the original surface. Thus, we might introduce
only small incremental errors at each iteration, but we have no guarantee that
they are not accumulating into large total errors. While this situation can be
remedied to some extent [171], it appears difficult to propagate incremental
errors across iterations in such a way as to guarantee a tight estimate of error.

2 Distances are only measured from points on M to M ′.



42 CHAPTER 3. BASIC SIMPLIFICATION ALGORITHM

In order to achieve very rapid simplification, we might also consider using a
much simpler measure of contraction cost. A particularly simple approach is to
construct a heuristic based on a combination of very inexpensive measurements
such as edge length [198], dihedral edge angle [5, 137, 154], and local curvature
[75, 89, 114]. Rather than defining a real notion of error, these metrics are based
on observations such as “small edges tend to be less important.” However, like
those based on local approximants, these metrics provide no connection between
the current approximation and the original surface. While each iteration may
appear to entail only a minor change to the model, these incremental changes
may result in approximations which deviate substantially from the original.
Finally, these heuristics are often targeted towards specific classes of models,
such as smooth surfaces [5, 75, 89] or CAD parts [154], and typically do not
generalize well to other kinds of models.

3.3.1 Plane-Based Error Metric

As I outlined earlier, the primary goal of my work has been an algorithm capable
of rapidly generating high-quality approximations. This requires an error met-
ric which is cheap to evaluate. A greedy contraction algorithm requires O(n)
iterations to simplify a model with n faces to a fixed level. Consequently, it
will evaluate the error metric many times during simplification. While it must
be inexpensive, the metric must still provide a useful characterization of the
approximation error in order to produce good results. It also seems generally
desirable that the metric provide a measure of error between the current approx-
imation and the original surface, not simply with the approximation produced
during the previous iteration. To support a wide range of input surfaces, such
as non-manifolds, it is also important that the error metric not make too many
assumptions about the structure of the surface mesh.

The error metrics described in the previous section do not fit all these re-
quirements. Metrics based on careful distance measurements such as Eavg or
Emax produce good results, but are expensive to evaluate. Those based on local
approximants are generally not applicable to non-manifold surfaces. Heuristics
based on simple measurements, like dihedral edge angles, do not provide enough
information about the error between the current approximation and the origi-
nal surface to produce consistently good results. The error metric which I have
developed, the quadric error metric, tries to meet these competing requirements
of economy, accuracy, and generality. I will present the ideas underlying this
metric in the remainder of this section, and describe the details of the metric
itself in subsequent sections.

Following Ronfard and Rossignac [158], I associate a set of planes with every
vertex of the model; however, as we will see (§3.4) this set is purely conceptual.
The standard representation of a plane is the set of all points for which nTv +
d = 0 where n = [a b c]T is a unit normal (i.e., a2 + b2 + c2 = 1) and d is a
scalar constant. Given a plane in this form, the squared distance of a vertex
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v = [x y z]
T

from the plane is given by the equation

D2(v) = (nTv + d)2 = (ax+ by + cz + d)2 (3.1)

For a vertex v with an associated set of planes P , I define the error at that
vertex to be the sum of squared distances of the vertex to all the planes in the
corresponding set

Eplane(v) =
∑

i

D2
i (v) =

∑

i

(ni
Tv + di)

2 (3.2)

This definition of error differs somewhat from the one given by Ronfard and
Rossignac [158]. They measured maximum squared distance over the set rather
than the sum of squared distances. While tracking the maximum distance (§4.5)
leads to a clearer connection to the Hausdorff distance, the use of summation
leads to a convenient implicit representation (§3.4) which provides significant
performance benefits.

This error metric fits quite easily into the algorithmic framework of Section
3.2. In the original model, each vertex is assigned a set of planes. Each set is
initialized with the planes determined by the faces incident to the corresponding
vertex. When a pair is contracted into a single vertex, the resulting set is the
union of the two sets associated with the endpoints. At first, it appears that
we will be required to explicitly track these sets of planes. This can require a
sizeable amount of storage that does not diminish as simplification progresses.

To see how this error metric might work in practice, consider the example
shown in Figure 3.5. In this 2-D example, every segment defines a line. The

contract

vi
vj

v
–

A B

C

Figure 3.5: Measuring contraction cost in 2-D.

vertices vi,vj have associated sets of lines Pi = {A,C} and Pj = {B,C} re-
spectively. Note that the error at these vertices is Eplane(vi) = Eplane(vj) = 0
since they both lie on all the lines in their respective sets. Upon contracting
this pair, we would move the remaining vertex to some new position v̄. The set
of lines associated with this vertex would be P̄ = Pi ∪ Pj = {A,B, C}. Assum-
ing for the moment that Eplane provides an accurate measurement of error, we
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would naturally like to choose a position v̄ which minimizes the sum of squared
distances to the lines in P̄ . This vertex, which lies at the center of the triangle
formed by the lines A,B, C, is shown in gray. Performing the resulting con-
traction (vi,vj) → v̄ produces the approximation pictured on the right. Note
that Eplane(v̄) > 0 since there is no point at which the lines A,B, C intersect.
The elliptical curves around v̄ represent isocontours Eplane(v̄) = ǫ for various
values of ǫ. Note that v̄ lies at the center of these concentric ellipses. In 3-D,
the analogous isosurfaces are quadric surfaces, hence the name “quadric error
metric.”

3.4 Quadric Error Metric

As I indicated in the previous section, the sets of planes associated with each
vertex are purely conceptual. In fact, I use a much more convenient and com-
pact representation of error. The foundation of the error metric which I have
developed is the fact that we can rewrite the equation for D2 (3.1) into a new
form as follows:

D2(v) = (nTv + d)2 (3.3)

= (vTn + d)(nTv + d) (3.4)

= (vTnnTv + 2dnTv + d2) (3.5)

=
(

vT(nnT)v + 2(dn)
T
v + d2

)

(3.6)

where nnT is the outer product matrix

nnT=





a2 ab ac
ab b2 bc
ac bc c2



 (3.7)

This has close connections with various quadratic distance metrics (§4.1.4) and
the least squares method of normal equations (§4.2).

I will define a quadric Q as a triple

Q = (A,b, c) (3.8)

where A is a 3×3 matrix, b is a 3-vector, and c is a scalar. The quadric Q
assigns a value Q(v) to every point in space v by the second order equation

Q(v) = vTAv + 2bTv + c (3.9)

I use the term quadric because the isosurfaces Q(v) = ǫ are quadric surfaces
— second degree implicit surfaces which include ellipsoids, paraboloids, hyper-
boloids, and planes [15]. I will explore this geometric interpretation in much
greater detail in Chapter 4.
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Quadrics provide a very convenient representation for the squared distance
D2(v) of a point v to a particular plane. For a given plane nTv+d = 0, I define
its fundamental quadric Q to be

Q = (nnT, dn, d2) (3.10)

Recalling the formula for D2 (3.6) given earlier, we see that the value of this
quadric is precisely the squared distance Q(v) = D2(v) of v to the given plane.

The addition of quadrics can be naturally defined component-wise: Qi(v)+
Qj(v) = (Qi + Qj)(v) where (Qi + Qj) = (Ai + Aj,bi + bj, ci + cj). Thus,
given a set of fundamental quadrics, determined by a set of planes, the quadric
error EQ is completely determined by the sum of the quadrics Qi:

EQ(v) =
∑

i

D2
i (v) =

∑

i

Qi(v) = Q(v) (3.11)

where Q =
∑

iQi. In other words, to compute the sum of squared distances
to a set of planes, we only need one quadric which is the sum of the quadrics
defined by each of the individual planes in the set. When contracting the edge
(vi,vj), the resulting quadric is merely Q = Qi +Qj. Furthermore, the cost of
a contraction (vi,vj) → v̄ is Q(v̄) = Qi(v̄) +Qj(v̄).

The efficiency of the quadric error metric is one of its primary features. Each
vertex has exactly one quadric, and this is the only additional memory required
by the error metric. Specifically, it requires 10 coefficients to store the symmetric
3×3 matrix A, the 3-vector b, and the scalar c. The cost of evaluating the error
of a vertex is also a fairly small constant cost. This is in contrast to the related
metric of Ronfard and Rossignac [158] which requires time linear in the size of
the plane set.

In addition to being efficient, the quadric error metric can also produce
quality results. Figures 3.6 and 3.7 show a single example; all models are flat
shaded to make their structure more apparent. The original cow model (a)
has 5804 faces. As you can see, the features of the cow are preserved fairly
well even with only 300 faces (e). Using my implementation of the algorithm,
these approximations can be generated in about a half second on a 200 MHz
PentiumPro machine. More complete details about the performance of the
simplification algorithm are located in Chapter 7.

I have derived the quadric error metric from a conceptual metric based on
sets of planes (§3.3.1). Evaluating the quadric Q for a plane is completely equiv-
alent to evaluating the squared distance to that plane using the plane equation
(3.1). However, the quadrics which are built up during simplification are not
entirely identical to the sets of planes that would be constructed. When we form
the union of two plane sets P1 ∪P2, any duplicate planes occur only once in the
resulting set. But when we add two quadrics Q1 +Q2, duplicate planes remain.
Any given plane may be counted up to three times. Each triangle in the original
model contributes its plane to each of its vertices. As pairs are contracted, a
single vertex may accumulate all three instances of this plane in its quadric.
This multiple counting could be eliminated using an inclusion–exclusion rule
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(a) 5804 faces (b) 1000 faces

(c) 800 faces (d) 500 faces

(e) 300 faces (f) 100 faces

Figure 3.6: Several approximations of cow model (a) constructed with the
quadric error metric.
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(a) 5804 faces (b) 1000 faces

(c) 800 faces (d) 500 faces

(e) 300 faces (f) 100 faces

Figure 3.7: Wireframe versions of models in Figure 3.6.
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[107] for adding quadrics; however, it would complicate an otherwise simple
algorithm. In fact, multiple counting is arguably beneficial. Consider the set
of faces represented by the quadric Q; these faces form a connected region on
the surface. Faces which intersect the region everywhere, along a single edge,
and at a single vertex are triply, doubly, and singly counted, respectively. This
has the effect of giving full weight to faces within the region of influence and
of discounting faces along the boundary of that region. In any case, the Eplane

metric, which explicitly tracks sets of planes, is really only a heuristic to begin
with. The fact that the quadric metric EQ is not exactly equivalent to it simply
means that EQ is a slightly different heuristic than Eplane.

This question of multiple counting leads us to a much more important issue.
The summation of uniformly weighted quadrics, defined by the faces of the
original model, is too dependent on the input tessellation. What is really needed
is a more careful definition of the quadric error metric.

3.4.1 Normalized Quadric Metric

The form of the quadric error metric given by (3.11) is generally the most
convenient for discussion. However, it is not the most appropriate in practice.
It can be too heavily influenced by the structure of the mesh because every
plane in the summation is given equal weight. For instance, this may produce
undesirable results when some triangles are very large while others are very
small.

Generally speaking, we are more concerned with the shape of the surface
than the specific way in which it is tessellated. Suppose we take a region on
the surface and tessellate it in two different ways, both of which have exactly
the same geometry. Each face determines a single fundamental quadric. If

(a) (b)

Figure 3.8: Two different triangulations of a planar region.

we add up the quadrics for each face, we have the total quadric for the entire
region. Consider the planar region shown in Figure 3.8. Since it is a plane,
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each triangle has the same quadric Q. For triangulation (a), the total quadric3

for the region is 9Q; however, the total quadric for triangulation (b) is 18Q.
This is an undesirable result. Instead, the quadric metric should adhere to the
following principle: the total quadric associated with a region should be the
same, no matter which geometrically equivalent tessellation is chosen.

A natural way to try to achieve the desired tessellation invariance is to
weight all the fundamental quadrics so that they always sum to the same result.
Generalizing the earlier quadric definition, I will define a weighted quadric Q as

Q = (wA, wb, wc) (3.12)

Q(v) = vT(wA)v + 2(wb)Tv + (wc) (3.13)

where w is a scalar weight factor. Suppose we are given a set of fundamental
quadrics and associated weights for each. The quadric error metric, generalized
to include weighting, becomes

EQ =
∑

i

wiQi(v) =

(

∑

i

wiQi

)

(v) (3.14)

The unweighted error metric (3.11) assigns a uniform weight wi = 1 to all fun-
damental quadrics. Weighting by angle, an occasionally suggested alternative
[52], is also insufficient. In this case, the quadric contributed by a face to one
of its corners is weighted by the angle θ formed by the edges of the face at this
vertex. But this produces the same kind of tessellation-dependent results as
uniform weighting. For example, the total quadrics for the meshes in Figure 3.8
would be (a) 3πQ and (b) 6πQ.

Given a face f , we can imagine carving it into three fragments by splitting

(a) Face split into three fragments (b) Fragments adjoining a vertex

Figure 3.9: Each face is divided into three fragments (a), determining three
fundamental quadrics. A vertex accumulates the fundamental quadrics for all
adjacent fragments.

it at an internal point and along each edge (see Figure 3.9a). If Q is the quadric

3 Recall that each fundamental quadric is counted three times.
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determined by the plane of f , we can construct three fundamental quadrics
w1Q,w2Q,w3Q — one for each fragment. Each vertex v of f , instead of re-
ceiving an instance of the quadric Q, will receive the fundamental quadric wiQ
corresponding to the fragment of f adjacent to v (see Figure 3.9b). I propose
to compute the fundamental weights wi according to the area of the fragments
— to use area-weighted quadrics. One straightforward way to define these frag-
ments is to divide each face into three equal parts, and this is the method which
I have adopted as the default policy in my implementation. We can optionally
incorporate a form of angle weighting into this framework as well. A face of
area w can be divided into fragments of size wi = wθi/π where θi is the angle
of the corner made at the relevant vertex.

Applying the area-weighted method to the example shown in Figure 3.8, we
see that the total quadric for both triangulation (a) and (b) is wQ where w is the
area of the region. The total quadric is independent of the tessellation, which
is precisely the desired result. Area-weighted quadrics also have another very
useful property. Consider subdividing a given tessellation more and more finely.
In the limit as the area of individual triangles approaches 0, the summation of
area-weighted quadrics becomes an integration of quadrics over a surface region.
As we will see in Section 4.4, this will allow us to formulate the quadric error
metric on differentiable surfaces.

Finally, note that (3.14) does not involve a division by
∑

i wi. This averaging
step would have the undesirable effect of making the error metric scale invariant.
Consider two identical pyramids, one the size of a thimble and one the size of
a large building. If these two pyramids were placed side by side on a level
field, the larger one is obviously a much more significant feature. Therefore,
its removal should incur a correspondingly higher error than the removal of the
smaller pyramid. In other words, the error metric should be scale dependent.

3.4.2 Homogeneous Variant

In my original presentation of the quadric error metric [68], I used an alternate
notation. We can treat the quadric Q as a homogeneous matrix where

Q =













A b

bT c













(3.15)

Given this matrix, we can evaluate Q(v) using the quadratic form

Q(v) = ṽTQṽ where ṽ = [v 1]T = [x y z 1]T (3.16)

An area-weighted quadric would simply be the scaled matrix wQ.
This homogeneous quadric notation makes another useful property of the

quadric error metric apparent. A model can be transformed by a linear trans-
formation, after the initial quadrics have been computed, and the quadrics can
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be transformed appropriately. Suppose R is a linear transformation applied to
the surface, and that all quadrics Qi were computed prior to the transformation
of the surface. To apply a quadric to a transformed vertex, we can map the
vertex back to the pre-transformed space:

Q(v) = (R−1ṽ)TQ(R−1ṽ)

which we can rewrite as

Q(v) = ṽT
(

(R−1)TQ(R−1)
)

ṽ

This gives us the transformation rule for quadrics

Q → (R−1)TQR−1

which is the standard quadric surface transformation rule [15].
On the whole, I have found this homogeneous representation less convenient

than the form presented earlier. It requires us to move back and forth between
regular and homogeneous coordinates. It also leads to a slightly less efficient
implementation because all matrix operations involve 4×4 rather than 3×3
matrices. For matrix inversion in particular, this can lead to a measurable
increase in running time.

3.5 Vertex Placement Policies

When considering the contraction of an edge (vi,vj), we need some way of
choosing the target position v̄. There are two primary policies to choose from,
and the choice between them must be made with the intended application in
mind. We must trade space efficiency against approximation quality.

Subset placement is the simplest strategy that we can adopt. We simply
select one of the endpoints as the target position. In other words, we will con-
tract one endpoint into the other. To choose between endpoints, we merely
need to find the smaller of Q(vi) and Q(vj). Under this policy, any approxima-
tion which we produce will use a subset of the original vertices in their original
positions.

We can often produce better approximations using optimal placement. For
a given quadric Q, we can try to find the point v̄ such that Q(v̄) is minimal.
Of course, v̄ is optimal only in the sense that it minimizes Q(v̄); it does not
imply an optimal approximation. Since Q(v̄) is quadratic, finding its minimum
is a linear problem; the minimum occurs where ∂Q/∂x = ∂Q/∂y = ∂Q/∂z = 0.
Taking partial derivatives, we see that the gradient of Q is

∇Q(v) = 2Av + 2b

Solving for ∇Q(v) = 0, we find that the optimal position is

v̄ = −A−1b (3.17)
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and its error is

Q(v̄) = bTv̄ + c = −bTA−1b + c (3.18)

These are instances of well-known formulas for the minimum of a positive defi-
nite quadratic form [183, pg. 347].

Naturally, a unique optimal position may not exist. If A is singular, its
inverse does not exist, and we cannot solve for v̄ using (3.17). In this situation,
the set of points for which Q(v) is minimal forms either a line or a plane. This
may occur, for instance, when all the planes in Q are parallel (see Section 4.1
for more details). For the cases in which A is singular, we need some fallback
strategy for selecting the position v̄. In my own implementation, I use the
following three phase approach:

1. Attempt to compute v̄ using (3.17).

2. If A is singular, find the optimal position along the line segment (vi,vj).

3. If this is not unique, select the better of vi and vj (i.e., subset placement).

In practice, some care must be taken in detecting whether or not A is singular.
Theoretically, a singular matrix has determinant detA = 0 [183]. However, due
to the limits of floating point precision, we must test whether a matrix is nearly
singular. If A is nearly singular, the position of v̄ will tend towards infinity.
One simple strategy is to regard as singular any matrix for which det A ≈ 0,
based on a suitable threshold for nearness to 0. However, this does not correlate
well with the near singularity of A; a more careful approach relies on measuring
the norm of A [71].

Whether optimal or subset placement is preferable depends on the intended
application. Optimal placement will tend to produce approximations which fit
the original more closely. The resulting meshes also tend to be better shaped —
triangles are more equilateral and their areas are more uniform. Consequently,
this is the best choice for generating fixed approximations of an original. How-
ever, if we are more interested in producing an incremental representation (§7.1)
such as progressive meshes [90], subset placement may be preferable. The overall
fit of the models will be somewhat inferior, but we can save significantly on stor-
age. With optimal placement, we must store delta records with each contraction
to encode the new vertex position. Using subset placement, we can eliminate
such overhead entirely. By adopting the convention that contractions are al-
ways ordered such that the result of contracting the pair (vi,vj) is to move
vj to the position of vi, we require no additional storage to specify the new
vertex position. This issue of overhead becomes even more important when sur-
faces possess material properties (Chapter 5). Since this overhead grows linearly
with the number of attribute elements, the space savings of subset placement
can become substantial.
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3.6 Discontinuities and Constraints

Discontinuities of a model, such as creases, open boundaries, and borders be-
tween differently colored regions, are often among its most visually significant
features. Therefore, their preservation is critical for producing quality approx-
imations. The fundamental quadric algorithm can already handle shape dis-
continuities (e.g., creases), and it can easily accommodate boundary curves as
well.

Surface shape discontinuities (where there is only C0 continuity) are implic-
itly preserved by the error metric as described. For example, consider the sharp
edges of a cube. A point on the edge of a cube will have contributing planes
from both adjoining faces of the cube. Since these planes are perpendicular, the
cost of moving the point along the edge is much lower than moving it away from
the edge. Consequently, the algorithm will be strongly biased against altering
the shape of these edges.

Figure 3.10: Sample boundary constraint plane. Every edge along the boundary
defines a single constraint plane.

In contrast, the basic algorithm ignores boundary curves. Fortunately, we
can easily incorporate boundary constraints into the existing framework. Dur-
ing initialization, my implementation flags all boundary edges. For each face
adjacent to a given boundary edge, it computes a plane perpendicular to the
face through the edge. The perpendicular plane defines a boundary constraint
plane (see Figure 3.10). We can form a quadric for this plane, just as with a reg-
ular face plane. To form a constraint from this quadric, I weight it using a large
penalty factor4, and add it into the initial quadric for each of the endpoints.
The primary attraction of this approach is that it allows the iterative core of
the algorithm to preserve boundaries without any special-case logic. Once the
constraint planes are added to the initial quadrics, the algorithm proceeds in
exactly the same manner as before.

When using area-weighted quadrics, the constraint quadrics must be prop-
erly weighted. Perhaps the most obvious approach is to weight each constraint
quadric by the area of the face attached to the boundary edge. However, this
makes the resulting quadric dependent on the tessellation near the boundary.

4 My implementation uses a default penalty factor of 1000.
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(a) (b)

Figure 3.11: Two different triangulations of a planar region.

Consider the two triangulations shown in Figure 3.11. Suppose that the left-
most side of the box is an open boundary. In both triangulations, there are
two identical edges along this boundary. However, the area of the faces adjoin-
ing these edges in triangulation (b) is much smaller than in triangulation (a).
Consequently, if the constraint quadrics are weighted by face area, they would
be assigned a substantially higher weight in triangulation (a). The convention
which I propose is to weight the quadric by the squared length of the boundary
edge. For the example in Figure 3.11, this would result in equal quadrics for
both triangulations. Squared edge length is preferable to length because the
squared length has the same units of measure as area.

(a) Original model (b) Unconstrained (c) Constrained

Figure 3.12: Crater Lake simplified with and without boundary constraints.

Figure 3.12a shows a model of the western half of Crater Lake; note the
open boundary surrounding the terrain. The example shown in Figure 3.13, a
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(a) Original model (b) Unconstrained (c) Constrained

Figure 3.13: Simplification of a femur. Note how the boundary of the uncon-
strained approximation has receded.

section of a femur bone, has an open boundary on the left side. Without any
modification, the basic simplification algorithm will produce approximations
such as shown in Figures 3.12b and 3.13b. The boundaries of the objects have
been significantly eroded. This is clearly unacceptable. Figures 3.12c and 3.13c
illustrate the result of using boundary constraints. They each have the same
number of faces as the unconstrained approximations; however, they are clearly
superior approximations because the boundaries have been properly preserved.

This technique can also be applied to arbitrary contours through the surface.
For instance, a terrain approximation system might like to introduce constraints
along the banks of a river or along the contour of a road to preserve these
important features. Boundaries may also occur in discrete surface attributes.
Consider a map 4-colored by country. Each edge dividing two faces of different
colors can be marked as a boundary. This would cause the algorithm to try to
faithfully preserve the borders between separate regions. Because of the nature
of the error metric, we may also want to treat edges with a very small dihedral
angle as discontinuities (see Section 4.5.2 for details).

Using the same kind of mechanism, we can also apply point constraints.
Given a point p, we can construct a constraint quadric

Q = (I,−p,pTp) (3.19)

where I is the 3×3 identity matrix. The value Q(v) measures the squared
distance of v to the point p. A constraint of this sort might be useful for
simplifying a model such as the cow shown in Figure 3.6. We could apply a
point constraint at the tips of the horns which would have the effect of pinning
the tips in place. It seems unlikely that the addition of this kind of constraint
could be completely automated, but it provides a useful control mechanism for
a user to specify important extremal points.

The primary advantage of this constraint approach is that all the special
processing occurs during initialization. Once the initial quadrics at the ver-
tices have been constructed, iterative simplification proceeds as usual. However,
there are naturally limits to this technique. These constraints merely bias the
simplification process, rather than providing any hard guarantees on boundary
preservation. We must also make the assumption that boundaries are reasonably
sparse in comparison to the total surface. If, for instance, every face is assigned
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a slightly different color, or if we have a triangulated regular grid where every
other triangle is a hole, the results will not be good. There will be too many
constraints; it will become difficult for the algorithm to discriminate between
the available edges to contract.

3.7 Consistency Checks

The quadric error metric is the means by which my algorithm selects contrac-
tions to perform and the location at which to place the resulting vertex. How-
ever, a given contraction may potentially introduce undesirable inconsistencies
or degeneracies into the mesh. We can combat this problem by applying a set
of consistency checks to a proposed contraction. If it fails one of these checks,
we can either add a large penalty factor (as with boundary constraints) or dis-
card the contraction entirely. If we only penalize “bad” contractions, there is
no guarantee that it will not be performed if all other contractions have higher
penalties. However, it does ensure that the algorithm will still make progress
even when all contractions are considered “bad”. This is particularly relevant if
we are applying several different checks. On the other hand, discarding contrac-
tions will prevent inconsistencies from occurring, but we may not necessarily be
able to make progress. Discarded contractions will only be reconsidered when
their local neighborhood is changed and they are consequently reevaluated.

The most common consistency check is related to the problem of mesh inver-
sion. Consider the contraction shown in Figure 3.14. For this particular choice

Before After

contract

vi

vj
v
–

Figure 3.14: An edge contraction which causes the mesh to fold over on itself.

of the position v̄, the mesh folds over onto itself (the darkened area). One pop-
ular approach to detecting this situation is to examine the normals of the faces
adjoining vi and vj before and after the contraction [68, 90, 158, 114]. If a
face’s normal changes by more than some significant threshold, we can regard
this face as having “flipped” as a result of the contraction. A contraction fails
this check if any of the local faces flip. While this approach does, in principle,
prevent fold-over, it requires us to pick a suitable threshold value.

In my implementation, I have chosen to use a more careful check [23, 52]
which appears to perform more reliably in practice. For every face around vi,
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(a) Zone around vi (b) Zone around vj

Figure 3.15: Perpendicular planes through the edge loop around v1,v2 define
a zone in which v̄ must fall to prevent fold-over.

excluding the faces shared with vj , there is an edge opposite vi. If we place
a plane perpendicular to the face through the edge, the position v̄ must lie on
the same side of the plane as the vertex vi. The same criterion applies to the
faces surrounding vj . Figure 3.15 illustrates these planes; the arrows indicate
the zone in which v̄ must fall.

There are also other kinds of checks which we can apply to proposed con-
tractions. Recall that a single edge contraction can alter the topology of the
object, as illustrated in Figure 3.3. For some applications, the topology of the
surface should not be changed. We can apply additional checks to prevent such
changes [52]. Sliver triangles, ones which have very small angles, are undesirable
in some applications such as finite element analysis. Guéziec [76, 77] suggested
a measure of triangle compactness

γ =
4
√

3w

l21 + l22 + l23
(3.20)

where the li are the lengths of the edges and w is the area of the triangle. This
will assign a compactness of 1 to an equilateral triangle and 0 to a triangle
whose vertices are colinear. Using this heuristic, we can penalize contractions
which produce triangles whose compactness γ falls below some threshold.

3.8 Alternative Contraction Primitives

Vertex pair contraction is only one instance of a simplification primitive com-
patible with the quadric error metric. Because the quadric error metric is based
solely on adding together quadrics associated with individual vertices of the
model, it can be used with generalized contraction operations. Given any set of
vertices {vi1 ,vi2 , . . . ,vik}, the quadric for this set is Q =

∑

j Qij , and we can
select an optimal vertex position using Equation 3.17. Thus, for example, the
quadric error metric could be used in conjunction with clustering algorithms
such as Rossignac–Borrel [161] and Low–Tan [128].
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The most natural alternative to pair contraction is face contraction, illus-
trated in Figure 3.16. The algorithm which I described in Section 3.2 can easily

Before After

contract

vi
vj

vk

v
–

Figure 3.16: Face (vi,vj,vk) is contracted. The darkened triangles become
degenerate and are removed.

be adapted to use face, rather than pair, contraction. The resulting method
would be more similar to the face-based algorithm described by Hamann [80]
and Gieng, Hamann, et al. [70]. As we will see in Chapter 6, this face-based al-
gorithm is slightly more efficient, but produces inferior results, when compared
to the pair-based algorithm.

3.9 Summary of Algorithm

In Section 3.2 I described the high-level simplification framework upon which
my algorithm is based. Having described the specific details of my algorithm, I
can now present the following more detailed outline:

1. Select as candidates any pair (vi,vj) such that:

(a) (vi,vj) is an edge, or

(b) (vi,vj) is not an edge and ‖vi − vj‖ < τ .

2. Allocate a quadric Qi for each vertex vi.

3. For each face fi = (j, k, l), compute a quadric Qi (3.10). Add this funda-
mental quadric to the vertex quadrics Qj, Qk, and Ql, weighted appropri-
ately (§3.4.1).

4. For each candidate pair (vi,vj):

(a) Compute Q = Qi +Qj.

(b) Select a target position v̄ (§3.5).

(c) Apply consistency checks and penalties (§3.7).

(d) Place pair in heap keyed on cost Q(v̄).
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5. Repeat until the desired approximation is reached:

(a) Remove the pair (vi,vj) of least cost from the heap.

(b) Perform contraction (vi,vj) → v̄.

(c) Set Qi = Qi +Qj .

(d) For each remaining pair (vi,vk), compute target position and cost
as in step 4; update heap.

Having completed the outline of the basic simplification algorithm, I will devote
the next chapter to the analysis of the quadric error metric. In Chapter 5, we
will see that by using a generalized quadric error metric, this algorithm can
also accommodate surfaces with material properties as well. An analysis of the
performance of this algorithm, including running time, memory consumption,
and empirical results, can be found in Chapter 6. Finally, Appendix A contains
specific details on my own implementation of this algorithm.
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Chapter 4

Analysis of Quadric Metric

The simplification algorithm described in Chapter 3 is built around two core
components. First is the process of iterative vertex pair contraction. Several
other algorithms (§2.4.3) have been developed using essentially the same greedy
framework. The second component, and where my algorithm differs most sub-
stantially from other related methods, is the quadric error metric. In this chap-
ter, I will examine the properties of this error metric in much greater detail.
As we will see, the quadrics which my algorithm uses have several interesting
geometric properties. Most notably, they characterize the local shape of the sur-
face, a notion I will formalize by demonstrating their connection with surface
curvature.

4.1 Geometric Interpretation

When describing the simplification algorithm, I derived quadrics algebraically
(§3.4) from the formula for the sum of squared distances of a point to a set
of planes. While this is the most convenient formulation for computational
purposes, it does not provide us with much intuition about what these quadrics
measure and how they behave. For that, we need to explore the geometric
interpretation of quadrics.

4.1.1 Quadric Isosurfaces

Recall that a given quadric Q = (A,b, c) assigns an error value Q(v) = vTAv+
2bTv + c to every point v ∈ R3. Consider the level surface Q(v) = ǫ. This is
the set of all points whose error with respect to Q is ǫ. Using the homogeneous
notation for quadrics (§3.4.2), the equation for this isosurface is the quadratic
form ṽTQṽ = ǫ. By the definition of a quadric (§3.4), Q is a 4×4 symmetric

61
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matrix. Therefore, the level surface is defined by the equation

ṽTQṽ = q11x
2 + 2q12xy + 2q13xz + 2q14x+ q22y

2

+ 2q23yz + 2q24y + q33z
2 + 2q34z + q44 = ǫ (4.1)

This is a second order equation in x, y, z and it defines a quadric surface. Sur-
faces of this type include ellipsoids, paraboloids, hyperboloids, and planes. Blinn
[15] surveys the main algebraic properties of quadric surfaces.

The connection between quadric surfaces and squared distances to sets of
planes was first recognized by Fermat, who stated the following theorem [33]:

If a point move in such a way that the sum of the squares in given
directions from some given planes bears a fixed ratio to the sum of
the squares of its distances in given directions from certain other
given planes, its locus is a spheroid or conoid.

A classical result in linear algebra and projective geometry [135] states that a
quadratic form A in three variables x, y, z can be written as a weighted sum of
the squares of three independent linear forms A = a1L

2
1 + a2L

2
2 + a3L

2
3. Since

distance to a plane is a linear form, the sum of the squares of three such forms
determines a quadratic form. Of course, the quadrics used in my simplification
algorithm are the sum of squares of many more than three linear forms.

A quadric Q generated during simplification is symmetric by construction.
It is also positive semi-definite1 [183]. In other words, all its eigenvalues λi
are non-negative (λi ≥ 0). Consider an eigenvector x 6= 0 of Q. Since it
is an eigenvector, there is some eigenvalue λ for which Qx = λx. And by
the definition of Q (§3.4.2), we know that xTQx ≥ 0; a sum of squared (real)
distances can never be negative. Using the fact that x is an eigenvector, we can
rewrite this condition as xTQx = xT(λx) = λ(xTx) ≥ 0. Since x 6= 0, xTx > 0
and thus we can conclude that λ ≥ 0.

Because Q is positive semi-definite, its isosurfaces will be (potentially de-
generate) ellipsoids. The principal axes of these ellipsoids are defined by the
eigenvectors of the matrix A and an ellipsoid’s extent one of these axes is de-
termined by the corresponding eigenvalue. The ellipsoids are degenerate, or
“open”, when some eigenvalues of A are 0; in other words, when A, and hence
Q, are singular. If all the planes represented by Q are parallel to the same
line, then exactly one eigenvalue is 0, and the isosurfaces are infinite cylinders
centered about this line. If Q represents a set of parallel planes, then two eigen-
values are 0, and the isosurfaces are parallel planes. The equation for finding the
optimal vertex placement (§3.5) corresponds to finding the center of the ellip-
soid isosurfaces. When the ellipsoids are degenerate (i.e., A is non-invertible),
the “center” is either a line or a plane.

The isosurfaces of the fundamental quadric defined by a single plane P are
pairs of planes parallel to P . The matrix A of this quadric has a single non-zero
eigenvalue, and the corresponding eigenvector is the normal of the plane P . As

1 Or, equivalently, non-negative definite.
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further quadrics are added, the isosurfaces will become true ellipsoids when A

is non-singular. This will occur when the normals represented by the quadric
span 3-D space. Furthermore, once a quadric produced by my simplification
algorithm has become non-degenerate, it will remain so.

Figure 4.1 shows quadric isosurfaces computed for three simplified models.
Each of the quadrics shown is centered about a vertex of the current approxi-
mation. If a vertex is moved within its ellipsoid, the quadric error assigned to
that vertex will be bounded by ǫ.

Notice that the quadrics characterize the local shape of the surface. Consider
the example of the cube model pictured in Figure 4.1. For vertices along the
edges, the ellipsoids are cigar shaped, elongated in the direction of the crease.
In contrast, on the sides of the cube, the quadrics are very thin and roughly cir-
cular, like pancakes. The quadric at the corner is ball-shaped. Similar features
occur on the blobby model and on the bunny. Intuitively, we can see that the
quadrics are elongated in directions of low curvature and thin in directions of
high curvature. I will discuss this insight in greater detail in Section 4.2.2 and
present a more formalized analysis in Section 4.4.

4.1.2 Visualizing Isosurfaces

Before continuing with the analysis of quadrics, I would like to briefly outline
the techniques I use to display them. Given a quadric Q and an error value ǫ,
we would like to draw the surface xTQx = ǫ. I have used two methods, both
based on factorization of the quadric matrix.

The primary technique which I use is based on the Cholesky decomposition
[183, 148]. If Q is a symmetric positive definite matrix, we can factor it into
Q = RTR, where R is an upper triangular matrix. And we know that Q

is symmetric positive definite exactly when its isosurfaces are ellipsoids. By
substituting this factorization into the standard quadric equation we get

xTQx = xT(RTR)x = (Rx)T(Rx)

Now, let y = Rx. Note that yTy = ǫ is the equation of a sphere. The ma-
trix R transforms the ellipsoid isosurface into a sphere of radius ǫ; thus, R−1

transforms this sphere into an ellipsoid isosurface. This provides a convenient
technique for rendering isosurfaces under systems like OpenGL [197]. We can
transform a sphere of radius ǫ into the appropriate isosurface by applying the
linear transformation R−1.

An alternative method is to use the spectral decomposition [183]. Assuming
that A is symmetric positive definite, which is the most important case for
display, it can be factored into A = RTDR where D is a diagonal matrix of
eigenvalues and the rows of R are the corresponding eigenvectors. Using the
matrices RT and D we can rotate and scale a unit sphere into an ellipsoid
isosurface. We must independently find the center and perform an additional
translation on the ellipsoid. This technique is slower than the Cholesky method.
However, it has one notable advantage. The x, y, z axes of the unit sphere will
be transformed into the principal axes of the ellipsoid.
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Figure 4.1: Quadric error isosurfaces on three simplified models: blobby “V”,
bunny, and the corner of a cube. Note how the ellipsoids follow the local shape
of each surface.
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4.1.3 Volumetric Quadric Construction

My standard definition of the quadric error metric, developed in Section 3.4,
is formulated in terms of measuring the sum of squared distances to some set
of planes. As we have seen in Section 4.1, the quadrics themselves can be
interpreted as a set of quadric isosurfaces in 3-D space. Now, I will describe a
useful alternative interpretation of the quadric metric as a volumetric measure
of the difference between the approximation and the original surface. This
construction is inspired by the “volume optimization” metric recently introduced
by Lindstrom and Turk [124], which I will demonstrate is equivalent to a form
of my quadric metric.

vi

u1

u2

v
–

Figure 4.2: As vi moves towards v̄, the triangle attached to it sweeps out a
tetrahedron in space.

Suppose that we are about to perform an edge contraction (vi,vj) → v̄.
Let us consider a triangle T = (u1,u2,vi) where uk 6= vj . As Lindstrom and
Turk observed, while the vertex vi moves from its original position to the final
position v̄, the triangle T sweeps out a tetrahedron in space (see Figure 4.2).

We can easily derive a formula for the volume of this tetrahedron. The
unscaled face normal of T is

m = (u1 − vi)×(u2 − vi). (4.2)

and the area of T is half the length of m

w =
1

2
‖m‖ (4.3)

We can also compute the perpendicular distance of v̄ from the plane of T by
the equation

h = (v̄ − vi)
T(m/‖m‖) (4.4)

The volume of the swept tetrahedron is simply

V =
1

3
wh (4.5)

=
1

6
(v̄ − vi)

Tm (4.6)
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Now, we can write the squared volume of the swept tetrahedron as

V 2 =
1

36

(

(v̄ − vi)
Tm
) (

(v̄ − vi)
Tm
)

(4.7)

=
1

36
(v̄ − vi)

T(mmT)(v̄ − vi) (4.8)

=
‖m‖
36

2
(

v̄TAv̄ + 2bTv̄ + c
)

(4.9)

where

A = mmT (4.10)

b = −mmTvi (4.11)

c = vi
T(mmT)vi (4.12)

This is precisely the same as a fundamental quadric constructed using the defi-
nition of Section 3.4.1 weighted by a factor of w2/9.

If we weight each fundamental quadric Q by w2/9, where w is the area of the
contributing face T , we obtain a quadric such that Q(v̄) is the squared volume
of the tetrahedron formed by connecting v̄ to T . Quadrics which are the sum
of a set of fundamental quadrics measure the sum of these squared volumes.
Consider a vertex v on an approximation. It corresponds to some set of faces
on the original surface. We can connect v to each face in this set, forming
a set of tetrahedra. The error Q(v) measures the sum of squared volumes of
these tetrahedra. Thus, by placing v at a position which minimizes Q(v), we
are minimizing this sum of squared volumes. Note that this is not the same
as minimizing the squared volume between the approximation and the original
because the tetrahedra in this set will, in general, overlap with each other.

4.1.4 Quadratic Distance Metrics

The quadric error metric is algebraically very closely related to a number of
previous distance metrics. As demonstrated by (4.1), the quadric metric belongs
to the well-studied class of functions known as quadratic forms [36]. A quadratic
form is a second order polynomial in k variables and can always be written in
the form xTAx where x is a k-vector and A is a k×k symmetric positive definite
matrix. To conform more closely to the traditional notation of quadratic forms,
we can recast the quadric metric in the centered form

Q(v) = (v − v̄)TA(v − v̄) (4.13)

provided that A is in fact positive definite, and hence a unique center v̄ =
−A−1b exists. Distance metrics based on quadratic forms have several conve-
nient properties, and they have been used in a variety of contexts.

The squared length of a vector in standard Euclidean geometry is given by
the inner product xTx. A more general formulation is to define the squared
length of a vector using quadratic form xTMx. If M is the identity matrix,
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it reduces to the Euclidean distance metric. The matrix M is referred to as
a Riemannian metric tensor and

√
xTMx is a Riemannian metric. The field

of Riemannian geometry [111, 115] is based on investigating the structure of
surfaces where distances are measured using this type of metric.

Quadratic forms also play an important role in statistical modeling. Suppose
that x is a k-element vector-valued random variable, and that n observations
x1, . . . ,xn are given. Let x̄ be the mean of x

x̄ = E[x] =
1

n

∑

k

xk (4.14)

The sample covariance matrix [50, 101] Z of x is defined by

Z =
1

n− 1

∑

i

(xi − x̄)(xi − x̄)T (4.15)

Each diagonal element zii of this matrix measures the variance of xi, the compo-
nents of x. The non-diagonal entry zij is the covariance of xi and xj. If zij = 0,
the components xi and xj are statistically independent. The isosurfaces of a
Gaussian distribution with covariance matrix Z are hyperellipsoids in k-space.
Each hyperellipsoid is the set of all points whose density is constant, and it is
determined by the isosurfaces of the quadratic form (x− x̄)T

(

Z−1
)

(x− x̄). This
form, which is the squared Mahalanobis distance of the vector x from the mean
x̄, has a structure which is clearly related to the quadric error metric (4.13).
In particular, note that in both cases the matrix of the quadratic form is the
sum of a set of outer products. In Section 4.2.2, I will return to the connection
between quadrics and covariance matrices as a means of analyzing the shape of
the quadric error isosurfaces.

4.2 Quadrics and Least Squares Fitting

The interpretation of the quadric metric as a family of ellipsoidal isosurfaces
(§4.1.1) is intuitively appealing. It is particularly helpful because it allows us
to easily visualize the metric during simplification. As I suggested earlier, it
appears that there is some connection between surface shape and the shape of
these isosurfaces. In this section, I will explore this connection in greater detail.
I will derive the quadric-optimal position v̄ using the method of least squares
fitting, and then cast the shape of the ellipsoidal isosurfaces in terms of the
covariance of face normals on the surface.

4.2.1 Analysis of Optimal Placement

The quadric error metric has the useful property that we can easily locate points
which minimize the quadric error. Originally, I presented the equation for the
optimal position v̄ (3.17) from the algebraic perspective of finding the minimum
of a quadratic function. We have also seen that this point lies at the center of
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the ellipsoidal isosurfaces of the quadric. I will now show that this optimal
position can also be derived by an application of the least squares method of
normal equations [113, 117, 71].

Suppose that we are given a set of k planes defined by equations of the form
ni

Tv + di = 0. Let N be the k×3 matrix of normals

N =
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T

n2
T

...
nk
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(4.16)

and let d be the corresponding k-vector of offsets

d =











d1

d2

...
dk











(4.17)

Suppose that we would like to find a point v = [x y z]
T

which lies at the
intersection of these planes. Such a point would satisfy the equation Nv+d = 0.
Rewriting this equation as Nv = −d, we get the following linear system of
equations for v:











a1 b1 c1
a2 b2 c2

...
ak bk ck
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−d1

−d2
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−dk











(4.18)

If k > 3, this system of equations will, in general, be over-constrained. It is
unlikely that all the planes will intersect at a single point. In order to find the
point which best fits this set of planes, we can apply the standard least squares
method and solve the system of normal equations [113]

NTNv = −NTd (4.19)

In practice, the QR decomposition is preferred for solving large least squares
problems because it is more numerically stable than the method of normal
equations [117, 71, 105]. However, it is the system of normal equations which
clearly demonstrates the connection between the quadric error metric and least
squares fitting. By expanding the product NTN, we find that

NTN =
k
∑

i=1

nini
T (4.20)

The right-hand side, the sum of the outer products of the normal vectors, is
precisely the definition of the A matrix component of a quadric (§3.4). Similarly,
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by expanding NTd we find that it is identical to b, the linear component of the
quadric metric

NTd =
k
∑

i=1

dini = b (4.21)

Substituting A = NTN and b = NTd into (4.19), we see that the system of
normal equations becomes simply

Av = −b (4.22)

The solution to this system, v = −A−1b, is precisely the formula for optimal
placement defined in Section 3.5. Thus, the optimal position v̄ found by mini-
mizing the quadric metric is the least squares optimal point which best fits the
set of planes represented by the quadric.

4.2.2 Principal Components of Quadrics

We have now seen several ways of interpreting the optimal position v̄ which
minimizes the quadric error Q(v̄). Geometrically, it lies at the center of the
ellipsoidal isosurfaces of Q. By definition, it minimizes the sum of squared
distances to some set of planes. And as we have just seen, it can also be derived
from the least squares normal equations. If we weight the fundamental quadrics
appropriately, it is the position which minimizes the sum of squared volumes
of a set of tetrahedra connecting the vertex to triangles on the original surface.
However, the ellipsoidal isosurfaces also have a particular shape, and the nature
of this shape is a crucial feature of the quadric metric. Recalling the quadric
isosurfaces shown in Figure 4.1, I observed in Section 4.1.1 that the ellipsoids
seem to stretch out in directions of low curvature and are squeezed in directions
of high curvature. In order to understand this relationship between the shape
of the ellipsoids and surface curvature, we must analyze the eigenvalues and
eigenvectors of the quadric matrix A.

The spherical Gauss map [111] of a surface transports every point on the
surface to the position on the unit sphere corresponding to the unit surface
normal at that point (see Figure 4.3). For a polygonal model, all points on a
given triangular face have the same normal, thus each triangle is mapped to a
single point on the unit sphere. The spherical image of a set of triangles is a
set of points. If the surface is continuous, then its spherical image will be a
continuous patch on the unit sphere.

Since a given quadricQ represents a discrete set of faces, and hence a discrete
set of k unit normals, it corresponds to some set of points on the unit sphere.
We can construct the covariance matrix for these normals

Z =
1

k − 1

∑

i

(ni − n̄)(ni − n̄)T (4.23)

where n̄ is the mean normal. Suppose that we order the eigenvectors e1, e2, e3

of Z in decreasing order of their corresponding eigenvalues. A well-known result
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Normals from

set of faces

Normals from a

continuous patch

Figure 4.3: Gauss mapping of a surface region to the unit sphere. A triangu-
lated surface produces a discrete set of points while a continuous surface patch
produces a continuous patch on the sphere.

from principal component analysis [101] is that the first eigenvector e1, having
the largest eigenvalue, is the direction in which the points ni spread out the
most around the mean n̄ (i.e., the direction of maximum variance). The smallest
eigenvector e3 is the direction of minimum variance, the direction in which the
points are spread out the least.

For the moment, I am only interested in the directions of the eigenvectors
of Z and not the actual values of the corresponding eigenvalues. Therefore, we
can ignore the 1/(k− 1) averaging term. If we take the mean of the normals to
be n̄ = 0, then the equation for the covariance matrix (4.23) becomes

Z =
∑

i

nini
T = A (4.24)

the matrix component of the quadric Q. So, we can regard A as the covari-
ance matrix of the normals ni with mean 0. We know that the eigenvectors
of A define the axes of the ellipsoidal isosurfaces. But now we also see that
these eigenvectors are the principal components of the corresponding set of unit
normal vectors. It is interesting to note that covariance matrices of this sort
have been used by others to define tangent planes [94, 122, 13] and principal
directions of curvature [122, 13] for collections of points sampled from a surface.

If the set of faces represented by Q is from a fairly smooth surface region,
the corresponding normals will all lie within a small region of the Gauss map
(as in Figure 4.3). Intuitively, this should mean that the direction of maximum
variance around n̄ = 0, the direction in which the normals are spread out most
around the origin, will be along the average normal direction. The next largest
principal component should be the direction along which the points spread out
the most along the sphere, and the final principal component should be the
direction in which the normals spread out the least. Observe that normals
will spread out further on the Gauss map when the surface is more highly
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curved. This suggests that, assuming that we are considering a reasonably
smooth surface, the eigenvectors of the quadric matrix A should roughly be in
the directions of the average normal, the direction of maximum curvature, and
the direction of minimum curvature. These will be the axes of the resulting
ellipsoidal isosurface. The extent of the ellipsoid along a given axis will be
inversely related to the corresponding eigenvalue. For instance, the ellipsoid
will extend the farthest along the axis corresponding to the smallest eigenvalue.
Therefore, the ellipsoid should stretch out the farthest in the direction of least
curvature and stretch out the least in the average normal direction.

4.3 Differential Geometry

The argument which I have just presented confirms the intuition of Section 4.1.1:
the shape of the quadric error isosurfaces is related to surface curvature. As I
have indicated, this conclusion rests on the assumption that the set of faces
from which the quadric was derived are sufficiently smooth. This suggests a
further avenue for analyzing the quadric metric. I will assume that the surface
is in fact a differentiable manifold. To arrive at a more formalized, and more
precise, understanding of quadrics, I will apply the theory of local differential
geometry. But before delving into this analysis, a quick overview of the necessary
background is in order.

A comprehensive introduction to differential geometry is clearly far beyond
the scope of this work. Fortunately, there are a wide variety of books available
on the subject. The classic text of Hilbert and Cohn-Vossen [88] provides an
excellent introduction to the intuitive side of the subject matter with a minimum
of formalism. Besl and Jain [14] give a nice overview of the essential material,
and they discuss some computational techniques. For a more comprehensive
and systematic treatment of the subject, I have found Kreyszig’s text2 [111] —
an expanded version of an earlier book [112] — to be fairly useful.

Let us assume that we are given a closed differentiable manifold surface M
which has been divided into a set of patches. A given surface patch is defined
by the mapping

x = x(u, v) = [f1(u, v) f2(u, v) f3(u, v)]
T

(4.25)

where (u, v) range over a region of the Cartesian 2-plane and the functions fi
are of class C2. We shall be concerned with the surface in the neighborhood of
a point p = x(u0, v0). By convention, all functions of x and its derivatives are
implicitly evaluated at (u0, v0).

2 This book uses the more modern tensor notation. Willmore [195] provides a fairly easy
to read introduction using the somewhat dated classical notation.



72 CHAPTER 4. ANALYSIS OF QUADRIC METRIC

4.3.1 Fundamental Forms

The partial derivatives of the patch function x

x1 = xu = ∂x/∂u and x2 = xv = ∂x/∂v (4.26)

span the tangent plane of the surface at p, provided we make the standard
assumption that x1 ×x2 6= 0. Consequently, we can write the unit surface
normal n at the point p as

n =
x1×x2

‖x1×x2‖
(4.27)

Let t be a vector tangent to the surface x at the point p. We know that we
can write it as a linear combination t = x1 δu + x2 δv. The direction vector
u = [δu δv]

T
provides a convenient representation for tangent vectors. This is

frequently expressed in differential form as dx = x1 du+ x2 dv.
The squared length of a tangent vector in the direction u is measured using

the first fundamental form3 I(u). If we define the matrix

G =

[

g11 g12

g21 g22

]

where gij = xi ·xj (4.28)

then I(u) is given by the quadratic form4 uTGu. Again considering a tangent
vector as a differential, this length is often written as dx · dx. Since the dot
product is commutative, it is clear that gij = gji and thus G is symmetric. It
is also customary to denote the determinant detG = g11g12 − g2

12 by g. Our
assumption that x1×x2 6= 0 implies that g 6= 0. We can also measure surface
areas using the first fundamental form. Given a region F on the surface, its
area is given by the integral

∫∫

F

dA =

∫∫ √
g du dv (4.29)

The differential dA =
√
g du dv is referred to as the element of area of the

surface.
The second fundamental form II(u) measures the change in the normal vector

n in the direction u. Using the matrix

B =

[

b11 b12

b21 b22

]

where bij = n·xij = −ni ·xj. (4.30)

we can write II(u) as the quadratic form5 uTBu. The common differential
notation for this is −dx · dn.

There are many uses of these fundamental forms in surface theory, but for our
limited purpose here, only one is of significance. Together, the two fundamental
forms characterize the local curvature of the surface.

3 Also referred to as the metric tensor.
4 Classical notation: ds2 = E du2 + 2F du dv + G dv2. Here G =

�
E F
F G

�
.

5 Classical notation: L du2 + 2M dudv + N dv2. Here B =
�

L M
M N

�
.
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4.3.2 Surface Curvature

The normal curvature κn in the direction u is

κn =
II(u)

I(u)
=

uTBu

uTGu
(4.31)

Unless the curvature is equal in all directions, there must be a direction e1 in
which the normal curvature reaches a maximum and a direction e2 in which
it reaches a minimum. These directions are called principal directions and the
corresponding curvatures κ1, κ2 are the principal curvatures. The principal di-
rections and curvatures are also the eigenvectors and eigenvalues, respectively,
of the Weingarten map G−1B. Given these principal curvatures, we can define
the Gaussian curvature K = κ1κ2 and the mean curvature H = 1

2(κ1 + κ2).
Note that there is a sign ambiguity present in the curvatures κ1 and κ2. If we
flip the surface normal, the signs of the curvatures will change.

A given point on the surface can be classified according its principal curva-
tures. A point at which κn is equal in all directions is called an umbilic point;
for example, every point on a sphere is an umbilic point. In the special case

(a) Parabolic (K = 0) (b) Hyperbolic (K < 0) (c) Elliptic (K > 0)

Figure 4.4: The three non-umbilic point classifications.

that κn = 0 in all directions, such as on a plane, the point is called a flat point.
For non-umbilic points, the principal curvatures are well-defined. Figure 4.4
illustrates the three resulting categories.

4.4 Differential Analysis of Quadrics

I suggested earlier that there was a relationship between the shape of quadric
isosurfaces and surface curvature (§4.1.1) and explored this connection through
principal component analysis of the quadric matrix (§4.2.2). To extend this re-
sult, I will apply the local theory of differential geometry to analyze the quadric
error metric on smooth surfaces. In particular, I will show that, under suitable
assumptions, the eigenvalues of the quadric matrix A are related to the squares
of the principal curvatures and that its eigenvectors are the corresponding prin-
cipal directions. This provides further mathematical justification for why the
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quadric error metric performs well; it works because it accumulates information
about the structure of the surface.

4.4.1 Framework for Analysis

Suppose that we are given a differentiable manifold surface M . We can regard
this smooth surface as the limit of the infinite subdivision of some triangulated
model. As we continually subdivide triangles on the surface, the area of these
triangles will approach 0 in the limit, and the resulting surface will be smooth.
This is a common method for defining manifold surfaces in the field of topology
[4]. This is a useful setting because, as the polygonal input for simplification
becomes more and more finely tessellated, the local behavior of the quadric error
metric will approach its behavior on differentiable manifolds.

The actual construction of such limit surfaces requires some care. As Schwarz
[173] observed, polyhedral subdivision does not necessarily produce a unique
limit. Suppose we construct a tessellation of a unit height, unit radius cylinder

Figure 4.5: Triangulation of a unit height, unit radius cylinder.

by dividing its height into k equal parts and each slice into n equal parts. This
will produce a triangulation of the cylinder with 2kn triangles (see Figure 4.5).
If we set k = ns and allow n to approach infinity, the surface area of the
resulting surface will depend on the value of s. In fact, this area may not even
converge at all (when s = 3 for instance). Further details can be found in many
differential geometry and calculus books [110, 111]. To avoid this kind of ill-
defined subdivision, I will require that the distribution of points on the surface
should always remain uniform and that the lengths of edges in all directions of
non-zero curvature must go to zero in the limit. In the end, this is a relatively
minor detail. For the purposes of this analysis, it is enough that we are given
a differentiable manifold, and that we know this corresponds to the subdivision
limit of some polyhedron.

For every point p on the surface M we can define a unique tangent plane.
Just as with planes defined by triangular faces, we can measure the squared
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distance of a given point v to the tangent plane of p. This distance is

D2 =
(

(v − p)Tn
)2

(4.32)

where n is the unit surface normal at p. As before, we can rewrite this equation
and express D2 using the standard quadric equation (3.9):

D2 = (vTn − pTn)(vTn − pTn)

= vT(nnT)v − 2(nnT)pTv + pT(nnT)p

= vTAv + 2bTv + c

= Q(v)

where

Q = (A,b, c) = (nnT,−Ap,pTAp) (4.33)

This has the same structure as a quadric defined on a polygonal model. In
fact, this equation can be used as an alternate formula for constructing the
fundamental quadric for a polygonal face.

4.4.2 Quadrics and Curvature

The effect of simplification by contraction is to partition the original surface
into connected sets of faces, and to replace each of these sets with a vertex
neighborhood. In the limit of smooth surfaces, this corresponds to partitioning
the surface into a set of continuous regions. If a given region F is sufficiently
small, we can always find a point p0 such that the region is approximated to
second order by a surface patch of the form6

p(u, v) = [u v
1

2
(κ1u

2 + κ2v
2)]

T

(4.34)

where κ1, κ2 are the principal curvatures at p0. The coordinate frame has its
origin at p0 = p(0, 0) and its axes are determined by the principal directions
and the surface normal e1, e2,n0 at p0. If p0 is an umbilic point, it is sufficient
to pick two arbitrary, orthogonal “principal” directions. Figure 4.6 illustrates
this local parameterization of the surface.
The matrix of the first fundamental form for this surface patch is

G =

[

1 + κ2
1u

2 κ1κ2uv
κ1κ2uv 1 + κ2

2v
2

]

g = 1 + κ2
1u

2 + κ2
2v

2 (4.35)

and the unit surface normal is

n =
pu×pv

‖pu×pv‖
= [−κ1u − κ2v 1]

T
/
√
g (4.36)

6 This is a height field, also referred to as a Monge patch.
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e1

v

u

F

p0

n0

p(u,v)

e2

2ε
2

2ε
1

Figure 4.6: Local parameterization of the surface about p0.

Let m be the non-unit normal m = pu×pv =
√
g n.

For polygonal surfaces, where a set of faces is replaced by a vertex neigh-
borhood, the quadric associated with the resulting vertex is the area-weighted
sum of the fundamental quadrics of the original set of faces. In the limit as
triangle size goes to 0, this will become an integration over all the points in the
region, where the tangent plane at each point determines a quadric. I will refer
to this as the integral quadric of the region. The remainder of this section will
be devoted to proving the following result:

For a sufficiently small region about p0, the two smallest eigenvalues
of the integral quadric matrix A are proportional to the squares of
the principal curvatures at p0, and the corresponding eigenvectors
are the principal directions.

For the sake of simplicity, let us assume that F is the image of a rectangular
region −ǫ1 ≤ u ≤ ǫ1,−ǫ2 ≤ v ≤ ǫ2. An elliptical region produces nearly
identical results, differing only in the constants of proportionality, but is less
convenient to work with. The integral quadric Q = (A,b, c) for this region,
formed by integrating the fundamental quadrics for each point in F , is given by

A =

∫∫

F

nnTdA (4.37)

b =

∫∫

F

−(nnT)p dA (4.38)

c =

∫∫

F

pT(nnT)p dA (4.39)

where integration of matrices and vectors is defined by integrating each scalar
component separately.

As before, I will focus on the matrix A since it is the component of the
quadric that determines the shape of the error isosurfaces. First, we can rewrite
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its equation by expanding the element of area dA:

A =

∫∫

nnT√g du dv (4.40)

Note that, since n = m/
√
g, this equation can be simplified as follows

A =

∫∫ (

m√
g

)(

m√
g

)T√
g du dv =

∫∫

mmT

√
g
du dv (4.41)

The matrix mmT can easily be derived from the patch equation (4.34).

mmT=





κ2
1u

2 κ1κ2uv −κ1u
κ1κ2uv κ2

2v
2 −κ2v

−κ1u −κ2v 1



 (4.42)

However, the
√
g in the denominator is problematic. In order to evaluate this

integral, I will use the Taylor series approximation (about p0)

1√
g
≈ 1 − 1

2
κ2

1u
2 − 1

2
κ2

2v
2 +O(u4 + u2v2 + v4) (4.43)

Using this approximation, the formula for A becomes

A =

∫ ǫ2

−ǫ2

∫ ǫ1

−ǫ1

mmT(1 − 1

2
κ2

1u
2 − 1

2
κ2

2v
2) du dv (4.44)

for sufficiently small ǫi.
Without going through the details, let me simply summarize the result of

carrying out this integration. The matrix A is a diagonal matrix, largely because
of the choice of the principal directions e1, e2 for the local coordinate frame.
Assuming that ǫ1 and ǫ2 are sufficiently small, we can ignore terms of ǫ6i and
higher, in which case the diagonal entries of A are simply

a11 =
4

3
ǫ31ǫ2κ

2
1 (4.45)

a22 =
4

3
ǫ1ǫ

3
2κ

2
2 (4.46)

a33 = 4ǫ1ǫ2 −
2

3
ǫ1ǫ2(ǫ

2
1κ

2
1 + ǫ22κ

2
2) (4.47)

Since A is diagonal, the diagonal entries are also its eigenvalues and the coor-
dinate axes are its eigenvectors. As you can see, the eigenvalues of A, for a
sufficiently small neighborhood, are proportional to the squares of the principal
curvatures κ1, κ2, and the corresponding eigenvectors are the principal direc-
tions. The final, and largest, eigenvalue is essentially proportional to the area
of F and its corresponding eigenvector is in the direction of the surface normal
n0. This agrees with the result developed in Section 4.2.2 through principal
component analysis of the quadric matrix.
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This formula for the integral quadric matrix A (4.45) suggests that lo-
cally planar regions will produce isosurfaces which are two parallel planes, that
parabolic regions (K = 0) will produce cylindrical isosurfaces, and that other
regions (K 6= 0) will result in ellipsoidal isosurfaces. The longest (major) axis of
the ellipsoids will be aligned with the direction of minimum curvature e2, and
the shortest (minor) axis will be aligned with the local surface normal n0. The
remaining axis will be aligned with the direction of maximal curvature e1. This
agrees with the earlier analysis of quadrics. Also note that, since the eigenvalues
are related to the squared curvatures, the quadric metric does not distinguish
between elliptic (K > 0) and hyperbolic (K < 0) regions.

To complete the analysis of the integral quadric, we can evaluate b and c
using the same procedure. Carrying out this integration results in the values

b =

[

0 0
2

3
ǫ1ǫ2(ǫ

2
1κ1 + ǫ22κ2)

]T

(4.48)

c =
1

5
κ2

1ǫ
5
1ǫ2 +

2

9
κ1κ2ǫ

3
1ǫ

3
2 +

1

5
κ2

2ǫ1ǫ
5
2 (4.49)

We now have a complete quadric Q. Applying the formula for the optimal
position v̄ (§3.5), we find that

v̄ =

[

0 0 − 1

6
(κ1ǫ

2
1 + κ2ǫ

2
2)

]T

(4.50)

and its error with respect to Q is

Q(v̄) =
4

45
(κ2

1ǫ
5
1ǫ2 + κ2

2ǫ1ǫ
5
2) (4.51)

An equation of the form A(κ2
1 + κ2

2) + 2Bκ1κ2, where A,B are constants, de-
scribes the potential energy of an elastic thin plate [36]. Energy terms of the
form κ2

1 + κ2
2 are often used for producing nicely smoothed, or fair, surfaces

[191]. It is interesting to note that the quadric error Q(v̄) has this form. This
suggests that minimizing the quadric error has the effect of producing nicely
smoothed approximations, provided that the input is suitably smooth itself.

This differential analysis of quadrics can be extended to consider the struc-
ture of the meshes produced by minimizing the quadric error [85]. Suppose that
we reparameterize the region F in terms of an aspect ratio ρ = ǫ1/ǫ2 and the
mean size ǫ =

√
ǫ1ǫ2. Holding ǫ fixed, we can show that the aspect ratio

ρ =

∣

∣

∣

∣

κ2

κ1

∣

∣

∣

∣

1/2

(4.52)

minimizes the quadric error (4.51). Results from the field of function approxima-
tion theory [138, 37, 156] demonstrate that this is the aspect ratio of triangles in
the L2-optimal triangulation of a bivariate function f(u, v). This suggests that,
in the limit as triangle size goes to 0 and for sufficiently small neighborhoods,
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minimizing the quadric error metric produces triangulations with optimal aspect
ratios. While the quadric-based simplification algorithm works with polygonal,
as opposed to smooth, surfaces and greedy contraction is not guaranteed to
minimize the quadric error, there is some evidence that it does tend towards
this theoretical aspect ratio [85].

4.5 Connection with Approximation Error

Up until this point, my analysis of the quadric metric has focused primarily on
the structure of the error isosurfaces. As we have seen, these isosurfaces are (po-
tentially degenerate) ellipsoids. Under suitable assumptions, the axes of these
ellipsoids align with the principal directions of curvature on the surface, and the
extent of the ellipsoid along its axes is inversely related to the surface curvature
in that direction. Now let us turn our attention to a somewhat different issue. I
have proposed that the Hausdorff distance Emax (2.7) and the average squared
distance Eavg (2.8) provide good measurements of the geometric error between
between a model M and its approximation M ′. In this section, I will examine
how the quadric error metric EQ relates to these measures of approximation
error.

Let us begin by noting an important difference between these metrics. The
quadric metric EQ defines a separate error value at each vertex while the ap-
proximation error metrics Emax and Eavg define a single error value between
two surfaces. We could artificially define a total quadric error by, for example,
summing the quadric errors assigned to each vertex, but there is no good foun-
dation for doing this. Also, recall that for each vertex v on the approximation
M ′, there is some associated set of faces R whose vertices have been contracted
into v. The quadric error is only based on the faces in this set. Therefore, it
is most appropriate to compare the quadric metric with the localized distance
dv(R) (2.4) which measures the distance from v to the closest point in the region
R as opposed to the closest point over all of M .

To gain some insight on these error metrics, consider a simple 2-D example
as shown in Figure 4.7. The original model, shown in black, consists of three
line segments. We are considering contracting the top segment, producing an
approximation shown in gray. In the figure, we can see the familiar elliptical
contours of the quadric error assigned to the resulting vertex. As drawn, the
new vertex is placed at the position which minimizes the quadric error, at the
center of the concentric isocontours.

Now let us compare this with the isocontours of the Emax metric (Figure
4.8) and the Eavg metric (Figure 4.9). Again, these contour plots show the
error values assigned to the approximation as a function of the position of the
resulting vertex. The approximation shown in each figure is the quadric-optimal
one shown in Figure 4.7. Note that the Emax-optimal and Eavg-optimal posi-
tions lie very close to, but slightly above and the the right of, the position which
minimizes the quadric metric. The Eavg contours are smoother than the Emax

contours because they represent a sum of squared distances rather than the max-
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Figure 4.7: Isocontours of the quadric error EQ.

Figure 4.8: Isocontours of the Hausdorff distance Emax.
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Figure 4.9: Isocontours of the average squared distance Eavg.

imum distance. Both metrics have a more complex structure than the quadric
error, but the quadric error contours demonstrate some level of similarity, par-
ticularly to the inner Eavg contours which are roughly elliptical. However, these
similarities would decrease as the model becomes more complex. Both the Eavg

and Emax contours, which accumulate more global and more accurate infor-
mation, would become more complex as more segments were added, while the
quadric contours always remain ellipses.

Ideally, we could find some direct connection between the quadric metric
and the Eavg approximation error. Ronfard and Rossignac [159] were able to
show that their metric, which measures the maximum squared distance to a set
of planes, was related to the localized Hausdorff distance Emax sampled at the
vertices of M and M ′. However, this argument relies on the use of a subset
placement policy — the vertices of the approximation must be a subset of the
original vertices — and it requires bounds on dihedral angles between planes.
They achieved this bound by adding “auxiliary planes” at sharp corners (see
Section 4.5.2). It does not appear that this argument extends to the quadric
metric. Just as the L∞ norm is considered stronger than the L2 norm because
provable bounds are easier to derive (§2.3.2), it appears easier to analyze the
metric based on the maximum as opposed to the sum of distances to planes.

4.5.1 Undesirable Optimal Placement

In principle, the quadric error metric can allow points to move arbitrarily far
away from the surface without assessing them a large error. Consider the three
open cylinders shown in Figure 4.10. Suppose that we want to contract the
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Figure 4.10: Three truncated cone surfaces. Integrating the quadrics along the
upper rim, we find the optimal position lies at the apex of the cone.

entire upper rim into a single vertex. We would integrate the quadrics for all
the points around the rim. For the first two surfaces, all the tangent planes along
the rim intersect at a unique point. This point must have an error of 0 since
it lies on all the tangent planes. Therefore, it is the point of minimal quadric
error, and that is the position to which we would contract all the points on the
rim. However, as the angle of the cylinder approaches vertical, this optimal
point moves off to infinity, yet all the time it has zero error according to the
quadric metric.

Of course, this problem does not really occur in practice. For open cylinders,
the boundary constraint planes prevent the points from leaving the rim. For
closed cylinders, the faces of the caps perform a similar function. And if we
are using subset placement, we know that the vertices will never deviate from
the surface and that the approximation must lie within the convex hull of the
original surface.

4.5.2 Ambiguity of Sharp Angles

Because of the nature of the error metric, edges with a very small dihedral angle
can be problematic [159] as well. Figure 4.11 provides a 2-D illustration of the
situation. A vertex v is connected to two very different sets of line segments, a

v v

(a) (b)

Figure 4.11: Vertex v connected to two sets of line segments.

very flat line (a) and a very sharp corner (b). The initial quadric assigned to v

is identical in both cases because its incident segments lie along the same lines.
As the lines containing these segments approach each other, the segments will
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become colinear. Curve (a) will become flat and curve (b) will become a single
spike. The quadric error metric will allow points to move within these lines
arbitrarily without error. In the first case, this is acceptable since the curve lies
in this plane. However, in the second case, this will allow points to move far
away from the underlying curve.

One way of alleviating this ambiguity in the error metric, which was sug-
gested by Ronfard and Rossignac [159], is to treat edges with very sharp dihedral
angles as discontinuities. We can add a constraint plane7 (§3.6) through the edge
that is perpendicular to the plane which bisects the dihedral angle. This has
the effect of “rounding off” these sharp edges. Note that in the case of sharp
dihedral angles, my algorithm would not attempt to compute an optimal posi-
tion. As these angles become smaller, the solid angle bounding the local face
normals becomes smaller, and the quadric matrix A becomes nearly singular.
Thus, around very sharp angles it will always use a fixed placement scheme.

7 Ronfard and Rossignac call this an auxiliary plane.
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Chapter 5

Extended Simplification

Algorithm

Many models have surface properties beyond simple geometry. In computer
graphics, colors and textures are particularly common. To produce approxima-
tions which faithfully represent the original, we must maintain these properties
as well as the surface geometry. The basic error metric presented in Chapter 3
only considers surface geometry when simplifying models. In this chapter, I will
present a natural generalization of the quadric error metric which incorporates
surface properties defined as vertex attributes.

5.1 Simplification and Surface Properties

Let us assume that each vertex, in addition to its position in space, has some
associated continuous scalar values which describe other properties. As with
geometric position, these values will be linearly interpolated over the faces of
the model. For rendering applications, RGB color and 2-dimensional texture
parameters are of particular interest; surface normals might also be treated
as attributes. Finally, let us assume that the difference between two property
values is measured by the Euclidean distance between them.

As an ongoing example, let us consider a Gouraud-shaded model for which
each vertex has an associated color value c = [r g b]

T
where 0 ≤ r, g, b ≤ 1.

Figure 5.1 illustrates a simple example of a surface of this type. The surface
itself is a section of the unit sphere. Every vertex has a single color value, and
these color values are linearly interpolated over the faces of the mesh. Clearly, a
visually faithful approximation of this surface will have to preserve the shading
of the surface as well as its shape.

One approach to preserving appearance is to decouple attribute preservation
from geometric simplification [25, 133, 178]. We can simplify the surface using
any simplification algorithm, although an algorithm that can maintain corre-
spondences between regions of the approximation and regions of the original

85
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Figure 5.1: A section of a sphere Gouraud-shaded with a swirl pattern. Each
vertex has a single associated color.

would be preferable. Having produced a simplified surface, we can resample
attributes of the original model (e.g., color) into a texture map defined on the
approximation. If the target rendering system supports bump mapping or nor-
mal mapping, this can be an effective technique for retaining high levels of visual
fidelity [25, 30]. For these methods to work, each triangle of the approximation
must be assigned a set of texels in the texture space. To avoid wasting texture
space, these regions must also be tightly packed. Once the texel correspon-
dence is established, the colors (or other attributes) on the original surface can
be sampled into the texture. The primary attraction of this approach is that
texturing is widely supported in rendering systems, and it decouples the resolu-
tion of the geometry (vertex count) from the resolution of the attributes (texture
dimensions). And if the resampling process is completely decoupled from simpli-
fication [25], it can be used with separate simplification components that would
otherwise produce approximations without any attributes at all. The current
approaches for generating this mapping into texture space produce highly frag-
mented textures [178, 25] — neighboring triangles on the surface will not occupy
neighboring regions in the texture. This has some unfortunate consequences.
It means that we cannot construct image pyramids [194] for the resulting tex-
tures, because neighboring texels may be mapped onto entirely separate parts
of the model. It also makes this approach ill-suited for multiresolution modeling
applications, since each level of detail would require its own individual texture
map. This would make incremental representations such as progressive meshes
(§7.1.2) prohibitively expensive because of the amount of texture storage that
would be required.

In many circumstances, it is more convenient to incorporate vertex attributes
directly into the simplification process. This is particularly true for simplifica-
tion systems being used to generate multiresolution models. The fundamental
operation of my simplification algorithm, and other contraction-based methods,
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is to evaluate a contraction (vi,vj) → v̄. This involves two primary steps:
(1) select a position v̄ and (2) evaluate the cost of performing the contraction.
Integrating attributes involves selecting appropriate attributes for a vertex at
position v̄ and extending the error metric to account for error in attributes as
well as position. In this scheme, geometry and attributes are coupled together
into a single error metric.

The most common approach [90, 30, 54] for integrating geometry and at-
tributes in this fashion would seem to be loose coupling. Geometry is treated
as the primary attribute. For a given contraction (vi,vj) → v̄, the position
v̄ is chosen, as before, using purely shape-based criteria such as the quadric
error metric (§3.4). Given this fixed position, corresponding attributes are se-
lected using another process, and the geometric and attribute error are measured
separately. For a Gouraud-shaded surface, we would select a position v̄ and cor-
responding color c̄. We would then measure the error of this contraction as, for
instance, Edist(v̄) + Ergb(c̄). The alternative to this approach is tight coupling.
In this case, the best position v̄ and its corresponding attributes are selected si-
multaneously, taking the correlation between position and other attributes into
account. This is the approach which I have adopted. By selecting the best
combination of position and color, say, we can produce a mesh which better
conforms to color features. While the exact structure of the mesh does not
significantly affect texture mapping, it is much more important for Gouraud-
shaded surfaces where edges of the mesh must align with color discontinuities
to allow accurate color interpolation.

If we are using a subset placement policy (§3.5), there is little distinction
between tight and loose coupling. We may pick either v1 along with all its
attributes or v2 and all its attributes. The only issue is how the attribute error
is measured. However, when using optimal placement, we allow the position v̄ to
move freely in order to achieve better surface approximations. If v̄ is constrained
to lie along the segment (vi,vj), we can simply linearly interpolate attributes
along the segment. However, the optimal positions will, in general, lie near
the original surface, but not on it. Consequently, we cannot simply interpolate
the property values of the endpoints; we need some way to synthesize entirely
new values based on the new position. To do this, I use higher dimensional
quadrics whose extra coefficients implicitly encode the cross correlation between
the various properties.

5.2 Generalized Error Metric

I will treat each vertex as a vector v ∈ Rn. The first three components of
v will be spatial coordinates, and the remaining components will be property
values. For consistent results, the model can be scaled so that it lies within the
unit cube in Rn. This ensures that the various properties (including position)
have roughly the same scale. Consider the example shown in Figure 5.2a, a
triangulated hexagon. In this case, we would use 6-dimensional vectors of the
form [x y z r g b]

T
. The 6-vectors for this example are listed in Figure 5.2b.
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1 2

3

45

6 7

(a) Simple colored mesh

Vertex Position RGB Color

1 [0 0 0 0.7 0.3 0.3]
2 [1 0 0 0.7 0.4 0.3]
3 [2 1 0 0.5 0.5 0.3]
4 [2 2 0 0.3 0.5 0.3]
5 [1 2 0 0.3 0.4 0.3]
6 [0 1 0 0.5 0.3 0.3]
7 [1 1 0 0.5 0.4 0.3]

(b) Table of vertices

Figure 5.2: A triangulated hexagon with color values at each vertex.

Having placed the vertices of the model in n-dimensional space, I can now
formulate an extended version of the quadric error metric. Consider the triangle
T = (p,q, r). In the case of a colored surface, we would have vertices p =

[px py pz pr pg pb]
T

and so forth. Since three linearly independent points always
define a 2-dimensional plane, the vertices of this triangle determine a 2-plane in
Rn. Given this plane, we can construct a quadric that will measure the squared
distance of any point in Rn to this plane.

Consider the 2-plane containing T . It can be defined by a point and two
orthogonal vectors. Let us arbitrarily pick the point p, and let h = q − p and
k = r− p. Applying a Gram-Schmidt orthogonalization [183], we can compute
two orthonormal vectors e1, e2 (see Figure 5.3) defined by the equations

e1 = h/‖h‖ (5.1)

e2 =
k − (e1 ·k)e1

‖k − (e1 ·k)e1‖
(5.2)

This gives us two unit-length vectors which form two axes of a local frame with
p as the origin. In principle, we could compute an entire local frame with axes
e1, . . . , en. However, to formulate the generalized quadric error metric, we will
only need to explicitly compute e1 and e2.

Now, consider an arbitrary point v ∈ Rn. We are interested in the squared
distance D2 of v from the plane of T . The squared length of the vector u = p−v

can be decomposed as

‖u‖2 = uTu = (uTe1)
2 + · · ·+ (uTen)2 (5.3)
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p q

r

e1

e2

Figure 5.3: Orthonormal vectors e1 and e2 define a local frame, with origin p,
for the 2-plane defined by the triangle (p,q, r).

This is simply the generalized form of the Pythagorean Theorem. We can rewrite
this equation as

(uTe3)
2 + · · ·+ (uTen)2 = ‖u‖2 − (uTe1)

2 − (uTe2)
2 (5.4)

Note that the left hand side is the squared length of u along all the axes per-
pendicular to the plane of T . In other words, it is the squared perpendicular
distance of v to the 2-plane of T . This is precisely the distance we are interested
in measuring.

Applying (5.4), we can compute the distance D2 as

D2 = ‖u‖2 − (uTe1)
2 − (uTe2)

2 (5.5)

= uTu − (uTe1)(e1
Tu) − (uTe2)(e2

Tu) (5.6)

By expanding and collecting terms, we arrive at the following formula

D2 = vTv − 2pTv + p·p
− vT(e1e1

T)v + 2(p·e1)e1
Tv − (p·e1)

2

− vT(e2e2
T)v + 2(p·e2)e2

Tv − (p·e2)
2 (5.7)

This has exactly the same structure as the quadric error metric. We can write
it as D2 = vTAv + 2bTv + c where

A = I− e1e1
T− e2e2

T (5.8)

b = (p·e1)e1 + (p·e2)e2 − p (5.9)

c = p·p − (p·e1)
2 − (p·e2)

2 (5.10)

In this generalized quadric, A is an n×n matrix, and b is an n-vector. As a
concrete example, the A matrix for the central vertex shown in Figure 5.2 is

A =















0.06 0 0 0 −0.59 0
0 0.23 0 1.15 0 0
0 0 6.00 0 0 0
0 1.15 0 5.77 0 0

−0.59 0 0 0 5.94 0
0 0 0 0 0 6.00
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It is computed by summing the quadrics for the six surrounding faces (without
area weighting). By examining the non-zero off-diagonal elements, we can see
how the quadric records the high correlation between r & y and between g & x.

Because this generalized quadric error metric has exactly the same form
as before, we can substitute it into the basic algorithm (§3.9) with very little
effort. The generalized quadrics are constructed in a different manner, but they
are used in an identical way. In particular, the fundamental steps of selecting
the optimal position and updating quadrics by addition are exactly the same.
Only the dimension of the matrices and vectors involved has changed.

In Figure 5.4, we can see the results of applying my algorithm using gener-
alized quadrics. The approximation is about 5% the size of the original. Notice

(a) 18,050 faces (b) 1,000 faces

Figure 5.4: Original surface (a) and its approximation (b) using [x y z r g b]
T

simplification. Notice that the mesh edges follow the color contours.

that the structure of the mesh conforms closely to the color pattern. The mesh
is fairly sparse in areas of constant color. Near the borders of the color pattern,
not only is the triangle density higher, but the edges are properly aligned with
the curve of the swirl pattern. Further examples can be found in Section 6.3.

5.3 Assessing Generalized Quadrics

This generalized metric allows the optimal placement policy to be used with
surfaces with material properties. It provides a means to synthesize new prop-
erty values at vertex positions which do not lie anywhere on the original surface.
Since, in most cases, my algorithm produces the best quality approximations
using optimal placement, this is a significant advantage.
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Unfortunately, for every property, we must add extra dimensions to the
vertices and quadrics. Consequently, as we add more and more properties to
a surface, the size of the quadric matrix grows quadratically in the number
of attribute elements, and the running time will also increase. The space re-
quirements for a few sample cases are summarized in Table 5.1. The necessary

Surface type Vertex type dimA No. unique coeff.

Geometry only [x y z]
T

3×3
(

5
2

)

= 10

Geometry & 2-D texture [x y z s t]
T

5×5
(

7
2

)

= 21

Geometry & Gouraud color [x y z r g b]
T

6×6
(

8
2

)

= 28

Geometry, color & normal [x y z r g b u v w]
T

9×9
(

11
2

)

= 55

Table 5.1: Summary of common extended quadric types.

overhead is not extreme. For instance, I have run tests on models with both
color and surface normals at every vertex; this requires 9-dimensional quadrics.
A 30,000 face model can still be simplified in under 30 seconds on a 200 MHz
PentiumPro system.

We must also be able to deal with constraints on the range of property
values. RGB colors, for instance, must be kept within the color cube. While my
algorithm will not generate colors far outside the cube, since they would very
poorly fit the data, it may generate colors that are slightly below 0 or above
1. As others have done [90], I merely clamp the offending colors to the nearest
point on the color cube. Since only small distances are involved, this should
not introduce any appreciable artifacts. The same caution must be applied to
texture coordinates. Similarly, surface normals must be rescaled to have unit
length.

As I have presented it, the generalized error metric weights all vertex at-
tributes equally. However, for optimal results one might wish to selectively
weight certain attributes more than others. It seems doubtful that there is a
single optimal weighting for a given set of attributes, but it can easily be offered
as a user-selectable preference. Individual attribute components can also be
easily weighted. For example, we might weight the individual RGB values by
the standard coefficients for computing luminance values from RGB colors [59].

5.3.1 Attribute Continuity

I have assumed that property values vary continuously over the surface, but in
practice, this is not always the case. For example, consider simply wrapping
a texture around a cylinder. There will be a seam where s wraps from 0 to
1. Consequently, every vertex along this seam must have two separate texture
coordinates, and this will introduce a discontinuity at every one of these vertices.

To represent and simplify this textured cylinder with the current algorithm,
we would need to replicate each vertex along the seam; each copy would have
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separate texture coordinates but identical positions. In other words, we must
force the surface to be a topological plane rather than a cylinder. Using bound-
ary constraints to maintain the seam, this might produce acceptable results.

However, this will not work for all cases. A model might conceivably have
a distinct piece of texture for each face, and this would create a discontinuity
at every edge. As mentioned in Section 3.6, the algorithm does not work well
when constraints proliferate to this extent. A more complete solution would
require that we allow multiple values for each property at each vertex, which
would require multiple corresponding quadrics for each vertex.

5.3.2 Euclidean Attributes

I have also assumed that the metric for measuring the difference in attributes
is Euclidean. More specifically, I have assumed that attribute values at the
vertices will be linearly interpolated over the faces of the model.

Perceptual color spaces are not Euclidean in RGB. However, the result-
ing approximations will presumably be displayed as Gouraud-shaded surfaces.
Consequently, for display, colors will be linearly interpolated over faces. Thus,
regardless of the non-Euclidean nature of RGB color space, these assumptions
coincide with the way the results will be displayed. It is also interesting to note
that any color space conversion which is a linear transform (e.g., RGB to CIE
XYZ) can be incorporated into the extended quadrics via the standard quadric
transformation rule (§3.4.2).

Surface normals are another attribute type which might not seem to con-
form with the Euclidean assumption. However, I contend that the algorithm
will typically treat normals appropriately. Consider the Gauss mapping of the
surface, where every vertex is mapped to the point on the unit sphere corre-
sponding to the unit surface normal at that vertex. Simplifying surface normals
as part of the generalized quadric metric is essentially equivalent to simplifying
this spherical surface with the basic algorithm. So, as long as normals don’t
change too rapidly, the extended algorithm will produce good surface normals.



Chapter 6

Results and Performance

Analysis

In the preceding chapters, I have described my surface simplification algorithm
and analyzed the nature of the quadric error metric. This chapter is devoted
to analyzing both the efficiency of my algorithm and the quality of its results.
I will begin with some theoretical analysis of the time and space complexity
of my algorithm. But the majority of the material I will present is focused on
an empirical analysis of the running time of simplification and the geometric
quality of the resulting approximations. Note that all surfaces, except for those
with RGB color or texture attributes, are shown flat-shaded with one constant
color per face. While smooth shading is probably more common in practice, this
flat shading makes the structure of the surface approximations more apparent.

6.1 Time and Space Efficiency

One of my primary design goals has been to produce an efficient simplification
algorithm, and the algorithm which I have developed is indeed quite fast. Based
on published comparisons [26, 124], it appears to be about 10–100 times faster
than other algorithms which can produce roughly comparable approximations.
Uniform vertex clustering [161] is quite likely more efficient; however, the lower
quality of its results places it in another category.

In this section, I will examine the efficiency of my algorithm. Note that the
algorithm can be divided into two distinct phases. First is the initialization
phase, where candidates are selected, the initial quadrics are created, and the
candidates are ordered in a heap (§3.9, steps 1–4). Second is the simplification
phase, where a sequence of pair contractions are selected and applied (§3.9, step
5). I will generally treat these phases separately.

Throughout the following analysis, I will assume that an input model M
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having r vertices and n faces1 is given. Furthermore, I will assume that the goal
is to produce an approximation M ′ having only m faces, and I will let p be the
number of candidate pairs selected during initialization.

6.1.1 Time Complexity

In order to efficiently simplify very large models, it is important that the asymp-
totic time complexity [34] of the algorithm be reasonably low. In this section, I
will analyze the complexity of my algorithm under the assumptions that

1. the number of faces removed in one iteration is bounded by a constant k,

2. O(n) candidate pairs are selected, and

3. the maximum vertex degree is bounded by a constant g.

The first assumption essentially requires that the surface be sufficiently simi-
lar to a manifold, in which case k = 2. Non-manifold edges are allowed, but
there should be no edge with O(n) adjacent faces. This is clearly a reasonable
requirement, satisfied by almost all surfaces likely to be encountered in prac-
tice. I add the second assumption for cases in which we are selecting vertex
pairs in addition to the edges. In principle, we could select all possible O(n2)
pairs of vertices. However, the much more reasonable case involves selecting all
O(n) edges plus an optional set of O(n) non-edge pairs. The final condition is
important because various parts of the algorithm require looking at each edge
attached to a particular vertex. We want these operations to have constant cost.
While any particular model might not have bounded vertex degree, it is almost
always possible to alter the mesh so that it satisfies this condition.

The algorithm begins with the initialization phase. Constructing all the
initial quadrics takes O(n) time. Selection and evaluation of the candidate pairs
also requires O(n) time. Placing all the resulting candidates in a heap requires
O(n logn) time. Thus, the total complexity of initialization is O(n logn).

Now, consider iteration i of the simplification phase. We need to select the
minimum cost pair, contract it, and update the local neighborhood. Table 6.1
summarizes the costs for these individual operations. Since we have assumed
that g is a constant, the cost for a single iteration is thus O(log(n− ki)). Sum-
ming over all iterations, the total cost for the simplification phase is

logn+ log(n− k) + log(n− 2k) + . . .+ logm

Since k is a constant, we can replace this by its upper bound

logn+ log(n− 1) + log(n− 2) + . . .+ logm

which is simply

log
n!

m!
= logn! − logm! = O(n logn−m logm)

Thus, the overall complexity of my algorithm is O(n logn).

1 Note that n ≈ 2r if M is a manifold (§2.1.1).
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Time Complexity

Operation For iteration i Total

Select min cost pair O (log(n − ki)) O (n logn−m logm)
Contract pair O(g) O(n−m)
Update neighborhood O (g log(n− ki)) O (n logn−m logm)

Total O (log(n − ki)) O (n logn−m logm)

Table 6.1: Time complexity of operations in simplification phase.

6.1.2 Memory Usage

In addition to running time, memory consumption is also an important aspect
of efficiency. This is particularly true for very large models with more than a
million faces.

Data Item Stored As Size (bytes)

Vertices Position 3r floats 12r
Face links 3n words 12n
Pair links 2p words 8p
Quadrics + areas 11r doubles 88r

Subtotal 100r+ 12n+ 8p ≈ 148r

Pairs Endpoints 2p words 8p
Target v̄ 3p floats 12p
Cost Q(v̄) p floats 4p
Heap backlinks p words 4p

Subtotal 28p ≈ 84r

Faces Vertices 3n words 12n
Normal 3n shorts 6n

Subtotal 18n ≈ 36r

Total 100r+ 30n+ 36p ≈ 268r

Table 6.2: Breakdown of memory consumption for simplification algorithm.
Totals show result of assuming that n ≈ 2r and p ≈ 3r.

Table 6.2 summarizes the memory usage of my algorithm. The data items
are categorized by whether they are associated with vertices, pairs, or faces.
Recall that there are r vertices, p pairs, and n faces. For closed manifolds, there
are two faces for every vertex (n ≈ 2r) and three edges for every vertex (p ≈ 3r).
These proportions hold quite closely for many surfaces; the totals in Table 6.2
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show the result of making this approximation.
Each vertex stores its position, links to pairs and faces which use it, and the

associated quadric. Each pair stores links to its endpoint, the target position and
cost of contracting it, and a link to its position in the heap. These “backlinks”
are necessary for efficient updates of the heap after performing a contraction.
Note that we could save 4.5% by using subset placement only; tracking the
position v̄ would no longer be necessary. Each face stores links to its corners
and a surface normal. These face normals are not strictly necessary, but they are
convenient to have and only account for 2.2% of overall memory consumption.

Quadrics account for 33%, the single largest component, of total memory
consumption. It is tempting to reduce memory requirements by using single
precision, rather than double precision, floating point values. However, simply
replacing double variables with float variables can cause significant numerical
problems. Single precision floating point does not have sufficient precision to
accurately track the quadric coefficients. It is possible that by carefully manag-
ing numerical values, such as by transforming the model to be centered at the
origin and lie within the unit cube, that floats could be safely used. However,
I have not tested any of these strategies; it has proved far more convenient to
simply continue using double precision values.

6.1.3 Empirical Running Time

The time complexity analysis in Section 6.1.1 has established that running time
will not grow prohibitively large when processing large models. However, more
important in practice is the actual running time of the algorithm. Many iterative
contraction algorithms have O(n logn) running times. But the various error
metrics which they use can have widely varying costs. My quadric error metric
is relatively cheap; consequently, actual running times for my implementation
are quite low.

To demonstrate the performance of my algorithm, I have selected the twelve
surface models shown in Figure 6.1. The models are arranged in order of in-
creasing size, ranging from 3842 to 1.7 million faces, and they represent several
kinds of objects. Models (a) and (c) are very simple, smooth surfaces. The
heat exchanger (d) and turbine blade (l) are machine parts. The face scan (e) is
data acquired from a stereo vision system. Models (f–h, k) are all small figures
scanned by a laser scanning system. The femur (i) and dental models (j) are
datasets encountered in medical applications.

The overall complexity of these models, and the time necessary to simplify
them, is summarized in Table 6.3. The running times listed reflect complete
decimation to 0 faces. I have excluded the time required to read and write files
to disk, since these vary significantly based on the model format used. The
models are divided into three size groups: small, medium, and large.

For most of the models, I ran the timing tests on a system with a 200 MHz
Intel PentiumPro processor and 160 MB of main memory. This level of computer
is readily available at the consumer level today. For the three largest models,
I ran performance tests on an SGI Onyx machine with a 195 MHz R10000



6.1. TIME AND SPACE EFFICIENCY 97

(a) Blobby “V” (b) Cow (c) Sphere

(d) Heat exchanger (e) Scanned face (f) Brontosaur

(g) Bunny (h) Dragon (i) Femur

(j) Teeth (k) Buddha (l) Turbine blade

Figure 6.1: Twelve surface models, arranged in order of increasing size, used
in performance tests. Note that all models are flat-shaded. See Table 6.3 for a
summary of model complexity and performance results.
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Running Time (s)

Model Vertices Faces Init. Simpl. Total

Blobby “V” 1923 3842 0.129 0.168 0.297
Cow 2904 5804 0.198 0.269 0.467
Sphere 4004 8004 0.294 0.361 0.655
Exchanger 5500 11,036 0.38 0.548 0.928

Face 14,445 28,906 1.02 1.632 2.652
Brontosaur 23,984 47,904 1.749 2.916 4.665
Bunny 34,834 69,451 2.612 4.435 7.047
Dragon 54,296 108,588 3.685 7.087 10.772
Femur 76,794 153,322 5.447 10.048 15.495

Teeth† 212,192 424,376 11.83 43.76 55.59
Buddha† 543,644 1,085,634 33.75 149.10 182.85
Turbine† 882,954 1,765,388 52.16 257.93 310.09

Table 6.3: Running times for complete decimation to 0 faces for models in
Figure 6.1. Only initialization and simplification times are shown; input–output
time is excluded. Tests were performed on a PentiumPro 200 MHz († 195 MHz
R10000) system.

processor and 1 GB of main memory; the Intel machine did not have enough
memory to accommodate models (k–l). My implementation causes excessive
paging when there is not enough physical memory available because it exhibits
poor memory locality. At each iteration, it tries to pick the best available
contraction, and the location of the best contraction tends to vary widely over
the surface from one iteration to the next. Note that, according to comparative
tests that I have run, my software has roughly similar running times on both
the R10000 and PentiumPro machines.

Figure 6.2 shows more complete running time information on the small-size
models (a–d). It shows total running time as a function of output approximation
size. The solid line indicates initialization time; in other words, the running
time when the desired output size m is equal to the input size n. Running time
increases as the size of the desired approximation m decreases; more iterations,
and more work, are required to remove larger numbers of triangles. Note that
despite the logarithmic factors in the theoretical time complexity, the running
time tends to be linear in m in practice.

Similar running time data is shown in Figure 6.3 for the mid-size models
(e–i). Again note that the running times behave quite linearly. The slope of
these lines is also essentially similar across these different models.

The bunny model (g) provides a useful point of comparison with other sim-
plification algorithms, since it has been widely used as an example model in
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Figure 6.2: Running times for small-size models (n < 15, 000 faces).
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Figure 6.3: Times for medium-size models (n =15,000–150,000 faces).



100 CHAPTER 6. RESULTS AND PERFORMANCE ANALYSIS

the literature. As shown in Table 6.3, my system requires at most 7 seconds
to produce a simplified bunny. An additional 3 seconds are required to input
the original geometry, and outputting a 1000 face approximation requires 0.4
seconds. Thus, my software can generate an approximation of about 1000 faces
in a total of 10.4 seconds. For this bunny model, Lindstrom and Turk [124] re-
port running times2 of 2585 seconds for mesh optimization [95], 500 seconds for
Hoppe’s progressive mesh construction algorithm [90], 325 seconds for the JADE
software [22], and 149 seconds for their own memoryless algorithm. Clearly, my
algorithm is substantially faster3 than these related techniques. The accompa-
nying error measurements indicate that, while my algorithm does not produce
the highest quality approximations, its results are competitive.
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Figure 6.4: Running times for large-size models (n > 400, 000 faces).

It is also feasible to simplify very large models using my algorithm. Figure 6.4
shows the running times for models (j–l). Note that the running time continues
to behave quite linearly. The only significant exception is a jump in the running
time on the turbine blade between 400,000 and 300,000 faces. This appears
to be caused by a period in which vertices of rather high degree are created.
Nevertheless, only 310 seconds are required to simplify this very large model.
With an additional 40 seconds for input and output, the total running time
to produce a 13,000 face approximation is about 350 seconds. In contrast,
Lindstrom and Turk [124] report that their algorithm required just under an
hour to produce a similar approximation, and that the other algorithms they

2 On a 195 MHz R10000 Onyx with 1 GB of memory.
3 The 32 second running time reported in their comparison for my algorithm is based on

an older, and less efficient, implementation.
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tested were unable to handle a model of this size.
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Figure 6.5: Time for total simplification as a function of input size n.

Figure 6.5 provides a slightly different view of running time. The simplifi-
cation process was run to completion on each sample model; in other words,
until all available pairs had been contracted and no faces remained. For greater
consistency, these running times were all generated on the R10000 test platform.
The previous figures show running times as a function of m for fixed input size.
Here we can see how running times vary as a function of input size n. As in the
earlier figures, the running time appears nearly linear in the input size, despite
the logarithmic terms in the theoretical complexity. This suggests that, in prac-
tice, the amount of movement of elements in the heap remains relatively low as
simplification proceeds. Notice that total running time is growing much faster
than initialization time. For small models, initialization can take around half of
the total time (see Figure 6.2). However, as model sizes increase, the process of
iterative contraction comes to dominate the running time.

Finally, the choice of placement policy (§3.5) can affect the running time of
my algorithm. Figure 6.6 shows running times on the bunny model for five sep-
arate strategies. As we would expect, optimal placement is the most expensive
policy, and subset placement is the cheapest. Falling between these two ex-
tremes are the intermediate policies of selecting the optimal position along the
pair segment, and selecting the best of the endpoints or the midpoint. For com-
parison, I have also shown the running time for face-based contraction (§3.8)
using optimal placement. This is faster than all the edge-based policies, pri-
marily because there are 30% fewer faces than edges. However, the price of this
increased efficiency is a higher approximation error (see Section 6.2.3).
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Figure 6.6: Time to simplify the bunny model under different policies. Four
vertex placement policies for the edge-based algorithm are shown along with the
face-based algorithm (using optimal placement).

6.2 Geometric Quality of Results

As demonstrated in the previous section, my algorithm can rapidly produce ap-
proximations. Even large models with a million faces can be simplified in about
3 minutes. But such efficiency would be useless if the resulting approximations
did not remain faithful to the original models. In this section, I will demonstrate
that the models produced by my algorithm are in fact of fairly high quality. I
will provide some visual examples of the results of quadric-based simplification
as well as numerical measurements of geometric error.

Figure 6.7a shows a surface model of a cow, in both shaded and wireframe
views. At 5804 faces, this model is not over-tessellated. Most of the features
of the surface are described with a fairly small number of triangles. Thus, by
simplifying this surface by any significant degree, we must necessarily remove
surface features. Note that triangle density is higher around the head and along
the legs.

Two different approximations of 1000 and 300 faces are shown in Figures
6.7b–c, respectively. At 1000 faces (17% of the original), the overall shape of the
model remains largely unchanged. All the major extremities remain, and have
the same, albeit slightly simplified, shape. However, all the finer details of the
surface have been removed. In comparison to the original (a), the distribution
of triangles is roughly uniform over the surface. The 300 face approximation
(5% of the original) is still quite recognizable, but the shape of the extremities
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(a) Full Model; 5804 faces

(b) 1000 face approximation

(c) 300 face approximation

Figure 6.7: Sample approximations of the cow model.
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(a) 100 face approximation

(b) 30 face approximation

(c) 4 face approximation

Figure 6.8: Further approximations of the cow model.
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is becoming more noticeably simplified. For example, the udders have been
completely removed and the ears and horns have been simplified substantially.

Figure 6.8 shows more aggressive reductions of the cow model to 100, 30,
and 4 faces. At the 100 face level, large-scale features of the model are being
either removed or substantially simplified. The tail has been removed, the ears
and horns have been merged together, and the legs and head have been reduced
to very simple shapes. This process has progressed even further in the 30 face
approximation. The hind legs have been merged together, and one of the front
legs has been removed entirely. This is a highly abstracted version of the orig-
inal cow, although it does retain a roughly similar size and shape. However,
displayed at a very small size, of say 16 pixels, this might be an entirely suitable
replacement for the original The final approximation, containing only 4 faces,
is no longer even recognizably a cow. While earlier approximations retained a
similar size and volume to the original, the volume of this approximation is no-
ticeably smaller. Although not visible from this angle, it is substantially thinner
than the original model.

A more interesting example is shown in Figure 6.9, a scanned model of
a (possibly chocolate) bunny. The original model (a) has just under 70,000
faces. The surface is fairly densely sampled. Indeed, although the surface is
flat-shaded, the triangles are small enough that it appears smooth.

The 1000 face approximation (b) faithfully preserves the shape of the surface.
Nearly all the fur texture and facial details have been removed. However, critical
features such as the neck and leg lines, and the shape of the head and ears, have
been maintained. If a texture map were applied to both (a) and (b), there would
be relatively little perceptual difference. A more aggressive approximation using
only 150 faces is also shown (c). At this point, most of the detail of the object
has been removed, yet the primary features of the model, such as the head, ears,
and tail, remain in a recognizable form.

The dragon model shown in Figures 6.10 and 6.11 is a more complex surface,
also generated from a scanner. It has a larger number of triangles than the
bunny model, and it has more features. Figure 6.11a illustrates the density of
the original mesh, also shown in much greater detail in Figure 2.3. Looking
closely at Figure 6.10a, we can see striations in the original surface; there is a
particularly apparent one along the lower jaw. Notice how even these striations
have been preserved in the 25,000 face approximation. This indicates that,
as is common with scanned data, the original model was significantly over-
tessellated for display at this resolution. At 5000 faces, the main features of
the model, such as the teeth, still retain their basic shape. However, notice
that the fine details of the surface, including the striations, have been removed.
This agrees with the observation of Section 4.4.2 that the quadric error metric
attempts to produce smoothed approximations of smooth surface regions. In
the final approximation, containing only 1000 faces, the facial detail and fangs
have disappeared. However, all the extremities remain and the larger scales
along the back have also been preserved.

Figure 6.12a shows a scanned dental model containing about 420,000 faces.
While quite accurate, it is too bulky to allow direct interactive manipulation by
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(a) Original model; 69,451 faces

(b) 1000 face approximation

(c) 150 face approximation

Figure 6.9: Sample approximations of the bunny model.
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(a) Original model; 108,588 faces (b) 25,000 face approximation

(c) 5000 face approximation (d) 1000 face approximation

Figure 6.10: Sample approximations of the dragon model.
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(a) Original; 108,588 faces (b) 25,000 face mesh

(c) 5000 face mesh (d) 1000 face mesh

Figure 6.11: Meshes for surfaces shown in Figure 6.10.
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(a) Original; 424,376 faces (b) 60,000 face approximation

(c) 8000 face approximation (d) 1000 face approximation

Figure 6.12: The dental model and three sample approximations.
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a user (i.e., an orthodontist). Because this surface is uniformly tessellated, it
wastes many triangles on the flat bases above and below the teeth. The 60,000
face approximation (b) is much more economical with its triangles, and retains
almost all the detail of the original surface. The 8000 face approximation (c)
sacrifices some quality, but it can be rendered fairly comfortably on even modest
machines without graphics acceleration. Finally, the 1000 face approximation
maintains the overall structure of the model; all the teeth are still present. It
would be a suitable replacement if the model were being viewed from a distance,
which is admittedly unlikely given the probable application of this dataset.
However, if we wanted to compute some gross property of the surface, such as
volume for instance, we could produce a good first estimate from this model.
This estimate could be refined by refining the model, and in the end, we would
achieve a result much more quickly than if we had begun with the original data.

The final example model is the turbine blade shown in Figure 6.13. This
surface appears to have been extracted from a volumetric dataset. At over 1.7
million faces, this model (a) is quite large. While not visible, it also has a
fairly complex internal structure, with hollow tubes running through the inte-
rior. This surface is very densely sampled. The 80,000 face approximation (c) is
a substantial reduction, but it remains very faithful to the original. In addition,
some of the noise present in the plate below the blade has been smoothed away.
Even at 8000 faces (d) the simplification preserves the primary features of the
model while smaller features, such as the label on the base, have been removed.
Visually, these approximations compare quite favorably to those of Lindstrom
and Turk [124] and appear, at low resolutions, to be significantly smoother than
those generated by Schroeder [171, Fig. 9]. Many other algorithms are inca-
pable of simplifying a model of this size, either because of prohibitive memory
consumption or extremely long running times [124].

6.2.1 Approximation Error

The pictures of sample approximations which I have just presented provide
useful visual information about the quality of the results generated by my algo-
rithm. But to gain a more precise understanding of approximation quality, we
need to measure the geometric approximation error of the results as well. All
error measurements in this section are based on the sampled Eavg (2.8) metric
defined in Section 2.3.2. For each of the two surfaces, the corresponding set
of sample points consists of the vertices of the model and an additional 100
samples taken over each face.

Figure 6.14 shows the approximation error Eavg as a function of approxi-
mation complexity for five sample models. To allow for comparisons between
models, all error values are normalized by the squared4 diameter of the models.
As we might expect, the blobby “V” model and the sphere exhibit the lowest
error profile during simplification. Both these models are very smooth and can
be approximated efficiently with fairly simple meshes. Of all the models shown,

4 The diameter is squared because Eavg measures squared distances.
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(a) Original; 1.7 million faces (b) 420,000 face approximation

(c) 80,000 face approximation (d) 8000 face approximation

Figure 6.13: Sample approximations of the very large turbine blade model.
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Figure 6.14: Approximation error Eavg as a function of approximation size m.

the cow seems to exhibit the highest rate of error growth during early phases
of simplification (at the right end of the graph). This also seems quite sensible;
the cow has a comparatively more complex shape and fewer than 6000 triangles
to begin with. Notice that after the initial phases of simplification, all the er-
ror curves become nearly linear, with the sole exception of the heat exchanger.
Since this is a log–log graph, this suggests that the error and number of faces
of a particular approximation may be related by a power law. Ignoring the first
one to two data points, where the curves are less linear, all of these curves are
quite closely fit by a function of the form Eavg = αm−2.

Figure 6.15 provides an alternate view of the error measurements shown in
Figure 6.14. However, instead of showing error as a function of approximation
size, it shows error as a function of the remaining fraction of the original faces.
Keep in mind that, in this case, the horizontal axis uses a linear scale, as opposed
to the log scale in Figure 6.14. Here we see that the cow has the highest
error profile. Again, this is because of the relative complexity of the model
in comparison to the number of triangles in the original. However, the bunny
model exhibits the lowest error profile in this graph. This indicates that the
original model was somewhat over-tessellated in relation to the complexity of
its shape. A significant number of the original faces can be removed without
introducing sizeable error.

Notice that the overall trend in approximation errors shown is fairly consis-
tent. All the curves have the same basic shape, even though the models being
simplified are quite different. One important trend that becomes apparent is
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Figure 6.15: Approximation errors from Figure 6.14 as a function of the fraction
of original faces remaining.

that the approximation error remains very low for quite some time. All but
one of the models have an approximation error below 10−6 even when only 30%
of the original faces remain. Near the end of simplification, when only a very
small fraction of the original triangles remain, the error increases very rapidly.
This occurs because various parts of the model begin to collapse. For example,
consider the dragon in Figure 6.10d. In the larger approximations, the shape of
the teeth has been simplified but all the teeth remain in the model. However,
at this level of simplification (1000 faces) the teeth have begun to disappear
entirely. As larger and larger features are removed, the error increases more
rapidly.

Finally, I have claimed that my quadric-based simplification algorithm pro-
vides a good compromise between the speed of simplification and the quality
of the resulting approximations. Figure 6.16 illustrates this tradeoff5. Unlike
most performance comparisons [26, 124] which focus on error as a function of
approximation size (as in Figure 6.14), this graph shows running time as a func-
tion of error. The graph reflects the simplification of the bunny model using
several different algorithms. Running times reflect performance on an R4400
SGI Indigo2, and the error values, generated by a metric essentially identical to
Eavg, were measured using the Metro [27] model comparison tool. Correspond-
ing points on the graph represent approximations with roughly identical vertex

5 This data is taken, with permission, from the survey of Cignoni et al. [26]. They present
the standard graphs of error vs. approximation size rather than this time vs. error tradeoff
graph.
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Figure 6.16: Comparison with other methods: Tradeoff of approximation error
vs. running time for simplifying bunny model.
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counts. From left to right, the approximations contain 50%, 25%, 10%, 5%,
2%, 1%, and 0.5% of the original vertices. A good way to read this graph is to
consider a particular vertical line. This will tell you, for a given error, how long
it will take to produce an approximation with that error.

As we would expect, the mesh optimization procedure of Hoppe et al. [95] is
by far the most expensive algorithm tested, requiring 1–3 orders of magnitude
more time than the other algorithms. However, at low approximation levels,
it also produces the best results. For instance, the last point on each curve
represents an approximation with 0.5% of the original vertices. Mesh optimiza-
tion produces the lowest error, and thus the highest quality result, at this level.
Interestingly, it produces the highest error at the 50% reduction level.

The next two algorithms below mesh optimization are the the simplifica-
tion envelopes algorithm of Cohen et al. [31], and the JADE vertex decimation
system by Ciampalini et al. [22]. Simplification envelopes provides tightly con-
trolled error bounds on the approximations it generates, and it preserves the
topological genus of the object. The JADE system uses an error metric based
on the localized Hausdorff distance (§2.3.2). In this respect, it is similar to sev-
eral other algorithms [179, 106, 108] which probably produce similar results. By
comparison to mesh optimization, these algorithms provide a significant savings
in running time, but produce approximations with higher error at higher levels
of simplification.

The final two algorithms are the vertex decimation algorithm of Schroeder
et al. [172], and my own QSlim implementation of quadric-based simplification
[68]. Both are substantially faster than the other algorithms. But while the
error of the approximations generated by my algorithm is quite competitive
with the other algorithms, the error resulting from vertex decimation grows
quite rapidly. In fact, at the 0.5% reduction level, vertex decimation produces
the highest error, while only mesh optimization produces a lower error than my
quadric-based system.

This example demonstrates quite clearly the mix of speed and approximation
quality provided by quadric-based simplification. It is able to rapidly produce
approximations whose error is competitive with significantly more expensive
methods. Vertex decimation, which is comparable in running time, produces
approximations of appreciably higher error for a given number of output faces.
As an aside, I should mention that the data in this graph reflect the performance
of the first release of my QSlim software [68]. The performance data which I have
detailed in previous sections are based on the second release of that software,
which is approximately twice as fast as the original.

6.2.2 Performance on Noisy Data

There is no explicit mechanism for handling noisy data in the quadric error
metric. Quadrics are constructed directly from the faces of the original surface.
Any noise will be treated as a surface feature. In application areas where noise
is common, prefiltering of the surface normals would help to reduce noise in
the approximation process. However, without regard to the presence of noise,
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the quality of approximations degrades gracefully for noisy models. In fact,
one side-effect of quadric-based simplification is a smoothing process which can
partially remove some noise.

(a) 0.125% noise (b) 0.25% noise (c) 0.5% noise

(d) 1% noise (e) 2% noise (f) 3% noise

Figure 6.17: Noisy cubes — original 12,288 triangle resolution.

Consider the cubes shown in Figure 6.17. Each model has approximately
12,000 faces. They are generated from a unit cube by iteratively subdividing the
initial 12 triangles. After subdivision completed, all the newly created vertices
were displaced by a random amount along their average surface normal. The
size of this displacement is measured as a percentage of the model diameter. In
this example, noise levels range from 0.125%–3%. Notice that models (a–c) are
reasonably close to cubical, while model (d) is noticeably rough, and models
(e–f) appear quite noisy.

To see how my simplification algorithm deals with this noisy data, I pro-
duced several approximations for each of these cubes. For each approximation,
I measured the approximation error Eavg between that approximation and the
underlying unit cube (as opposed to the original model). Figure 6.18 shows the
results of this experiment. Notice that as simplification proceeds, the measured
error between the approximation and the unit cube initially decreases. In effect,
the surface is being smoothed and noise is being removed. The lends support
to the analysis of quadric errors at the end of Section 4.4.2. I suggested that
the form of the error for vertices positioned by minimizing the quadric error is
related to a surface smoothing operation. We can see this kind of smoothing
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Figure 6.18: Approximation error for noisy cubes (see Figure 6.17).

happening in this example. Naturally, the error will ultimately increase as fewer
and fewer triangles are used, but for the tests with less than 0.5% noise, the
maximum error reached remains very small (less than 10−5).

Figure 6.19 shows the 100 face approximations generated by simplifying the
cubes in Figure 6.17. As you can see, models (a–b) are almost perfectly cubical
and model (c) exhibits a few small deviations, such as the rounding of the
closest visible corner. Model (d) is more noticeably bent around the corners,
and models (e–f) are certainly less cubical, although they do have identifiable
sides and they are roughly the size of the unit cube.

A minimal triangulation of the unit cube contains 12 faces, and the corre-
sponding approximations are shown in Figure 6.20. The two models with the
least noise are almost exactly cubical; as shown in Figure 6.18, their approxima-
tion errors are very low. In effect, the process of simplification has successfully
removed the noise that was originally added to these models. Models (c–e) ap-
pear to be increasingly warped cubes, but each still has four essentially planar
quadrilateral sides. The final model (f) no longer retains the shape of a cube,
and it appears somewhat shrunken.

6.2.3 Effect of Alternate Policies

As illustrated by Figure 6.6, the choice of placement policy affects the running
time of the system. Naturally, it also affects the quality of the results. Figure
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(a) 0.125% noise (b) 0.25% noise (c) 0.5% noise

(d) 1% noise (e) 2% noise (f) 3% noise

Figure 6.19: Noisy cubes from Figure 6.17 simplified to 100 triangles.

6.21 shows the results of simplifying the cow model using three different poli-
cies: edge contraction with optimal placement, edge contraction with subset
placement, and face contraction using optimal placement. Each approximation
contains 300 faces, or 5% of the original triangle count.

By visual inspection, we can see that edge-based optimal placement (a)
produces the best result. In particular, the definition of the head and horns is
superior to the alternatives. Notice how the head has been rounded out, and the
rear leg twisted, by subset placement (b). At this level of approximation, face
contraction (c) produces results similar to edge contraction, both using optimal
placement. The horns and head are not quite as well defined, but the overall
quality is competitive.

Figure 6.22 provides a broader view. Initially, face contraction produces
the worst results; however, when approaching lower face counts, it performs
somewhat better than edge-based subset placement. With one exception, edge-
based optimal placement performs consistently better than the other policies.
This difference is even more apparent when we examine the actual error values,
as in Table 6.4. Subset placement tends to produce a 30–50% higher error than
optimal placement. Face-based optimal placement, while it has initially twice
the error of edge-based optimal placement, narrows the gap at lower face counts.
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(a) 0.125% noise (b) 0.25% noise (c) 0.5% noise

(d) 1% noise (e) 2% noise (f) 3% noise

Figure 6.20: Noisy cubes from Figure 6.17 simplified to 12 triangles.

Approximation Error Eavg

Faces Optimal Subset % change Face % change

10 0.00545769 0.00784432 43.7 0.00645922 18.4
100 0.000259639 0.000352787 35.9 0.00029681 14.3
500 1.27412e-05 2.03091e-05 59.4 1.73388e-05 36.1
1000 3.43394e-06 5.18089e-06 50.9 5.03303e-06 46.6
3000 2.57919e-07 3.39024e-07 31.4 4.17302e-07 61.8
5000 1.05293e-08 1.12268e-08 6.62 2.26776e-08 115

Table 6.4: Numerical error values shown in Figure 6.22 along with percentage
change from optimal placement.
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(a) Edge-based decimation; Optimal placement

(b) Edge-based decimation; Subset placement

(c) Face-based decimation; Optimal placement

Figure 6.21: Different approximations, all with 300 faces, of the cow using
different simplification policies.
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Figure 6.22: Error Eavg for cow approximations using different policies.

6.3 Surface Property Approximations

All the sample approximations examined in previous sections consist of purely
geometric surfaces. By applying the extended quadric metric developed in Chap-
ter 5, my simplification algorithm can also produce approximations for surfaces
with per-vertex attributes. In this section, I will consider two of the most com-
mon attribute types: RGB color and texture coordinates. As we will see, the
extended error metric provides an effective means for producing approximations
of such surfaces.

Consider the Gouraud-shaded example shown in Figure 6.23. The surface
itself is a sphere built from points on a latitude–longitude grid. Each vertex is
assigned a color based on the elevation of the Earth’s surface at that point. Since
it is so simple, the surface shape is preserved very accurately. More importantly,
the coloring of the surface is also preserved well. The coastlines, which represent
the greatest color discontinuities, are simplified but still quite discernible. Note
that larger triangles appear in areas of constant or linear color variation, such
as oceans, while smaller triangles occur along the coastlines.

Figure 6.24 shows another Gouraud-shaded example. Each vertex has one
RGB value which was computed by a radiosity system. All visible colors are
due to the radiosity solution; no display-time lighting calculations are being
performed. Radiosity meshes such as this are a prime application of my al-
gorithm. Even the simplest geometries are often carved up into very small
polygons to achieve high-quality shading. The resulting surfaces are ripe for
simplification; typically, the surface geometry is heavily over-sampled and the
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(a) 73,728 face original (b) 20,000 face approximation

(c) 3000 face approximation (d) 3000 face mesh

Figure 6.23: A Gouraud-shaded sphere, where each vertex has been colored
according to the elevation of a point on the surface of the Earth.
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(a) Original; 50,761 faces (b) 10,000 face approximation

(c) 3000 face approximation (d) 1500 face approximation

Figure 6.24: A scene shaded with a radiosity solution. Each vertex has one
resulting RGB color; no other lighting calculations are being performed.



124 CHAPTER 6. RESULTS AND PERFORMANCE ANALYSIS

colors vary smoothly over large areas. For example, the base plane outside the
shadow of the dragon is colored with a nearly constant color, yet it contains
many triangles.

The original model shown in Figure 6.24a contains just over 50,000 faces.
The dragon is a pre-simplified version of the model shown in Figure 6.1h. The
approximation (b) contains only 10,000 faces, yet preserves the surface shape
and the shading as well. Models (c–d) are more radically simplified approxima-
tions. Geometric features such as the teeth, and shading features such as the
shadow under the neck, are gradually removed.

The generalized quadric error metric can just as easily be used to simplify
surfaces with texture maps. In Figure 6.25a, we are looking down at a square
height field of the eastern half of North America. The surface is textured with
a satellite photograph with height given by altitude and bathymetric data.

Figure 6.25b shows the result of simplifying this surface using optimal place-
ment without regard for the texture coordinates. For each contraction, we sim-
ply propagate the texture coordinates of v1. As we would expect, this produces
very poor results. Moving vertices without synthesizing correct texture coor-
dinates causes the texture to warp like a rubber sheet. For example, note the
substantial distortion around Florida and New England.

In contrast, the approximation shown in Figure 6.25c, with the same num-
ber of faces, was produced using an xyzst extended quadric. The algorithm
produces nearly the same geometric surface as before. However, by using the
extended metric, I have allowed the algorithm to synthesize appropriate texture
coordinates for the new vertices. Unlike colored surfaces (such as Figure 6.24),
the edges of the mesh do not align with features in the texture. The simplifica-
tion algorithm never accesses the pixels of the texture; it merely tries to update
texture coordinates so that the texture is mapped onto the surface using the
same parameterization as in the original.

In the example of Figure 6.25, there is a direct correspondence between
(x, y) and (s, t). This would provide an alternate way to synthesize new texture
coordinates: for any vertex position, we can use x and y to compute appropriate
s and t values. While this only works for height field surfaces, a more general
alternative presents itself. For a proposed contraction (vi,vj) → v̄, we can
project the position v̄ onto the nearest point in the neighborhood of vi and
vj prior to performing the contraction. This projected point will fall within
one of the triangles of the local neighborhood. Each vertex of this triangle will
have an associated attribute, and we could synthesize an attribute value for
v̄ by linearly interpolating the value at its projection from the vertices of the
surrounding triangle. As the following example demonstrates, this method of
local reprojection works well when texture coordinates are an affine function
of position. But when the texture parameterization is more non-linear, the
generalized quadric error metric produces substantially better results.

Consider the two height field surfaces shown in Figure 6.26. Each surface is a
piece of a hemisphere, curving up toward the viewpoint, defined by tessellating
the domain x, y ∈ [0, 1] with 19,602 triangles. Geometrically, the surfaces are
identical and they have been textured with the same checkboard image, but
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(a) 3872 face model

(b) Simplified without synthesizing new texture coordinates

(c) Simplified using generalized quadric metric

Figure 6.25: Simplifying a texture mapped model of North America. Using the
generalized quadric metric, we can synthesize new texture coordinates during
simplification.
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(a) Direct mapping (b) Warped mapping

Figure 6.26: Two identical spherical sections (19,602 triangles) textured with
the same image. Only the texture parameterization differs between them.

the mappings of this texture onto the surfaces differs significantly. On the one
hand, model (a) is parametrized using a direct correspondence

s = x and t = y (6.1)

between a vertex’s position (x, y) and its texture coordinate (s, t). This is the
same simple mapping used in Figure 6.25. On the other hand, model (b) is
parametrized using the more complex mapping

s = |x− 0.5|1/4 and t = |y− 0.5|1/4 (6.2)

which results in a warping of the texture image. It also causes the same corner
of the image to be applied to each of the four quadrants of the surface.

Figure 6.27 compares the results of simplifying the example shown in Figure
6.26. On the left, the surface is simplified using the purely geometric quadric
metric. Once a position v̄ is chosen for a particular contraction, a new texture
coordinate is synthesized using local reprojection. On the right is the result of
applying the simplification algorithm using a generalized xyzst quadric. As you
can see, even with only 100 faces, both approximations appear virtually identical
to the original. The meshes produced by each method are quite similar; they
both distribute faces fairly evenly over the entire surface.

Local reprojection and extended quadrics produce nearly identical results in
cases where the texture parameterization is an approximately affine function of
position. However, if the mapping is more nonlinear, as in Figure 6.26b, ex-
tended quadrics perform much better. Figure 6.28 demonstrates the resulting
approximations generated by these two methods. It is quite clear that local



6.3. SURFACE PROPERTY APPROXIMATIONS 127

(a) 100 face approximation

(b) 100 face mesh

Figure 6.27: Approximations of an affine texture parameterization using local
reprojection (left) and the extended quadric metric (right).
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(a) 4500 face approximation

(b) 800 face approximation

(c) 100 face approximation

Figure 6.28: Approximations of a highly nonlinear texture parameterization
using local reprojection (left) and the extended quadric metric (right).
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reprojection does a poor job of properly maintaining the texture parameteriza-
tion. At the 800 face level, it results in a noticeably garbled texture whereas the
approximation produced using extended quadrics remains quite faithful to the
original. Only at around 100 faces does the texture parameterization begin to
degrade during extended quadric-based simplification. This is largely because
there are simply no longer enough triangles to accurately preserve both the open
contour of the surface and the texture mapping.

(a) Local reprojection (b) Quadric-based

Figure 6.29: Meshes of 800 face approximations from Figure 6.28. Extended
quadrics lead to a mesh that conforms to the geometry as well as the texture
parameterization.

Figure 6.29 provides some insight into why the extended quadric method
produces substantially better results when the texture mapping is warped. Con-
sider for a moment the texture coordinate s as a function of x given in (6.2).
This function has very high curvature near x = 0.5, but its curvature becomes
much lower (i.e., it becomes fairly flat) as x approaches 0 and 1. If we were to
generate a piecewise-linear approximation of this function, it would be clear that
a good approximation will have more segments in the area where the curvature
is large and fewer segments in the areas where the curvature is small. The same
reasoning applies in this case. The curvature of the texture parameterization is
much higher near the middle and along the central lines of the surface than it is
along the boundary. Therefore, a good approximation of this parameterization
should concentrate more triangles in these regions. This is exactly what the
extended quadrics lead the algorithm to do; in contrast, local reprojection con-
tinues to generate a fairly uniform grid. Looking more closely, we can see that
the triangles concentrated along the central lines also stretch along the direction
in which the parameterization is changing the least.
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6.4 Contraction of Non-Edge Pairs

One of the novel features introduced by my algorithm [68] is the generalization
of iterative contraction to consider arbitrary pairs of vertices instead of merely
edges (§3.2.1). By contracting non-edge vertex pairs together, the algorithm can
aggregate separate components together. When the model is composed of many
disjoint components, this can result in significantly better approximations. All
previous results shown in this section were generated using edges alone (τ = 0).
Now, let us consider the effect of using non-edge pairs as well.

(a) Original 4204 face model (b) 250 faces (τ = 0)

(c) 262 faces (clustering) (d) 250 faces (τ = 0.318)

Figure 6.30: Approximating a model with many separate components.

Figure 6.30 demonstrates the benefits which aggregation via pair contrac-
tions can provide. The original model consists of the bones of a human’s left
foot, and is composed of 4204 triangles. There are many separate bone segments,
some of which even interpenetrate (obviously an error in model reconstruction).
However, when viewed from a distance, the separation between many these bone
segments is imperceptible. By selectively joining bones together, we should be
able to produce a model which uses fewer triangles for a given error tolerance.
When edge contractions alone are used (b), the small segments at the ends of
the toes collapse into single points; this creates the impression that the toes are
slowly receding back into the foot. Simplifying this model by uniform cluster-
ing on a 11×4×4 grid (c) produces a model where separate components have
been fused together. However, the bones have been joined together rather indis-
criminately, and the quality of the resulting approximation is poor. In contrast,
performing iterative contraction considering both edges and additional non-edge
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pairs (d) produces a model where separate bone segments have been merged in
a much more desirable manner. The toes are being merged into single long
segments. As a side note, this model now contains 61 non-manifold edges. If
the underlying simplification algorithm did not support non-manifold models,
producing this result would be appreciably more difficult.
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Figure 6.31: Affect of pair thresholds on approximation error Eavg for 250 face
approximations of the foot model.

The benefits of aggregation are not solely visual. Aggregation can also pro-
duce objectively lower approximation error. Figure 6.31 shows the approxima-
tion error Eavg of 250 face approximations of the foot model as a function of the
selection threshold τ . A fairly wide range of values all produce objectively bet-
ter approximations than are achieved by using edges along (τ = 0). However,
this also exhibits one of the weaknesses of the selection method. It is fairly
sensitive to the choice of the threshold τ . Increasing the threshold does not
always improve the quality of the approximation. For some models, there may
be no value for τ > 0 for which the error is less than for τ = 0. This is in part
due to the nature of the quadric error metric. Locally, the distance to a set of
planes is a reasonable characterization of the distance to a set of faces. However,
because planes have infinite extent and faces do not, the error metric becomes
less reliable as we move farther away from the neighborhood in question.

Aside from this sensitivity to the selection threshold, aggregation by pair
contraction also has one another clear weakness. Its success depends on the
relative positions of vertices on separate components. Consequently, contraction
using non-edge pairs does not perform as reliably as contraction using edges only,
which performs well on a wide range of models.
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(a) Original cylinder (b) Edges only (c) Plus non-edges

Figure 6.32: Two vertical capped cylinders in close proximity (viewed from
the side). Simplifying with edges only (b) will never join these cylinders. By
considering non-edges as well (c), we can merge them into one cylinder.

Consider the model shown in Figure 6.32a. It consists of two closed cylinders
whose ends are very close together. Suppose we had a model consisting of a chain
of several such cylinders. For example, this might represent a set of stacked cans.
At a distance, the gaps between them would be nearly invisible, and we could
approximate them all by a single cylinder.

Simplifying this model using edge contraction produces results like that
shown in Figure 6.32b. The separate cylinders will never be merged. By con-
sidering additional pairs of vertices, in this case the pairs of vertices that span
the gap, we can achieve approximations like Figure 6.32c. The two cylinders
have been fused into one. At very low levels of detail, this will allow us to more
faithfully preserve the shape of the original. However, there are two difficulties
with the results of aggregating the cylinders in this way.

First, the caps of the cylinders have not been removed in model (c). Corre-
sponding vertices along the rim of the cylinders have been joined; the faces of
the caps are now simply hidden within the merged cylinder. Ideally, we would
like to remove these faces, but even if they were removed from the model they
would continue to affect the error metric. The planes of the caps have been
accumulated by the quadrics of the vertices on the rim. These planes, which are
perpendicular to the surface of the cylinder, will prevent vertices from moving
away from the rims. In other words, the seam where the cylinders are merged
will never disappear from the model.

The second problem with this method of aggregation is that it relies on
being able to match up pairs of vertices to span gaps. Figure 6.33 illustrates
this problem. Model (a) is identical to the model in Figure 6.32a, except that
the upper cylinder has been rotated. The vertices along the rims of the cylinders
are no longer aligned. Applying the same process which produced Figure 6.32c
now produces Figure 6.33b. The cylinders are no longer merged. In this very
simple case, expanding the threshold τ can once again result in the cylinders
being merged. But in cases where there is no clear correspondence between
vertices, components will not be reliably aggregated.
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(a) Twisted original (b) Approximation

Figure 6.33: The two cylinders shown in Figure 6.32; one has been rotated
slightly. Using the same threshold τ no longer results in merging of the cylinders.
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Chapter 7

Applications

Surface simplification algorithms, such as the one I have described in the pre-
ceding chapters, are designed to produce approximations from initial surface
models. They may be used to produce a single final approximation, or a series
of approximations for use as a discrete multiresolution model. Iterative contrac-
tion algorithms, such as my own, induce a certain hierarchical structure on the
surface determined by the sequence of contractions itself. This structure leads
quite naturally to continuous multiresolution representations. In this chapter,
I will examine the structure induced by iterative contraction algorithms in gen-
eral. In addition, I will also explore some of the potential applications which
are made possible by the efficiency of my algorithm in particular.

7.1 Incremental Representations

Starting with the original modelM0, iterative simplification algorithms generate
a sequence of approximations

M0 →M1 →M2 → · · · →Mk

arriving at the final approximation Mk. Note that this differs from the pro-
gressive mesh notation used by Hoppe [90] where M0 is the base mesh which,
by a sequence of refinements, is transformed into the original mesh Mk. An
incremental representation is one which encodes the original model M0, the
final model Mk, and all the intermediate approximations M1, . . . ,Mk−1. This
is a multiresolution representation because it allows us to extract a fairly wide
range of levels of detail. However, the available approximations are restricted
to exactly those which were generated during simplification.

7.1.1 Simplification Streams

The direct by-product of iterative contraction is an incremental representation
which I will term a simplification stream. During the process of simplification,

135
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we generate the sequence of models

M0 φ1

→ M1 φ2

→ M2 φ3

→ · · · φk

→ Mk

where each step M i−1 → M i corresponds to the application of a single con-
traction φi. Thus each intermediate approximation M i can be expressed as the
result of applying some prefix of the total sequence of contractions

M i = [φi](M0) = (φi ◦ · · · ◦ φ1)(M0) (7.1)

Suppose that along with the original mesh M0 we store a representation of
each contraction φi. By simply applying (7.1), we can reconstruct any inter-
mediate model M i in addition to the original and final models. In essence, by
storing a record of the simplification process, we can re-apply the same contrac-
tion sequence but choose an earlier stopping point.

At a minimum, the pieces of information that must be recorded for a con-
traction φi are

1. identifiers for the vertices (vj ,vk) being contracted, and

2. the final position v̄.

Note that the actual size of this data may vary. If we are using an optimal
placement strategy (§3.5), v̄ might require as much as 3 floating point numbers
to determine the new vertex position. And if the vertices have associated ma-
terial attributes, further data will be required for each attribute. On the other
hand, with a fixed placement strategy, v̄ can be encoded implicitly by the order
of the vertices (vj ,vk).

Simplification streams do provide an incremental representation of the sur-
face. By applying some prefix of the contraction sequence, we can reconstruct
any of the intermediate approximations generated during simplification. How-
ever, their practical utility is limited. Lau et al. [114] used simplification streams
of bounded size as a cache of recently generated approximations for run-time
simplification. Recording the last k contractions allows their system to refine
the current approximation by at most k steps. If further refinement is required,
simplification begins again from the original model. For certain limited applica-
tions, this might yield acceptable results, but simplification streams are unsuit-
able for representing a wide range of approximations. Since we store the entire
original model M0 plus the contraction sequence, the resulting representation is
necessarily larger than the original model. If we assume that our original model
is very large and our desired approximation is quite small, certainly a common
case, we are faced with a more significant problem. In order to reconstruct a
small approximation, we must apply a large number of contractions to a large
model. Thus, the smaller the approximation the greater the time required to
extract it. We would clearly prefer reconstruction cost to be proportional to the
desired approximation size. Fortunately, a closely related representation can
solve both of these problems.
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7.1.2 Progressive Meshes

The progressive mesh (PM) structure, originally introduced by Hoppe [90, 92],
provides the same functionality as a simplification stream. However, it has
two important advantages. First, the resulting representation can actually be
smaller than the original model. Second, reconstruction time is proportional to
the desired approximation size.

A progressive mesh is, in essence, a reversed simplification stream. It exploits
the fact that the contraction operator is invertible. For each contraction φi we
can define a corresponding inverse ψi. This operation, called a vertex split,
is an inverse of φi such that ψi(M i) = M i−1. Thus, we begin with the final
approximation Mk and produce a sequence of models

Mk ψk

→ · · · ψ3

→ M2 ψ2

→ M1 ψ1

→ M0

terminating at the original model. The modelMk is called the base mesh. Along
with this base mesh, we can store the vertex split sequence ψk, ψk−1, . . . , ψ1.
Each item in the sequence must encode the vertex being split, positions for the
two resulting vertices, and which triangles to introduce into the mesh [90]. We
can reconstruct some intermediate approximation M i by applying a prefix of
the vertex split sequence:

M i = [ψi+1](Mk) = (ψi+1 ◦ · · · ◦ ψk)(Mk) (7.2)

Not only does this encode many different levels of detail of the original model,
but Hoppe [90] demonstrated that progressive meshes are also an effective tech-
nique for compressing the input geometry.

Progressive meshes are generally developed as the result of iterative edge
contraction. Naturally, they can also be used with alternative contraction prim-
itives (§3.8). For instance, a progressive mesh based on face contraction has
exactly the same structure as one based on edge contraction. However, because
edge contraction is the finest-grained contraction primitive, it generates pro-
gressive meshes with the largest number of intermediate models. Simplification
by pair contraction, and hence progressive meshes, can also be generalized to
operate on arbitrary simplicial complexes [144].

7.1.3 Interruptible Simplification

A single simplification run produces a final approximationMk and a correspond-
ing progressive mesh as well. Using this progressive mesh, we can reconstruct
any intermediate approximation between the base mesh Mk and the original
model M0. But we cannot use the progressive mesh to extract an approximation
which is simpler than the base mesh Mk. Without any additional information,
we would have to perform another simplification phase, beginning with Mk as
the initial model, in order to produce a simpler approximation M l. This can be
expensive, particularly if we are using a costly algorithm such as Hoppe’s [90].
Furthermore, by starting from the already simplified model Mk, we are quite
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likely to produce a worse approximation than if we had begun with the initial
model M0.

My quadric error metric (§3.4) provides a convenient way around this prob-
lem. Recall that every vertex vi has an associated quadric Qi. The error at the
vertex vi is defined to be Qi(vi). With the exception of consistency checks per-
formed on the current approximation, the sequence of contractions performed
by my algorithm is completely determined by the quadrics associated with the
vertices of the current approximation. These quadrics record all the information
which the system has retained about the original model. Therefore, if we record
the quadrics Q1, . . . , Qm of the vertices of Mk, we can resume simplification
at a later time, and the resulting approximation will be exactly the same one
which we would have obtained by beginning directly with M0. In other words,
provided that we record the quadrics for all the active vertices, we can halt
the simplification process and resume it later without any loss of information.
Using double precision values, storing the 10 coefficients of each quadric would
require 80 bytes. Thus, storing all the quadrics for an m-vertex approximation
would require 80m bytes.

In fact, this property allows quadric-based simplification to be combined with
other algorithms. Suppose that we want to simplify a model in separate phases,
alternating between quadric-based simplification and some other method. As
long as the other algorithm properly maintains the quadrics at each vertex, my
simplification algorithm can be stopped and resumed without any loss of infor-
mation. Consider a very large, very densely over-sampled model. It may be
that a very inexpensive algorithm, say one based on local heuristics such as di-
hedral edge angle, can produce good approximations of this model down to 50%
of its original complexity. If this algorithm correctly tracks the accumulation
of quadrics at the individual vertices, it can be run as an initial simplification
phase, and the resulting model and quadrics can then simply be passed to a
quadric-based procedure for further simplification.

7.2 Simplification and Spanning Trees

As outlined in the previous section, the sequence of contractions computed dur-
ing simplification can be used to construct an incremental multiresolution repre-
sentation of the model. But the process of iterative contraction actually induces
further structure on the surface. In this section, we shall see that iterative edge
contraction is a close analog of a minimum spanning tree algorithm.

Let us consider a modelM as a graph. A spanning tree is an acyclic subgraph
of M which connects all the vertices of M . A spanning forest is a collection of
disjoint trees which collectively cover all the vertices of M . Suppose that every
edge i has an associated weight, or cost, wi. The weight of a graph is the sum of
the weights of its edges, and a minimum spanning tree is a spanning tree whose
total edge cost is minimal.

Figure 7.1 provides a simple illustration of the connection between iterative
contraction and spanning trees. In the right-hand column is a sequence of
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Figure 7.1: Simplification process and corresponding spanning tree.
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approximations M2, . . . ,M7. In this example, we are using a fixed placement
strategy; in other words, each contraction is of the form (vi,vj) → vi. I will
indicate this by writing the contraction in the more compact form vj → vi.
For each model, the edge being contracted to produce the next model is drawn
as an arrow indicating the contraction in the same manner. Note that I have
labeled the initial model M2 because it corresponds to the final model shown
in Figure 3.3.

Each vertex in a given approximation corresponds to some set of vertices in
the original model. In particular, it corresponds to itself plus all the vertices
which have been contracted into it. These sets are disjoint and they completely
partition the original set of vertices. In the original model M2, each vertex
vi corresponds to the singleton set {vi}. After the contraction v5 → v1, the
vertex v1 corresponds to the set {v1,v5} in the original model. In the left-hand
column of Figure 7.1, I have indicated the structure of these sets by enclosing
them in shaded regions.

It is easy to show inductively that the construction of these sets is equivalent
to the construction of a spanning forest. In the initial model, each set contains
a single vertex. The set of all vertices is clearly a spanning forest. In general, a
single edge contraction joins exactly two sets together. Assuming that each set
is already a spanning tree, connecting these trees by a single edge (the edge be-
ing contracted) results in a larger spanning tree. Notice, however, that there is
not one unique spanning tree corresponding to the simplification process. When
two regions are merged, any duplicate edges connecting them to the same region
are removed. Thus, an edge connecting two vertices in the approximation cor-
responds to multiple edges in the original graph. For example, when producing
the tree for M6 in Figure 7.1, there are three different edges which connect the
corresponding parts of the spanning forest.

This view of iterative contraction is very similar to the minimum spanning
tree algorithm of Cheriton and Tarjan [20, 185]. The primary difference is that in
their algorithm each edge is assigned a constant weight, but in the simplification
algorithm the weights assigned to the edges change over time. In my algorithm,
the weight of an edge is a function of the quadrics associated with its endpoints.

We can construct a directed graph by creating an edge vj → vi whenever
we perform the corresponding contraction. This records the same sort of in-
formation as found in Table 3.1. Figure 7.2 illustrates the resulting graphs for
models M5 and M7. By starting at a node and following the arcs, we arrive at
the currently active vertex which has accumulated the node at which we began.
This structure is a common representation for disjoint sets [34, 185]; it is often
referred to as a disjoint-set (or union–find) forest. In fact, these structures are
exactly those used by Cheriton and Tarjan [20] to track disjoint sets of vertices
in their minimum spanning tree algorithm. When using these graphs to simply
track disjoint sets, it is common practice to apply a path compression heuristic
— whenever we traverse a path, we update all the nodes encountered to point
directly to the root of their tree. Consequently, all nodes will ultimately point
directly to the root. Path compression leads to more efficient set membership
queries; however, the additional structure of the uncompressed graph has some
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Figure 7.2: Disjoint-set graph for two models shown in Figure 7.1.
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Figure 7.3: Graph structure of a single contraction.

very useful multiresolution applications.

Edge contraction has also been used explicitly for constructing minimum
spanning trees by Karger et al. [104]. This technique is similar to the algorithm
of Xia and Varshney [198], which simplifies the surface by iteratively contracting
maximal independent sets of edges.

7.3 Vertex Hierarchies

Progressive meshes provide a useful multiresolution structure, but they are
somewhat restrictive. They only allow us to reconstruct models which were
generated during the original simplification process. This is because we always
perform contractions in the order in which they were discovered, but this total
ordering of contractions is not necessary. By using a less restrictive partial order-
ing, we can achieve a much more flexible multiresolution representation which
will allow us to generate novel approximations that were never constructed dur-
ing simplification.

Let us return to the simplification sequence pictured in Figure 7.1. Consider
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the contraction v5 → v1 (which produces M3) and the contraction v6 → v3

(which produces M4). With a progressive mesh, we would always perform these
two contractions in this order, because that is the order in which they were
initially performed during simplification. However, by inspection, we can see
that they are independent. We can just as easily perform them in the opposite
order, and the resulting meshes would be just as valid as the ones shown in the
figure.

These two contractions are interchangeable because the sets of vertices in-
volved in the contraction are disjoint. We can see this fact reflected in the
structure of the graphs shown in Figure 7.2. There is no path which includes
both contractions v5 → v1 and v6 → v3. If we interpret these disjoint-set forests
as dependency graphs, we can determine whether any given pair of contractions
can be performed independently or not.

The construction pictured in Figure 7.2 is only applicable when we are using
a fixed placement scheme. In general, we would like to perform contractions
(vi,vj) → v′

i where v′
i 6= vi. In order to accommodate such general placement,

we can treat v′
i as a new vertex instance and link both vi and vj to it. This

structure is illustrated in Figure 7.3.
The result of applying this rule over the entire simplification process will

be a binary forest. Assuming that we simplify a model completely to a single
vertex, we will have a binary tree. The resulting graph is a vertex hierarchy ;
Figure 7.4 illustrates the hierarchy resulting from the simplification in Figures
3.3 and 7.1. This vertex hierarchy structure was developed independently by
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Figure 7.4: The vertex hierarchy resulting from the simplification process shown
in Figures 3.3 and 7.1.
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myself, Xia and Varshney [198], Hoppe [91, 93], and Luebke and Erikson [130].
In a vertex hierarchy, cuts through the tree correspond to allowable approxi-

mations. Figure 7.4 shows the three different cuts corresponding to modelsM2,
M5, and M7. Any given cut divides the tree into some number of components.
The component containing the root remains a tree, essentially a pruned version
of the original. I will call the leaves of this pruned tree active vertices. Each
active vertex is the root of some subtree in the hierarchy. For every active ver-
tex, we can perform all the contractions described by that subtree, and we can
perform contractions in separate subtrees in any order. The result is a valid
approximation of the original model. However, it is not guaranteed to be free of
artifacts such as mesh fold-over (§2.3.4). To prevent such degeneracies, we must
either perform run-time consistency checks or encode further dependencies in
the hierarchy itself.

7.3.1 Adaptive Refinement

The primary application for which vertex hierarchies have been used is view-
dependent refinement of models for real-time rendering [91, 93, 130, 198]. Sup-
pose that we have a large surface, such as a terrain, that we would like to render
using a continuously varying level of detail. Furthermore, let us assume that
there is generally a high degree of frame-to-frame coherence in the viewpoint,
such as we would expect in a flight simulator. Now, imagine that our model is
represented using a vertex hierarchy, and that we have selected a cut through
the tree. Any change in this cut, either up or down the tree, will result in a
new, closely related approximation. By maintaining an active cut through the
tree, and incrementally adjusting it for each frame, we can adapt the current
model to the new viewing conditions.

Vertex hierarchies can also accommodate further synthetic refinement of
the model past the original level of detail. Any mesh refinement which can
be implemented by edge splitting can be added into the hierarchy. An edge

Before After

split

vi vi
vj

Figure 7.5: Refining a mesh with a single edge split.

split, such as the one shown in Figure 7.5, can be directly encoded as a vertex
split operation on the vertex vi. The leaves of the vertex hierarchy represent the
original vertices, but we can add temporary levels below the leaves corresponding
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to further refinement of the initial mesh. Consider the example of modeling a
large terrain surface. By extracting some information from the input data [189],
we could synthesize additional detail, consistent with the form of the surface,
using fractal-based edge subdivision.

Naturally, vertex hierarchies are not required to be binary trees. If we allow
generalized contraction operations, each node may have an arbitrary number of
children [130]. A very deep hierarchy has the disadvantage that many adaptation
steps are required to smoothly transition from the bottom of the hierarchy to
the top, or vice versa. In some cases, it may be desirable to reduce this cost by
compressing entire subtrees so that all the leaves point directly to the root of
the subtree and all internal nodes are eliminated. An extreme example of this
strategy would be to pick a small number of cuts through the tree, and remove
all internal nodes separating them so that each level was linked directly to the
next. This sort of stratified vertex hierarchy corresponds directly to the discrete
multiresolution models discussed in Section 2.2.1.

7.3.2 Structural Invariance of Quadrics

Consider a node v in a vertex hierarchy. The quadric Q associated with this
node is the sum of the quadrics of its child nodes. They, in turn, are defined
by the sum over their children. In fact, the quadric Q is precisely the sum of
the quadrics of the leaves of the subtree rooted at v. Thus, the quadric Q is
independent of the structure of the subtree; it depends only on the leaves.

This structural invariance of quadrics means that we can restructure subtrees
in the vertex hierarchy, and the error and optimal position associated with
the root do not change. For example, after computing a vertex hierarchy, we
might want to rebalance parts of the tree. Because of structural invariance, we
know that the optimal positions of nodes outside the subtree are unaffected by
the rebalancing. Of course, we still need to use consistency checks to prevent
degeneracies such as mesh fold-over.

7.4 Online Simplification

The structure induced by simplification, which I have examined in the preceding
sections, is common to all iterative contraction algorithms. I have also high-
lighted some of the specific properties of my own algorithm, such as support for
interruptible simplification and the structural invariance of quadrics. Efficient
simplification algorithms, such as mine, also make online simplification feasible.
I use the term “online” because, while simplification takes place at run time, it
does not necessarily take place in what could be considered “real time.”

7.4.1 On-Demand PM Construction

One of the primary applications of progressive meshes is the progressive trans-
mission of models over the network. A common application of this sort might
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involve a server which provides network access to a repository of models. For
instance, an online store might have models of its merchandise, or a CAD server
might provide access to all the parts of a large aircraft.

Using a fairly expensive algorithm, such as Hoppe’s [90], we would be more
or less required to maintain a repository of precomputed progressive meshes.
The server could then provide access to all these models. However, if we use
a fairly cheap algorithm, it becomes feasible to produce progressive meshes
when the client requests them. In addition, we could produce PMs for novel
geometry without having to wait for a lengthy construction phase. Coupling an
on-demand PM construction system with a cache of frequently used PMs, could
provide an effective and flexible geometry server system.

As a simple experiment, I have set up a Web application which can generate
simplified models on demand. Requests are submitted to the server, and VRML
models are returned to the client. For models in the range of 20,000 faces or less,
the cost of this is negligible. The overhead of simplification is almost completely
hidden by transmission times and the startup cost of the client VRML viewer.
For models of 150,000 faces or less, there is discernible latency associated with
simplification, but it is certainly tolerable. Very large models, containing many
hundreds of thousands of faces, currently require too much processing time for
any kind of real-time performance.

7.4.2 Interactive Simplification

Fast simplification systems can also provide support for interactive simplifi-
cation. I have implemented a simplification program that presents the user
with a view of the current model and an interface mechanism to move forward
and backward through the simplification process. When a simpler model is re-
quested, the model is simplified, and when a more complex model is requested,
the corresponding simplification is undone. The experience is similar to having
a progressive mesh where the user can select what prefix of the split records to
apply. However, in this case there is no fixed record of contractions; simplifi-
cation is always computed on-demand at run time. In addition to maintaining
the current approximation, the system also maintains the corresponding vertex
hierarchy.

This kind of control over simplification makes it possible for the user to
interact with the simplification process. For example, the user might begin by
simplifying a model to 10% of its original size. At this point, they might provide
certain feedback to the system to bias the simplification process. They might
selectively weight certain vertices more than others, or introduce additional
quadric constraints similar to the automatically computed boundary constraints.
Having provided this feedback, they might continue simplifying to 5% of the
original size.
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Chapter 8

Hierarchical

Face Clustering

The process of simplification via iterative edge contraction induces a particular
structure on the original surface: a hierarchy of vertex neighborhoods. These
vertex hierarchies, described in Chapter 7, provide a useful multiresolution rep-
resentation for reconstructing surface approximations. In this chapter, I will
consider the case where hierarchies of surface regions, as opposed to geometric
approximations, are the primary structure of interest. And in particular, I will
present an algorithm, closely related to the simplification algorithm of Chapter
3, for constructing hierarchies of face clusters.

8.1 Hierarchies of Surface Regions

For applications such as real-time rendering, we are typically concerned with
multiresolution models that can provide geometric approximations of the orig-
inal surface. Depending on the viewing conditions, the run-time system will
select the appropriate geometric level of detail to display. However, there are
other applications in which we are more interested in the aggregate properties
of surface regions. Rather than extracting a single approximation from the hi-
erarchy, we would like to perform computations using the hierarchy itself. For
collision detection or ray tracing, we would like a hierarchy of bounding volumes
that enclose successively larger regions of the surface. Many kinds of simulation
problems, such as radiosity, can be computed on a hierarchy of surface regions.
In the specific case of radiosity, which is one of the primary motivating appli-
cations for the work described in this chapter, we might want to approximate
successively larger regions of the surface with planar elements. This would allow
us to use a kind of generalized hierarchical radiosity [81] computation on the
surface.

Originally, I described vertex hierarchies (§7.3) as a means of encoding the
dependencies in the sequence of contractions built during simplification. But we
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can also think of them as hierarchies of vertex neighborhoods. At the leaves of
the tree are the vertices of the original model. Their neighborhood corresponds
to their adjacent faces. When we contract two vertices together, we merge their
neighborhoods and construct a new approximate neighborhood for the resulting
vertex. Each node in the hierarchy corresponds to a disjoint set of vertices on
the original surface. Consequently, it also corresponds to a surface region that
is the union of the neighborhoods of all the vertices in its set.

This hierarchy of neighborhoods is itself a useful construction. For instance,
Kobbelt et al. [109] and Lee et al. [118] use the resulting hierarchy to define
a multiresolution parameterization of the surface. This parameterization facili-
tates applications such as multiresolution surface editing.

While useful, these hierarchical neighborhoods have some drawbacks for cer-
tain applications. First, they do not form a well-defined partition of the surface.
The sets of faces forming the neighborhoods of two adjacent vertices will overlap.
Second, the neighborhood surrounding a single vertex is generally nonplanar; a
vertex at the corner of a cube is a prime example. Finally, the set of triangles on
the original surface corresponding to a particular vertex in the hierarchy may
have a very irregular shape. However, for some applications it is preferable that
the shape of this region be regular. Standard simplification algorithms provide
no means to control this shape.

Face hierarchies are a natural alternative to vertex hierarchies. Instead of
iteratively merging vertex neighborhoods, we can iteratively cluster neighboring
groups of faces. This allows us to avoid some of the specific drawbacks of
vertex hierarchies listed above. Because the clusters are disjoint sets of faces,
they partition the surface in a well-defined way. Furthermore, each cluster
corresponds to a well-defined surface area: the area of all its constituent faces.
Face clusters are also more likely to have a single normal which is a good match
for the surface normals of the faces in the cluster.

To highlight the difference between these kinds of hierarchies, consider the
example of a cubical object. Near the root of a vertex hierarchy, there will be
a level at which we have eight conical neighborhoods, one for each vertex. In
contrast, near the top of a face hierarchy we will have 6 planar face clusters,
one for each face of the cube. If we are trying to formulate a single planar
approximating element, or a single normal for the entire region, we will get a
much better result with the face hierarchies than with the vertex hierarchies.

8.2 Face Clustering Algorithm

To construct a face hierarchy, I begin by forming the dual graph of the surface.
For the moment, I will assume that the surface is a manifold with boundary; in
other words, every surface edge has at most 2 adjacent faces. I will also assume
that all input polygons have been triangulated. Every face of the surface is
mapped to a node in the dual graph, and two dual nodes are connected by an
edge if the corresponding faces are adjacent on the surface. I will use the term
face cluster to refer to a connected set of faces that have been grouped together.



8.2. FACE CLUSTERING ALGORITHM 149

In the dual graph, each node will correspond to a face cluster. Initially, each
cluster consists of a single face of the input model. An edge contraction in this
graph merges two dual nodes into one. This corresponds to grouping their asso-
ciated faces, which must necessarily be adjacent, into a single cluster. Thus in
general, dual edge contraction corresponds to merging two adjacent face clusters
into a single cluster. Figure 8.1 illustrates a simple example. The underlying

Before After

contract

Figure 8.1: Contraction of a single dual edge. The two faces corresponding to
the endpoints of the dual edge are merged to form a single face cluster.

mesh and the dual graph are shown in dashed and solid lines, respectively. On
the left is a mesh where each dual node corresponds to a single face; in other
words, each face is its own cluster. After contracting a single dual edge, the two
darkened triangles have been merged into a single cluster.

To construct a complete hierarchy, I use a simple greedy procedure very
similar to the simplification algorithm described in previous chapters. Each dual
edge is assigned a “cost” of contraction, and the system iteratively contracts
the dual edge of least cost. At each iteration i, we will have constructed a
partition N i of the surface into disjoint sets of connected faces. This is in
contrast to simplification, where at each iteration we would have constructed
an approximate surface. Figure 8.2 shows a simple example of this process. At
each iteration, a single dual edge (shown on right) is selected for contraction.
The selected edge is shown as a heavy dashed line. The effect of contracting
each edge is to merge two face clusters (shown on left). Edges internal to a
single cluster are shown as light dashed lines.

Let me emphasize that the geometry of the original surface is not altered in
any way by this clustering process; every vertex remains in its original position
and the connectivity of the mesh is unchanged. Instead, we begin with an initial
surface partition N0 where every face belongs to its own singleton cluster. The
process of iterative dual contraction produces a sequence of partitions

N0 → N1 → N2 → · · · → Nk

with successively fewer clusters. If run to completion, this will produce a single
face cluster for each connected component of the surface.

Just as with iterative edge contraction, iterative dual contraction produces
a natural hierarchy. When two dual nodes are contracted together (i.e., two
face clusters are merged), we can make them both children of their new parent
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N0

N1

N2

N3

N4

Figure 8.2: Faces of the input surface (left) are iteratively clustered together.
This corresponds to iterative contraction of edges in the dual graph (right).
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Figure 8.3: A three level face hierarchy. Four leaf clusters below are merged
into one root cluster at the top.

node which represents the union of their associated clusters. See Figure 8.3
for a simple example. At the bottom of the hierarchy are four face clusters,
each of which already contains two faces. The two leftmost clusters are merged
together, forming a single parent node. The two rightmost clusters are also
merged; notice that this corresponds to the same dual contraction N3 → N4

shown in Figure 8.2. The two parent clusters, which together partition the
mesh into two disjoint sets of faces, are merged together to produce a single
root cluster which spans the entire mesh.

8.2.1 Related Methods

Iterative clustering, as a general class of algorithms, has been in use for decades
[7]. While a substantial number of algorithms have been developed, most are
only tangentially related to the problem of building face cluster hierarchies on
surfaces. However, there are a few algorithms which are more clearly related to
the problem at hand.

This process of face clustering which I have just described is closely related
to the simplification algorithm of Kalvin and Taylor [102, 103]. They also par-
titioned the surface into a set of disjoint face clusters, or “superfaces.” Their
algorithm was based on growing a single cluster one face at a time until it ex-
ceeded a planarity threshold. In contrast, my algorithm is based on pairwise
cluster merging. This has the advantage of producing a hierarchical structure
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of clusters.
DeRose et al. [46] proposed a related algorithm for generating hierarchies of

bounding boxes on subdivision surfaces. They use these hierarchies for collision
detection during cloth dynamics simulation. Given an initial quadrilateral mesh,
they iteratively merge a maximal independent set of adjoining clusters until only
a single cluster remains. Since no criterion, other than adjacency, is used to
select which clusters to merge, the individual clusters may or may not contain
roughly coplanar elements.

Finally, Willersinn and Kropatsch [193] used the method of dual edge con-
traction to construct irregular image pyramids. While this method is designed
for an entirely different domain — images rather than surfaces — it uses the
same formalism of dual contraction as the algorithm which I have developed.

8.2.2 Dual Quadric Metric

In order to evaluate the cost of a dual contraction, we need some idea of what
qualities a face cluster should have. Naturally, there are many potential criteria
from which to choose. But for many applications, a good criterion is the pla-
narity of the cluster. This means that a given face cluster can be approximated
by a planar element without undue inaccuracy. Planarity is the criterion that I
will adopt, and as we will see, this criterion can be expressed using a dual form
of the quadric error metric.

Every cluster has an associated set of faces {f1, . . . , fn} and a set of points
{v1, . . . ,vk} determined by the vertices of these faces. Let us suppose that we
want to find the least squares best fit plane to this set of points. For a plane
specified by a unit normal n and a scalar offset d, the distance of a point v to
this plane is nTv + d. The fit error of a given plane nTv + d = 0 is the average
squared distance of all the points in the cluster to the plane

Efit =
1

k

∑

i

(nTvi + d)2 (8.1)

The least squares best plane is the one which minimizes this error. Notice that
this error formula is nearly identical to the error metric which I have used for
simplification. Aside from the averaging factor, the sole difference is that we are
summing over a set of points rather than a set of normals. And, just as before,
we can evaluate this error using a corresponding set of quadrics:

Efit =
1

k

∑

i

Pi(n, d) =
1

k

(

∑

i

Pi

)

(n, d) (8.2)

where

Pi = (Ai,bi, ci) = (vivi
T,vi, 1) (8.3)

and

P (n, d) = nTAn + 2bT(dn) + cd2 (8.4)
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Every dual node will have an associated fit quadric Pi which requires ten coeffi-
cients to represent the symmetric 3×3 matrix A, the 3-vector b, and the scalar
c. The cost of contracting two dual nodes together is reflected by the sum of
the fit quadrics of each node (Pi + Pj)(n, d). Note that the form of this dual
quadric error (8.4) differs slightly from the original due to the presence of the
d and d2 terms. This error metric is also closely related to the planarity metric
of Kalvin and Taylor [102, 103] which measured the maximum distance of any
point to the plane, as opposed to the average squared distance.

Finding the optimal plane which minimizes P (n, d) is not quite as simple
as finding the optimum of the original quadric metric. The standard technique,
based on principal component analysis (PCA) [101], is to construct the sample
covariance matrix (§4.1.4):

Z =
1

k − 1

k
∑

i=1

(vi − v̄)(vi − v̄)T (8.5)

where v̄ is the mean of the vertices v̄ = (
∑

i vi) /k. Covariance matrices of
normals were a useful tool in analyzing the quadric metric (§4.2.2) and this
vertex covariance matrix plays a central role in the dual metric. The three
eigenvectors of the matrix Z determine a local frame with v̄ as the origin.
The eigenvector corresponding to the smallest eigenvalue is the normal of the
least squares best plane through the set of points {vi}. This method, which
is identical to the least squares method of normal equations, is frequently used
to estimate or define local tangent planes [94, 122, 13] when reconstructing
surfaces from sets of points. Note that the normal computed in this fashion is
only unique up to sign. In practice, it is helpful to track the average normal of
all the faces in the cluster to resolve this sign ambiguity. For the remainder of
the discussion, I will drop the 1/(k − 1) averaging factor from the covariance
matrix formula. This has no effect on the algorithm because I am only interested
in the eigenvectors of Z and the relative scales of its eigenvalues.

The covariance matrix Z can be expressed in terms of the quadric P . First,
we can expand the equation for Z as:

Z =
k
∑

i=1

(vi − v̄)(vi − v̄)T (8.6)

=
∑

vivi
T−

∑

viv̄
T−

∑

v̄vi
T+

∑

v̄v̄T (8.7)

=
∑

vivi
T−

(

∑

vi

)

v̄T − v̄
(

∑

vi

)T

+ kv̄v̄T (8.8)

(8.9)

By substituting v̄ = (
∑

i vi) /k and collecting terms, we find that

Z =
∑

vivi
T− k(v̄v̄T) (8.10)

= A− bbT

c
(8.11)
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Thus, the normal of the optimal plane through the set of points can be computed
directly from the corresponding fit quadric P . No extra storage is required to
track the covariance matrix.

Minimizing the planarity term Efit will naturally tend to merge clusters
which are collectively nearly planar. However, a surface may locally fold back
on itself. It will seem nearly planar, but the normal of the optimal plane will not
be a good fit for all the surface normals in the region. To combat this problem,
I will also use an additional error term which measures the average deviation of
the plane normal n from the surface normals:

Edir =
1

w

∑

i

wi(1 − nTni)
2 (8.12)

where wi is the area of face fi and w =
∑

iwi is the total area of the face cluster.
We can write this metric as a quadric as well

Edir =
1

w

∑

i

wiRi(n) =
1

w

(

∑

i

wiRi

)

(n) (8.13)

where

Ri = (D, e, f) = (nini
T,−ni, 1) (8.14)

and

R(n) = nTDn + 2eTn + f (8.15)

Given these error metrics, the clustering algorithm has essentially the same
form as the simplification algorithm. For every dual node, it computes quadrics
P and R. For every dual edge, we sum the quadrics of the endpoints, find the
optimal plane, and evaluate its error as Efit +Edir. Following this initialization
step, we place all dual edges in a heap keyed on cost, and greedily contract the
minimal cost edge.

Some examples of the results produced by this algorithm are shown in Figure
8.4. The original model (a) has 11,036 faces, each of which corresponds to an
individual cluster. The partition of the surface shown in (b) contains only 6000
clusters. Note how the clusters are growing along the cylindrical parts of the
surface and curving along the rounded parts. This effect is even more apparent
in partition (c) containing 1000 clusters. Note how each planar region has been
grouped into a single region. As clustering proceeds (d), the regions expand over
more and more of the surface. Naturally, at some point an individual region
may no longer be well-approximated by any plane, since it corresponds to a
significant part of the model.

8.2.3 Compact Shape Bias

If planarity is our only clustering criterion, then the algorithm described above
performs fairly well. However, there are applications where we are also interested
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(a) Original (b) 6000 clusters

(c) 1000 clusters (d) 200 clusters

Figure 8.4: Sample clusters on the heat exchanger.
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in the shape of these regions. In particular, we might want them to have a
fairly compact shape; in other words, we might like each cluster to be as nearly
circular as possible. It is fairly easy to add a simple compactness heuristic which
significantly improves the regularity of the clusters.

Given a cluster with area w and perimeter ρ, I will define the irregularity γ
of the cluster as a ratio of its squared perimeter ρ2 to its area w

γ =
ρ2

4πw
(8.16)

This is the ratio of the squared perimeter ρ2 to the squared perimeter of a circle
with area w. A circle will have irregularity γ = 1 and larger values of γ corre-
spond to more irregular (less compact) regions. This definition of irregularity is
fairly natural and has been widely used in fields ranging from image processing
[99] to detecting gerrymandering of Congressional districts [140]. Kalvin and
Taylor used this definition of irregularity [102, 103] for directing the construction
of superfaces for simplification, and Guéziec [77] proposed a similar measure of
triangle compactness which requires fewer operations to compute.

Now suppose we have have two adjacent clusters with irregularity γ1 and γ2,
respectively. Let γ be the irregularity of the cluster formed by merging them
together. I define the shape penalty as

Eshape = 1 − max(γ1, γ2)

2γ
(8.17)

If the irregularity of the cluster arising from a dual contraction is significantly
worse than the two original clusters, that contraction will incur a penalty
(Eshape > 0). On the other hand, if the irregularity improves substantially
it will incur a negative penalty, or bonus. Based on my experience, requiring
the irregularity to improve at each iteration over-constrains the clustering algo-
rithm and leads to bad results. Using a penalty term such as Eshape seems to
be more effective.

At first glance, it might appear that computing the shape penalty Eshape is
rather expensive. We need to know the area of the clusters, but this is quite
easy to track. The area w of the resulting cluster is merely the sum w = w1+w2

of the constituent areas. However, we also need to have the perimeters of both
original clusters and the final cluster, and perimeters are not additive. Fortu-
nately, there is a fairly straightforward solution to this problem. Suppose we
track the perimeter ρi for each cluster in the current partition; these values are
stored with the relevant dual nodes. When two clusters are merged, the perime-
ter of the resulting cluster will be the sum of the perimeters of the constituent
clusters minus twice the length of the boundary which separated them. Since
we are only merging adjacent clusters, the boundary between them corresponds
to a single dual edge. Thus, for each dual edge, we can store the length of the
boundary separating the two clusters corresponding to its endpoints. By updat-
ing these lengths appropriately following a dual contraction, we can compute
the perimeter of the merged cluster directly from the perimeters of the merging
clusters and the length associated with the dual edge being contracted.
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Figure 8.5 demonstrates the effect of using the additional shape penalty.
Clustering without bias (a) can produce highly irregular regions. Note the clus-

(a) No shape bias (b) With bias

Figure 8.5: Two partitions of the cow model, each with 1000 clusters. The
shape bias produces much more compactly shaped clusters.

ters that stretch all along the rear leg. In terms of finding clusters which are
best fit by a plane, this behavior is desirable, but it does not produce com-
pact regions. In contrast, when we use the shape bias term (b), the algorithm
produces very regularly shaped regions.

I have now outlined three error terms which constitute the dual quadric error
metric EDQ

EDQ = α1Efit + α2Edir + α3Eshape (8.18)

The results shown in this chapter were generated using a uniform weighting
α1 = α2 = 1. The partitions shown in Figure 8.4 were generated without shape
bias (α3 = 0) whereas those in Figure 8.5 used a value of α3 = 1.

8.3 Applications

The face hierarchies produced by my clustering algorithm are intended for use in
applications which are more concerned with the aggregate properties of surface
regions rather than their exact geometry. Any particular partition produced by
iterative clustering could potentially be used to compute a simplified surface
[103]. However, the hierarchy itself has several useful applications.

8.3.1 Hierarchical Bounding Volumes

One natural application of these face hierarchies is for constructing hierarchical
bounding volumes. Recall that, for each cluster in the hierarchy, we compute a
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best fit plane. Given this plane, it is a fairly simple task to compute an oriented
bounding box which tightly encloses the cluster. A simple, but relatively ineffi-
cient, method is to enumerate all the points in the cluster, project into the local
frame defined by the plane, and compute an axis-aligned bounding box in this
local frame. Alternatively, we can avoid having to traverse large sets of points
by tracking the convex hull [147] of the point set [74].

Hierarchies of oriented boxes such as this can be used to efficiently measure
the distance from a point to a surface, an operation common in simplification
systems. They are also an effective means of accelerating the kind of spatial
queries common in applications such as collision detection and ray tracing [8].
They can be constructed over both curves [10] and surfaces [11, 74]. In contrast
to spatial partitions such as octrees [165], hierarchies which are attached to the
surface are guaranteed to have a size linear in the size of the input model [11].

The bounding box hierarchy constructed in this manner is very similar to the
OBBTree structure introduced by Gottschalk et al. [74]. They also used PCA
to compute best fit planes, and thus oriented bounding boxes. However, they
produced the vertex sets by a top–down partition of the vertices of the original
model. In contrast, my clustering algorithm computes a bottom–up hierarchical
partition of the surface and can subsequently derive bounding boxes for each
region. The BOXTREE algorithm of Barequet et al. [11] also builds a bottom–
up hierarchy of boxes. They rank pairs of boxes for merging based on properties
of the resulting boxes, such as volume.

8.3.2 Multiresolution Radiosity

The face cluster hierarchy arising from iterative clustering can also be used to
accelerate applications such as radiosity. Willmott [196] has developed a very
effective multiresolution radiosity algorithm based on face hierarchies. In this
section, I will briefly summarize this method and the performance gains achieved
through the use of face hierarchies.

Early radiosity methods had time complexities of O(n2) or O(n3) for scenes
containing n polygonal elements [32]. Because of the rather high expense of this
kind of solution process, hierarchical radiosity methods [81] were developed.
The initial input polygons can be adaptively subdivided, producing a hierarchy
of surface elements. These methods allow light transport to be simulated at an
appropriate level of detail. Nearby surface patches can interact at a fairly fine
grain while distant patches can be represented at a coarser level. This algorithm
is not as effective on very complex scenes because it can only subdivide the input
surfaces. To handle complex surfaces, we need to build higher-level clusters that
contain entire surface regions. Consider the scene shown in Figure 8.6 which
contains several geometrically complex models. The serpentine dragon on the
table, for example, contains 870,000 triangles. But given its relatively small
size, an accurate radiosity solution could be computed on a much coarser set of
surface patches than these input triangles.

One proposed method for building hierarchies above the input polygon level
is volume clustering [176]. Faces of the model are grouped into spatial cells,
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Figure 8.6: A museum scene containing 2.7 million input polygons. This ra-
diosity solution was computed on a face cluster hierarchy.

typically axis-aligned boxes, and these cells are grouped into higher and higher
levels. This approach appears to work well for clustering objects, such as the
leaves of a tree. However, it does not perform as well for clustering surface re-
gions. A particular region on a smooth surface will tend to have a dominant
orientation, which is not captured by enclosing the region in an axis-aligned box.
An object-aligned box will produce a much tighter fit to the surface, and it will
have an orientation that reflects the orientation of the surface. The iterative
face clustering algorithm described in this chapter provides a convenient way to
construct a hierarchy of exactly this sort of tight-fitting box.

To demonstrate the advantages of this method, Figures 8.7 and 8.8 illustrate
the comparative running times and memory consumption of three different ra-
diosity algorithms. The performance of the algorithms is shown as a function of
input scene complexity, which was controlled by using surface approximations
generated using quadric-based simplification. All performance tests were run on
a 195 MHz R10000 SGI machine with 1 GB of main memory. The progressive
radiosity algorithm, which uses all of the input polygons during the solution
process, requires rapidly increasing amounts of time and memory as the in-
put complexity increases. Hierarchical radiosity with volume clustering requires
substantially less resources, but its requirements also grow fairly rapidly with
complexity. This is largely due to the fact that volume clusters do not provide
an accurate fit for surface regions. Consequently, the solution computed at high
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Figure 8.7: Running time of radiosity algorithms on the museum scene.
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levels in the hierarchy is quite inaccurate, and the algorithm is forced to descend
far down in the tree to achieve an acceptable solution. In fact, it must typically
descend all the way to the level of the input polygons. In contrast, the algo-
rithm based on face cluster hierarchies exhibits essentially unchanging running
times once the input complexity has risen to the level of 30,000 polygons. The
algorithm is able to find a level in the hierarchy, far above the level of the input
triangles, at which an acceptable solution can be computed. Because it never
needs to descend deeper into the hierarchy, it requires much less time and far
less resident data than the other algorithms.

Figure 8.9: An actual face hierarchy used in radiosity simulation on dragon
scene in Figure 6.24.

Figure 8.9 shows a face hierarchy used in a radiosity simulation of the scene
pictured in Figure 6.24. This is the part of the face hierarchy for the dragon
surface which was actually used during the solution phase. The leaves of the
hierarchy, corresponding to the input polygons, lie far below the lowest level
shown. This demonstrates the primary reason for the efficiency of the face
cluster radiosity algorithm; it computes a solution on a very limited piece of
the total hierarchy. Also notice that this hierarchy is incomplete, consisting
of five separate trees rather than a single tree. For the purposes of radiosity
simulation, the very uppermost levels of a complete hierarchy are relatively less
useful. Consider the root node for the surface, which represents the entire model
as a single cluster. The planar approximation of this cluster does not provide
a good fit for the orientations of all the triangles on the original surface. The
root nodes shown in Figure 8.9, which correspond to a partition of the dragon
into five regions, reflect the orientations of their constituent faces much more
accurately.

In the preceding discussion, I have glossed over most of the details of the
face cluster radiosity algorithm. My goal has only been to present this as one
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possible application of the face clustering method developed in this chapter.
Further details on the radiosity algorithm and its performance are given by
Willmott et al. [196].
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Chapter 9

Conclusion

I have described an algorithm for the automatic simplification of highly detailed
polygonal surface models into faithful approximations containing fewer polygons
(see Figure 9.1). My empirical tests, as well as those performed by others [26,

(a) Original (b) 1000 triangles (c) 150 triangles

Figure 9.1: Sample approximations of a scanned bunny surface model containing
70,000 triangular faces.

124], demonstrate that this quadric-based simplification algorithm provides a
good compromise between the speed of simplification and the quality of the
resulting approximations. For instance, the approximations shown in Figure
9.1 quite effectively capture the shape of the original and were generated in
only 7 seconds on a 200 MHz PentiumPro machine. I have also presented a
closely related dual algorithm which can generate hierarchical surface partitions
of the model into nearly planar regions.

9.1 Summary of Contributions

To review, the primary contributions of my work as described in this dissertation
are:

165
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• Quadric Error Metric. I have developed an error metric which provides
a useful characterization of local surface shape. It requires only modest
storage space and computation time. Through a simple extension, it can
be used on surfaces for which each vertex has an associated set of mate-
rial properties, such as RGB color and texture coordinates. I have also
proven a direct connection between the quadric error metric and surface
curvature.

• Surface Simplification Algorithm. By combining the quadric error
metric with iterative vertex pair contraction, I have developed a fast al-
gorithm for producing high-quality approximations of polygonal surfaces.
This algorithm can simplify both manifold and non-manifold models. It
is also capable of joining unconnected regions of the model together, thus
ultimately simplifying the surface topology by aggregating separate com-
ponents. In addition to producing single approximations, my algorithm
can also be used to generate multiresolution representations such as pro-
gressive meshes and vertex hierarchies for view-dependent refinement.

• Face-Hierarchy Construction. Finally, I have developed a technique
for constructing a hierarchy of well-defined surface regions composed of
disjoint sets of faces. This algorithm involves applying a dual form of
my simplification algorithm to the dual graph of the input surface. The
resulting structure is a hierarchy of face clusters which is an effective
multiresolution representation for certain applications, including radiosity.

9.2 Future Directions

There are several ways in which this work could be extended in the future.
However, the following avenues appear particularly important or promising.

Broader Range of Models

The broader the class of inputs supported by simplification methods, the more
broadly applicable these methods will be. In real world applications, surface
models often contain noise of one sort or another. As demonstrated in Section
6.2.2, the quadric error metric can, to some extent, remove noise from the
input surface. But further extensions may be possible. If we have some better
way of estimating normals than from faces, these normals could be used to
construct fundamental quadrics rather than the faces. Alternatively, suppose
that we have some information about the distribution of normals. Since quadrics
are covariance matrices of normals, it might be possible to incorporate this
information directly into the quadrics themselves.

The extended quadric error metric described in Chapter 5 incorporates at-
tributes such as color into the simplification process. But it is based on the
assumption that each vertex has a single unique value for each attribute. There
are models where this may not be the case. A simple example is the set of
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vertex normals on a cube. Vertices at the corners and along the edges of the
cube do not have a single unique normal. Rather, there is a normal discontinu-
ity at these points. Discontinuities also frequently arise when texturing objects,
such as cylinders, where two ends of the texture come together to form a seam.
Vertices at attribute discontinuities could be split into multiple virtual vertices,
all with the same position but with separate unique attribute values. With one
extended quadric for each of these virtual vertices, and by correctly distinguish-
ing edges joining real vertices and virtual vertices, the extended metric could
be generalized to handle these discontinuities.

Higher dimensional quadrics form the basis of the extended quadric metric.
A related kind of metric could potentially be applied to higher dimensional data
sets. Suppose that we have a volumetric model represented as a tetrahedral mesh
with one scalar value per vertex. The edge contraction operation is applicable
to all simplicial complexes [144]. We could also define a 4-dimensional quadric
at each vertex and proceed with greedy edge contraction.

Finally, all current simplification methods assume that the surface being
simplified is rigid. This covers a large class of models used in practice, including
those composed of many individual moving, yet rigid, parts such as an engine
model. However, there are many other applications where surfaces are changing
over time. For example, many animation systems represent characters as sur-
faces attached to articulated skeletons. As the skeletal joints bend, the surface
is deformed. Current simplification methods must be extended to handle this
more generalized class of models.

Handling Large Datasets

My algorithm is capable of simplifying large datasets reasonably efficiently. For
example, the 1.7 million face turbine blade model shown in Chapter 6 can be
simplified in about 5 minutes. However, certain customizations can be made to
improve performance on very large datasets (10 million triangles or more).

The primary limiting feature of the algorithm is that it selects the single
contraction of minimum cost at each iteration. As shown in Figure 6.5, the cost
of this iterative process comes to dominate the total running time of the system.
However, for very large models selecting one contraction at a time is probably
not necessary. If we are beginning at 10 million faces and producing a 60,000 face
approximation, we will need to perform a very long sequence of contractions. We
also know that a given sequence of contractions can be reordered (§7.3) without
affecting the final result. Therefore, the algorithm could be significantly faster
if a large set of contractions were performed at each iteration (much like the
original vertex decimation algorithm [172]). In fact, if a constant fraction of the
edges are contracted at each iteration, the time complexity of the algorithm can
be reduced to O(n). Allowing the simultaneous contraction of many edges also
provides a means for parallelizing the simplification algorithm.

Performing batch contractions can improve the memory locality of the al-
gorithm as well. The single contractions chosen in consecutive iterations often
fall in widely separated portions of the model. Therefore, the algorithm is con-
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stantly touching different sections of the model database at each iteration. If we
were to perform a batch of contractions in a single region at once, the locality
of memory references could be improved substantially.

Improved Error Analysis

I have analyzed the quadric error metric in terms of its connection to surface
curvature, and this provides some justification for why quadric-based simplifi-
cation performs well. However, the error Eavg of the resulting approximations
may not be bounded. In general, there are cases (§4.5.1) where minimizing the
quadric error produces approximations with vertices which can be arbitrarily far
from the original surface. The quadric metric itself is also unable to distinguish
between very flat and very sharp vertex neighborhoods (§4.5.2). This raises an
interesting question. Minimizing the quadric error does not, in general, guar-
antee approximations of bounded Eavg error. But does this adequately reflect
its practical performance? There may be suitable restrictions, satisfied by most
models encountered in practice, under which minimizing the quadric error does
in fact lead to bounded error approximations.

New methods for measuring approximation error are also needed. For ren-
dering applications, similarity of appearance (§2.3.1) is the ultimate goal. It
would be helpful to have an appearance-based metric for reliably comparing
the visual similarity of two models. Even if we are primarily concerned with
preserving the shape of an object, the error metrics Emax and Eavg have some
drawbacks. They do not address the measurement of attribute error. In devel-
oping the extended quadric metric, I have assumed that attribute error can be
measured as a Euclidean distance. This can easily be incorporated into these
metrics, but it is not a strictly accurate way of assessing attribute error. It is
also unclear whether metrics like Emax and Eavg adequately reflect the similarity
of an approximation whose topology has been simplified.

More Effective Simplification

There are several areas in which simplification methods, including my own,
could be made more effective. One obvious goal is to devise an algorithm which
can produce approximations (for general surfaces) which are provably close to
optimal. An algorithm which could preserve higher level surface characteristics,
such as symmetry, would also be quite useful. Current simplification methods
all seem to perform poorly at extremely low levels of simplification, of say less
than 50 triangles. This may very well be a weakness of their shared approach:
almost all algorithms derive approximations by repeated transformation (e.g.,
edge contraction) of the original. At these very low levels, a human could
presumably do a substantially better job. This suggests that semi-automatic
tools which could incorporate some human interaction (§7.4.2) in the final stages
of simplification could be quite useful.

It would also be desirable for simplification systems to incorporate better
control over topology simplification. Like my quadric-based algorithm, most
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methods that allow topological simplification simplify it only implicitly. It
would seem that explicit topological simplification might require a more vol-
umetric approach to surface models, and early methods [53, 82] have moved in
this direction This may also lead to more effective aggregation of separate com-
ponents. The method of aggregation via pair contraction, which I and others
[144, 54] have used, has not been completely successful. For instance, it would
appear to be overly dependent on the placement of the vertices on the original
surface (§6.4).

Decoupling Analysis and Synthesis

I believe that the most promising avenue for improving the quality of auto-
matically generated approximations may well be to decouple the analysis and
synthesis phases of the simplification process. Consider the quadric-based algo-
rithm. A particular vertex begins with a quadric constructed from its immediate
neighborhood. As other vertices are repeatedly contracted into this vertex, it
accumulates a quadric that represents ever larger regions of the surface. In some
sense, this is a shape analysis process. The algorithm is constructing informa-
tion about ever larger regions of the surface. However, the current algorithm
actually performs a contraction on the mesh immediately after accumulating the
quadrics for the endpoints — it immediately synthesizes a new approximation.

Now imagine that we were to decouple these processes into two separate
phases. The first phase would be an analysis phase, gaining information about
the structure of the surface at ever coarser levels of detail. This might in-
volve accumulating quadrics over progressively larger regions, constructing face
cluster hierarchies, or some completely different technique. After this phase
is completed, we could begin simplifying the surface. The current algorithm,
when considering the contraction of an edge, can only consider the shape of the
immediate neighborhood of this edge, represented by the quadrics of the end-
points. It suffers from a certain shortsightedness because it can only assess the
local effect of a contraction. However, if an earlier analysis phase had already
been performed, it could consider the effect of a contraction at several levels of
detail, from the immediately local to the more global.
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Appendix A

Implementation Notes

The purpose of this appendix is to augment the outline of my algorithm and the
analysis of its performance with specific details about my implementation. All
of the code presented here is written in C++ and is designed to be portable over
a wide range of compilers. I have made only minimal use of features such as
templates, and I have avoided relatively recent additions to the language such
as exceptions and the Standard Template Library. The code listings presented
here are not totally complete and have been condensed from my actual code
by removing some tangential functionality. I have tried to focus on several
key procedures, leaving out various support functions such as constructors and
accessors.

My first generation implementation, QSlim 1.0, developed in 1996, forms
the basis for my initial results [68] and the performance surveys that have been
published since then [26, 124]. The results reported more recently [69] and in
this work are based on the second generation QSlim 2.0 implementation. This
implementation has been publicly available1 since March 1999. The code listings
presented here are based on this software package.

A.1 Quadric Data Structure

One of the core components of my simplification algorithm is the quadric er-
ror metric. The basic metric, supporting geometry without attributes, can be
implemented very easily. Each quadric Q is represented by an object of class
MxQuadric3.

1 Currently distributed at http://www.cs.cmu.edu/∼garland/quadrics/index.html
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class MxQuadric3

{

private:

// Ten unique quadric coefficients
double a2, ab, ac, ad;

double b2, bc, bd;

double c2, cd;

double d2;

// Associated area for weighting
double r;

public:

// Return the (A, b, c) and area components of a quadric, respectively
Mat3 tensor() const;

Vec3 vector() const;

double offset() const;

double area() const;

Mat4 homogeneous() const;

};

As mentioned in Section 6.1.2, quadrics account for about 33% of the total mem-
ory used during simplification. However, converting these double coefficients
to float values can cause significant numerical problems.

An object of this class corresponds to the area-weighted quadric

Q =



r





a2 ab ac
ab b2 bc
ac bc c2



 , r





ad
bd
cd



 , rd2





It can also be written in homogeneous form as the matrix

Q = r







a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2







Note that recording the area term r separately is not strictly necessary. The
system always pre-multiplies the area factor into the other coefficients. In other
words, the field a2 will hold the value ra2. If memory consumption is critical,
the area term can be dropped from the structure. However, it can be useful to
have immediate access to a measure of the area corresponding to a particular
quadric.

Addition of quadrics is performed by adding all corresponding components
(10 coefficients and the area r) together. In contrast, scaling operations (e.g.,
Q*=2) scale all the components except the area. While this means that Q*=2 and
Q+=Q do not produce the same result, it makes quadric scaling more convenient.
Premultiplying a quadric by its area can be written simply as Q*=Q.area().
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It also means that weighting quadrics by penalty factors, as in boundary con-
straints, does not alter the associated area term.

The first critical function of a quadric Q is to determine the error Q(v) =
vTAv + 2bTv + c. This is evaluated using the following procedure.

double MxQuadric3::evaluate(double x, double y, double z) const

{

return x*x*a2 + 2*x*y*ab + 2*x*z*ac + 2*x*ad

+ y*y*b2 + 2*y*z*bc + 2*y*bd

+ z*z*c2 + 2*z*cd

+ d2;

}

Recall that this will evaluate the properly area-weighted error because all coef-
ficients (a2, ab, etc.) will be pre-multiplied by the area factor r.

For each contraction, the simplification algorithm attempts to find the posi-
tion v̄ which minimizes the error Q(v̄). Assuming that we have classes Vec3 and
Mat3 for 3-dimensional vectors and matrices, respectively, this optimal position
can be computed as follows.

bool MxQuadric3::optimize(Vec3& v) const

{

// Compute A
−1 and fail if |det A| < 10−12

Mat3 Ainv;

double det = tensor().invert(Ainv);

if( FEQ(det, 0.0, 1e-12) )

return false;

// A is nonsingular, so v̄ = −A
−1

b

v = -(Ainv*vector());

return true;

}

The return value of this function indicates whether a unique minimum exists.
If it does not, the system will fall back on selecting between the positions of the
two vertices being contracted. Also note that, because A is only a 3×3 matrix,
its inverse can be found using a very simple, and efficient procedure.

A.2 Model Representation

Two primary concerns have motivated the design of the representation for sur-
face models. First, it is important that the structure be reasonably efficient in
its use of memory. An obvious application of the system will be to simplify very
large models of a million or more faces, and these models will necessarily require
substantial amounts of storage. Second, my simplification algorithm is meant
to support non-manifold surfaces (§2.1.1). Many common adjaceny represen-
tations (e.g., winged-edge structures) assume surfaces have manifold topology,
and are thus unsuitable for this application.
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A.2.1 Geometric Primitives

Polygonal models are constructed from sets of vertices and faces. Each individ-
ual vertex and face is assigned a unique integer identifier.

typedef unsigned int MxVertexID;

typedef unsigned int MxFaceID;

// The invalid vertex/face identifier. Normally 0xffffffffU on 32-bit machines.
#define MXID_NIL UINT_MAX

They are always referenced by identifier rather than by a direct pointer. As cur-
rently implemented, these identifiers are simply indices into arrays of structures.
Simply passing pointers, to vertices for instance, is less cumbersome. Instead
of passing a single pointer, we need to pass both a model structure and the
appropriate integer identifier. However, this approach has some nice benefits.
For example, maintaining references as indices allows the underlying model code
to move and reallocate blocks of vertices without disturbing other parts of the
system.

Vertices are represented using three single precision floating point values.

typedef float MxVertex[3];

In the full implementation, this is actually a class which wraps some additional
functionality around the array. I have chosen to use float values rather than
double values to conserve space.

Faces are simply triples of vertex identifiers.

class MxFace

{

private:

MxVertexID v[3];

public:

MxVertexID& operator[](int i) { return v[i]; }

// Replace all occurrences of ID from with ID to and return the
// number of replacements made.
int remap_vertex(MxVertexID from, MxVertexID to);

};

Various other utility methods are also supported, but they are not used in the
code contained in this appendix.

Lists of faces and vertices are frequently used while manipulating surface
models. I represent these as lists of vertex and face identifiers.

class MxVertexList;

class MxFaceList;

These lists are currently implemented as dynamically resized arrays. In addition
to the usual accessor methods, they provide an add() method to insert new
elements at the end of the list and a reset() method to remove all elements
from the list.
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A.2.2 Surface Model Structures

The surface model representation is divided into two classes. MxBlockModel is
the core model class. It maintains the set of vertices and faces for the surface.

class MxBlockModel

{

public:

// Vertices and faces are stored in internal arrays. Identifiers
// are indices into these arrays. These procedures return
// the length of these arrays, and hence the next available index.
unsigned int vert_count() const;

unsigned int face_count() const;

// Access vertices and faces by indexing into the underlying arrays.
MxVertex& vertex(unsigned int i);

MxFace& face(unsigned int i);

};

While I am focusing on geometry alone, this class also tracks any attributes,
such as color and surface normals, which might be attached to the model. These
properties are accessed using a similar mechanism to that shown for vertices and
faces (e.g., color_count()).

Models in the surface simplification package are represented using a higher
level MxStdModel class. Derived from MxBlockModel, it provides an important
additional level of connectivity information.
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class MxStdModel : public MxBlockModel

{

private:

// Get internal marks on faces and vertices
unsigned char fmark(MxFaceID i) const;

unsigned char vmark(MxVertexID i) const;

// Set internal marks on faces and vertices
void fmark(MxFaceID i, unsigned char m);

void vmark(MxVertexID i, unsigned char m);

public:

// Return list of faces connected to a given vertex
MxFaceList& neighbors(MxVertexID v);

// Procedures for marking faces
void mark_neighborhood(MxVertexID, unsigned short mark=0);

void mark_neighborhood_delta(MxVertexID, short delta);

// Once faces are marked, we can collect them in lists
void collect_unmarked_neighbors(MxVertexID, MxFaceList& faces);

void partition_marked_neighbors(MxVertexID, unsigned short pivot,

MxFaceList& below,

MxFaceList& above);

// The marking and collecting primitives allow us to extract
// connectivity information from the model.
void collect_edge_neighbors(MxVertexID, MxVertexID, MxFaceList&);

};

Since this code is intended to handle general non-manifold surfaces, it can make
few assumptions about the structure of the surface. Therefore, I have chosen to
maintain only the most minimal connectivity information. Every face naturally
has a link to the three vertices which form its corners. The MxStdModel class
adds, for every vertex, a list of faces which are linked to that vertex. These lists
are accessed using the neighbors() method.

The model class uses a system of marking and collection primitives to sup-
port the extraction of higher-level connectivity. Each face and vertex has an
8-bit internal mark field attached to it. Every face neighboring a given vertex
can be marked using the procedure

void MxStdModel::mark_neighborhood(MxVertexID vid, unsigned short mark)

{

for(unsigned int i=0; i<neighbors(vid).length(); i++)

fmark(neighbors(vid)(i), mark);

}

The related method

void MxStdModel::mark_neighborhood_delta(MxVertexID vid, short delta);

increments the marks of the faces surrounding the given vertex by delta.
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Given a set of faces, particular face subsets can be collected based on the
value of the associated marks. The most common procedure collects a list of all
unmarked faces2 attached to a given vertex

void MxStdModel::collect_unmarked_neighbors(MxVertexID vid,

MxFaceList& faces)

{

for(unsigned int i=0; i<neighbors(vid).length(); i++)

{

unsigned int fid = neighbors(vid)(i);

if( !fmark(fid) )

{

faces.add(fid);

fmark(fid, 1);

}

}

}

Alternatively, all the faces surrounding a vertex can be partitioned based on
whether their mark values are above or below a certain pivot value.

void MxStdModel::partition_marked_neighbors(MxVertexID v,

unsigned short pivot,

MxFaceList& lo,

MxFaceList& hi);

To see how this process works, suppose we want to build a list of all the
faces adjacent to an edge (v1,v2). This can be accomplished very easily using
the marking and collection primitives.

void MxStdModel::collect_edge_neighbors(MxVertexID v1, MxVertexID v2,

MxFaceList& faces)

{

mark_neighborhood(v1, 1);

mark_neighborhood(v2, 0);

collect_unmarked_neighbors(v1, faces);

}

A.3 Quadric-Based Simplification

Using the quadric and geometric primitives defined in the previous sections,
we can proceed to the implementation of the simplification algorithm itself.
Support for quadric-based simplification is divided between the model represen-
tation classes and a simplification class. The model structures implement the
underlying contraction primitives. The greedy decimation loop driven by the
quadric metric is encapsulated in its own class.

2 Unmarked faces are those whose mark value is 0.
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A.3.1 Contraction Primitives

In addition to tracking the connectivity of the surface, the standard model struc-
ture provides the fundamental operators for manipulating the surface. Only the
contraction operators are of interest here, but other functionality, such as edge
and face splitting, is also provided.

Contractions are recorded in the following structure.

class MxPairContraction

{

public:

MxVertexID v1, v2; // The two vertices being contracted
float dv1[3], dv2[3]; // Offsets of v1,v2 from v̄

MxFaceList dead_faces; // List of faces deleted by contraction
MxFaceList delta_faces; // List of faces moved by contraction
unsigned int delta_pivot; // Split point in delta_faces

};

Faces which were only connected to one of v1,v2 are moved, as opposed to
deleted, by the contraction. They are partitioned according to which vertex
they were connected to. The delta_pivot field records the split between these
two sets. All faces listed in delta_faces prior to the pivot were originally
connected to v1. All subsequent faces were originally connected to v2.

The contraction operation is divided into two phases. First, all the fields of
the contraction record must be filled in. Once the structure is complete, the
contraction can be performed and the surface modified.

class MxStdModel : public MxBlockModel

{

public:

// Fill in the given contraction record.
void compute_contraction(MxVertexID v1, MxVertexID v2,

MxPairContraction *conx,

const float *vnew);

// Perform the given contraction operation.
void apply_contraction(const MxPairContraction& conx);

};

Filling in the contraction record is quite straightforward. Most of the fields
can be directly computed from the vertex identifiers and their positions. The
primary non-trivial task of this procedure involves filling the lists of faces which
would be deleted and changed by the contraction.
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void MxStdModel::compute_contraction(MxVertexID v1, MxVertexID v2,

MxPairContraction *conx, const float *vnew)

{

conx->v1 = v1;

conx->v2 = v2;

mxv_sub(conx->dv1, vnew, vertex(v1), 3); // ∆v1 = v̄ − v1

mxv_sub(conx->dv2, vnew, vertex(v2), 3); // ∆v2 = v̄ − v2

// Clear the face lists
conx->delta_faces.reset();

conx->dead_faces.reset();

// Mark the neighborhood of (v1,v2) such that each face is tagged with
// the number of times the vertices v1,v2 occur in it. Possible values are 1 or 2.
mark_neighborhood(v2, 0);

mark_neighborhood(v1, 1);

mark_neighborhood_delta(v2, 1);

// Now partition the neighborhood of (v1,v2) into those faces which degenerate
// during contraction (mark=2) and those which are merely reshaped (mark=1).
partition_marked_neighbors(v1, 2, conx->delta_faces, conx->dead_faces);

conx->delta_pivot = conx->delta_faces.length();

partition_marked_neighbors(v2, 2, conx->delta_faces, conx->dead_faces);

}

Contractions are performed in three steps. First, the position of vertex v1

is updated. This changes the geometry of the model. Next, all occurrences of
v2 are replaced by v1. This updates the connectivity of the mesh. Finally, v2

and all degenerate faces can be deleted from the model entirely.
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void MxStdModel::apply_contraction(const MxPairContraction& conx)

{

MxVertexID v1=conx.v1, v2=conx.v2;

unsigned int i;

mxv_addinto(vertex(v1), conx.dv1, 3); // Move v1 to v1 + ∆v1 = v̄

// Replace all remaining occurrences of v2 with v1

for(i=conx.delta_pivot; i<conx.delta_faces.length(); i++)

{

MxFaceID fid = conx.delta_faces(i);

face(fid).remap_vertex(v2, v1);

neighbors(v1).add(fid);

}

// Delete degenerate faces and remove them from the neighborhood
// lists associated with their vertices.
for(i=0; i<conx.dead_faces.length(); i++)

unlink_face(conx.dead_faces(i));

// Having removed all links to v2, we can remove it from the model.
vertex_mark_invalid(v2);

neighbors(v2).reset();

}

A.3.2 Decimation Procedure

Built on top of these underlying contraction operators is the greedy simpli-
fication process, which is presented in this section. For the purposes of this
presentation, I have simplified the actual class hierarchy somewhat. The full
system supports both iterative edge and face contraction. Consequently, the
simplification code is divided between an underlying base class MxQSlim and
two specialized operator-specific classes. However, the code presented here sup-
ports only pair contraction, and I have combined all the relevant functionality
into a single class.

The first phase of the simplification process is initialization. During this
phase, the quadrics associated with the vertices of the original model are con-
structed. Once these quadrics have been constructed, all potential candidate
pairs can be selected, evaluated, and placed in a heap to efficiently track the
minimum cost contraction. Note that throughout this code, the variable m is
the model being simplified.
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void MxQSlim::initialize()

{

// Compute the initial quadrics at each vertex
collect_quadrics();

// Add constraint quadrics, if desired.
if( boundary_weight > 0.0 )

constrain_boundaries();

// Collect all edges/pairs for consideration and call compute_edge_info() on each.
// This will also enter all these pairs into a heap.
collect_edges();

}

Computing the initial quadrics is very simple. Every vertex has a corre-
sponding quadric. For each face, we compute the corresponding fundamental
quadric. Once properly area-weighted, this fundamental quadric is added to the
quadrics for each of the three corners of the face. After traversing the list of all
faces, the initial quadrics will have been completely constructed. Subsequently,
other additional quadrics (e.g., boundary constraints) can be added as well.

void MxQSlim::collect_quadrics()

{

unsigned int j;

// Clear all quadrics. There is one quadric per vertex.
for(j=0; j<quadrics.length(); j++)

quadrics(j).clear();

for(MxFaceID i=0; i<m->face_count(); i++)

{

MxFace& f = m->face(i);

Vec3 v1(m->vertex(f[0])), v2(m->vertex(f[1])), v3(m->vertex(f[2]));

// Construct fundamental quadric for this face
Vec4 p = triangle_plane(v1, v2, v3);

Quadric Q(p[X], p[Y], p[Z], p[W], m->compute_face_area(i));

// Area-weight quadric and add it into the three quadrics for the corners
Q *= Q.area();

quadrics(f[0]) += Q;

quadrics(f[1]) += Q;

quadrics(f[2]) += Q;

}

}

Every candidate edge (or pair) is recorded in a structure that tracks the
endpoints of the edge and the position to which the vertices will be contracted
to. This class inherits from MxHeapable so that it can be tracked in a heap.
This base class stores the contraction cost as the heap key, and it records the
position of the candidate in the heap to facilitate efficient updates.
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class MxQSlimEdge : public MxHeapable

{

public:

MxVertexID v1, v2;

float vnew[3]; // Target position v̄

};

Evaluating a particular edge primarily involves computing the target position
v̄. Once this position, and its error Q(v̄) have been computed, the edge can be
either placed in the heap or its position in the heap updated.

void MxQSlim::compute_edge_info(MxQSlimEdge *info)

{

compute_target_placement(info);

if( info->is_in_heap() )

heap.update(info);

else

heap.insert(info);

}

void MxQSlim::compute_target_placement(MxQSlimEdge *info)

{

MxVertexID i=info->v1, j=info->v2;

double e_min;

// Quadric for edge is the sum of quadrics for the endpoints
Quadric Q = quadrics(Qi); Q += quadrics(j);

// Try to compute the quadric-optimal position
if( Q.optimize(&info->vnew[X], &info->vnew[Y], &info->vnew[Z]) )

e_min = Q(info->vnew);

else

// No unique optimal position. Select best endpoint position.
{

Vec3 vi(m->vertex(i)), vj(m->vertex(j));

Vec3 best;

double ei=Q(vi), ej=Q(vj);

if( ei < ej ) { e_min = ei; best = vi; }

else { e_min = ej; best = vj; }

info->vnew[X] = best[X];

info->vnew[Y] = best[Y];

info->vnew[Z] = best[Z];

}

// Negate the error because the heap class puts the maximum key on top.
info->heap_key(-e_min);

}
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Once initialization is complete, the second phase of simplification begins.
This is a simple iterative procedure that runs until the given target number of
faces is achieved. At each iteration, the minimum cost contraction is removed
from the heap and that contraction is performed.

bool MxQSlim::decimate(unsigned int target)

{

MxPairContraction conx;

while( valid_faces > target )

{

MxQSlimEdge *info = (MxQSlimEdge *)heap.extract();

// Stop early if candidate edge set is exhausted.
if(!info) return false;

// Perform the selected contraction
MxVertexID v1=info->v1, v2=info->v2;

m->compute_contraction(v1, v2, &conx, info->vnew);

apply_contraction(conx);

delete info;

}

return true;

}

The actual contraction of a pair in the mesh is accomplished by the contrac-
tion operator discussed in the previous section. However, the internal state of
the simplification class must also be updated. In particular, all candidate edges
which are connected to either v1 or v2 must be updated.

void MxQSlim::apply_contraction(const MxPairContraction& conx)

{

valid_verts--;

valid_faces -= conx.dead_faces.length();

// Accumulate the quadric of v2 into the quadric of v1

quadrics(conx.v1) += quadrics(conx.v2);

// Every edge currently linked to v2 must be relinked to v1.
// Duplicate edges will be discarded and removed from the heap.
update_pre_contract(conx);

m->apply_contraction(conx);

// Update v̄ and Q(v̄) for each edge connected to v1

for(unsigned int i=0; i<edge_links(conx.v1).length(); i++)

compute_edge_info(edge_links(conx.v1)[i]);

}
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