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Introduction. A submanifold M of the Euclidean m-space Em is said to
be of finite type (see [C1] for details) if each component of its position vector
field X can be written as a finite sum of eigenfunctions of the Laplacian ∆
of M , i.e., if

X = X0 + X1 + . . . + Xk

where X0 is a constant vector and ∆Xt = λtXt for t = 1, . . . , k. If in
particular all eigenvalues λ1, . . . , λk are mutually different, then M is said
to be of k-type. If we define a polynomial P by

P (T ) =
k∏

t=1

(T − λt) ,

then P (∆)(X − X0) = 0. If M is compact, then the converse also holds,
i.e., if there exists a constant vector X0 and a nontrivial polynomial P such
that P (∆)(X −X0) = 0, then M is of finite type [C1].

The class of finite type submanifolds is very large, including minimal
submanifolds of Em, minimal submanifolds of a hypersphere, parallel sub-
manifolds, compact homogeneous submanifolds equivariantly immersed in
a Euclidean space, and also isoparametric hypersurfaces of a hypersphere.
On the other hand, very few hypersurfaces of finite type in a Euclidean
space are known, other than minimal hypersurfaces (which are of 1-type).
Therefore the following problem seems to be quite interesting.

Problem. Classify all finite type hypersurfaces in Em.

For m = 2, this problem was solved completely. In fact, it is known that
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circles and straight lines are the only curves of finite type in E2 (see [C1]
and [CDVV] for details). For m = 3, the first result in this respect given
in [C2], states that circular cylinders are the only tubes in E3 which are of
finite type. In [CDVV] it is shown that a ruled surface in E3 is of finite
type if and only if it is a plane, a circular cylinder or a helicoid. In [G], it is
shown that a cone in Em is of finite type if and only if it is minimal. In [D],
some ruled submanifolds of finite type are classified.

If M ′ is an algebraic hypersurface with singularities in En, then M ′ is
said to be of finite type if M ′ − {singularities} is of finite type.

Combining the notion of algebraic hypersurfaces and the notion of sub-
manifolds of finite type, the first two authors proved in [CD] that the only
quadric surfaces of finite type in E3 are the circular cylinders and the
spheres. In this article, we shall completely classify quadric hypersurfaces
of finite type.

2. Quadric hypersurfaces. A subset M of an n-dimensional Euclidean
space En is called a quadric hypersurface if it is the set of points (x1, . . . , xn)
satisfying the following equation of the second degree:

(2.1)
n∑

i,k=1

aikxixk +
n∑

i=1

bixi + c = 0 ,

where aik, bi, c are all real numbers. We can assume without loss of gen-
erality that the matrix A = (aik) is symmetric and A is not a zero matrix.
By applying a coordinate transformation in En if necessary, we may assume
that (2.1) takes one of the following canonical forms:

(I)
r∑

i=1

aix
2
i + 1 = 0 ,

(II)
r∑

i=1

aix
2
i + 2xr+1 = 0 ,

(III)
r∑

i=1

aix
2
i = 0

where (a1, . . . , ar, 0, . . . , 0) (with n − r zeros) is proportional to the eigen-
values of the matrix A. In general, we have 1 ≤ r ≤ n. In the cases where
r = n in (I) and (III) and r +1 = n in (II) the hypersurface is called a prop-
erly (n− 1)-dimensional quadric hypersurface, and in other cases, a quadric
cylindrical hypersurface. In cases (I) and (III), the quadric cylindrical hy-
persurface is the product of an (n − r)-dimensional linear subspace En−r

and a properly (r − 1)-dimensional quadric hypersurface. In case (II), the
quadric cylindrical hypersurface is the product of an (n−r−1)-dimensional
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linear subspace and a properly r-dimensional quadric hypersurface.
Let Sp(r) denote the hypersphere in Ep+1 with radius r and centered at

the origin. Denote by Mp,q the product of spheres

Sp

(√
p

p + q

)
× Sq

(√
q

p + q

)
⊂ Sp+q+1(1) ⊂ Ep+q+2 .

We denote by Cp,q the (p + q + 1)-dimensional cone in Ep+q+2 with vertex
at the origin shaped on Mp,q. It is easy to see that Cp,0 and C0,q are
hyperplanes in Ep+2 and Eq+2, respectively, and Cp,q with p > 0, q > 0 are
algebraic hypersurfaces of degree 2.

The purpose of this article is to prove the following classification theorem.

Theorem. A quadric hypersurface M in En+1 is of finite type (even
locally) if and only if it is one of the following hypersurfaces:

(a) hypersphere,
(b) one of the algebraic cones Cp,n−p−1, 0 < p < n− 1,
(c) the product of a linear subspace El and a hypersphere of En−l+1

(0 < l < n),
(d) the product of a linear subspace El and one of the algebraic cones

Cp,n−l−p−1 (0 < p < n− l − 1).

3. Properly n-dimensional quadric hypersurfaces. Let M be a
hypersurface in En+1. Consider a parametrization

(3.1) X(u1, . . . , un) = (u1, . . . , un, v)

where

(3.2) v = v(u1, . . . , un) .

Denote ∂iv(= ∂v/∂ui) by vi. Then we have

(3.3) gij = δij + vivj , gij = δij −
vivj

g

where

(3.4) g = det(gij) = 1 +
n∑

i=1

v2
i ,

and gij = 〈∂iX, ∂jX〉. The Laplacian ∆ of M is given by

(3.5) ∆ = −
∑
i,j

(
∂ig

2g
gij + ∂ig

ij

)
∂j −

∑
i,j

gij∂i∂j .

If M is a properly n-dimensional quadric hypersurface, then either M is
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an algebraic cone of degree 2 or M is of one of the following two kinds:

v2 =
n∑

i=1

biu
2
i + c , b1 . . . bnc 6= 0 ,(I)

v =
1
2

n∑
i=1

biu
2
i , b1 . . . bn 6= 0 .(II)

In the following two sections, we study properly n-dimensional quadric
hypersurfaces of kinds (I) and (II), separately.

4. Proper quadric hypersurfaces of kind (I). In this section we
assume M is a properly n-dimensional quadric hypersurface of kind (I). We
may consider the following parametrization:

(4.1) X = (u1, . . . , un, v) , v2 = a1u
2
1 + . . . + anu2

n + c , a1 . . . anc 6= 0 .

In this case, we have

(4.2) vi = ∂iv = aiui/v .

Thus, (3.3) and (3.4) imply

(4.3) gij = δij +
aiajuiuj

W
, gij = δij −

aiajuiuj

gW
,

(4.4) g = 1 +
1
W

∑
i

(aiui)2 ,
1
g

= 1− 1
gW

∑
i

(aiui)2 ,

where

(4.5) W = v2 = a1u
2
1 + . . . + anu2

n + c .

From (4.4) we find

(4.6) ∂ig =
2
W

(aiui(1 + ai − g)) ,

(4.7) g̃ := gW = c +
∑

i

(1 + ai)aiu
2
i .

We put

Ak =
1

2W

{
(gW − a2

ku2
k)∂kg − akuk

∑
t6=k

atut∂tg
}

(4.8)

=
1
2
g

∑
t

gtk∂tg .

Then from (4.3) and a straightforward computation, we have

(4.9) −
∑

t

∂tg
tk =

akuk

gW

∑
t6=k

at +
2Ak

g2
.
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From (3.5), (4.8) we obtain

(4.10) ∆ =
1
g2

∑
i

Ai∂i +
1

gW

∑
j

( ∑
t6=k

at

)
ajuj∂j −

∑
i,j

gij∂i∂j .

We put

(4.11) cij = ggij .

From (4.3), (4.4) and (4.11) we have

(4.12) cij = δij +
1
W

(
δij

∑
t

a2
t u

2
t − aiajuiuj

)
.

For later use, we note that from (4.8), (4.12) we have

(4.13)
∑
i,j

cij(∂ig)(∂jg) = 2
∑

j

Aj∂jg .

Also note from (4.7) that

(4.14) g̃ = gW is a polynomial in u1, . . . , un .

Lemma 1. We have

∆tuk = g1−3tAkαt

( ∑
i

Ai∂ig
)t−1

+ g2−3tPk,t(u1, . . . , un, 1/W )

where Pk,t is a polynomial in n + 1 variables and αt is given by

(4.15) αt = (4− 3t)(6t− 5)αt−1 , α1 = 1 .

P r o o f. The proof goes by induction. For t = 1, the formula follows
from (4.10). Suppose the lemma is true for t − 1. Then it follows from
(4.10), (4.11) and (4.13) that

∆tuk = g1−3t
∑

j

AjAkαt−1

( ∑
i

Ai∂ig
)t−2

(4− 3t)∂jg

− g1−3t
∑
i,j

cijAkαt−1

( ∑
l

Al∂lg
)t−2

(4− 3t)(3− 3t)∂jg∂ig

+ g2−3tPk,t(u1, . . . , un, 1/W )

= g1−3tAkαt

( ∑
i

Ai∂ig
)t−1

+ g2−3tPk,t(u1, . . . , un, 1/W ) ,

which proves the lemma.

Now, suppose that M is of k-type. Then there exist real numbers
c1, . . . , ck such that

(4.16) ∆k+1X + c1∆
kX + . . . + ck∆X = 0 ,

(4.17) ∆k+1ui + c1∆
kui + . . . + ck∆ui = 0 , i = 1, . . . , n .
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From Lemma 1 and (4.17) we get

(4.18)
( ∑

i

Ai∂ig
)k+1

= gP (u1, . . . , un, 1/W ) ,

where P is a polynomial in n + 1 variables. We put

(4.19) G(u1, . . . , un) = W 5
∑

i

Ai∂ig .

Then G is a polynomial in u1, . . . , un. Since W is a polynomial in u1, . . . , un,
there is a natural number N and a polynomial R in n variables such that

(4.20) WNP (u1, . . . , un, 1/W ) = R(u1, . . . , un) .

From (4.7), (4.18)–(4.20), we have

(4.21) WN+1Gk+1 = g̃W 5k+5R .

For any fixed j, 1 ≤ j ≤ n, we put ui = 0 for i 6= j in (4.21) to obtain

(4.22) (c + aju
2
j )

N+k+22k+1(a2
jcuj)2k+2

= (c + aj(aj + 1)u2
j )(c + aju

2
j )

5k+5R(0, . . . , 0, uj , 0, . . . , 0) .

Since a1 . . . anc 6= 0, this implies aj = −1. Because this is true for any j,
M is a hypersphere.

5. Proper quadric hypersurfaces of kind (II). For such hypersur-
faces we consider a parametrization

(5.1) X = (u1, . . . , un, v) , v =
1
2

∑
i

biu
2
i , b1 . . . bn 6= 0 .

From (3.3)–(3.5) we may find

(5.2) gij = δij + bibjuiuj , gij = δij −
bibjuiuj

g
,

(5.3) g = det(gij) = 1 +
∑

i

b2
i u

2
i ,

(5.4) ∆ =
1
g2

∑
j

{
bj +

∑
i

(bj − bi)b2
i u

2
i

}
bjuj∂j

−
∑
i,j

gij∂i∂j +
1
g

∑
j

( ∑
i 6=j

bi

)
bjuj∂j .

Lemma 2. We have

(5.5) g2∆g = Q(u1, . . . , un) + gT (u1, . . . , un) ,

(5.6) ||∇g||2 =
2
g
Q(u1, . . . , un) ,
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where Q and T are some polynomials in u1, . . . , un and ∇g is the gradient
of g.

P r o o f. From (5.3) and (5.4) we find

∆g =
2
g2

∑
j

b2
juj

{
(bj +

∑
i

(bj−bi)b2
i u

2
i )bjuj +g

( ∑
i 6=j

bi

)
bjuj

}
−2

∑
j

b2
jg

jj .

Thus, if we put

Q = 2
∑

j

b3
ju

2
j

{
bj +

∑
i

(bj − bi)b2
i u

2
i

}
,(5.7)

T = 2
∑

j

b3
ju

2
j

( ∑
i 6=j

bi

)
− 2g

∑
i

giib2
i ,(5.8)

then we obtain (5.5). It is obvious that Q and T are polynomials in
u1, . . . , un. (5.6) follows from the definition of the norm of ∇g, (5.2), (5.3)
and (5.7).

Lemma 3. We have

∆tuj = g1−3tQt−1bjuj

{
bj +

∑
i

(bj − bi)b2
i u

2
i

}
αt + g2−3tP̃j,t

where P̃j,t is a polynomial in u1, . . . , un and αt is given by (4.15).

P r o o f. The proof goes by induction. For t = 1 the formula follows
easily from (5.4). Assume it is true for t− 1. Then we have

∆tuj = ∆
{

g4−3tQt−2bjuj

(
bj +

∑
i

(bj − bi)b2
i u

2
i

)
αt−1 + g5−3tP̃j,t−1

}
= g1−3tQt−2bjuj

(
bj +

∑
i

(bj − bi)b2
i u

2
i

)
αt−1

× {(4− 3t)g2∆g − (4− 3t)(3− 3t)g||∇g||2}+ g2−3tP̂j,t .

where P̂j,t is a polynomial in u1, . . . , un. Thus, Lemma 2 implies the asser-
tion.

If M is of k-type, then again there exist real numbers c1, . . . , ck such
that

∆k+1uj + c1∆
kuj + . . . + ck∆uj = 0 , j = 1, . . . , n .

From Lemma 3 and (5.7) we obtain

Qk+1 = gP (u1, . . . , un)

where P is a polynomial in u1, . . . , un. Since b1 . . . bn 6= 0, g = 1 +
∑

b2
i u

2
i

is irreducible. Moreover, because Q/g = 1
2 ||∇g||2 is not a polynomial in

u1, . . . , un, we obtain a contradiction. Thus, there exist no proper quadric
hypersurfaces of kind (II) which are of finite type.
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6. Proof of Theorem. If M is a properly n-dimensional quadric hy-
persurface of finite type in En+1, then either M is an algebraic conic hyper-
surface of degree 2 or, according to §§3–5, M is a hypersphere. If M is an
algebraic conic hypersurface of degree 2, then because M is of finite type,
M is a minimal cone [G]. Thus, by a result of [H], M is one of the algebraic
cones Cp,n−p−1, 0 < p < n− 1.

If M is a quadric cylindrical hypersurface of finite type in En+1, then M
is the product of a linear subspace El and a proper quadric hypersurface,
say N . Since M is of finite type, N is also of finite type. Thus, N is either
a hypersphere or an algebraic cone Cp,n−l−p−1 for some suitable p.

The converse is easy to verify.
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