COLLOQUIUM MATHEMATICUM
 VOL. LXIII 1992 FASC. 2

```
QUADRIC HYPERSURFACES OF FINITE TYPE
By
BANG-YEN CHEN (EAST LANSING, MICHIGAN),
FRANKI DILLEN \(\dagger\) (LEUVEN)
and HONG-ZAO SONG \(\ddagger\) (HENAN)
```

Introduction. A submanifold M of the Euclidean m-space E^{m} is said to be of finite type (see [C1] for details) if each component of its position vector field X can be written as a finite sum of eigenfunctions of the Laplacian Δ of M, i.e., if

$$
X=X_{0}+X_{1}+\ldots+X_{k}
$$

where X_{0} is a constant vector and $\Delta X_{t}=\lambda_{t} X_{t}$ for $t=1, \ldots, k$. If in particular all eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ are mutually different, then M is said to be of k-type. If we define a polynomial P by

$$
P(T)=\prod_{t=1}^{k}\left(T-\lambda_{t}\right)
$$

then $P(\Delta)\left(X-X_{0}\right)=0$. If M is compact, then the converse also holds, i.e., if there exists a constant vector X_{0} and a nontrivial polynomial P such that $P(\Delta)\left(X-X_{0}\right)=0$, then M is of finite type [C1].

The class of finite type submanifolds is very large, including minimal submanifolds of E^{m}, minimal submanifolds of a hypersphere, parallel submanifolds, compact homogeneous submanifolds equivariantly immersed in a Euclidean space, and also isoparametric hypersurfaces of a hypersphere. On the other hand, very few hypersurfaces of finite type in a Euclidean space are known, other than minimal hypersurfaces (which are of 1-type). Therefore the following problem seems to be quite interesting.

Problem. Classify all finite type hypersurfaces in E^{m}.
For $m=2$, this problem was solved completely. In fact, it is known that

[^0]circles and straight lines are the only curves of finite type in E^{2} (see [C1] and [CDVV] for details). For $m=3$, the first result in this respect given in [C2], states that circular cylinders are the only tubes in E^{3} which are of finite type. In [CDVV] it is shown that a ruled surface in E^{3} is of finite type if and only if it is a plane, a circular cylinder or a helicoid. In [G], it is shown that a cone in E^{m} is of finite type if and only if it is minimal. In [D], some ruled submanifolds of finite type are classified.

If M^{\prime} is an algebraic hypersurface with singularities in E^{n}, then M^{\prime} is said to be of finite type if $M^{\prime}-\{$ singularities $\}$ is of finite type.

Combining the notion of algebraic hypersurfaces and the notion of submanifolds of finite type, the first two authors proved in [CD] that the only quadric surfaces of finite type in E^{3} are the circular cylinders and the spheres. In this article, we shall completely classify quadric hypersurfaces of finite type.
2. Quadric hypersurfaces. A subset M of an n-dimensional Euclidean space E^{n} is called a quadric hypersurface if it is the set of points $\left(x_{1}, \ldots, x_{n}\right)$ satisfying the following equation of the second degree:

$$
\begin{equation*}
\sum_{i, k=1}^{n} a_{i k} x_{i} x_{k}+\sum_{i=1}^{n} b_{i} x_{i}+c=0 \tag{2.1}
\end{equation*}
$$

where $a_{i k}, b_{i}, c$ are all real numbers. We can assume without loss of generality that the matrix $A=\left(a_{i k}\right)$ is symmetric and A is not a zero matrix. By applying a coordinate transformation in E^{n} if necessary, we may assume that (2.1) takes one of the following canonical forms:

$$
\begin{gather*}
\sum_{i=1}^{r} a_{i} x_{i}^{2}+1=0 \tag{I}\\
\sum_{i=1}^{r} a_{i} x_{i}^{2}+2 x_{r+1}=0 \\
\sum_{i=1}^{r} a_{i} x_{i}^{2}=0
\end{gather*}
$$

where $\left(a_{1}, \ldots, a_{r}, 0, \ldots, 0\right)$ (with $n-r$ zeros) is proportional to the eigenvalues of the matrix A. In general, we have $1 \leq r \leq n$. In the cases where $r=n$ in (I) and (III) and $r+1=n$ in (II) the hypersurface is called a properly $(n-1)$-dimensional quadric hypersurface, and in other cases, a quadric cylindrical hypersurface. In cases (I) and (III), the quadric cylindrical hypersurface is the product of an $(n-r)$-dimensional linear subspace E^{n-r} and a properly $(r-1)$-dimensional quadric hypersurface. In case (II), the quadric cylindrical hypersurface is the product of an $(n-r-1)$-dimensional
linear subspace and a properly r-dimensional quadric hypersurface.
Let $S^{p}(r)$ denote the hypersphere in E^{p+1} with radius r and centered at the origin. Denote by $M_{p, q}$ the product of spheres

$$
S^{p}\left(\sqrt{\frac{p}{p+q}}\right) \times S^{q}\left(\sqrt{\frac{q}{p+q}}\right) \subset S^{p+q+1}(1) \subset E^{p+q+2}
$$

We denote by $C_{p, q}$ the $(p+q+1)$-dimensional cone in E^{p+q+2} with vertex at the origin shaped on $M_{p, q}$. It is easy to see that $C_{p, 0}$ and $C_{0, q}$ are hyperplanes in E^{p+2} and E^{q+2}, respectively, and $C_{p, q}$ with $p>0, q>0$ are algebraic hypersurfaces of degree 2 .

The purpose of this article is to prove the following classification theorem.
Theorem. A quadric hypersurface M in E^{n+1} is of finite type (even locally) if and only if it is one of the following hypersurfaces:
(a) hypersphere,
(b) one of the algebraic cones $C_{p, n-p-1}, 0<p<n-1$,
(c) the product of a linear subspace E^{l} and a hypersphere of E^{n-l+1} $(0<l<n)$,
(d) the product of a linear subspace E^{l} and one of the algebraic cones $C_{p, n-l-p-1}(0<p<n-l-1)$.
3. Properly n-dimensional quadric hypersurfaces. Let M be a hypersurface in E^{n+1}. Consider a parametrization

$$
\begin{equation*}
X\left(u_{1}, \ldots, u_{n}\right)=\left(u_{1}, \ldots, u_{n}, v\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
v=v\left(u_{1}, \ldots, u_{n}\right) \tag{3.2}
\end{equation*}
$$

Denote $\partial_{i} v\left(=\partial v / \partial u_{i}\right)$ by v_{i}. Then we have

$$
\begin{equation*}
g_{i j}=\delta_{i j}+v_{i} v_{j}, \quad g^{i j}=\delta_{i j}-\frac{v_{i} v_{j}}{g} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
g=\operatorname{det}\left(g_{i j}\right)=1+\sum_{i=1}^{n} v_{i}^{2} \tag{3.4}
\end{equation*}
$$

and $g_{i j}=\left\langle\partial_{i} X, \partial_{j} X\right\rangle$. The Laplacian Δ of M is given by

$$
\begin{equation*}
\Delta=-\sum_{i, j}\left(\frac{\partial_{i} g}{2 g} g^{i j}+\partial_{i} g^{i j}\right) \partial_{j}-\sum_{i, j} g^{i j} \partial_{i} \partial_{j} \tag{3.5}
\end{equation*}
$$

If M is a properly n-dimensional quadric hypersurface, then either M is
an algebraic cone of degree 2 or M is of one of the following two kinds:

$$
\begin{array}{rlrl}
v^{2} & =\sum_{i=1}^{n} b_{i} u_{i}^{2}+c, & b_{1} \ldots b_{n} c \neq 0 \tag{I}\\
v & =\frac{1}{2} \sum_{i=1}^{n} b_{i} u_{i}^{2}, & & b_{1} \ldots b_{n} \neq 0 .
\end{array}
$$

In the following two sections, we study properly n-dimensional quadric hypersurfaces of kinds (I) and (II), separately.
4. Proper quadric hypersurfaces of kind (I). In this section we assume M is a properly n-dimensional quadric hypersurface of kind (I). We may consider the following parametrization:
(4.1) $X=\left(u_{1}, \ldots, u_{n}, v\right), \quad v^{2}=a_{1} u_{1}^{2}+\ldots+a_{n} u_{n}^{2}+c, \quad a_{1} \ldots a_{n} c \neq 0$.

In this case, we have

$$
\begin{equation*}
v_{i}=\partial_{i} v=a_{i} u_{i} / v \tag{4.2}
\end{equation*}
$$

Thus, (3.3) and (3.4) imply

$$
\begin{gather*}
g_{i j}=\delta_{i j}+\frac{a_{i} a_{j} u_{i} u_{j}}{W}, \quad g^{i j}=\delta_{i j}-\frac{a_{i} a_{j} u_{i} u_{j}}{g W} \tag{4.3}\\
g=1+\frac{1}{W} \sum_{i}\left(a_{i} u_{i}\right)^{2}, \quad \frac{1}{g}=1-\frac{1}{g W} \sum_{i}\left(a_{i} u_{i}\right)^{2}, \tag{4.4}
\end{gather*}
$$

where

$$
\begin{equation*}
W=v^{2}=a_{1} u_{1}^{2}+\ldots+a_{n} u_{n}^{2}+c . \tag{4.5}
\end{equation*}
$$

From (4.4) we find

$$
\begin{gather*}
\partial_{i} g=\frac{2}{W}\left(a_{i} u_{i}\left(1+a_{i}-g\right)\right), \tag{4.6}\\
\widetilde{g}:=g W=c+\sum_{i}\left(1+a_{i}\right) a_{i} u_{i}^{2} . \tag{4.7}
\end{gather*}
$$

We put

$$
\begin{align*}
A_{k} & =\frac{1}{2 W}\left\{\left(g W-a_{k}^{2} u_{k}^{2}\right) \partial_{k} g-a_{k} u_{k} \sum_{t \neq k} a_{t} u_{t} \partial_{t} g\right\} \tag{4.8}\\
& =\frac{1}{2} g \sum_{t} g^{t k} \partial_{t} g
\end{align*}
$$

Then from (4.3) and a straightforward computation, we have

$$
\begin{equation*}
-\sum_{t} \partial_{t} g^{t k}=\frac{a_{k} u_{k}}{g W} \sum_{t \neq k} a_{t}+\frac{2 A_{k}}{g^{2}} . \tag{4.9}
\end{equation*}
$$

From (3.5), (4.8) we obtain

$$
\begin{equation*}
\Delta=\frac{1}{g^{2}} \sum_{i} A_{i} \partial_{i}+\frac{1}{g W} \sum_{j}\left(\sum_{t \neq k} a_{t}\right) a_{j} u_{j} \partial_{j}-\sum_{i, j} g^{i j} \partial_{i} \partial_{j} . \tag{4.10}
\end{equation*}
$$

We put

$$
\begin{equation*}
c_{i j}=g g^{i j} . \tag{4.11}
\end{equation*}
$$

From (4.3), (4.4) and (4.11) we have

$$
\begin{equation*}
c_{i j}=\delta_{i j}+\frac{1}{W}\left(\delta_{i j} \sum_{t} a_{t}^{2} u_{t}^{2}-a_{i} a_{j} u_{i} u_{j}\right) . \tag{4.12}
\end{equation*}
$$

For later use, we note that from (4.8), (4.12) we have

$$
\begin{equation*}
\sum_{i, j} c_{i j}\left(\partial_{i} g\right)\left(\partial_{j} g\right)=2 \sum_{j} A_{j} \partial_{j} g \tag{4.13}
\end{equation*}
$$

Also note from (4.7) that

$$
\begin{equation*}
\widetilde{g}=g W \text { is a polynomial in } u_{1}, \ldots, u_{n} . \tag{4.14}
\end{equation*}
$$

Lemma 1. We have

$$
\Delta^{t} u_{k}=g^{1-3 t} A_{k} \alpha_{t}\left(\sum_{i} A_{i} \partial_{i} g\right)^{t-1}+g^{2-3 t} P_{k, t}\left(u_{1}, \ldots, u_{n}, 1 / W\right)
$$

where $P_{k, t}$ is a polynomial in $n+1$ variables and α_{t} is given by

$$
\begin{equation*}
\alpha_{t}=(4-3 t)(6 t-5) \alpha_{t-1}, \quad \alpha_{1}=1 \tag{4.15}
\end{equation*}
$$

Proof. The proof goes by induction. For $t=1$, the formula follows from (4.10). Suppose the lemma is true for $t-1$. Then it follows from (4.10), (4.11) and (4.13) that

$$
\begin{aligned}
\Delta^{t} u_{k}= & g^{1-3 t} \sum_{j} A_{j} A_{k} \alpha_{t-1}\left(\sum_{i} A_{i} \partial_{i} g\right)^{t-2}(4-3 t) \partial_{j} g \\
& -g^{1-3 t} \sum_{i, j} c_{i j} A_{k} \alpha_{t-1}\left(\sum_{l} A_{l} \partial_{l} g\right)^{t-2}(4-3 t)(3-3 t) \partial_{j} g \partial_{i} g \\
& +g^{2-3 t} P_{k, t}\left(u_{1}, \ldots, u_{n}, 1 / W\right) \\
= & g^{1-3 t} A_{k} \alpha_{t}\left(\sum_{i} A_{i} \partial_{i} g\right)^{t-1}+g^{2-3 t} P_{k, t}\left(u_{1}, \ldots, u_{n}, 1 / W\right)
\end{aligned}
$$

which proves the lemma.
Now, suppose that M is of k-type. Then there exist real numbers c_{1}, \ldots, c_{k} such that

$$
\begin{gather*}
\Delta^{k+1} X+c_{1} \Delta^{k} X+\ldots+c_{k} \Delta X=0 \tag{4.16}\\
\Delta^{k+1} u_{i}+c_{1} \Delta^{k} u_{i}+\ldots+c_{k} \Delta u_{i}=0, \quad i=1, \ldots, n . \tag{4.17}
\end{gather*}
$$

From Lemma 1 and (4.17) we get

$$
\begin{equation*}
\left(\sum_{i} A_{i} \partial_{i} g\right)^{k+1}=g P\left(u_{1}, \ldots, u_{n}, 1 / W\right) \tag{4.18}
\end{equation*}
$$

where P is a polynomial in $n+1$ variables. We put

$$
\begin{equation*}
G\left(u_{1}, \ldots, u_{n}\right)=W^{5} \sum_{i} A_{i} \partial_{i} g \tag{4.19}
\end{equation*}
$$

Then G is a polynomial in u_{1}, \ldots, u_{n}. Since W is a polynomial in u_{1}, \ldots, u_{n}, there is a natural number N and a polynomial R in n variables such that

$$
\begin{equation*}
W^{N} P\left(u_{1}, \ldots, u_{n}, 1 / W\right)=R\left(u_{1}, \ldots, u_{n}\right) \tag{4.20}
\end{equation*}
$$

From (4.7), (4.18)-(4.20), we have

$$
\begin{equation*}
W^{N+1} G^{k+1}=\widetilde{g} W^{5 k+5} R \tag{4.21}
\end{equation*}
$$

For any fixed $j, 1 \leq j \leq n$, we put $u_{i}=0$ for $i \neq j$ in (4.21) to obtain

$$
\begin{align*}
& \left(c+a_{j} u_{j}^{2}\right)^{N+k+2} 2^{k+1}\left(a_{j}^{2} c u_{j}\right)^{2 k+2} \tag{4.22}\\
& \quad=\left(c+a_{j}\left(a_{j}+1\right) u_{j}^{2}\right)\left(c+a_{j} u_{j}^{2}\right)^{5 k+5} R\left(0, \ldots, 0, u_{j}, 0, \ldots, 0\right)
\end{align*}
$$

Since $a_{1} \ldots a_{n} c \neq 0$, this implies $a_{j}=-1$. Because this is true for any j, M is a hypersphere.
5. Proper quadric hypersurfaces of kind (II). For such hypersurfaces we consider a parametrization

$$
\begin{equation*}
X=\left(u_{1}, \ldots, u_{n}, v\right), \quad v=\frac{1}{2} \sum_{i} b_{i} u_{i}^{2}, \quad b_{1} \ldots b_{n} \neq 0 \tag{5.1}
\end{equation*}
$$

From (3.3)-(3.5) we may find

$$
\begin{gather*}
g_{i j}=\delta_{i j}+b_{i} b_{j} u_{i} u_{j}, \quad g^{i j}=\delta_{i j}-\frac{b_{i} b_{j} u_{i} u_{j}}{g} \tag{5.2}\\
g=\operatorname{det}\left(g_{i j}\right)=1+\sum_{i} b_{i}^{2} u_{i}^{2} \tag{5.3}\\
\Delta=\frac{1}{g^{2}} \sum_{j}\left\{b_{j}+\sum_{i}\left(b_{j}-b_{i}\right) b_{i}^{2} u_{i}^{2}\right\} b_{j} u_{j} \partial_{j} \tag{5.4}\\
-\sum_{i, j} g^{i j} \partial_{i} \partial_{j}+\frac{1}{g} \sum_{j}\left(\sum_{i \neq j} b_{i}\right) b_{j} u_{j} \partial_{j} .
\end{gather*}
$$

Lemma 2. We have

$$
\begin{gather*}
g^{2} \Delta g=Q\left(u_{1}, \ldots, u_{n}\right)+g T\left(u_{1}, \ldots, u_{n}\right) \tag{5.5}\\
\|\nabla g\|^{2}=\frac{2}{g} Q\left(u_{1}, \ldots, u_{n}\right) \tag{5.6}
\end{gather*}
$$

where Q and T are some polynomials in u_{1}, \ldots, u_{n} and ∇g is the gradient of g.

Proof. From (5.3) and (5.4) we find
$\Delta g=\frac{2}{g^{2}} \sum_{j} b_{j}^{2} u_{j}\left\{\left(b_{j}+\sum_{i}\left(b_{j}-b_{i}\right) b_{i}^{2} u_{i}^{2}\right) b_{j} u_{j}+g\left(\sum_{i \neq j} b_{i}\right) b_{j} u_{j}\right\}-2 \sum_{j} b_{j}^{2} g^{j j}$.
Thus, if we put

$$
\begin{gather*}
Q=2 \sum_{j} b_{j}^{3} u_{j}^{2}\left\{b_{j}+\sum_{i}\left(b_{j}-b_{i}\right) b_{i}^{2} u_{i}^{2}\right\}, \tag{5.7}\\
T=2 \sum_{j} b_{j}^{3} u_{j}^{2}\left(\sum_{i \neq j} b_{i}\right)-2 g \sum_{i} g^{i i} b_{i}^{2}, \tag{5.8}
\end{gather*}
$$

then we obtain (5.5). It is obvious that Q and T are polynomials in u_{1}, \ldots, u_{n}. (5.6) follows from the definition of the norm of ∇g, (5.2), (5.3) and (5.7).

Lemma 3. We have

$$
\Delta^{t} u_{j}=g^{1-3 t} Q^{t-1} b_{j} u_{j}\left\{b_{j}+\sum_{i}\left(b_{j}-b_{i}\right) b_{i}^{2} u_{i}^{2}\right\} \alpha_{t}+g^{2-3 t} \widetilde{P}_{j, t}
$$

where $\widetilde{P}_{j, t}$ is a polynomial in u_{1}, \ldots, u_{n} and α_{t} is given by (4.15).
Proof. The proof goes by induction. For $t=1$ the formula follows easily from (5.4). Assume it is true for $t-1$. Then we have

$$
\begin{aligned}
\Delta^{t} u_{j}= & \Delta\left\{g^{4-3 t} Q^{t-2} b_{j} u_{j}\left(b_{j}+\sum_{i}\left(b_{j}-b_{i}\right) b_{i}^{2} u_{i}^{2}\right) \alpha_{t-1}+g^{5-3 t} \widetilde{P}_{j, t-1}\right\} \\
= & g^{1-3 t} Q^{t-2} b_{j} u_{j}\left(b_{j}+\sum_{i}\left(b_{j}-b_{i}\right) b_{i}^{2} u_{i}^{2}\right) \alpha_{t-1} \\
& \times\left\{(4-3 t) g^{2} \Delta g-(4-3 t)(3-3 t) g\|\nabla g\|^{2}\right\}+g^{2-3 t} \widehat{P}_{j, t}
\end{aligned}
$$

where $\widehat{P}_{j, t}$ is a polynomial in u_{1}, \ldots, u_{n}. Thus, Lemma 2 implies the assertion.

If M is of k-type, then again there exist real numbers c_{1}, \ldots, c_{k} such that

$$
\Delta^{k+1} u_{j}+c_{1} \Delta^{k} u_{j}+\ldots+c_{k} \Delta u_{j}=0, \quad j=1, \ldots, n
$$

From Lemma 3 and (5.7) we obtain

$$
Q^{k+1}=g P\left(u_{1}, \ldots, u_{n}\right)
$$

where P is a polynomial in u_{1}, \ldots, u_{n}. Since $b_{1} \ldots b_{n} \neq 0, g=1+\sum b_{i}^{2} u_{i}^{2}$ is irreducible. Moreover, because $Q / g=\frac{1}{2}\|\nabla g\|^{2}$ is not a polynomial in u_{1}, \ldots, u_{n}, we obtain a contradiction. Thus, there exist no proper quadric hypersurfaces of kind (II) which are of finite type.
6. Proof of Theorem. If M is a properly n-dimensional quadric hypersurface of finite type in E^{n+1}, then either M is an algebraic conic hypersurface of degree 2 or, according to $\S \S 3-5, M$ is a hypersphere. If M is an algebraic conic hypersurface of degree 2 , then because M is of finite type, M is a minimal cone $[\mathrm{G}]$. Thus, by a result of $[\mathrm{H}], M$ is one of the algebraic cones $C_{p, n-p-1}, 0<p<n-1$.

If M is a quadric cylindrical hypersurface of finite type in E^{n+1}, then M is the product of a linear subspace E^{l} and a proper quadric hypersurface, say N. Since M is of finite type, N is also of finite type. Thus, N is either a hypersphere or an algebraic cone $C_{p, n-l-p-1}$ for some suitable p.

The converse is easy to verify.

REFERENCES

[C1] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Singapore 1984.
[C2] -, Surfaces of finite type in Euclidean 3-space, Bull. Soc. Math. Belg. Sér. B 39 (1987), 243-254.
[CD] B. Y. Chen and F. Dillen, Quadrics of finite type, J. Geom. 38 (1990), 16-22. [CDVV] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Ruled surfaces of finite type, Bull. Austral. Math. Soc. 42 (1990), 447-453.
[D] F. Dillen, Ruled submanifolds of finite type, Proc. Amer. Math. Soc. 114 (1992), 795-798.
[G] O. J. Garay, Finite type cones shaped on spherical submanifolds, ibid. 104 (1988), 868-870.
[H] W. Y. Hsiang, Remarks on closed minimal submanifolds in the standard Riemannian m-sphere, J. Differential Geom. 1 (1967), 257-267.

DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN 48824-1027 U.S.A.

DEPARTEMENT WISKUNDE KATHOLIEKE UNIVERSITEIT LEUVEN CELESTIJNENLAAN 200B B-3001 LEUVEN, BELGIUM

DEPARTMENT OF MATHEMATICS
HENAN UNIVERSITY
KAIFENG, HENAN 475001
PEOPLE'S REPUBLIC OF CHINA

[^0]: \dagger Supported by a research fellowship of the Research Council of the Katholieke Universiteit Leuven.
 \ddagger This work was done while the third author was a visiting scholar at Michigan State University. He would like to take this opportunity to express his hearty thanks to his colleagues there for their hospitality.

