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Quadrotors & Accelerometers

State Estimation with an Improved Dynamic Model

Robert C. Leishman, John Macdonald, Randal W. Beard, Timothy W. McLain

Quadrotors are ideal platforms for autonomous flight in unknown and complex environ-

ments. Their small size and maneuverability are conducive to operating in confined spaces and

avoiding obstacles. Equipped with appropriate sensors and algorithms, quadrotors could enable

several applications currently infeasible for ground robots.

However, a quadrotor’s small size and maneuverability also create problems when at-

tempting to make them autonomous. The same fast dynamics that make quadrotors maneuverable

require accurate and frequently updated position, orientation, and velocity state estimates to

enable autonomous control. Additionally, the payload available on a quadrotor limits the available

sensors and processing capability. These problems are especially relevant in unknown and

complex 3D environments that demand more processing-intensive algorithms and information-

rich sensor data.

Accurate and timely estimates of attitude and velocity are key ingredients to enable

an autonomous quadrotor. In this article, results are presented that quantify how velocity and

attitude estimates can benefit from an improvement to the traditional quadrotor dynamic model.

The improved model allows accelerometer measurements, which are routinely available at high
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rates, to reduce an estimator’s dependence on complex exteroceptive measurements, such as

those obtained by an onboard camera or laser rangefinder.

A few research groups have made noteworthy progress toward deploying fully au-

tonomous quadrotors. One of the major challenges is estimating the position and velocity [1].

To address this problem, a sophisticated laser scan-matching algorithm was developed. This

algorithm is characterized as the key technology that allows the vehicle to fly autonomously.

In [2] a quadrotor system is presented that also uses a scanning laser rangefinder. The

fast vehicle dynamics require pose (that is, position and orientation) estimates with update rates

of at least 20 Hz. Several of the design decisions made in the development of this system were

driven by the need to meet this requirement despite the system’s computational limitations.

An autonomous quadrotor that utilizes the increased information from cameras, at the

expense of increased computation, is detailed in [3]. It is emphasized that estimated velocity is

critical to damp the system. The estimator relies on a simple constant-velocity motion model

that increases the minimum required update rate from the vision processing system.

The widely-used traditional quadrotor model (for example [4]–[11]) assumes that the

significant forces acting on the vehicle are gravity and the thrust produced by the rotors

(see Figure 1). This assumption leads to a dynamic model for the quadrotor’s linear acceleration
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where p, q, and r are the roll, pitch, and yaw rates of the vehicle, respectively. The components

of acceleration along the body-fixed ~ib, ~jb, and ~kb axes, as shown in Figure 1, are u̇, v̇, and ẇ.
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Rb
I is the rotation matrix from the inertial to the body-fixed reference frame. The constants g

and m represent the gravitational acceleration and the quadrotor’s mass. Coriolis forces comprise

the second matrix term on the right-hand side of (1). The combined thrust of the rotors, T , acts

as an input to the system.

This model is acceptable for some applications, such as designing a controller, because

it captures the external forces with the most significant magnitudes. However, it leads to an

interesting paradox [12]. The model implies accelerometers aligned with the ~ib and ~jb axes

will always measure zero. Yet successful quadrotor implementations using this model use these

accelerometer measurements to improve estimates of the quadrotor’s orientation. An improved

quadrotor model should explain how to more appropriately use the data from the accelerometers

aligned with the ~ib and ~jb axes.

Many articles acknowledge that some drag force must act on the vehicle’s body, but this

is reasonably dismissed as being small since it is proportional to the square of the vehicle’s linear

velocity. Other approaches include a drag force that is directly proportional to the quadrotor’s

linear velocity [13]–[16]. However, the emphasis on control algorithms precludes any discussion

of the physics that generate the drag or its effect on accelerometers or the state estimation process.

A drag force proportional to linear velocity is included in the estimation approach of [1], based

on the observation that something must prevent the quadrotor from accelerating indefinitely. No

physical explanation is offered for the effect and instead a motion-capture system is used to

estimate the proportionality constant.

Both [12] and [17] identify a term called rotor drag as the force acting in the body-fixed

~ib and ~jb axes. [12] derives a dynamic model of the quadrotor from fundamental concepts of
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blade-element theory, and the rotor drag coefficient for this model is identified from accelerometer

measurements. A linearized observer and controller for use with the drag-force-enhanced model

is presented, and is implemented on an autopilot. The implications of the drag-force model on

the control are also explained. The article concludes with a qualitative assessment of how the

new model improves the control. However, in [12], the benefits that modeling the rotor drag

might bring to state estimation are not examined. Estimated states are not compared to measured

values or to results from other standard approaches. Additionally, no information is given on

how the drag parameters might be found.

This article builds upon the model derived in [12] and shows specifically how the use

of accelerometer measurements in quadrotor flight lead to improved estimation performance.

Hardware and truth data confirm that the accelerometers directly measure the translational

velocity, allowing more accurate estimates of the attitude and velocity of the vehicle than

can be achieved with traditional methods. The “Accelerometer Tutorial” sidebar explains

why accelerometers in quadrotor flight measure the rotor drag. In several publications, for

example, [11], [18], and [19], a subtle mistake is made when relating gravity to the accelerometer

measurements on a quadrotor. Here this issue is clarified and the agreement between the improved

accelerometer model and actual measurements is shown.

This new, drag-force-enhanced model is easy to use. The drag force constant can be

estimated as a state in a filter driven only by inertial measurement unit (IMU) measurements,

thus removing the need for experimental tuning, as in [12], or an expensive motion-capture

system, as in [1]. Several filters designed to work solely with IMU measurements are presented.

To quantify the benefit of the enhanced model in state estimation, the estimates obtained are
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compared to measurements from a motion-capture system, as well as to estimates from more

traditional approaches . In the results, a twofold-to-threefold improvement in average attitude

error is shown, compared to standard approaches. Finally, hardware experiments demonstrate

that these performance gains can be maintained far from the near-hover assumption used by

[12] in their derivation.

Drag-force-enhanced Quadrotor Model

This section presents a version of the drag-force-enhanced model originally derived in

[12], where here the derivation begins with employing the assumption of a rigid propeller. The

quadrotor is modeled with the nonlinear equations

ẋ = f(x,u) + ξ, (2)

yi = hi(x,u) + η, i = 1, ..., p (3)

where hi is the ith measurement function, ξ is a zero-mean Gaussian noise term representing

unmodeled dynamics with covariance Q, η is the zero-mean Gaussian noise from the sensor with

covariance R, and the vector u represents the inputs that drive the evolution of the estimated

states. The inputs are

u =

[

p q r

]T

, (4)

which are the rotation rates about the ~ib, ~jb, and ~kb axes respectively and correspond to the

outputs of the onboard gyroscopes after calibration.

With reference to Figure 1, the states to be estimated are

x =

[

φ θ ψ u v w

]⊤

, (5)
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where φ, θ, and ψ are the 3-2-1 Euler angles that relate the orientation of the body-fixed frame

to the inertial frame, and u, v, and w represent the components of linear velocity in the ~ib, ~jb,

and ~kb axes, respectively.

The drag-force-enhanced model is obtained from (1) by adding a drag force, which is

proportional to the body-fixed-frame velocity, to the ~ib and ~jb body-fixed components
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where µ is a positive constant. The last term in (6) represents what is known as the “H-force”, or

“rotor drag” in the helicopter literature [20], which is a combination of the profile and induced

drag forces on the rotors. In [12], the drag coefficient is modeled as

µ = λ1

N
∑

i=1

ωi, (7)

where λ1 is a positive constant and ωi is the motor speed of the i-th of N motors. However,

nominal flight conditions for a quadrotor should dictate that the sum of the motor speeds be

nearly constant, resulting the constant, lumped parameter µ in (6). Additional information on

using a lumped drag model approach for the rotor drag can be found in [21]. Through extensive

flight tests, it has been observed that this lumped parameter model holds during nominal flight

conditions of a quadrotor. This is especially true for autonomous flight using onboard sensors

and estimation, where strong accelerations in any direction would degrade camera or laser

measurements and make collisions with the environment much more likely.
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Using (6), the components of (2) can now be expressed as
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ẇ















=















−g sin θ + (vr − wq)− µ
m
u

g sinφ cos θ + (wp− ur)− µ
m
v

g cosφ cos θ + (uq − vp)− T
m















. (9)

The terms in the first two rows of are due to gravity, Coriolis accelerations, and the

drag force. The “Accelerometer Tutorial” sidebar shows why gravity is not measured by the

accelerometers. In addition, we assume that the nonlinear Coriolis terms are small and can be

neglected. Therefore, the~ib and ~jb accelerometer outputs ami and amj can be modeled as directly

measuring the respective components of the drag force

h1
△
= ami = u̇+ g sin(θ) ≈ −

µ

m
u, (10)

h2
△
= amj = v̇ − g sin(φ) cos(θ) ≈ −

µ

m
v. (11)

Equations (10) and (11) are the two measurement functions included in (3). They assume that

the accelerometer is located at or near the center of mass.

Figure 2 shows the agreement between the actual accelerometer measurements and those

predicted by equations (10) and (11). Figure 2 was generated using recorded time-stamped

accelerometer and pose data during a manually-controlled flight. Accelerometer measurements

came from the onboard sensors and the pose measurements from a motion-capture system. A

filtered numerical derivative of the position measurements, expressed in the body-fixed frame

of the quadrotor, was used for the u and v velocities in (10) and (11). The value for µ was
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determined using a least-squares fit of the data from several test flights. The error between the

predicted and actual accelerometer measurements is modeled well as zero-mean and Gaussian.

Why Traditional Attitude Estimates Provide Some Benefit

An alternative to the drag-force enhanced model [12] is to treat estimates as the outputs

of a low-pass filter [22]. The system dynamics act as a low-pass filter between changes in attitude

and the accelerometer measurements. Using (10) and (11) in (9) and ignoring the Coriolis forces,

the time evolution of u and v from (9) can be written as
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Consider for a moment the first row of (12). Using a small angle approximation and

taking the Laplace transform gives the transfer function from θ to u as

u(s) =

−gm
µ

m
µ
s+ 1

θ(s). (13)

The model for the accelerometer measurement in the~ib direction is obtained by substituting (10)

into (13):

ami(s) =
g

m
µ
s+ 1

θ(s)
△
= H(s)θ(s). (14)

By similar arguments, the transfer function for the ~jb direction is

amj(s) =
−g

m
µ
s+ 1

φ(s) = −H(s)φ(s). (15)

Equations (14) and (15) describe the first-order response relating the changes in attitude to the

accelerometer measurements, where H(s) is a low-pass filter.
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Figure 3 shows the true pitch angle for a quadrotor as measured by a motion-capture

system compared to the traditional attitude (TA) estimate described in the “Accelerometer

Tutorial” sidebar which uses only accelerometer measurements. Superimposed is the result of

filtering the true pitch angle with H(s), as given in (14). The TA estimate based on accelerometer

measurements agrees well with the low-pass filtered pitch angle.

The TA method given in the “Accelerometer Tutorial” sidebar is based on the assumption

of static equilibrium. The time constant m/µ governs how quickly the accelerometer measure-

ments react to a step change in the roll or pitch angle. For a heavier quadrotor with m = 2.75 kg

and µ ≈ 0.77, it would take the accelerometer (and therefore the traditional attitude estimate)

more than 10 seconds to reach 95% of its steady-state value. Even for the nimble Hummingbird

quadrotor by Ascending Technologies, it takes approximately 3 seconds to approach steady state.

Long before the accelerometer-based attitude estimate becomes valid, the quadrotor will reach

speeds that degrade onboard sensor data or that make collision in a cluttered environment likely.

Roll and pitch angle estimates using the traditional approach do not describe fast attitude

changes. To compensate, gyroscopes can be used to predict attitude over the short term.

Accelerometers are then used to correct the estimates in a measurement update. However, without

accounting for the fact that the accelerometers on the quadrotor measure scaled velocities, as

shown in (10) and (11), the measurement update will drag the estimates toward the low-pass

filtered attitude and not the true attitude. This estimation approach works reasonably well during

flights with gradual attitude changes, but produces less accurate estimates than are possible by

simply including the rotor drag in the model.
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Observer Design

This section presents several filter designs using the drag-force-enhanced model for the

case where the states ximu = [φ, θ, u, v]⊤ will be estimated using only IMU data, as is typical

on commercially available quadrotor autopilots.

Linear Fixed-gain Filter

A simple approach to observer design is to make approximations so that the state

propagation and measurement equations are linear. In this case, (2) and (3) are replaced by

ẋimu = Aximu +Bu,

yacc = Caccximu,

where A and B are the appropriate Jacobians of (8) and (9) and Cacc is the Jacobian of (10)

and (11). The Coriolis forces are assumed to be negligible and the Jacobians are evaluated at

hover. The design is further simplified by choosing a fixed observer gain.

The only outputs of (3) are yacc = [ami, amj]
⊤, which are modeled by (10) and (11).

With inputs u = [p, q, r]⊤
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State estimates are propagated using

ẋimu = Aximu +Bu+ Lfg(y −Caccximu),

where the observer gain Lfg is selected using the lqr function in Matlab. Because of its simplicity,

this drag-force linear fixed-gain (DGFG) filter is the most practical choice for an embedded

processor as opposed to the extended Kalman filters presented below.

EKF with Known µ

The Extended Kalman Filter (EKF) offers improved performance over the linear fixed-

gain filter at the expense of increased complexity. Appropriate elements of the nonlinear equations

(8) and (9) are used in a separate prediction step to propagate ximu forward in time, and Jacobians

A, B, and Cacc are constantly reevaluated using the current state estimate. This filter is referred

to as the drag-force EKF (DF-EKF) in the remainder of the paper.

However, the increased complexity arises mainly in maintaining the uncertainty of the

state estimates, P, and calculating the variable filter gain. The uncertainty is propagated using

Ṗ = AP+PA⊤ +BRgyroB
⊤ +Q. (16)
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The process uncertainty in (16) is modeled in two parts. Matrix Q is a hand-tuned, diagonal

matrix that is often used only to model the propagation of bias states [23]. Since the inputs u

are gyroscope measurements, and B is the matrix that specifies how the gyroscopes affect the

state evolution, Rgyro is the covariance of the noise on those sensors. Since we can measure the

noise characteristics of the gyroscopes, using the BRgyroB
⊤ term makes the filter easy to tune

and more accurate than assuming a generic, diagonal process noise matrix for all of the states.

The accelerometer measurement update is

L = P−C⊤

acc

(

Raccel +CaccP
−C⊤

acc

)−1
,

P+ = (I− LCacc)P
−,

x+
imu = x−

imu + L
(

yacc −Caccx
−

imu

)

.

The notation Y − and Y + indicates a variable Y before and after the measurement update. We

use Raccel to denote the covariance of the accelerometer measurement, and I is an appropriate

identity matrix.

EKF with Estimated µ

The filters given in the previous two sections assume that the rotor drag coefficient µ

is known. As a system parameter, µ can be estimated beforehand through a rigorous system

identification process using a highly accurate motion-capture system. However, if a motion-

capture system is not available, then on-line estimation of µ is necessary. In this section we

forgo the assumption that µ is known beforehand and add it to the state vector of the EKF to be

estimated simultaneously with the other states. It is shown that the parameter can be estimated
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easily and accurately as part of the state, without the need for motion-capture equipment. Over

several different recorded datasets, the filter-estimated value of µ stays within about 5% of the

value determined using a motion-capture system. The “Observability of µ” sidebar shows that µ

is observable. In the remainder of the article, the filter derived in this section will be designated

EKF-µ.

Estimating µ as a state provides advantages over other approaches that use an improved

dynamic model. Reference [12] describes a complicated hand-tuning process that compares

estimates the vehicle to estimates from a GPS-driven attitude heading reference system (AHRS).

Since the AHRS cannot be collocated with the vehicle’s IMU, the parameter µ must be tuned

simultaneously with the position and attitude differences that make the accelerometers on the

AHRS agree with those of the vehicle. Alternatively, expensive motion-capture equipment and

a system identification algorithm can be used to estimate µ [1]. Including µ in the filter state

eliminates the need for complicated hand tuning or expensive calibration equipment.

Because EKF-µ estimates an additional state, its performance suffers compared to the

filters that use a predetermined value for µ. Figure 4 illustrates this by comparing the root-mean-

squared (RMS) error in body-frame velocity over several initial values of µ. As expected, EKF-µ

is robust to poor initial estimates of µ. If µ cannot be determined by system identification using

an motion-capture system or other appropriate sensor, then EKF-µ can be used with manual

flight-test data from a quadrotor to provide an estimate of µ. This value for µ can then be used

in the standard EKF formulation for subsequent real-time closed-loop flights. Use of EKF-µ

over long flight durations may be limited by the accuracy and drift characteristics of the IMU

sensors. Figure 4 shows that there is a reasonable range of values for the estimate of µ that
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enable the fixed-gain and EKF filters to perform well.

IMU-Only Results

The MikroKopter [24] quadrotor depicted in Figure 5 and the motion-capture system

depicted in Figure 6, from Motion Analysis [25], is used to generate the data. The quadrotor’s

IMU provides accelerometer and gyroscope measurements at the relatively low rate of 40 Hz. An

IMU with a higher data rate could be used but the drag-force-enhanced model enables accurate

estimates even from the low-rate data. Pose information for the quadrotor is received from the

motion-capture system at 200 Hz. A filtered numerical derivative of the position information is

used to estimate the true velocity. All of the data was first recorded from a 250 second manually-

controlled flight and then processed offline so that comparisons between different filters would

be valid.

Comparison Filters

As a baseline to compare against, we present results from two filters that rely on the TA

approach, but that add gyroscope measurements. The first is a fixed-gain linear filter described

by

ẋn =









p

q









+ Ln (xaccel − xn) ,

where xn = [φ, θ]⊤. The fixed observer gain Ln is selected to prevent the estimates from drifting

while still tracking fast changes with some accuracy. Ln was manually tuned to produce results
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qualitatively similar to those from a popular commercial quadrotor. The parameters used were

Ln =









2.297 0

0 2.309









.

The vector xaccel is an estimate of φ and θ based on the traditional attitude method (S4) and

(S5). This filter will be called the traditional fixed-gain (TFG) filter.

The second filter is the explicit nonlinear complementary filter developed in [26]. This

filter estimates the rotation matrix R̂ between the body-fixed reference frame and the inertial

reference frame, as well as the biases on the gyroscopes b̂. The filter is implemented using

˙̂
R = R̂

(

(

u− b̂
)

×

+ kP (ωmes)×

)

, R̂(0) = R̂0

˙̂
b = −kIωmes

ωmes =
n

∑

i=1

kivi × v̂i, ki > 0,

where the notation ()× refers to the matrix form of the cross product, and vi are vector

measurements. Using only IMU information without a magnetometer, there is only one

vectorial measurement: the gravity measurement discussed in “Accelerometer Tutorial”. The

implementation used in this article was iteratively hand tuned to provide the minimum RMS

error in attitude for the dataset considered. The gains are kP = 0.5 and kI = 0.05. This filter is

called the nonlinear complementary (NC) filter in the results section.

Attitude Results

Figure 7 shows the error in the estimates for a small portion of the manual flight; results

for the pitch angle θ are similar. The figure compares the performance of the TFG and NC filters

with the DFFG described above.
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The filters’ performance is further described in Table I, which presents the RMS error

results for all of the filters over the entire flight. Notice in Table I that DF-EKF and EKF- µ

have improved performance over the DFFG filter, but at increased computational cost.

Velocity Results

In addition to improving attitude estimates, the enhanced model also provides information

on the body-frame velocities u and v that would otherwise be unavailable with IMU-only

measurements. Table II documents the RMS errors for velocity estimates from the DFFG, DF-

EKF, and EKF-µ filters presented above, over the duration of the flight. Figure 8 illustrates

estimates of u produced using the DFFG filter and the DF-EKF. Note that the TFG and NC

filters do not provide velocity estimates.

Although the performance does not appear outstanding in Table II and Figure 8, we note

that these results are produced using only inexpensive MEMS accelerometers and gyroscopes

at low data rates. The fact that the improved model offers information on velocity along with

high-quality attitude estimates is an additional advantage of the proposed approach. Velocity

estimates from the drag-force-enhanced model reduce the rate of required positions updates for

tradition approaches [23].

Results During Aggressive Maneuvers

The drag-forced enhanced model is robust to aggressive maneuvers, despite the near-

hover assumption made in [12] to derive the model. Figure 9 shows estimates of θ for a segment

of aggressive flight. The quadrotor experiences pitch angles in excess of 45 degrees that are
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accurately estimated by the drag-force-enhanced model.

The performance improvements shown here are due to the more accurate model of

the physical system which accounts for the rotor drag. The gyroscope measurements provide

information for the fast changes in angle and the accelerometer corrections accurately constrain

the drift. In the traditional approach, if the gyroscope measurements are trusted too much in

order to track fast angular changes, the attitude estimates drift rapidly. To constrain the drift, the

accelerometer measurements must be weighted sufficiently, but using the wrong dynamic model

results in inferior performance.

It is important to note that the filter tuning parameters were not modified for this flight

segment, which highlights the robustness of the proposed estimators. The TFG and NC filters

could be tuned for better performance during aggressive maneuvers, but then performance near

hover would suffer. As an alternative, an adaptive control or gain scheduling approach could be

implemented on those filters to provide improved estimates for a broader flight regime, but at

the expense of increased complexity.

Position Dead-reckoning Results

This section illustrates the significant results that are possible due to the improved

accuracy given by the drag-force-enhanced model. The IMU information was used to dead

reckon the quadrotor’s global position. This experiment used two filters: the Traditional EKF

(T-EKF) and the Drag-Force EKF augmented with position (DF-EKF-P).

The T-EKF is a combination of the two methods presented in the “Accelerometer
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Tutorial”. The TFG filter, explained above, provides the attitude estimates using accelerometer

and gyroscope measurements, according to the TA method. Then the filter estimates the global

position by integrating accelerometer measurements using the integrated velocity method.

The DF-EKF-P is an augmented version of the DF-EKF, which uses the gyroscopes and

accelerometer measurement updates (10) and (11) to estimate the attitude and velocity. The DF-

EKF-P is augmented to include north and east position states, which are estimated by integrating

the velocity estimates.

In both filters, the standard kinematic relationship between velocity and position is used

to estimate the position from velocity estimates. Initialization of the position estimates at the

starting global location is the only position information provided to either filter during the flight.

Figure 10 shows north and east position dead-reckoning estimates obtained using only

the IMU information available during the first ten seconds of the quadrotor flight. Note how the

DF-EKF-P estimates trend well with the global position while the estimates from the T-EKF do

not. Figure 11 plots the norm of the north and east error for the T-EKF and the DF-EKF-P. Note

the vast difference in drift rate between the two approaches over the entire flight.

The point of these results is to demonstrate how much information the IMU can provide

to state estimation algorithms when a valid model is employed. The basic position information

provided by this approach can contribute to a lower dependence on exteroceptive sensor or GPS

information [23]. Correctly modeling the accelerometer measurements has a significant impact

on position, velocity, and attitude estimates.
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Conclusion

The assumptions behind the attitude method for measuring the gravity vector are flawed

when applied to a quadrotor, even though the approach provides some benefit. When designing

an estimator for a quadrotor it is too restrictive to assume static equilibrium. The forces acting

on the quadrotor will only sum to zero at hover or after a long period of time at a fixed attitude.

Using only IMU data, the EKF and the linear fixed-gain filter based on the drag-

force-enhanced model provide a trade-off between complexity and performance. Each provides

an improvement in attitude estimates compared to typical approaches, even during aggressive

maneuvers, while also providing significant information about velocity. The velocity estimates, in

turn, can be used effectively by the EKF to provide position estimates based on dead reckoning

which diverges relatively slowly. If µ is unknown, it can be effectively estimated by including it

in the state during accelerated manual-controlled flights. The accuracy of the estimates provided

from the IMU-only filters could be further improved by increasing the data rate of the IMU.

Future work will include a more-extensive study of the constant-µ approximation and

the estimation of µ in the state vector. This work has demonstrated improvements in estimation

accuracy obtained through a proper understanding of accelerometer measurements and the

modeling of rotor drag effects. The lumped-parameter model of rotor drag, though simple, has

shown promise for enhanced estimation accuracy and vehicle performance. Additional study of

drag effects on small multi-rotor aircraft may yield additional insights and benefits.

The improvements shown in this article are attributed to the correct characterization of

accelerometer measurement. This is a noteworthy advantage as IMU measurements are typically
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available at high rates and are comparatively inexpensive to process.
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Figure 1: Schematic of a Quadrotor. A schematic representation of the quadrotor showing

coordinate frames and notation used in the article. The inertial coordinate frame has its arbitrary

origin at OI with right-handed axes oriented in north, east, and down (that is, aligned with

gravity) directions. The body-fixed reference frame has its origin, Ob, at the quadrotor’s center

of mass, assumed here to be some distance h directly below the quadrotor’s geometric center.

The body frame ~ib and ~jb axes are parallel with the vectors from the geometric center to motors

1 and 2. The ~kb axis is oriented to complete a right-handed coordinate system. The motors rotate

in the directions shown.
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Figure 2: Predicted and Actual Accelerometer Measurements. The actual accelerometer mea-

surements for an indoor flight are plotted against those predicted by (10) in the upper plot, and

(11) in the lower. This figure was generated using time-stamped accelerometer and pose data

recorded during a manually-controlled flight.
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Figure 3: Pitch Angle Comparison. Comparison of the true pitch angle θ, the traditional attitude

approximation using only accelerometer information, and a low-pass filtered θ for a small portion

of a flight. Notice how closely the traditional attitude (TA) estimation method tracks the low-pass

filtered pitch angle.
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Figure 4: RMS Error in Velocity. RMS errors in velocity for the various drag-force enhanced

filters when the initial estimate of µ is a multiple of the true value. The traditional fixed-gain

(TFG) and nonlinear complementary (NC) filters are not shown as they do not provide a velocity

estimate. The drag-force fixed-gain (DFFG) and drag-force EKF (DF-EKF) use the initial, but

incorrect, value of µ throughout the entire flight. With EKF-µ, the value evolves in time. It is

interesting to note that the DFFG and DF-EKF still provide low RMS values over a wide range

of incorrect estimates of µ.
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Figure 5: Hovering Quadrotor. A quadrotor from MikroKopter that was used in the experiments.

The vehicle is hovering using the measurements from the motion-capture system. c©Jaren Wilkey,

BYU Photo

29



Figure 6: Motion-capture Environment. The motion-capture environment where all the testing

was conducted for this article uses a motion-capture system from Motion Analysis. The system

provides 6DoF pose information at 200 Hz with sub-degree and sub-millimeter accuracy.
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Figure 7: Estimation error in roll φ. The error in the roll angle φ over a small window of the

manual flight for the traditional fixed-gain (TFG), nonlinear complementary (NC) and drag-

force enhanced fixed gain (DFFG) filters. Since the plot is of error, smaller values denote better

performance.
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TABLE I: RMS Error for φ and θ. The combined RMS errors from the various filters for φ and

θ from a manual flight.

RMS Error for Attitude Estimates

Filter RMS of φ and θ (deg)

Traditional Fixed-Gain (TFG) 7.27

Nonlinear Complementary (NC) 5.66

Drag-Force Linear Fixed-Gain (DFFG) 2.80

Drag-Force EKF (DF-EKF) 2.16

Drag-Force EKF-µ (EKF-µ) 2.23
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Figure 8: IMU-Only Velocity Results. Body-frame velocity u truth versus the drag-force fixed-

gain filter (DFFG) and EKF (DF-EKF) estimates for a small portion of a flight. Velocity estimates

are not available when using only IMU data with the traditional fixed-gain (TFG) and nonlinear

complementary (NC) filters. Only IMU information is used to produce these estimates.

33



TABLE II: RMS Error on Velocity. The combined RMS errors for the velocity estimates u and v

using the drag-force enhanced model. These values are calculated using the data from the entire

flight.

RMS Errors for Velocity Estimates

Filter RMS of u and v (m/s)

Traditional Fixed-Gain (TFG) N/A

Nonlinear Complementary (NC) N/A

Drag-Force Fixed-Gain (DFFG) 0.87

Drag-Force EKF (DF-EKF) 0.60

Drag-Force EKF-µ (EKF-µ) 0.67
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Figure 9: Pitch Angle During Aggressive Flight. This figure plots the true pitch angle θ and its

estimates using the traditional fixed-gain (TFG), nonlinear complementary (NC), and drag-force

fixed-gain (DFFG) estimators during an aggressive flight. Notice that the DFFG provides accurate

estimates despite the large angles that are experienced. The filter parameters are identical to those

used to produce the previous plots. The saturation in the NC filter are due to the singularity at

90 degrees for a pitch angle. The NC filter was tuned to behave well for nominal flights, but

the gains are inadequate for large pitch and roll maneuvers.
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Figure 10: Position Dead-reckoning Results. These position results were obtained using only the

IMU information available from the first 10 seconds of a manual quadrotor flight. The traditional

EKF (T-EKF) uses the integrated velocity method mentioned in the “Accelerometer Tutorial” by

integrating accelerometer values to obtain position estimates. The drag-force EKF with position

(DF-EKF-P) uses the drag-force-enhanced model accelerometer measurement updates to estimate

velocity and then integrates the velocity estimates to estimate position. Note how the DF-EKF-P

estimates trend with the global position while the estimates from the T-EKF approach walk off

the chart. This demonstrates the importance of IMU information to the quadrotor state estimates

when a valid model is employed.
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Figure 11: ℓ2 Norm of North and East Position Error. The ℓ2 norm of the north and east dead-

reckoning position error for the traditional EKF (T-EKF) and the drag-force EKF with position

(DF-EKF-P) are shown. IMU measurements are the only sensor information provided to the two

filters. Note the differences in the drift rate between the two approaches. Using the DF-EKF-P

will allow less-frequent exteroceptive and/or GPS updates because of the much lower drift rate

using only the IMU information.
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Sidebar 1: Accelerometer Tutorial

If a ∈ R
3 represents the acceleration of a vehicle, m is the mass, and FT ∈ R

3 is the

total external force acting on the vehicle, then Newton’s second law states that

a =
1

m
FT . (S1)

However, accelerometers do not measure the total acceleration a. Accelerometers measure

the specific acceleration, meaning the difference between the acceleration of the vehicle and

gravitational acceleration.

Figure S1 shows a simplified diagram of a one-axis accelerometer, where a proof-mass

is attached by a flexure to the housing of the accelerometer. When the proof mass undergoes

an acceleration that is different than the acceleration experienced by the housing, the proof

mass deflects and a non-zero measurement is produced. With the accelerometer in Figure S1

on a horizontal surface, the normal force offsets the force due to the weight. The proof-mass,

which does not experience the normal force, deflects under the influence of gravity, causing the

accelerometer to measure an upward acceleration of 1 g. On the other hand, during free fall,

gravity would accelerate both the housing and the proof-mass, resulting in a measurement of

zero.

The output of a three-axis accelerometer mounted on a rigid body is therefore given by

am =
1

m
(FT − Fg) , (S2)

where am ∈ R
3 is the measured acceleration and Fg ∈ R

3 is the force due to gravity.

Equation (S2) states that for an accelerometer to measure the effect of gravity only, all the

external forces must sum to zero.
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Throughout the article it is assumed that the axes of the accelerometer are aligned with the

body-frame axes and that the accelerometer has been properly calibrated to remove misalignment

errors and cross-axis sensitivity.

Below are two different methods for state estimation using accelerometers [12]. Many

researchers, for example [27], [28], [29], have shown that using one of these methods to

fuse accelerometers with an exteroceptive sensor increases performance compared to using the

exteroceptive sensor alone.

Accelerometer-based Attitude Estimation

From (S2), when the sum of external forces is zero the accelerometers will measure

am = −
1

m
Fg. (S3)

Let ab
m

△
= (ami, amj, amk)

⊤, represent the acceleration measured in the body-frame axes. In the

inertial frame the force of gravity is Fg = (0, 0,mg)⊤. Expressing (S3) in the body frame gives














ami

amj

amk















= Rb
I















0

0

−g















,

=















g sin θ

−g sinφ cos θ

−g cosφ cos θ















,

where φ is the roll angle and θ is the pitch angle relative to the ground. The roll and pitch angles

can therefore be estimated as

φ̂accel = tan−1

(

amj

amk

)

(S4)
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θ̂accel = sin−1

(

ami

g

)

. (S5)

This estimation method, expressed by (S4) and (S5), will be termed the traditional attitude

(TA) method. Note that the underlying assumption of zero external forces is rarely satisfied during

quadrotor flight.

Accelerometer-Based Velocity Estimation

If the attitude is known, measured accelerations can be integrated to estimate velocity

using

v̇b = ab
m +

1

m
Rb

IFg. (S6)

where vb = (u, v, w)⊤ is the velocity expressed in the body-fixed frame. It is critical to note

here that this method of using accelerometers is sensitive to the underlying assumption of known

attitude. The traditional attitude method should not be used to provide the necessary attitude

estimates since it requires that v̇b = 0. In the remainder of this article we will refer to this

approach as the integrated velocity method.

Accelerometers on Quadrotors

Quadrotors obviously differ from ground vehicles because of the thrust required to keep

them airborne. Yet researchers using quadrotors commonly treat them as ground vehicles with

respect to accelerometer measurements. Quite often a variant of the traditional attitude method

provides IMU-based estimates of attitude to a higher-level observer. This second observer then

uses the integrated velocity method despite the fact that the underlying assumptions for the two
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estimators are contradictory.

As a simple example, when a quadrotor rests on an inclined surface, as shown in the left

half of Figure S2, it experiences a normal force Fn, a friction force Ff and the force due to

gravity Fg. The summation of forces in the body frame is

FT = Rb
IFg − Fn − Ff .

Consequently the accelerometer measures

ab
m =

1

m
(FT −Rb

IFg) =
1

m















−Ff

0

−Fn















,

and (S5) can be used to correctly find the pitch angle.

When the quadrotor is in the air with a similar attitude, the forces are usually assumed

to be Fg and the thrust Ft; all other forces are assumed negligible. The thrust force Ft and

moment Mt are resolved from the individual thrust forces acting at each propeller. This would

give the total force, in the body-fixed reference frame, as

FT ≈ −Ft +Rb
IFg.

According to the model, the accelerometers would then measure

ab
m =

1

m
(FT −Rb

IFg) =
1

m















0

0

−Ft















. (S7)

Clearly in this situation the attitude cannot be determined using (S4) and (S5) since, according

to the model, the body frame ~i and ~j accelerometers should always measure zero. It would also

be invalid to integrate these values to find the vehicle velocities. Still, many researchers make
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productive use of the traditional attitude and velocity methods within control and estimation

schemes. As explained in this article, the discrepancy is due to the rotor drag force that is

missing in (S7).
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Figure S1: Simplified diagram of an accelerometer. When the proof mass undergoes an

acceleration that is different than the acceleration experienced by the housing, the proof mass

deflects and a non-zero measurement is produced.
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(b) In flight free-body diagram.

Figure S2: Quadrotor Free-body Diagrams. Free-body diagrams of a quadrotor in two scenarios.

Image (a) shows the forces when the quadrotor is sitting on an inclined surface (indicated by

the solid green line). Image (b) illustrates the forces according to the standard model when the

quadrotor is at a constant attitude in the air and Mt is zero.
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Sidebar 2: Observability of µ

This section demonstrates the observability of the drag coefficient µ when it is included

in the state. Note that observability is a necessary condition for filter convergence. The theory

of nonlinear observability is briefly reviewed. Next, the conditions are provided for local

observability of the longitudinal quadrotor system with µ included in the vehicle state. This

overview is based on a more detailed presentation in [30].

Theory

Let x ∈ X , where X is an open subset of RN , represent the state of the nonlinear system

ẋ = f(x) +
m
∑

i=1

gi(x)ui, (S1)

with n nonlinear outputs of the form

yj = hj(x), j = 1...n, (S2)

which form the vector output function y(y1(x), ..., yn(x),u). Further, let S(X) and V (X)

respectively designate the set of all scalar-valued smooth functions and the set of all vector

fields (that is, column vectors on smooth functions) on X . The functions f(x), gi(x) ∈ V (X)

are the nonlinear functions of the state and the m time-varying scalars ui are the (known) inputs

that drive the system.

Given (S1) and (S2), two states x0 and x1 are distinguishable if there exists an input

function u(·) such that

y(y1(x0), ..., yn(x0),u) 6= y(y1(x1), ..., yn(x1),u). (S3)
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The system is locally observable at a point x0 ∈ X if there exists a neighborhood N (x0) around

x0 such that every x ∈ N (x0), other than x0, is distinguishable from x0. The system is locally

observable if it is locally observable at each point x0 ∈ X .

It can be shown that a system is locally observable at a point x0 ∈ X if there are a

sufficient number of linearly independent vectors in the gradients of the measurement equations

or the gradients of the Lie derivatives evaluated at x0. Recall that the Lie derivative of a function

κ ∈ S(X) with respect to some vector field ω ∈ V (X) is defined by the mapping

Lωκ
△
=
∂κ(x)

∂x
· ω(x) : X → R.

Quadrotor Longitudinal States With µ

The observability of the longitudinal quadrotor system will now be analyzed with µ

included in the state. The longitudinal states are x = [θ, u, µ]⊤. Recall that θ is the pitch angle,

u is the body-fixed forward velocity, and µ is drag coefficient. The longitudinal equations of

motion are



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







θ̇

u̇

µ̇
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


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
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0
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0
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
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, (S4)

where it is assumed that θ̇ = q, the rotation rate about the body ĵ axis. The acceleration due

to gravity is g and m is the mass of the vehicle. The time propagation of µ is modeled as a

random walk where ςµ is a zero-mean, Gaussian random variable. The gyroscope measurement

u1 = q is the input to the system.

The output of the system is the accelerometer measurement in the body ~ib direction,
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modeled as

y1 = h1(x) = −
µ

m
u. (S5)

To show that the longitudinal system is locally observable at a point x0 ∈ X , there must

be three vectors of the observability Grammian that are linearly independent at x0. The gradient

of the output (S5) is

dh1 =

[

0 − µ
m

− u
m

]

. (S6)

Now consider the first-order Lie derivatives. Due to the simplicity of g1(x) in (S4), dLg1h1 =

[0 0 0]. Next

dLfh1 = d


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
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



=
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g cos(θ) µ
m

(

µ
m

)2
(

g sin(θ)
m

+ 2µu
m2

)

]

. (S7)

The second-order Lie derivative of f(x) is used to find a final vector

dLfLfh1 = d















[

g cos(θ) µ
m

(

µ
m

)2 g sin(θ)
m
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−g sin(θ)− µ
m
u

0





























=

[

−g cos(θ)
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µ
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)2
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(

µ
m

)3
(

−2µg sin(θ)
m2 − 3µ2u

m3

)

]

. (S8)

The vectors (S6), (S7) and (S8) are combined into an observability matrix OM for the
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longitudinal state

OM =















0 −µ
m

−µ
m

g cos(θ) µ
m

(

µ
m

)2 g sin(θ)
m

+ 2/muu
m2

−g cos(θ)
(

µ
m

)2
−
(

µ
m

)3 −2/mug sin(θ)
m2 − 3/mu2u

m3















.

The determinant of OM is

|OM | = −
u cos(θ)µ4g + sin(θ)mµ3g2

m5
.

Since µ 6= 0, the system will be locally observable except when

0 = −g sin(θ)−
µ

m
u. (S9)

Note that (S9) is exactly equal to (12) when u̇ = 0. Consequently, the condition (S9) will only

be true during unaccelerated flight, as it is then impossible to tell the difference between θ and

u, making the state unobservable. Therefore, the longitudinal state x is locally observable during

accelerated, u̇ 6= 0, flight. The ability to estimate the drag coefficient µ in the state of the vehicle,

using only IMU measurements, makes it straightforward to use the drag-force enhanced model

for quadrotor state estimation.
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