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Abstract— In this paper it is presented a control strategy to
solve the trajectory tracking and flight formation problem, in
horizontal plane, of multiple unmanned aerial vehicles (UAVs)
kind quadrotor, by means of a leader-follower scheme. Time
scale separation of the translational and rotational quadrotor
dynamics is used to achieve trajectory tracking. A sliding
mode controller is proposed for the translational dynamic and
provides the desired orientation for the UAV, which is controlled
by a linear PD control. Finally, from the formation error
dynamics, a sliding mode control is used by the follower to
preserve the formation with respect to a leader. Experimental
results, using a virtual leader and a follower in formation, are
shown to evaluate the proposed control law.

I. INTRODUCTION

Thanks to the huge potential in many civilian and military
applications, especially for exploration, surveillance, search
and rescue, UAVs have received a lot of attention in the
last years. Particularly, quadrotors have become one of the
most popular UAVs since their rotor’s configuration produces
cancellation of the reactive torques, simplifying considerably
their analysis and control. Also, they are suitable for vertical
take off and landing, as well as hovering, making them a
good choice for maneuvering in small spaces.
Recent literature on quadrotors is quite vast, including
modelling and control techniques for attitude stabilization,
trajectory tracking and formation of multiples quadrotors.
To cite some examples, in [1] it is presented an attitude
stabilization control strategy for hover flight using nested
saturations, while in [2] a sliding mode approach is used to
accomplish position control of a quadrotor. In [3] a trajectory
tracking control by means of a discrete time, feedback
linearization control scheme is proposed. The formation
and trajectory tracking control for multiple UAVs using
consensus is discussed in [4], while in [5] a formation control
strategy with a leader-follower approach is described and in
[6] artificial potentials are used for the same purpose. Also,
in [7] a trajectory tracking and formation control scheme for
quadrotors by means of time scale separation and feedback
linearization is presented.
In this paper, a control strategy for the problem of quadrotors
flight formation in a leader follower scheme is presented.
Time scale separation of the translational and rotational
quadrotor dynamics is used together with a sliding mode
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Fig. 1. Qadrotor in an inertial reference frame.

controller and a PD controller. The contribution of the work
consists in the design of a control strategy, simple and easy to
implement which takes some ideas from previous works on
mobile terrestrial robots [8]. Experimental results, where a
virtual leader is used, are shown to evaluate the performance
of the strategy.

II. QUADROTOR DYNAMIC MODEL

The quadrotor can be represented as a rigid body in space
with mass m and inertia matrix J, subject to gravitational and
aerodynamic forces. Let us consider an inertial coordinate
frame I = {X Y Z}, fixed to ground and a body fixed
coordinate frame, B = {e1,e2,e3} (see Fig. 1). Consider the
vectors

ξ = [x y z]T (1)

Φ = [φ θ ψ]T (2)

which stand for the position of the center of gravity, respect
to the inertial frame I, and the Euler angles roll, pitch and
yaw, respectively. The motion equations are given by the
Newton-Euler equations in the inertial frame I (see e.g. [9])

mξ̈ = T Re3−mge3 (3)

JΩ̇ =−ΩxJΩ+Γ (4)

where T ∈ ℜ+ is the total thrust from the motors, g is the
gravity constant and Γ ∈ℜ3 is the control torque defined in
the body fixed frame B. R ∈ SO(3) : B→ I is the rotational
matrix from the body frame to the inertial one.

Ω = [p q r]T (5)
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Fig. 2. Control estrategy block diagram.

represents the angular velocity in the body frame B. Ωx
stands for the skew symmetric matrix such that Ωxυ = Ωxυ ,
this is the vectorial cross product. The kinematic relation
between the generalized velocities Φ̇ = (φ̇ , θ̇ , ψ̇) and the
angular velocity Ω is expressed by (see e.g. [10])

Ω = QΦ̇ (6)

with

Q =

 1 0 −sin(θ)
0 cos(φ) cos(θ)sin(φ)
0 −sin(φ) cos(θ)cos(φ)

 (7)

III. CONTROL STRATEGY

Assuming that the closed loop dynamics of rotation is
much faster than the translational one, it is possible to
separate the model in two independent subsystems [11]. The
strategy, as shown in the block diagram of Fig. 2, is based on
the designing of a controller for the translational dynamics
such that it guarantees the trajectory tracking, providing as
its output the desired orientation to be feed as input to
the attitude stabilization controller. Such trajectory tracking
control is used for both UAVs, the leader and the follower,
so that they reach a desired position. A third control is
designed for the follower quadrotor to solve the formation
problem in the XY plane, with constant and equal height z for
the leader and follower, so that the distance and orientation
angle between them are kept to constant values λ and ϕ ,
respectively.

A. Trajectory Tracking Control

Defining the position error ξ̄ = ξ−ξd and substituting into
(3) leads to

m ¨̄
ξ = (T Re3)d−mge3−mξ̈d (8)

Let us consider the so called switching function [12]

σ1 = k1ξ̄ + k2

∫
ξ̄ dt + ˙̄

ξ (9)

where k1,k2 are constant control parameters. It is desired that
the system remains on the surface defined by σ1 = 0, since
on this surface one has the error dynamics

k1
˙̄
ξ + k2ξ̄ + ¨̄

ξ = 0 (10)

that assures to have an asymptotic convergence of ξ̄ → 0
by choosing adequate values of k1 and k2. The so called
equivalent control ueq that guarantees the dynamics of the
system to stay in the surface σ1 = 0 is obtained from the
condition σ̇1 = 0. Substituting (8) in this last equation leads
to

k1
˙̄
ξ + k2ξ̄ +

1
m
(T Re3)d−ge3− ξ̈d = 0 (11)

Consider now (T Re3)d to be the control input, then, the
equivalent control ueq is given by

ueq = [(T Re3)d ]eq = m(ge3 + ξ̈d− k1
˙̄
ξ − k2ξ̄ ) (12)

It is interesting to observe that the equivalent control (12)
coincides with the feedback linearization control presented
in [7].
To attract the system dynamics to the surface σ1 = 0 and keep
it there, despite uncertainties and perturbations, a disconti-
nuity is added. Let us consider the function sgn(x) defined
as

sgn(x) =
{

1 x > 0
−1 x < 0 (13)

and the vector

Sgn(σ1) =

 sgn(σ11)
sgn(σ12)
sgn(σ13)

 (14)

where σ11, σ12, σ13 are the components of the vector σ1.
Then by making the assignment

σ̇1 = k1
˙̄
ξ +k2ξ̄ +

1
m
(T Re3)d−ge3− ξ̈d =−Lξ Sgn(σ1) (15)

with Lξ a real, positive constant different from zero, it is
possible to attract the system trajectories to the surface σ1 =
0 in a finite time. The discontinuity control obtained from
(15) is given by

(T Re3)d = ueq−mLξ Sgn(σ1) (16)

In order to analyse the robustness of the control scheme, a
model with bounded uncertainties ∆ f (ξ ) of the following
form is considered:

m ¨̄
ξ = (T Re3)d−mge3−mξ̈d +∆ f (ξ ) (17)

where it is supposed that ||∆ f (ξ )|| < ι with ι a positive
constant. Let us consider the Lyapunov’s candidate function

V =
1
2

σ
T
1 σ1 (18)

Differentiating (18) with respect to time leads to

V̇ = σ
T
1 σ̇1 (19)

or, equivalently,

V̇ = σ
T
1 (k1

˙̄
ξ + k2ξ̄ + ¨̄

ξ ) (20)

By substituting (17) in this last expression allows to write
(20) as

V̇ =σ
T
1 (k1

˙̄
ξ +k2ξ̄ +

1
m
(T Re3)d−ge3− ξ̈d +

1
m

∆ f (ξ )) (21)
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Using the control law (16)-(12), V̇ takes the form

V̇ = σ
T
1 (−Lξ Sgn(σ1)+

1
m

∆ f (ξ )) (22)

from which
V̇ ≤ ||σ1||(−Lξ +

1
m

ι) (23)

and V̇ will be negative defined when Lξ ≥ 1
m ι .

So the sliding mode control law (16)-(12) solves the trajec-
tory tracking problem. It is important to notice that

Rde3 =

 Rdx
Rdy
Rdz

=
(T Re3)d

Td
(24)

with Td = ‖(T Re3)d‖. Besides, if ψd is constant, it is possible
to write φd and θd explicitly as

φd = arcsin
(
−

Rdy−Rdx tan(ψd)

sin(ψd) tan(ψd)+ cos(ψd)

)
(25)

θd = arcsin
(

Rdx− sin(φd)sin(ψd)

cos(φd)cos(ψd)

)
(26)

For the attitude stabilization control, a proportional-
derivative controller is proposed, that acts on the orientation
error defined by Φ̄ = Φ−Φd , this is

Γ =−kdo
˙̄
Φ− kpoΦ̄ (27)

with kdo,kpo ∈ℜ+.

B. Formation Control

The translational dynamics of the leader UAV in the XY
plane can be described as

ẋi = vix cos(ψi)− viy sin(ψi) (28)

ẏi = vix sin(ψi)+ viy cos(ψi) (29)

ψ̇L = ωL (30)

where vix,viy are the velocity components in the x and y
directions (body frame coordinates, B) ωi is the angular
velocity for the yaw angle and the subindex i defines either,
the leader (i = L), or the follower (i = F).
It is desired to maintain the follower quadrotor to a distance
λ and an angle ϕ from the leader (see Fig. 3). Let λx, λy be
the x and y coordinates of the vector drawn from the mass
center of the leader to the one of the follower, in the leader’s
body fixed frame (BL). Then

λx =−(xL− xF)cos(ψL)− (yL− yF)sin(ψL) (31)

λy = (xL− xF)sin(ψL)− (yL− yF)cos(ψL) (32)

and also
λx = λ cos(ϕ) (33)

λy = λ sin(ϕ) (34)

Differentiating (31) with respect to time and using (28), (29),
(30) and (32) one obtains

λ̇x = λyωL + ẋF cos(ψL)+ ẏF sin(ψL)− vLx (35)

Fig. 3. Qadrotors formation in XY plane.

By defining the orientation error eψ = ψF −ψL and employ-
ing the trigonometric identities for the sine and cosine of the
difference of angles, as well as the equations (28) and (29),
one gets

λ̇x = λyωL + vFx cos(eψ)− vFy sin(eψ)− vLx (36)

Following a similar reasoning, one can write λ̇y as

λ̇y =−λxωL + vFx sin(eψ)+ vFy cos(eψ)− vLy (37)

Considering the formation errors ex = λ d
x −λx, ey = λ d

y −λy,
with λ d and ϕd constant (λ̇ d

x = λ̇ d
y = 0) one obtains

ėx =−(λ d
y − ey)ωL− vFx cos(eψ)+ vFy sin(eψ)+ vLx (38)

ėy = (λ d
x − ex)ωL− vFx sin(eψ)− vFy cos(eψ)+ vLy (39)

ėψ = ωF −ωL (40)

From the formation error dynamics (38), (39) y (40), a
control law is now designed that allows to make the errors
ex, ey and eψ to stay close to zero besides the presence of
bounded uncertainties. For doing this, the follower velocities
are considered as the formation control inputs. The dynamics
of the formation error can be written as

χ̇ = F(χ)+G(χ)υ (41)

where

χ =

 ex
ey
eψ

 (42)

υ =

 vFx
vFy
ωF

 (43)

F(χ) =

 eyωL + γ1
−exωL + γ2

eψ

 (44)

G(χ) =

 −ceψ seψ 0
−seψ −ceψ 0

0 0 1

 (45)
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with
γ1 = vLx−ωLλ

d
y (46)

γ2 = vLy +ωLλ
d
x (47)

It is easy to verify that the matrix G(χ) is always full rank.
The sliding mode technique is proposed to be used for
the development of a robust controller. Let the switching
function be

σ2 = χ + k f

∫
χdt (48)

where k f is a constant matrix to be chosen. It is desired that
the error dynamics remains in the surface defined by σ2 = 0
since on such a surface the error dynamics tends to zero by
adequately choosing k f . On this surface σ̇2 = 0, thus from
(41), one gets

σ̇2 = χ̇ + k f χ = F(χ)+G(χ)υeq + k f χ = 0 (49)

In the ideal case, this is, without perturbations or uncertain-
ties, the following equivalent control υeq assures that the
error dynamics remains on σ2 = 0:

υeq = G−1(χ)(−F(χ)− k f χ) (50)

To bring the system to the surface σ = 0 despite the presence
of uncertainties and perturbations it is necessary to extend
the region of attraction. More precisely, one makes the
assignment

σ̇2 = χ̇ + k f χ = F(χ)+G(χ)υ + k f χ =−LSign(σ2) (51)

where L is a constant, positive control parameter. Then, the
following discontinuous control is obtained

υ = G−1(χ)(−F(χ)− k f χ−LSgn(σ2)) (52)

In order to assure the attractiveness to the surface σ2 = 0,
even in the presence of bounded uncertainties and perturba-
tions, a perturbed model for the error dynamics is considered,
this is

χ̇ = F(χ)+∆F(χ)+G(χ)υ (53)

where ∆F(χ) is an unknown uncertainty term satisfying
||∆F(χ)||< ι1, being ι1 a positive constant. Let us consider
the Lyapunov’s candidate function

V =
1
2

σ
T
2 σ2 (54)

When differentiating V with respect to time one has

V̇ = σ
T
2 σ̇2 = σ

T
2 (χ̇ + k f χ) (55)

or, equivalently,

V̇ = σ
T
2 (F(χ)+∆F(χ)+G(χ)υ + k f χ) (56)

Substituting (52) in the previous expression one obtains

V̇ = σ
T
2 (∆F(χ)−LSgn(σ2)) (57)

from where
V̇ ≤ ||σ2||ι1−L||σ2|| (58)

So, if L is chosen such that L > ι1, it is assured that V̇ is
negative definite. Therefore, the system will reach and remain

in the surface σ2 = 0 in a finite time. From the previous
analysis, one can notice that the desired velocity is obtained
to be feed as control input to the trajectory tracking control
in the follower UAV. On the other hand, from (31), (32) one
obtains the desired position

xF = xL +λx cos(ψL)−λy sin(ψL) (59)

yF = yL +λx sin(ψL)+λy cos(ψL) (60)

IV. EXPERIMENTAL RESULTS

In order to evaluate the proposed control strategy, an
experimental platform was developed consisting of a
quadrotor which has an embedded digital signal processor
(DSP), an inertial measurement unit (IMU), four actuators
(motors with drivers) and a wireless communication system
to accomplish autonomous hover flight. In order to have the
quadrotor position, a motion capture system integrated by
twelve infra red cameras is employed. The capture system
has a set of markers attached to the UAV, reflecting the
infra red light emitted by the cameras. This system provides
the quadrotor’s position at a frequency of 100 Hz in a
submillimetric accuracy, and sends it to the UAV using a
wireless modem. The experiment described here consists of
a virtual leader tracking a circular trajectory in the z = 0.8m
plane with a radius of 0.8 meters and a 10 seconds period,
while a real follower UAV tries to stay in formation exactly
on the position of the virtual leader; this is, a distance
λ = 0m and an angle ϕ = 0rad with respect to the leader is
selected. The results are shown in Fig. 4 through Fig. 12.
First the x, y and z coordinates of the position are shown
in Fig. 4, Fig. 5 and Fig. 6, respectively, while the position
error is given in Fig. 7, where it can be appreciated that
the performance of the control scheme proposed is quite
satisfactory, specially in the x axis. Even if the errors do not
converge to zero, they oscillate in a bounded neighbourhood
of the origin. The orientation is shown in Fig.8, while
velocities in x and y are given in Fig. 9 and Fig. 10. Finally,
the top and space views can be observed in Fig.11 and
Fig. 12, respectively. The observed errors could be due
to problems with the experimental platform or bad tuned
gains. It is desired to improve the experimental platform
to get better results. Diferent helicopters and sensors are
beeing studied.

V. CONCLUSIONS AND FUTURE WORK

In this work a control strategy to solve the trajectory
tracking and flight formation problem, in a leader-follower
scheme, for aerial robots (quadrotors) was presented. The
strategy was successfully tested in real experiments.
Embedded positioning sensors, such as global positioning
systems (GPS), have to be used instead of the motion capture
system for outdoor applications. However, these sensors
are much less precise, adding uncertainty to the system.
Therefore, it is expected that the robustness property of the
sliding mode technique can help to handle these uncertainties
in future outdoor experiments.
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Serious issues were found when trying to implement the
formation control with two UAVs in flight, because of the
perturbation produced by the air stream generated during
the flight. So future work includes solving this problem and
implement the control strategy for two real quadrotors. Also,
it is desired to extend the control strategy to more than one
follower maneuvering in the space, as well as to explore and
implement other control strategies for the trajectory tracking
and the formation control.
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