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Aims and Scope 

Neutrosophic theory and its applications have been expanding in all directions at an 

astonishing rate especially after of the introduction the journal entitled “Neutrosophic Sets 
and Systems”. New theories, techniques, algorithms have been rapidly developed. One of 
the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set 

with other potential sets such as rough set, bipolar set, soft set, hesitant fuzzy set, etc. The 

different hybrid structures such as rough neutrosophic set, single valued neutrosophic 

rough set, bipolar neutrosophic set, single valued neutrosophic hesitant fuzzy set, etc. are 

proposed in the literature in a short period of time. Neutrosophic set has been an important 

tool in the application of various areas such as data mining, decision making, e-learning, 

engineering, medicine, social science, and some more.  

Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 
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Preface 

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. 

Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent 

information. Neutrosophic set approaches are suitable to modeling problems with 

uncertainty, indeterminacy and inconsistent information in which human knowledge is 

necessary, and human evaluation is needed.  

Neutrosophic set theory firstly proposed in 1998 by Florentin Smarandache, who also 

developed the concept of single valued neutrosophic set, oriented towards real world 

scientific and engineering applications. Since then, the single valued neutrosophic set 

theory has been extensively studied in books and monographs introducing neutrosophic 

sets and its applications, by many authors around the world. Also, an international journal - 

Neutrosophic Sets and Systems started its journey in 2013.  

Smarandache introduce for the first time the neutrosophic quadruple numbers (of the form 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹) and the refined neutrosophic quadruple numbers. Then Smarandache 

define an absorbance law, based on a prevalence order, both of them in order to multiply 

the neutrosophic components 𝑇,𝐼, 𝐹 or their sub-components 𝑇𝑗, 𝐼𝑘, 𝐹𝑙  and thus to construct 

the multiplication of neutrosophic quadruple numbers. 

This first volume collects original research and applications from different perspectives 

covering different areas of neutrosophic studies, such as decision making, Quadruple, 

Metric, and some theoretical papers.  

This volume contains three sections: NEUTROSOPHIC QUADRUPLE, DECISION 

MAKING AND NEUTROSOPHIC RELATED OTHER PAPERS. 
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Chapter One 

   
Generalized Neutrosophic Quadruple Sets and Numbers 

 

Memet Şahin, Abdullah Kargın and Adil Kılıç 
Department of Mathematics, Gaziantep University, Gaziantep27310-Turkey 

E-mail: mesahin@gantep.edu.tr, abdullahkargin27@gmail.com, adilkilic@gantep.edu.tr 

 

ABSTRACT 

Smarandache introduce neutrosophic quadruple sets and numbers in 2016. In a neutrosophic 

quadruple set, the values T, I and F are same for each element. Where T, I and F have their usual 

neutrosophic logic means. In this chapter, we generalize neutrosophic quadruple set and number [45]. For 

each element in a neutrosophic quadruple set, we define new operations according to the different T, I and F 

values. Thus, generalized neutrosophic quadruple sets and numbers would be more useful for decision 

making applications. In this way, we obtain new results for neutrosophic quadruple set and number. 

Keywords: neutrosophic quadruple set, neutrosophic quadruple number, generalized neutrosophic quadruple 

set, generalized neutrosophic quadruple number 

INTRODUCTION 

In 1998, neutrosophic logic and neutrosophic set [1] are defined by Smarandache. In concept of neutrosophic 
logic and neutrosophic sets, there is T degree of membership, I degree of undeterminacy and F degree of   

non-membership. These degrees are defined independently of each other. Thus, neutrosophic set is a 
generalized state of fuzzy set [28] and intuitionistic fuzzy set [29]. In addition, many researchers have made 
studies on this theory [2 – 27, 30 - 44]. 

Also, Smarandache introduced NQS and NQN [45]. The NQSs are generalized state of neutrosophic sets. A 

NQS is shown by {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. Where, x is called the known part and (yT, zI, tF) is 
called the unknown part and T, I, F have their usual neutrosophic logic means. Recently, researchers studied 

NQS and NQN. Recently, Akinleye, Smarandache, Agboola studied NQ algebraic structures [46]; Jun, Song, 
Smarandache obtained NQ BCK/BCI-algebras [47]; Muhiuddin, Al-Kenani, Roh, Jun introduced implicative 

NQ BCK-algebras and ideals [48]; Li, Ma, Zhang, Zhang studied NT extended group based on NQNs [49]; 
Şahin and Kargın obtained SVNQN and NTG based on SVNQN [50]; Şahin and Kargın studied single 
valued NQ graphs [51]. 

In this chapter, for each element in a neutrosophic quadruple set, we define new operations 

according to the different T, I and F values. Thus, generalized neutrosophic quadruple sets and numbers 

would be more useful for decision making applications. In this way, we obtain new results for neutrosophic 

quadruple set and number. in Section 2, we give definitions and properties for NQS and NQN [45]. In 

Section 3, we generalize NQS and NQN. Also, we define new structures according to the different T, I and F 

values using the NQS and NQN. In Section 4, we give conclusions. 

mailto:mesahin@gantep.edu.tr
mailto:abdullahkargin27@gmail.com
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BACKGROUND 

Definition 1: [45] A NQN is a number of the form (x, yT, zI, tF), where T, I, F have their usual neutrosophic 

logic means and x, y, z, t ∈ ℝ or ℂ. The NQS defined by 

NQ = {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. 

For a NQN (x, yT, zI, tF), representing any entity which may be a number, an idea, an object, etc., x is 

called the known part and (yT, zI, tF) is called the unknown part. 

Definition 2: [45] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) and b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ be NQNs. We define the

following: 

a + b = (𝑎1 +𝑏1, (𝑎2+𝑏2)T, (𝑎3+𝑏3)I, (𝑎4+𝑏4)F)

a - b = (𝑎1 - 𝑏1, (𝑎2 - 𝑏2)T, (𝑎3 - 𝑏3)I, (𝑎4 - 𝑏4)F)

Definition 3: [45] Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence order 
T>I>F. Then we have:

TI = IT = max{T, I} = T,

TF = FT = max{T, F} = T,

FI = IF = max{F, I} = I,

TT = 𝑇2 = T,

II = 𝐼2 = I,

FF = 𝐹2 = F.

Analogously, suppose in a pessimistic way we consider the prevalence order T < I < F. Then we have: 

TI = IT = max{T, I} = I, 

TF = FT = max{T, F} = F, 

FI = IF = max{F, I} = F, 

TT = 𝑇2 = T,

II = 𝐼2 = I,

FF = 𝐹2 = F.

Definition 4: [45] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ and T < I < F. Then

a*b = ( 𝑎1 , 𝑎2 T, 𝑎3 I, 𝑎4 F) * ( 𝑏1 , 𝑏2 T, 𝑏3 I, 𝑏4 F) = ( 𝑎1𝑏1 , ( 𝑎1𝑏2  + 𝑎2𝑏1  + 𝑎2𝑏2 )T,

(𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1 + 𝑎3𝑏2 + 𝑎3𝑏3)I, (𝑎1𝑏4 + 𝑎2𝑏4 + 𝑎3𝑏4 + 𝑎4𝑏1 + 𝑎4𝑏2 + 𝑎4𝑏3 + 𝑎4𝑏4)F)

Definition 5: [45] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ and T > I > F. Then

a#b = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) # (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F)
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= (𝑎1𝑏1 , (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2  + 𝑎3𝑏2 + 𝑎4𝑏2 + 𝑎2𝑏3  + 𝑎2𝑏4)T, (𝑎1𝑏3  + 𝑎3𝑏3  + 𝑎3𝑏4 + 𝑎4𝑏3)I, (𝑎1𝑏4  +  𝑎4𝑏1 + 𝑎4𝑏4)F) 

GENERALIZED NEUTROSOPHIC QUADRUPLE SET AND 

NUMBER 

Definition 6: A generalized NQS (GNQS) is a set of the form                                                                                                                  

         𝐺𝑠𝑖  = {(𝑎𝑠𝑖 , 𝑏𝑠𝑖𝑇𝑠𝑖 , 𝑐𝑠𝑖𝐼𝑠𝑖 , 𝑑𝑠𝑖𝐹𝑠𝑖): 𝑎𝑠𝑖, 𝑏𝑠𝑖, 𝑐𝑠𝑖 , 𝑑𝑠𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n}, 

where 𝑇𝑖 , 𝐼𝑖  and 𝐹𝑖 have their usual neutrosophic logic means and a generalized NQN (GNQS) defined by 

 𝐺𝑁𝑖= (𝑎𝑠𝑖, 𝑏𝑠𝑖𝑇𝑠𝑖, 𝑐𝑠𝑖𝐼𝑠𝑖 , 𝑑𝑠𝑖𝐹𝑠𝑖). 
As in NQN, for a GNQN (𝑎𝑠𝑖, 𝑏𝑠𝑖𝑇𝑠𝑖, 𝑐𝑠𝑖𝐼𝑠𝑖 , 𝑑𝑠𝑖𝐹𝑠𝑖), representing any entity which may be a number, an idea, 

an object, etc.; 𝑎𝑠𝑖  is called the known part and (𝑏𝑠𝑖𝑇𝑠𝑖 , 𝑐𝑠𝑖𝐼𝑠𝑖 , 𝑑𝑠𝑖𝐹𝑠𝑖) is called the unknown part. 

Also, we can show that 𝐺𝑠𝑖 = {𝐺𝑁𝑖: i = 1, 2, 3, … , n}. 

Corollary 1: From Definition 1 and Definition 6, each NQS is a GNQN. However, the opposite is not always 

true. 

Now, we define new operations for GNQN and GNQS. 

Definition 7: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  

        = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  

        = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n }  

be GNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define the “average +” and “ average – “ operations for and 
GNQNs such that  𝐺𝑁𝑚𝑘 +𝐴 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 + 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 + 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘  + 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 + 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 𝐺𝑁𝑚𝑘 −𝐴 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 − 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 − 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘  − 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 − 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈ {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙 = 

𝑇𝑆𝑚𝑘  + 𝑇𝑆𝑛𝑙2 ; 𝐼𝑚,𝑛𝑘,𝑙 = 
𝐼𝑆𝑚𝑘  + 𝐼𝑆𝑛𝑙2  and 𝐹𝑚,𝑛𝑘,𝑙 = 

𝐹𝑆𝑚𝑘  + 𝐹𝑆𝑛𝑙2 . 

We define the “average +” and “ average – “ operations for and GNQNs such that 𝐺𝑆1𝑖+𝐴 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  +𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆1𝑖−𝐴 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  −𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Definition 8: Let 𝐺𝑆1𝑖 = {(𝑎𝑆1𝑖 , 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖, 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖, 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖 , 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n}                   

                                     = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n }, 
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𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

       = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n } 

 be GNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define the “optimistic +” and “optimistic –“ operations for and 
GNQNs such that  𝐺𝑁𝑚𝑘 +𝑂 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 + 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 + 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘 + 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 + 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 𝐺𝑁𝑚𝑘 −𝑂 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 − 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 − 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘 − 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 − 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈  {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙  = max{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = min{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 } and                      𝐹𝑚,𝑛𝑘,𝑙 = min{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}. 

  We define the “optimistic +” and “optimistic – “ operations for and GNQNs such that 𝐺𝑆1𝑖+𝑂 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  +𝑂 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆1𝑖−𝑂 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  −𝑂 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Definition 9: Let 

 𝐺𝑆1𝑖  =  {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖, 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖, 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n }, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  

        = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n } 

 be GNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define the “pessimistic +” and “pessimistic –“ operations for and 

GNQNs such that  𝐺𝑁𝑚𝑘 +𝑃 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 + 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 + 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘 + 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 + 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 𝐺𝑁𝑚𝑘 −𝑃 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 − 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 − 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘 − 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 − 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈  {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙  = min{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = max{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 }  and                      𝐹𝑚,𝑛𝑘,𝑙 = max{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}. 

  We define the “pessimistic +” and “pessimistic – “ operations for and GNQNs such that 𝐺𝑆1𝑖+𝑃 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  +𝑃 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆1𝑖−𝑃 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  −𝑃 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Definition 10: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n }, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  



                               

Quadruple Neutrosophic Theory And Applications   

 Volume I 

 

15 

 

= {𝐺𝑁2𝑖: i = 1, 2, 3, … , n }  

be GNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define the “average .” operation for GNQNs such that  𝐺𝑁𝑚𝑘 .𝐴 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 . 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 . 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘 . 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 . 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈ {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙 = 

𝑇𝑆𝑚𝑘  + 𝑇𝑆𝑛𝑙2 ; 𝐼𝑚,𝑛𝑘,𝑙 = 
𝐼𝑆𝑚𝑘  + 𝐼𝑆𝑛𝑙2  and 𝐹𝑚,𝑛𝑘,𝑙 = 

𝐹𝑆𝑚𝑘  + 𝐹𝑆𝑛𝑙2 . 

We define the “average .” operations for GNQSs such that 𝐺𝑆1𝑖  .𝐴 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  .𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Definition 11: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n }, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

        = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n }  

be GNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs.  We define the “optimistic .” operation for GNQNs such that  𝐺𝑁𝑚𝑘 .𝑂 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 . 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 . 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘 . 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 . 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈  {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙  = max{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = min{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 } and                      𝐹𝑚,𝑛𝑘,𝑙 = min{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}. 

We define the “optimistic .” operations for GNQSs such that 𝐺𝑆1𝑖  .𝑂 𝐺𝑆2𝑖 = {𝐺𝑁1𝑖  .𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Definition 12: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  

        = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n}  

be GNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define the “pessimistic .” operation for GNQNs such that  𝐺𝑁𝑚𝑘 .𝑂 𝐺𝑁𝑛𝑙= (𝑎𝑆𝑚𝑘 . 𝑎𝑆𝑛𝑙, (𝑏𝑆𝑚𝑘 . 𝑏𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝑐𝑆𝑚𝑘 . 𝑐𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝑑𝑆𝑚𝑘 . 𝑑𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈  {1, 2, … , n}; 𝑇𝑚,𝑛𝑘,𝑙  = min{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = max{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 } and                      𝐹𝑚,𝑛𝑘,𝑙 = max{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}. 

We define the “pessimistic .” operations for GNQSs such that 
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𝐺𝑆1𝑖 .𝑂 𝐺𝑆2𝑖 = {𝐺𝑁1𝑖  .𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Properties 1: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆2𝑖   = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖, 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n }, 𝐺𝑆3𝑖 = {(𝑎𝑆3𝑖 , 𝑏𝑆3𝑖𝑇𝑆3𝑖 , 𝑐𝑆3𝑖𝐼𝑆3𝑖 , 𝑑𝑆3𝑖𝐹𝑆3𝑖): 𝑎𝑆3𝑖 , 𝑏𝑆3𝑖 , 𝑐𝑆3𝑖 , 𝑑𝑆3𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

        = {𝐺𝑁3𝑖: i = 1, 2, 3, … , n}  

be GNQSs; 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖  and 𝐺𝑁3𝑖  be GNQNs; +𝐴 be average + operation; +𝑂 be optimistic + operation; +𝑃 be 

pessimistic + operation; −𝐴  be average − operation; −𝑂  be optimistic               − operation; −𝑃  be 

pessimistic − operation; .𝐴 be average . operation; .𝑂 be optimistic . operation; .𝑃 be pessimistic . operation. 

i) 𝐺𝑁𝑚𝑘  +𝐴  𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  +𝐴  𝐺𝑁𝑚𝑘 ; 𝐺𝑁𝑚𝑘  +𝑂  𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  +𝑂  𝐺𝑁𝑚𝑘 ; 𝐺𝑁𝑚𝑘  +𝑃  𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  +𝑃  𝐺𝑁𝑚𝑘 , 

where, n, m = 1, 2, 3; k, l ∈ {1, 2, … , n}. 

ii) 𝐺𝑆𝑚𝑖  +𝐴 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  +𝐴 𝐺𝑆𝑚𝑖; 𝐺𝑆𝑚𝑖  +𝑂 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  +𝑂 𝐺𝑆𝑚𝑖; 𝐺𝑆𝑚𝑖  +𝑃 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  +𝑃 𝐺𝑆𝑚𝑖 ,  
where, n, m = 1, 2, 3. 

iii) 𝐺𝑁𝑡𝑠 +𝐴 (𝐺𝑁𝑚𝑘  +𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠  +𝐴 𝐺𝑁𝑚𝑘  )+𝐴 𝐺𝑁𝑛𝑙 , 
     𝐺𝑁𝑡𝑠  +𝑂 (𝐺𝑁𝑚𝑘 +𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 +𝑂 𝐺𝑁𝑚𝑘 )+𝑂 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  +𝑃 (𝐺𝑁𝑚𝑘 +𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 +𝑃 𝐺𝑁𝑚𝑘 )+𝑃 𝐺𝑁𝑛𝑙 , 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

iv) 𝐺𝑆𝑡𝑖 +𝐴 (𝐺𝑆𝑚𝑖  +𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  +𝐴 𝐺𝑆𝑚𝑖  )+𝐴 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 +𝑂 (𝐺𝑆𝑚𝑖 +𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  +𝑂 𝐺𝑆𝑚𝑖  )+𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 +𝑃 (𝐺𝑆𝑚𝑖  +𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  +𝑃 𝐺𝑆𝑚𝑖  )+𝑃 𝐺𝑁𝑛𝑖 , 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

v) 𝐺𝑁𝑡𝑠 −𝐴 (𝐺𝑁𝑚𝑘  −𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 −𝐴 𝐺𝑁𝑚𝑘 )−𝐴 𝐺𝑁𝑛𝑙 , 
     𝐺𝑁𝑡𝑠  −𝑂 (𝐺𝑁𝑚𝑘 −𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 −𝑂 𝐺𝑁𝑚𝑘 )−𝑂 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  −𝑃 (𝐺𝑁𝑚𝑘 −𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 −𝑃 𝐺𝑁𝑚𝑘 )−𝑃 𝐺𝑁𝑛𝑙 , 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

vi) 𝐺𝑆𝑡𝑖 −𝐴 (𝐺𝑆𝑚𝑖  −𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  −𝐴 𝐺𝑆𝑚𝑖  )−𝐴 𝐺𝑆𝑛𝑖 , 
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     𝐺𝑆𝑡𝑖 −𝑂 (𝐺𝑆𝑚𝑖 −𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  −𝑂 𝐺𝑆𝑚𝑖  )−𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 −𝑃 (𝐺𝑆𝑚𝑖  −𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  −𝑃 𝐺𝑆𝑚𝑖  )−𝑃 𝐺𝑁𝑛𝑖 , 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

vii) 𝐺𝑁𝑡𝑠  .𝐴 (𝐺𝑁𝑚𝑘 .𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 .𝐴 𝐺𝑁𝑚𝑘  ).𝐴 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  .𝑂 (𝐺𝑁𝑚𝑘 .𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 .𝑂 𝐺𝑁𝑚𝑘  ).𝑂 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  .𝑃 (𝐺𝑁𝑚𝑘 .𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠  .𝑃 𝐺𝑁𝑚𝑘 ).𝑃 𝐺𝑁𝑛𝑙, 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

viii) 𝐺𝑆𝑡𝑖  .𝐴 (𝐺𝑆𝑚𝑖  .𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  .𝐴 𝐺𝑆𝑚𝑖  ).𝐴 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 .𝑂 (𝐺𝑆𝑚𝑖  .𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  .𝑂 𝐺𝑆𝑚𝑖  ).𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 .𝑃 (𝐺𝑆𝑚𝑖  .𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  .𝑃 𝐺𝑆𝑚𝑖  ).𝑃 𝐺𝑁𝑛𝑖, 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

ix) 𝐺𝑁𝑡𝑠  .𝐴 (𝐺𝑁𝑚𝑘  +𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 .𝐴 𝐺𝑁𝑚𝑘  )+𝐴 (𝐺𝑁𝑡𝑠  .𝐴 𝐺𝑁𝑛𝑘 ), 
     𝐺𝑁𝑡𝑠  .𝑂 (𝐺𝑁𝑚𝑘 +𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 .𝑂 𝐺𝑁𝑚𝑘  )+𝑂 (𝐺𝑁𝑡𝑠 .𝑂 𝐺𝑁𝑛𝑘 ), 
     𝐺𝑁𝑡𝑠  .𝑃 (𝐺𝑁𝑚𝑘 +𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 .𝑃 𝐺𝑁𝑚𝑘  )+𝑃 (𝐺𝑁𝑡𝑠 .𝑂 𝐺𝑁𝑛𝑘 ), 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

x)  𝐺𝑆𝑡𝑖  .𝐴 (𝐺𝑆𝑚𝑖  +𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  .𝐴 𝐺𝑆𝑚𝑖  )+𝐴 (𝐺𝑆𝑡𝑖  .𝐴 𝐺𝑆𝑛𝑖  ), 
     𝐺𝑆𝑡𝑖 .𝑂 (𝐺𝑆𝑚𝑖  +𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  .𝑂 𝐺𝑆𝑚𝑖  )+𝑂 (𝐺𝑆𝑡𝑖  .𝑂 𝐺𝑆𝑛𝑖  ), 
     𝐺𝑆𝑡𝑖 .𝑃 (𝐺𝑆𝑚𝑖  +𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  .𝑃 𝐺𝑆𝑚𝑖  )+𝑃 (𝐺𝑆𝑡𝑖  .𝑂 𝐺𝑆𝑛𝑖  ), 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

Definition 13: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  

        ={𝐺𝑁2𝑖: i = 1, 2, 3, … , n} 

 be GNQSs; 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define “optimistic *” operation for GNQNs such that  

i) 𝐺𝑁1𝑘 ∗𝑂 𝐺𝑁2𝑙  = ( 𝑎𝑆1𝑘𝑎𝑆2𝑙 , ( 𝑏𝑆1𝑘𝑏𝑆2𝑙 + 𝑏𝑆1𝑘𝑐𝑆2𝑙 + 𝑏𝑆1𝑘𝑑𝑆2𝑙 + 𝑐𝑆1𝑘𝑏𝑆2𝑙 + 𝑑𝑆1𝑘𝑏𝑆2𝑙)𝑇1,2𝑘,𝑙 ,               

(𝑐𝑆1𝑘𝑐𝑆2𝑙+𝑐𝑆1𝑘𝑑𝑆2𝑙+𝑑𝑆1𝑘𝑐𝑆2𝑙)𝐼1,2𝑘,𝑙, 𝑑𝑆1𝑘𝑑𝑆2𝑙𝐹1,2𝑘,𝑙), 
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where,  𝑇1,2𝑘,𝑙 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}; 𝐼1,2𝑘,𝑙  = min{𝐼𝑆2𝑘 , 𝐼𝑆2𝑙}  and 𝐹1,2𝑘,𝑙 = min{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙},  𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙},  𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = min{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}.  

Also, we define “optimistic *” operation for GNQSs such that  𝐺𝑆1İ ∗𝑂 𝐺𝑆2İ  = {𝐺𝑁1İ ∗𝑂 𝐺𝑁2İ: İ = 1, 2, … , n}. 

Definition 14: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

        = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

        = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n} 

 be GNQSs; 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define “pessimistic *” operation for GNQNs such that  

i) 𝐺𝑁1𝑘 ∗𝑃 𝐺𝑁2𝑙  =(𝑎𝑆1𝑘𝑎𝑆2𝑙 , 𝑏𝑆1𝑘𝑏𝑆2𝑙𝑇1,2𝑘,𝑙 ,  (𝑐𝑆1𝑘𝑐𝑆2𝑙 +𝑐𝑆1𝑘𝑏𝑆2𝑙 +𝑏𝑆1𝑘𝑐𝑆2𝑙 ) 𝐼1,2𝑘,𝑙 , (𝑏𝑆1𝑘𝑑𝑆2𝑙 + 𝑐𝑆1𝑘𝑑𝑆2𝑙 +𝑑𝑆1𝑘𝑏𝑆2𝑙 + 𝑑𝑆1𝑘𝑐𝑆2𝑙 + 𝑑𝑆1𝑘𝑐𝑆2𝑙)𝐹1,2𝑘,𝑙), 
 where,  𝑇1,2𝑘,𝑙 = min{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}; 𝐼1,2𝑘,𝑙 = max{𝐼𝑆2𝑘 , 𝐼𝑆2𝑙}  and 𝐹1,2𝑘,𝑙 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙},  𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = min{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙},  𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙},  𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}.  

Also, we define “pessimistic *” operation for GNQSs such that  𝐺𝑆1𝑖 ∗𝑃 𝐺𝑆2𝑖   = {𝐺𝑁1𝑖 ∗𝑃 𝐺𝑁2𝑖: İ = 1, 2, … , n}. 
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Definition 15: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n}  

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆2𝑖 = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖 , 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖 ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

        = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n} 

 be GNQSs; 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define “average optimistic *” operation for GNQNs such that  

i) 𝐺𝑁1𝑘 ∗𝐴𝑂 𝐺𝑁2𝑙  = ( 𝑎𝑆1𝑘𝑎𝑆2𝑙 , ( 𝑏𝑆1𝑘𝑏𝑆2𝑙 + 𝑏𝑆1𝑘𝑐𝑆2𝑙 + 𝑏𝑆1𝑘𝑑𝑆2𝑙 + 𝑐𝑆1𝑘𝑏𝑆2𝑙 + 𝑑𝑆1𝑘𝑏𝑆2𝑙)𝑇1,2𝑘,𝑙 ,                 

(𝑐𝑆1𝑘𝑐𝑆2𝑙+𝑐𝑆1𝑘𝑑𝑆2𝑙+𝑑𝑆1𝑘𝑐𝑆2𝑙)𝐼1,2𝑘,𝑙, 𝑑𝑆1𝑘𝑑𝑆2𝑙𝐹1,2𝑘,𝑙, 
where,  𝑇1,2𝑘,𝑙 = 

𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ; 𝐼1,2𝑘,𝑙 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2   and 𝐹1,2𝑘,𝑙 = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 𝑇𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝑇𝑆2𝑖  = 

𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 

𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 =𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2  ,  𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 

𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 ,  

𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2  , 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 .  

Also, we define “average optimistic *” operation for GNQSs such that  𝐺𝑆1𝑖 ∗𝐴𝑂 𝐺𝑆2𝑖   = {𝐺𝑁1𝑖 ∗𝐴𝑂 𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Definition 16: Let 

 𝐺𝑆1𝑖  = {(𝑎𝑆1𝑖, 𝑏𝑆1𝑖𝑇𝑆1𝑖 , 𝑐𝑆1𝑖𝐼𝑆1𝑖 , 𝑑𝑆1𝑖𝐹𝑆1𝑖): 𝑎𝑆1𝑖 , 𝑏𝑆1𝑖 , 𝑐𝑆1𝑖, 𝑑𝑆1𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, … , n}, 𝐺𝑆2𝑖   = {(𝑎𝑆2𝑖 , 𝑏𝑆2𝑖𝑇𝑆2𝑖 , 𝑐𝑆2𝑖𝐼𝑆2𝑖, 𝑑𝑆2𝑖𝐹𝑆2𝑖): 𝑎𝑆2𝑖 , 𝑏𝑆2𝑖 , 𝑐𝑆2𝑖 , 𝑑𝑆2𝑖  ∈ ℝ or ℂ; i = 1, 2, 3, … , n} 

         = {𝐺𝑁2𝑖: i = 1, 2, 3, … , n} 

 be GNQSs; 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GNQNs. We define “ average pessimistic *” operation for GNQNs such that  

i) 𝐺𝑁1𝑘 ∗𝐴𝑃 𝐺𝑁2𝑙  = (𝑎𝑆1𝑘𝑎𝑆2𝑙 , 𝑏𝑆1𝑘𝑏𝑆2𝑙𝑇1,2𝑘,𝑙 ,  (𝑐𝑆1𝑘𝑐𝑆2𝑙+𝑐𝑆1𝑘𝑏𝑆2𝑙+𝑏𝑆1𝑘𝑐𝑆2𝑙 )𝐼1,2𝑘,𝑙 , (𝑏𝑆1𝑘𝑑𝑆2𝑙 + 𝑐𝑆1𝑘𝑑𝑆2𝑙 +𝑑𝑆1𝑘𝑏𝑆2𝑙 + 𝑑𝑆1𝑘𝑐𝑆2𝑙 + 𝑑𝑆1𝑘𝑐𝑆2𝑙)𝐹1,2𝑘,𝑙),  
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where,  𝑇1,2𝑘,𝑙 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 𝐼1,2𝑘,𝑙  = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2   and 𝐹1,2𝑘,𝑙 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖  = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 

𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2  , 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 .  

Also, we define “average pessimistic *” operation for GNQSs such that  𝐺𝑆1𝑖 ∗𝐴𝑃 𝐺𝑆2𝑖   = {𝐺𝑁1𝑖 ∗𝐴𝑃 𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Conclusions 

In this chapter, we generalize NQS and NQN. For each element in a NQS, we define new operations 

according to the different T, I and F values. Thus, NQS and NQN would be more useful for decision making 

applications. Also, Thanks to GNQN, researcher can obtain refined GNQN, single valued GNQN, interval 

valued GNQN, similarity measure for single valued GNQN, similarity measure for interval valued GNQN. 

Abbreviations 

NQ: Neutrosophic quadruple 

NQS: Neutrosophic quadruple set 

NQN: Neutrosophic quadruple number 

GNQS: Generalized neutrosophic quadruple set 

GNQN: Generalized neutrosophic quadruple number 
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ABSTRACT 

Smarandache introduce neutrosophic quadruple sets and numbers [45] in 2015. Also, Şahin and 
Kargın studied set valued quadruple sets and numbers [50] in 2019.  In a neutrosophic quadruple set or set 
valued neutrosophic quadruple set, the values T, I and F are same for each element. Where T, I and F have 

their usual neutrosophic logic means. In this chapter, we generalize set valued neutrosophic quadruple set and 

number. For each element in a set valued neutrosophic quadruple set, we define new operations according to 

the different T, I and F values. Thus, generalized set valued neutrosophic quadruple sets and numbers would 

be more useful for decision making applications. In this way, we obtain new results for generalized set 

valued neutrosophic quadruple set and number. 

Keywords: neutrosophic quadruple set, neutrosophic quadruple number, set valued neutrosophic quadruple 

set, set valued neutrosophic quadruple number, generalized set valued neutrosophic quadruple set, 

generalized set valued neutrosophic quadruple number 

INTRODUCTION 

Fuzzy logic and fuzzy set [28] were obtained by Zadeh in 1965. In the concept of fuzzy logic and fuzzy sets, 

there is only a degree of membership. In addition, intuitionistic fuzzy logic and intuitionistic fuzzy set [29] 
were obtained by Atanassov in 1986. The concept of intuitionistic fuzzy logic and intuitionistic fuzzy set 
includes membership degree, degree of undeterminacy and degree of non-membership. But these degrees are 

defined dependently of each other. Also, Smarandache defined neutrosophic logic and neutrosophic set [1] in 
1998. In neutrosophic logic and neutrosophic sets, there is T degree of membership, I degree of 

undeterminacy and F degree of non-membership. These degrees are defined independently of each other. It 
has a neutrosophic value (T, I, F) form. In other words, a condition is handled according to both its accuracy 

and its inaccuracy and its uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain 
many uncertainties in our lives. In addition, many researchers have made studies on this theory                      
[2 – 27, 30 - 44]. Therefore, neutrosophic set is a generalized state of fuzzy and intuitionistic fuzzy set. 

Also, Smarandache introduced NQS and NQN [45]. The NQSs are generalized state of neutrosophic sets. A 

NQS is shown by {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. Where, x is called the known part and (yT, zI, tF) is 
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called the unknown part and T, I, F have their usual neutrosophic logic means. Recently, researchers studied 
NQS and NQN. Recently, Akinleye, Smarandache, Agboola studied NQ algebraic structures [46]; Jun, Song, 

Smarandache obtained NQ BCK/BCI-algebras [47]; Muhiuddin, Al-Kenani, Roh, Jun introduced implicative 
NQ BCK-algebras and ideals [48]; Li, Ma, Zhang, Zhang studied NT extended group based on NQNs [49]; 

Şahin and Kargın obtained SVNQN and NTG based on SVNQN [50]; Şahin and Kargın studied single 
valued NQ graphs [51]. 

In this chapter, we generalize set valued neutrosophic quadruple set and number. For each element 

in a set valued neutrosophic quadruple set, we define new operations according to the different T, I and F 

values. Thus, generalized set valued neutrosophic quadruple sets and numbers would be more useful for 

decision making applications. In this way, we obtain new results for generalized set valued neutrosophic 

quadruple set and number. In Section 2, we give definitions and properties for NQS, NQN [45] and SVNQS, 

SVNQN [50]. In Section 3, we generalize SVNQS and SVNQN. Also, we define new structures using the 

SVNQS and SVNQN. In Section 4, we give conclusions. 

BACKGROUND 
 

Definition 1: [45] A NQN is a number of the form (x, yT, zI, tF), where T, I, F have their usual neutrosophic 

logic means and x, y, z, t ∈ ℝ or ℂ. The NQS defined by 

NQ = {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. 

For a NQN (x, yT, zI, tF), representing any entity which may be a number, an idea, an object, etc., x is 

called the known part and (yT, zI, tF) is called the unknown part. 

Definition 2: [50] Let N be a set and P(N) be power set of N. A SVNQN is shown by the form                                    

(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F). Where, T, I and F are degree of membership, degree of undeterminacy, degree of            

non-membership in neutrosophic theory, respectively. Also, 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N). Then, a SVNQS shown 
by  𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)} 

where, similar to NQS, 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) is called the unknown part. 

Definition 3: [50] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. We define the 
following operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩ 𝐵1, (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F) 

A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 𝐴′ = (𝐴′1, 𝐴′2T, 𝐴′3I, 𝐴′4F)  

Definition 4: [50] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T < I < F. We 
define the following operations  

A*1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)  

          = (𝐴1 ∩ 𝐵1, ((𝐴1 ∩ 𝐵2) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2)    ∪ (𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F) 

and 



                               

Quadruple Neutrosophic Theory And Applications   

 Volume I 

 

25 

 

A*2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)  

           =(𝐴1 ∪ 𝐵1, ((𝐴1 ∪ 𝐵2) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩ (𝐴3 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ ( 𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵3) ∩ (𝐴4 ∪ 𝐵4))F). 

Definition 5: [50]  

Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T > I > F. We define the following 

operations  

A #1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)  

           = (𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2 ) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2)  ∪ (𝐴3 ∩ 𝐵2)  ∪ (𝐴4 ∩ 𝐵2)  ∪ (𝐴2 ∩ 𝐵3)  ∪ (𝐴2 ∩𝐵4))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵4))F) 

and 

A#2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)  

          = (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩  (𝐴2 ∪ 𝐵1)  ∩  (𝐴2 ∪ 𝐵2) ∩  (𝐴3 ∪ 𝐵2)  ∩  (𝐴4 ∪ 𝐵2)  ∩  (𝐴2 ∪ 𝐵3)  ∩  (𝐴2 ∪𝐵4))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵4))F). 

Definition 6: [50] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. If 𝐴1⊂ 𝐵1, 𝐴2⊂ 𝐵2,       𝐴3⊂ 𝐵3, 𝐴4⊂ 𝐵4, then it is called that A is subset of B. It is shown by A⊂ B. 

Definition 7: [50] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. If A⊂ B and 𝐵⊂ 𝐴, 

then it is called that A is equal to B. It is shown by A = B. 

GENERALIZED SET VALUED NEUTROSOPHIC QUADRUPLE SET 

AND NUMBER 

Definition 8: Let X be a set and P(X) be power set of X. A generalized SVNQS (GSVNQS) is a set of the 
form     𝐺𝑠𝑖 = {(𝐴𝑠𝑖 , 𝐵𝑠𝑖𝑇𝑠𝑖, 𝐶𝑠𝑖𝐼𝑠𝑖, 𝐷𝑠𝑖𝐹𝑠𝑖): 𝐴𝑠𝑖 , 𝐵𝑠𝑖, 𝐶𝑠𝑖 , 𝐷𝑠𝑖  ∈ P(X); i = 1, 2, 3, … , n}, 

where, 𝑇𝑖 , 𝐼𝑖  and 𝐹𝑖 have their usual neutrosophic logic means and a generalized SVNQN (GSVNQS) defined 

by 𝐺𝑁𝑖= (𝐴𝑠𝑖 , 𝐵𝑠𝑖𝑇𝑠𝑖 , 𝐶𝑠𝑖𝐼𝑠𝑖 , 𝐷𝑠𝑖𝐹𝑠𝑖). 
As in NQN, for a GNQN (𝐴𝑠𝑖 , 𝐵𝑠𝑖𝑇𝑠𝑖 , 𝐶𝑠𝑖𝐼𝑠𝑖 , 𝐷𝑠𝑖𝐹𝑠𝑖), representing any entity which may be a number, an idea, 

an object, etc.; 𝐴𝑠𝑖  is called the known part and (𝐵𝑠𝑖𝑇𝑠𝑖 , 𝐶𝑠𝑖𝐼𝑠𝑖 , 𝐷𝑠𝑖𝐹𝑠𝑖) is called the unknown part. 

Also, we can show that 𝐺𝑠𝑖 = {𝐺𝑁𝑖: i = 1, 2, 3, …, n}. 

Corollary 1: From Definition 1 and Definition 7, each SVNQS is a GSVNQN. However, the opposite is not 

always true. 

Now, we define new operations for GSVNQN and GSVNQS. 

Definition 9: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}  
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        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

       = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define the “average ∪” and “average ∩ “ operations for and 
GSVNQNs such that  𝐺𝑁𝑚𝑘 ∪𝐴 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 ∪ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 ∪ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 ∪ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 ∪ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 𝐺𝑁𝑚𝑘 ∩𝐴 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 ∩ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 ∩ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 ∩ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 ∩ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈ {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙 = 

𝑇𝑆𝑚𝑘  + 𝑇𝑆𝑛𝑙2 ; 𝐼𝑚,𝑛𝑘,𝑙 = 
𝐼𝑆𝑚𝑘  + 𝐼𝑆𝑛𝑙2  and 𝐹𝑚,𝑛𝑘,𝑙 = 

𝐹𝑆𝑚𝑘  + 𝐹𝑆𝑛𝑙2 . 

We define the “average ∪” and “average ∩ “ operations for and GSVNQNs such that 𝐺𝑆1𝑖 ∪𝐴 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  ∪𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 𝐺𝑆1𝑖 ∩𝐴 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  ∩𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Definition 10: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}  

       = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define the “optimistic ∪” and “optimistic ∩“ operations for 
and GSVNQNs such that  𝐺𝑁𝑚𝑘 ∪𝑂 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 ∪ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 ∪ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 ∪ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 ∪ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 𝐺𝑁𝑚𝑘 ∩𝑂 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 ∩ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 ∩ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 ∩ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 ∩ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈  {1, 2, … , n}; 𝑇𝑚,𝑛𝑘,𝑙  = max{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = min{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 } and                      𝐹𝑚,𝑛𝑘,𝑙 = min{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}. 

  We define the “optimistic ∪” and “optimistic ∩ “ operations for and GSVNQNs such that 𝐺𝑆1𝑖 ∪𝑂 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  ∪𝑂 𝐺𝑁2𝑖: i = 1, 2, 3, …, n}. 𝐺𝑆1𝑖 ∩𝑂 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  ∩𝑂 𝐺𝑁2𝑖: i = 1, 2, 3, …, n}. 

Definition 11: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 
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𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}

= {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define the “pessimistic ∪” and “pessimistic ∩“ operations
for and GNQNs such that  𝐺𝑁𝑚𝑘 ∪𝑃 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 ∪ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 ∪ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 ∪ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 ∪ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙),𝐺𝑁𝑚𝑘 ∩𝑃 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 ∩ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 ∩ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 ∩ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 ∩ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙),
where, n, m = 1,2; k, l ∈  {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙  = min{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = max{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 } and𝐹𝑚,𝑛𝑘,𝑙 = max{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}.

  We define the “pessimistic ∪” and “pessimistic ∩ “ operations for and GNQNs such that 𝐺𝑆1𝑖 ∪𝑃 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  ∪𝑃 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}.𝐺𝑆1𝑖 ∩𝑃 𝐺𝑆2𝑖  = {𝐺𝑁1𝑖  ∩𝑃 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}.

Definition 12: Let 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}

= {𝐺𝑁1𝑖: i = 1, 2, 3, …, n},𝐺𝑆2𝑖 ={(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}

= {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define the “average \” operation for and GSVNQNs such
that  𝐺𝑁𝑚𝑘 \𝐴 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 \ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 \ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 \ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 \ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙),
where, n, m = 1,2; k, l ∈ {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙 = 𝑇𝑆𝑚𝑘  + 𝑇𝑆𝑛𝑙2 ; 𝐼𝑚,𝑛𝑘,𝑙 = 𝐼𝑆𝑚𝑘  + 𝐼𝑆𝑛𝑙2 and 𝐹𝑚,𝑛𝑘,𝑙 = 𝐹𝑆𝑚𝑘  + 𝐹𝑆𝑛𝑙2 . 

We define the “average \” operations for GSVNQNs such that 𝐺𝑆1𝑖\𝐴 𝐺𝑆2𝑖 = {𝐺𝑁1𝑖  \𝐴 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}.

Definition 13: Let 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}

= {𝐺𝑁1𝑖: i = 1, 2, 3, …, n},𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}

= {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define the “optimistic \” operation for and GSVNQNs such
that  
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𝐺𝑁𝑚𝑘 \𝑂 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 \ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 \ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘\ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙, (𝐷𝑆𝑚𝑘 \ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈  {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙  = max{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = min{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 } and                      𝐹𝑚,𝑛𝑘,𝑙 = min{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}. 

  We define the “optimistic \” operation for and GSVNQNs such that 𝐺𝑆1𝑖\𝑂 𝐺𝑆2𝑖 = {𝐺𝑁1𝑖  \𝑂 𝐺𝑁2𝑖: i = 1, 2, 3, …, n}. 

Definition 14: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖   = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖, 𝐶𝑆2𝑖, 𝐷𝑆2𝑖 ∈ P(X); i = 1, 2, 3, … , n} 

        = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define the “pessimistic \” operations for and GSVNQNs 
such that  𝐺𝑁𝑚𝑘 \𝑃 𝐺𝑁𝑛𝑙= (𝐴𝑆𝑚𝑘 \ 𝐴𝑆𝑛𝑙, (𝐵𝑆𝑚𝑘 \ 𝐵𝑆𝑛𝑙)𝑇𝑚,𝑛𝑘,𝑙, (𝐶𝑆𝑚𝑘 \ 𝐶𝑆𝑛𝑙) 𝐼𝑚,𝑛𝑘,𝑙 , (𝐷𝑆𝑚𝑘 \ 𝐷𝑆𝑛𝑙) 𝐹𝑚,𝑛𝑘,𝑙), 
where, n, m = 1,2; k, l ∈  {1, 2, … ,n}; 𝑇𝑚,𝑛𝑘,𝑙  = min{ 𝑇𝑆𝑚𝑘 , 𝑇𝑆𝑛𝑙 }; 𝐼𝑚,𝑛𝑘,𝑙  = max{ 𝐼𝑆𝑚𝑘 , 𝐼𝑆𝑛𝑙 } and                      𝐹𝑚,𝑛𝑘,𝑙 = max{𝐹𝑆𝑚𝑘 , 𝐹𝑆𝑛𝑙}. 

  We define the “pessimistic \” operations for and GSVNQNs such that 𝐺𝑆1𝑖\𝑃 𝐺𝑆2𝑖 = {𝐺𝑁1𝑖  \𝑃 𝐺𝑁2𝑖: i = 1, 2, 3, … , n}. 

Properties 1: Let 

 𝐺𝑆1𝑖  ={(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖 , 𝐶𝑆1𝑖, 𝐷𝑆1𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖  ={(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

         = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n},  𝐺𝑆3𝑖 = {(𝐴𝑆3𝑖, 𝐵𝑆3𝑖𝑇𝑆3𝑖 , 𝐶𝑆3𝑖𝐼𝑆3𝑖 , 𝐷𝑆3𝑖𝐹𝑆3𝑖): 𝐴𝑆3𝑖, 𝐵𝑆3𝑖 , 𝐶𝑆3𝑖, 𝐷𝑆3𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

       = {𝐺𝑁3𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖 , 𝐺𝑁3𝑖  be GSVNQNs; ∪𝐴  be average ∪  operation;     ∪𝑂  be optimistic ∪ 

operation; ∪𝑃 be pessimistic ∪ operation; ∩𝐴 be average ∩ operation; ∩𝑂 be optimistic     ∩ operation; ∩𝑃 be 

pessimistic ∩  operation; \𝐴  be average \  operation; \𝑂  be optimistic \  operation; \𝑃  be pessimistic \ 
operation. 

i) 𝐺𝑁𝑚𝑘  ∩𝐴 𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  ∩𝐴 𝐺𝑁𝑚𝑘; 𝐺𝑁𝑚𝑘 ∩𝑂 𝐺𝑁𝑛𝑙 = 𝐺𝑁𝑛𝑙  ∩𝑂 𝐺𝑁𝑚𝑘 ; 𝐺𝑁𝑚𝑘 ∩𝑃 𝐺𝑁𝑛𝑙 = 𝐺𝑁𝑛𝑙  ∩𝑃 𝐺𝑁𝑚𝑘 , where,    

n, m = 1, 2, 3; k, l ∈ {1, 2, … , n}. 
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ii) 𝐺𝑆𝑚𝑖  ∩𝐴  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∩𝐴  𝐺𝑆𝑚𝑖 ; 𝐺𝑆𝑚𝑖  ∩𝑂  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∩𝑂  𝐺𝑆𝑚𝑖 ; 𝐺𝑆𝑚𝑖  ∩𝑃  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∩𝑃  𝐺𝑆𝑚𝑖 , where,                  

n, m = 1, 2, 3. 

iii) 𝐺𝑁𝑚𝑘  ∪𝐴  𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  ∪𝐴  𝐺𝑁𝑚𝑘 ; 𝐺𝑁𝑚𝑘  ∪𝑂  𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  ∪𝑂  𝐺𝑁𝑚𝑘 ; 𝐺𝑁𝑚𝑘  ∪𝑃  𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  ∪𝑃  𝐺𝑁𝑚𝑘 , 

where,  n, m = 1, 2, 3; k, l ∈ {1, 2, … , n}. 

iv) 𝐺𝑆𝑚𝑖  ∪𝐴  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∪𝐴  𝐺𝑆𝑚𝑖 ; 𝐺𝑆𝑚𝑖  ∪𝑂  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∪𝑂  𝐺𝑆𝑚𝑖 ; 𝐺𝑆𝑚𝑖  ∪𝑃  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∪𝑃  𝐺𝑆𝑚𝑖 , where,                  

n, m = 1, 2, 3. 

v) 𝐺𝑁𝑡𝑠 ∪𝐴 (𝐺𝑁𝑚𝑘 ∪𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∪𝐴 𝐺𝑁𝑚𝑘 ) ∪𝐴 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  ∪𝑂 (𝐺𝑁𝑚𝑘  ∪𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∪𝑂 𝐺𝑁𝑚𝑘  ) ∪𝑂 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  ∪𝑃 (𝐺𝑁𝑚𝑘  ∪𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∪𝑃 𝐺𝑁𝑚𝑘 ) ∪𝑃 𝐺𝑁𝑛𝑙, 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

vi) 𝐺𝑆𝑡𝑖 ∪𝐴 (𝐺𝑆𝑚𝑖  ∪𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∪𝐴 𝐺𝑆𝑚𝑖  ) ∪𝐴 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 ∪𝑂 (𝐺𝑆𝑚𝑖  ∪𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∪𝑂 𝐺𝑆𝑚𝑖  ) ∪𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 ∪𝑃 (𝐺𝑆𝑚𝑖  ∪𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∪𝑃 𝐺𝑆𝑚𝑖  ) ∪𝑃 𝐺𝑁𝑛𝑖, 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

vii) 𝐺𝑁𝑡𝑠  ∩𝐴 (𝐺𝑁𝑚𝑘  ∩𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝐴 𝐺𝑁𝑚𝑘  ) ∩𝐴 𝐺𝑁𝑛𝑙 , 
     𝐺𝑁𝑡𝑠  ∩𝑂 (𝐺𝑁𝑚𝑘  ∩𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝑂 𝐺𝑁𝑚𝑘  ) ∩𝑂 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  ∩𝑃 (𝐺𝑁𝑚𝑘  ∩𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝑃 𝐺𝑁𝑚𝑘 ) ∩𝑃 𝐺𝑁𝑛𝑙, 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

viii) 𝐺𝑆𝑡𝑖  ∩𝐴 (𝐺𝑆𝑚𝑖  ∩𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∩𝐴 𝐺𝑆𝑚𝑖  ) ∩𝐴 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 ∩𝑂 (𝐺𝑆𝑚𝑖  ∩𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∩𝑂 𝐺𝑆𝑚𝑖  ) ∩𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 ∩𝑃 (𝐺𝑆𝑚𝑖  ∩𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∩𝑃 𝐺𝑆𝑚𝑖  ) ∩𝑃 𝐺𝑁𝑛𝑖, 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

ix) 𝐺𝑁𝑡𝑠  ∩𝐴 (𝐺𝑁𝑚𝑘 ∪𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝐴 𝐺𝑁𝑚𝑘  ) ∪𝐴 (𝐺𝑁𝑡𝑠 ∩𝐴 𝐺𝑁𝑛𝑘  ), 
     𝐺𝑁𝑡𝑠  ∩𝑂 (𝐺𝑁𝑚𝑘  ∪𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝑂 𝐺𝑁𝑚𝑘  ) ∪𝑂 (𝐺𝑁𝑡𝑠 ∩𝑂 𝐺𝑁𝑛𝑘  ), 
     𝐺𝑁𝑡𝑠  ∩𝑃 (𝐺𝑁𝑚𝑘  ∪𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝑃 𝐺𝑁𝑚𝑘 ) ∪𝑃 (𝐺𝑁𝑡𝑠 ∩𝑂 𝐺𝑁𝑛𝑘 ), 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

x)  𝐺𝑆𝑡𝑖  ∩𝐴 (𝐺𝑆𝑚𝑖  ∪𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∩𝐴 𝐺𝑆𝑚𝑖  ) ∪𝐴 (𝐺𝑆𝑡𝑖  ∩𝐴 𝐺𝑆𝑛𝑖  ), 
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     𝐺𝑆𝑡𝑖 ∩𝑂 (𝐺𝑆𝑚𝑖  ∪𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∩𝑂 𝐺𝑆𝑚𝑖  ) ∪𝑂 (𝐺𝑆𝑡𝑖  ∩𝑂 𝐺𝑆𝑛𝑖  ), 
     𝐺𝑆𝑡𝑖 ∩𝑃 (𝐺𝑆𝑚𝑖  ∪𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∩𝑃 𝐺𝑆𝑚𝑖  ) ∪𝑃 (𝐺𝑆𝑡𝑖  ∩𝑂 𝐺𝑆𝑛𝑖  ), 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

xi) 𝐺𝑁𝑡𝑠  ∪𝐴 (𝐺𝑁𝑚𝑘 ∩𝐴 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝐴 𝐺𝑁𝑚𝑘  ) ∪𝐴 (𝐺𝑁𝑡𝑠 ∩𝐴 𝐺𝑁𝑛𝑘  ), 
     𝐺𝑁𝑡𝑠  ∪𝑂 (𝐺𝑁𝑚𝑘  ∩𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝑂 𝐺𝑁𝑚𝑘  ) ∪𝑂 (𝐺𝑁𝑡𝑠 ∩𝑂 𝐺𝑁𝑛𝑘  ), 
     𝐺𝑁𝑡𝑠  ∪𝑃 (𝐺𝑁𝑚𝑘  ∩𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∩𝑃 𝐺𝑁𝑚𝑘 ) ∪𝑃 (𝐺𝑁𝑡𝑠 ∩𝑂 𝐺𝑁𝑛𝑘 ). 
Where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

xii)  𝐺𝑆𝑡𝑖 ∪𝐴 (𝐺𝑆𝑚𝑖  ∩𝐴 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∪𝐴 𝐺𝑆𝑚𝑖  ) ∩𝐴 (𝐺𝑆𝑡𝑖  ∪𝐴 𝐺𝑆𝑛𝑖 ), 
     𝐺𝑆𝑡𝑖 ∪𝑂 (𝐺𝑆𝑚𝑖  ∩𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∪𝑂 𝐺𝑆𝑚𝑖  ) ∩𝑂 (𝐺𝑆𝑡𝑖  ∪𝑂 𝐺𝑆𝑛𝑖  ), 
     𝐺𝑆𝑡𝑖 ∪𝑃 (𝐺𝑆𝑚𝑖  ∩𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∪𝑃 𝐺𝑆𝑚𝑖  ) ∩𝑃 (𝐺𝑆𝑡𝑖  ∪𝑂 𝐺𝑆𝑛𝑖  ), 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., n. 

Definition 15: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

        = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs.We define “optimistic *” operation for GSVNQNs such that  

i) 𝐺𝑁1𝑘 ∗𝑂 𝐺𝑁2𝑙  = (( 𝐴𝑆1𝑘 ∩ 𝐴𝑆2𝑙) , ( (𝐵𝑆1𝑘 ∩ 𝐵𝑆2𝑙) ∪ (𝐵𝑆1𝑘 ∩ 𝐶𝑆2𝑙) ∪ (𝐵𝑆1𝑘 ∩ 𝐷𝑆2𝑙) ∪ (𝐶𝑆1𝑘 ∩ 𝐵𝑆2𝑙) ∪(𝐷𝑆1𝑘 ∩ 𝐵𝑆2𝑙))𝑇1,2𝑘,𝑙, ((𝐶𝑆1𝑘 ∩ 𝐶𝑆2𝑙) ∪ (𝐶𝑆1𝑘 ∩ 𝐷𝑆2𝑙) ∪ (𝐷𝑆1𝑘 ∩ 𝐶𝑆2𝑙))𝐼1,2𝑘,𝑙, (𝐷𝑆1𝑘 ∩ 𝐷𝑆2𝑙)𝐹1,2𝑘,𝑙), 
where,  𝑇1,2𝑘,𝑙 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}; 𝐼1,2𝑘,𝑙  = min{𝐼𝑆2𝑘 , 𝐼𝑆2𝑙}  and 𝐹1,2𝑘,𝑙 = min{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙},  𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙},  𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙},  𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = min{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}.  
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Also, we define “optimistic *” operation for GSVNQSs such that  𝐺𝑆1İ ∗𝑂 𝐺𝑆2İ  = {𝐺𝑁1İ ∗𝑂 𝐺𝑁2İ: İ = 1, 2, … , n}. 

Definition 16: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}  

         = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖   = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖, 𝐶𝑆2𝑖, 𝐷𝑆2𝑖 ∈ P(X); i = 1, 2, 3, … , n} 

         = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n} 

 be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define “pessimistic *” operation for GSVNQNs such that  

i) 𝐺𝑁1𝑘 ∗𝑃 𝐺𝑁2𝑙 = ((𝐴𝑆1𝑘 ∩ 𝐴𝑆2𝑙), (𝐵𝑆1𝑘 ∩ 𝐵𝑆2𝑙)𝑇1,2𝑘,𝑙,  ((𝐶𝑆1𝑘 ∩ 𝐶𝑆2𝑙) ∪ (𝐶𝑆1𝑘 ∩ 𝐵𝑆2𝑙)∪ (𝐵𝑆1𝑘 ∩ 𝐶𝑆2𝑙))𝐼1,2𝑘,𝑙 , 
((𝐵𝑆1𝑘 ∩ 𝐷𝑆2𝑙)∪ (𝐶𝑆1𝑘 ∩ 𝐷𝑆2𝑙)∪ (𝐷𝑆1𝑘 ∩ 𝐵𝑆2𝑙)∪ (𝐷𝑆1𝑘 ∩ 𝐶𝑆2𝑙)∪ (𝐷𝑆1𝑘 ∩ 𝐶𝑆2𝑙))𝐹1,2𝑘,𝑙),  
where,  𝑇1,2𝑘,𝑙 = min{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}; 𝐼1,2𝑘,𝑙 = max{𝐼𝑆2𝑘 , 𝐼𝑆2𝑙}  and 𝐹1,2𝑘,𝑙 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙},  𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = min{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙},  𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙},  𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}.  

Also, we define “pessimistic *” operation for GSVNQSs such that  𝐺𝑆1𝑖 ∗𝑃 𝐺𝑆2𝑖   = {𝐺𝑁1𝑖 ∗𝑃 𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Definition 17: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖   = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs.We define “average optimistic *” operation for GSVNQNs such 
that  

i) 𝐺𝑁1𝑘 ∗𝐴𝑂 𝐺𝑁2𝑙  =(( 𝐴𝑆1𝑘 ∩ 𝐴𝑆2𝑙 ), ( (𝐵𝑆1𝑘 ∩ 𝐵𝑆2𝑙)∪ (𝐵𝑆1𝑘 ∩ 𝐶𝑆2𝑙)∪ (𝐵𝑆1𝑘 ∩ 𝐷𝑆2𝑙)∪ (𝐶𝑆1𝑘 ∩ 𝐵𝑆2𝑙)∪(𝐷𝑆1𝑘 ∩ 𝐵𝑆2𝑙))𝑇1,2𝑘,𝑙, ((𝐶𝑆1𝑘 ∩ 𝐶𝑆2𝑙)∪ (𝐶𝑆1𝑘 ∩ 𝐷𝑆2𝑙)∪ (𝐷𝑆1𝑘 ∩ 𝐶𝑆2𝑙))𝐼1,2𝑘,𝑙, (𝐷𝑆1𝑘 ∩ 𝐷𝑆2𝑙)𝐹1,2𝑘,𝑙),  
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where,  𝑇1,2𝑘,𝑙 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ; 𝐼1,2𝑘,𝑙 = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2   and 𝐹1,2𝑘,𝑙 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 𝑇𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝑇𝑆2𝑖  = 

𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 

𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 =𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2  ,  𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 

𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 ,  

𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2  , 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 .  

Also, we define “average optimistic *” operation for GSVNQSs such that  𝐺𝑆1𝑖 ∗𝐴𝑂 𝐺𝑆2𝑖   = {𝐺𝑁1𝑖 ∗𝐴𝑂 𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Definition 18: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n} 

         = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

       = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define “average pessimistic *” operation for GSVNQNs 
such that  

i) 𝐺𝑁1𝑘 ∗𝐴𝑃 𝐺𝑁2𝑙  = ((𝐴𝑆1𝑘 ∩ 𝐴𝑆2𝑙), (𝐵𝑆1𝑘 ∩ 𝐵𝑆2𝑙)𝑇1,2𝑘,𝑙,  ((𝐶𝑆1𝑘 ∩ 𝐶𝑆2𝑙)∪ (𝐶𝑆1𝑘 ∩ 𝐵𝑆2𝑙) ∪ (𝐵𝑆1𝑘 ∩ 𝐶𝑆2𝑙))𝐼1,2𝑘,𝑙, 
((𝐵𝑆1𝑘 ∩ 𝐷𝑆2𝑙)∪ (𝐶𝑆1𝑘 ∩ 𝐷𝑆2𝑙)∪ (𝐷𝑆1𝑘 ∩ 𝐵𝑆2𝑙)∪ (𝐷𝑆1𝑘 ∩ 𝐶𝑆2𝑙)∪ (𝐷𝑆1𝑘 ∩ 𝐶𝑆2𝑙))𝐹1,2𝑘,𝑙).  
where,  𝑇1,2𝑘,𝑙 = 

𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 𝐼1,2𝑘,𝑙  = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 𝐹1,2𝑘,𝑙 = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖  = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 

𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 
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𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2  , 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 .  

Also, we define “average pessimistic *” operation for GSVNQSs such that  𝐺𝑆1𝑖 ∗𝐴𝑃 𝐺𝑆2𝑖   = {𝐺𝑁1𝑖 ∗𝐴𝑃 𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Definition 19: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n} 

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n} 

 be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs.We define “optimistic #” operation for GSVNQNs such that  

i) 𝐺𝑁1𝑘#𝑂𝐺𝑁2𝑙  = ( (𝐴𝑆1𝑘 ∪ 𝐴𝑆2𝑙) , ( (𝐵𝑆1𝑘 ∪ 𝐵𝑆2𝑙) ∩ (𝐵𝑆1𝑘 ∪ 𝐶𝑆2𝑙) ∩ (𝐵𝑆1𝑘 ∪ 𝐷𝑆2𝑙) ∩ (𝐶𝑆1𝑘 ∪ 𝐵𝑆2𝑙) ∩(𝐷𝑆1𝑘 ∪ 𝐵𝑆2𝑙))𝑇1,2𝑘,𝑙, ((𝐶𝑆1𝑘 ∪ 𝐶𝑆2𝑙) ∩ (𝐶𝑆1𝑘 ∪ 𝐷𝑆2𝑙) ∩ (𝐷𝑆1𝑘 ∪ 𝐶𝑆2𝑙))𝐼1,2𝑘,𝑙, (𝐷𝑆1𝑘 ∪ 𝐷𝑆2𝑙)𝐹1,2𝑘,𝑙),  
where,  𝑇1,2𝑘,𝑙 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}; 𝐼1,2𝑘,𝑙  = min{𝐼𝑆2𝑘 , 𝐼𝑆2𝑙}  and 𝐹1,2𝑘,𝑙 = min{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙},  𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙},  𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = max{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}, 𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙},  𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖 = min{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = min{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}.  

Also, we define “optimistic #” operation for GSVNQSs such that  𝐺𝑆1İ#𝑂𝐺𝑆2İ  = {𝐺𝑁1İ#𝑂𝐺𝑁2İ: i = 1, 2, … , n}. 

Definition 20: Let 

 𝐺𝑆1𝑖  ={(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖 , 𝐶𝑆1𝑖, 𝐷𝑆1𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

        = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  
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be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs.We define “pessimistic #” operation for GSVNQNs such that  

i) 𝐺𝑁1𝑘#𝑃𝐺𝑁2𝑙  = ((𝐴𝑆1𝑘 ∪ 𝐴𝑆2𝑙), (𝐵𝑆1𝑘 ∪ 𝐵𝑆2𝑙)𝑇1,2𝑘,𝑙 ,  ((𝐶𝑆1𝑘 ∪ 𝐶𝑆2𝑙) ∩ (𝐶𝑆1𝑘 ∪ 𝐵𝑆2𝑙)∩ (𝐵𝑆1𝑘 ∪ 𝐶𝑆2𝑙))𝐼1,2𝑘,𝑙 , 
((𝐵𝑆1𝑘 ∪ 𝐷𝑆2𝑙) ∩ (𝐶𝑆1𝑘 ∪ 𝐷𝑆2𝑙) ∩ (𝐷𝑆1𝑘 ∪ 𝐵𝑆2𝑙) ∩ (𝐷𝑆1𝑘 ∪ 𝐶𝑆2𝑙) ∩ (𝐷𝑆1𝑘 ∪ 𝐶𝑆2𝑙))𝐹1,2𝑘,𝑙),  
where,  𝑇1,2𝑘,𝑙 = min{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙}; 𝐼1,2𝑘,𝑙 = max{𝐼𝑆2𝑘 , 𝐼𝑆2𝑙}  and 𝐹1,2𝑘,𝑙 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙},  𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = min{𝑇𝑆1𝑘 , 𝑇𝑆2𝑙},  𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙}, 𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = max{𝐼𝑆1𝑘 , 𝐼𝑆2𝑙},  𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}, 𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = max{𝐹𝑆1𝑘 , 𝐹𝑆2𝑙}.  

Also, we define “pessimistic #” operation for GSVNQSs such that  𝐺𝑆1𝑖#𝑃𝐺𝑆2𝑖  = {𝐺𝑁1𝑖#𝑃𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Definition 21: Let  𝐺𝑆1𝑖 = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖 , 𝐶𝑆1𝑖, 𝐷𝑆1𝑖  ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}  

       = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n} 

 be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs.We define “average optimistic #” operation for GSVNQNs such 
that  

i) 𝐺𝑁1𝑘#𝐴𝑂𝐺𝑁2𝑙  = (( 𝑎𝑆1𝑘 ∪ 𝑎𝑆2𝑙 ), ( (𝑏𝑆1𝑘 ∪ 𝑏𝑆2𝑙) ∩ (𝑏𝑆1𝑘 ∪ 𝑐𝑆2𝑙) ∩ (𝑏𝑆1𝑘 ∪) ∩ (𝑐𝑆1𝑘 ∪ 𝑏𝑆2𝑙) ∩ (𝑑𝑆1𝑘 ∪𝑏𝑆2𝑙))𝑇1,2𝑘,𝑙, ((𝑐𝑆1𝑘 ∪ 𝑐𝑆2𝑙) ∩ (𝑐𝑆1𝑘 ∪ 𝑑𝑆2𝑙) ∩ (𝑑𝑆1𝑘 ∪ 𝑐𝑆2𝑙))𝐼1,2𝑘,𝑙, (𝑑𝑆1𝑘 ∪ 𝑑𝑆2𝑙)𝐹1,2𝑘,𝑙), 
where,  𝑇1,2𝑘,𝑙 = 

𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ; 𝐼1,2𝑘,𝑙 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2   and 𝐹1,2𝑘,𝑙 = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 𝑇𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝑇𝑆2𝑖  = 

𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 

𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 =𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2  ,  𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 
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𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 ,  

𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2  , 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 .  

Also, we define “average optimistic #” operation for GSVNQSs such that  𝐺𝑆1𝑖#𝐴𝑂𝐺𝑆2𝑖   = {𝐺𝑁1𝑖#𝐴𝑂𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Definition 22: Let 

 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n}  

be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖be GSVNQNs. We define “average pessimistic #” operation for GSVNQNs 
such that  

i) 𝐺𝑁1𝑘#𝐴𝑃𝐺𝑁2𝑙 = ((𝐴𝑆1𝑘 ∪ 𝐴𝑆2𝑙), (𝐵𝑆1𝑘 ∪ 𝐵𝑆2𝑙)𝑇1,2𝑘,𝑙,  ((𝐶𝑆1𝑘 ∪ 𝐶𝑆2𝑙)∩ (𝐶𝑆1𝑘 ∪ 𝐵𝑆2𝑙) ∩ (𝐵𝑆1𝑘 ∪ 𝐶𝑆2𝑙))𝐼1,2𝑘,𝑙 , 
((𝐵𝑆1𝑘 ∪ 𝐷𝑆2𝑙) ∩ (𝐶𝑆1𝑘 ∪ 𝐷𝑆2𝑙) ∩ (𝐷𝑆1𝑘 ∪ 𝐵𝑆2𝑙) ∩ (𝐷𝑆1𝑘 ∪ 𝐶𝑆2𝑙) ∩ (𝐷𝑆1𝑘 ∪ 𝐶𝑆2𝑙))𝐹1,2𝑘,𝑙),  
where,  𝑇1,2𝑘,𝑙 = 

𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 , 𝐼1,2𝑘,𝑙  = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 𝐹1,2𝑘,𝑙 = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝑇𝑆2𝑖 = 𝑇𝑆2𝑖𝑇𝑆1𝑖 = 
𝑇𝑆1𝑘+ 𝑇𝑆2𝑙2 ,  

𝑇𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝑇𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 𝑇𝑆2𝑖𝐼𝑆1𝑖 = 𝐼𝑆1𝑖𝑇𝑆2𝑖  = 

𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝑇𝑆1𝑖𝐹𝑆2𝑖  = 𝐹𝑆2𝑖𝑇𝑆1𝑖 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 𝑇𝑆2𝑖𝐹𝑆1𝑖  = 𝐹𝑆1𝑖𝑇𝑆2𝑖  = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 

𝐼𝑆1𝑖𝐼𝑆2𝑖 = 𝐼𝑆2𝑖𝐼𝑆1𝑖 = 
𝐼𝑆1𝑘+ 𝐼𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐼𝑆2𝑖  = 𝐼𝑆2𝑖𝐹𝑆1𝑖 = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2  , 𝐹𝑆2𝑖𝐼𝑆1𝑖  = 𝐼𝑆1𝑖𝐹𝑆2𝑖  = 

𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 , 

𝐹𝑆1𝑖𝐹𝑆2𝑖 = 𝐹𝑆2𝑖𝐹𝑆1𝑖  = 
𝐹𝑆1𝑘+ 𝐹𝑆2𝑙2 .  

Also, we define “average pessimistic #” operation for GSVNQSs such that  𝐺𝑆1𝑖#𝐴𝑃𝐺𝑆2𝑖   = {𝐺𝑁1𝑖#𝐴𝑃𝐺𝑁2𝑖: İ = 1, 2, … , n}. 

Properties 2: Let 
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 𝐺𝑆1𝑖  = {(𝐴𝑆1𝑖, 𝐵𝑆1𝑖𝑇𝑆1𝑖 , 𝐶𝑆1𝑖𝐼𝑆1𝑖 , 𝐷𝑆1𝑖𝐹𝑆1𝑖): 𝐴𝑆1𝑖, 𝐵𝑆1𝑖, 𝐶𝑆1𝑖, 𝐷𝑆1𝑖 ∈ P(X); i = 1, 2, 3, … , n}  

        = {𝐺𝑁1𝑖: i = 1, 2, 3, …, n}, 𝐺𝑆2𝑖 = {(𝐴𝑆2𝑖, 𝐵𝑆2𝑖𝑇𝑆2𝑖 , 𝐶𝑆2𝑖𝐼𝑆2𝑖 , 𝐷𝑆2𝑖𝐹𝑆2𝑖): 𝐴𝑆2𝑖, 𝐵𝑆2𝑖 , 𝐶𝑆2𝑖, 𝐷𝑆2𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

        = {𝐺𝑁2𝑖: i = 1, 2, 3, …, n},  𝐺𝑆3𝑖 = {(𝐴𝑆3𝑖, 𝐵𝑆3𝑖𝑇𝑆3𝑖 , 𝐶𝑆3𝑖𝐼𝑆3𝑖 , 𝐷𝑆3𝑖𝐹𝑆3𝑖): 𝐴𝑆3𝑖, 𝐵𝑆3𝑖 , 𝐶𝑆3𝑖, 𝐷𝑆3𝑖  ∈ P(X); i = 1, 2, 3, … , n} 

       = {𝐺𝑁3𝑖: i = 1, 2, 3, …, n} 

 be GSVNQSs and 𝐺𝑁1𝑖 , 𝐺𝑁2𝑖 , 𝐺𝑁3𝑖  be GSVNQNs; ∗𝑂  be optimistic ∗  operation;   ∗𝑃  be pessimistic ∗ 
operation; ∗𝐴𝑂 be average optimistic ∗ operation; ∗𝐴𝑃 be average pessimistic ∗ operation; #𝑂 be optimistic # 

operation; #𝑃  be pessimistic # operation; #𝐴𝑂  be average optimistic # operation;          #𝐴𝑃  be average 

pessimistic # operation; 

i) 𝐺𝑁𝑚𝑘  ∗𝑂 𝐺𝑁𝑛𝑙 = 𝐺𝑁𝑛𝑙 ∗𝑂 𝐺𝑁𝑚𝑘, 

  𝐺𝑁𝑚𝑘  ∗𝑃 𝐺𝑁𝑛𝑙 = 𝐺𝑁𝑛𝑙 ∗𝑃 𝐺𝑁𝑚𝑘,  

  𝐺𝑁𝑚𝑘  ∗𝐴𝑂 𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙  ∗𝐴𝑂 𝐺𝑁𝑚𝑘,               

  𝐺𝑁𝑚𝑘  ∗𝐴𝑃 𝐺𝑁𝑛𝑙 = 𝐺𝑁𝑛𝑙  ∗𝐴𝑃 𝐺𝑁𝑚𝑘, 

 where, n, m = 1, 2, 3; k, l ∈ {1, 2, … , n}. 

ii) 𝐺𝑆𝑚𝑖  ∗𝑂 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖 ∗𝑂 𝐺𝑆𝑚𝑖 , 
    𝐺𝑆𝑚𝑖  ∗𝑃 𝐺𝑆𝑛𝑖 = 𝐺𝑆𝑛𝑖  ∗𝑃 𝐺𝑆𝑚𝑖 , 
    𝐺𝑆𝑚𝑖  ∗𝐴𝑂 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∗𝐴𝑂 𝐺𝑆𝑚𝑖 , 
    𝐺𝑆𝑚𝑖  ∗𝐴𝑃 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  ∗𝐴𝑃 𝐺𝑆𝑚𝑖 ,  
where, n, m = 1, 2, 3. 

iii) 𝐺𝑁𝑚𝑘 #𝑂 𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙 #𝑂 𝐺𝑁𝑚𝑘, 

     𝐺𝑁𝑚𝑘 #𝑃 𝐺𝑁𝑛𝑙  = 𝐺𝑁𝑛𝑙 #𝑃 𝐺𝑁𝑚𝑘, 

  𝐺𝑁𝑚𝑘  #𝐴𝑂 𝐺𝑁𝑛𝑙 = 𝐺𝑁𝑛𝑙 #𝐴𝑂  𝐺𝑁𝑚𝑘,                

  𝐺𝑁𝑚𝑘  #𝐴𝑃 𝐺𝑁𝑛𝑙 = 𝐺𝑁𝑛𝑙 #𝐴𝑃 𝐺𝑁𝑚𝑘, 

 where, n, m = 1, 2, 3; k, l ∈ {1, 2, … , n}. 

iv) 𝐺𝑆𝑚𝑖  #𝑂 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  #𝑂 𝐺𝑆𝑚𝑖 , 
     𝐺𝑆𝑚𝑖  #𝑃 𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  #𝑃 𝐺𝑆𝑚𝑖 , 
     𝐺𝑆𝑚𝑖  #𝐴𝑂  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  #𝐴𝑂 𝐺𝑆𝑚𝑖 , 
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     𝐺𝑆𝑚𝑖  #𝐴𝑃  𝐺𝑆𝑛𝑖  = 𝐺𝑆𝑛𝑖  #𝐴𝑃 𝐺𝑆𝑚𝑖 ,  
where, n, m = 1, 2, 3. 

v) 𝐺𝑁𝑡𝑠  ∗𝑂 (𝐺𝑁𝑚𝑘 ∗𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∗𝑂 𝐺𝑁𝑚𝑘 ) ∗𝑂 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  ∗𝑃 (𝐺𝑁𝑚𝑘 ∗𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∗𝑃 𝐺𝑁𝑚𝑘 ) ∗𝑃 𝐺𝑁𝑛𝑙. 
     𝐺𝑁𝑡𝑠 ∗𝐴𝑂 (𝐺𝑁𝑚𝑘 ∗𝐴𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∗𝐴𝑂 𝐺𝑁𝑚𝑘 ) ∗𝐴𝑂  𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  ∗𝐴𝑃 (𝐺𝑁𝑚𝑘  ∗𝐴𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 ∗𝐴𝑃 𝐺𝑁𝑚𝑘  ) ∗𝐴𝑃 𝐺𝑁𝑛𝑙 , 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

vi) 𝐺𝑆𝑡𝑖 ∗𝑂 (𝐺𝑆𝑚𝑖  ∗𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∗𝑂 𝐺𝑆𝑚𝑖  ) ∗𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 ∗𝑃 (𝐺𝑆𝑚𝑖  ∗𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∗𝑃 𝐺𝑆𝑚𝑖  ) ∗𝑃 𝐺𝑁𝑛𝑖. 
     𝐺𝑆𝑡𝑖 ∗𝐴𝑂 (𝐺𝑆𝑚𝑖  ∗𝐴𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∗𝐴𝑂 𝐺𝑆𝑚𝑖  ) ∗𝐴𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 ∗𝐴𝑃 (𝐺𝑆𝑚𝑖  ∗𝐴𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  ∗𝐴𝑃 𝐺𝑆𝑚𝑖  ) ∗𝐴𝑃 𝐺𝑆𝑛𝑖 , 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., 3. 

vii) 𝐺𝑁𝑡𝑠  #𝑂 (𝐺𝑁𝑚𝑘 #𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 #𝑂 𝐺𝑁𝑚𝑘 )#𝑂 𝐺𝑁𝑛𝑙 , 
     𝐺𝑁𝑡𝑠  #𝑃 (𝐺𝑁𝑚𝑘 #𝑃 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠  #𝑃 𝐺𝑁𝑚𝑘 )#𝑃 𝐺𝑁𝑛𝑙. 
     𝐺𝑁𝑡𝑠 #𝐴𝑂 (𝐺𝑁𝑚𝑘  #𝐴𝑂 𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠  #𝐴𝑂  𝐺𝑁𝑚𝑘 )#𝐴𝑂 𝐺𝑁𝑛𝑙, 
     𝐺𝑁𝑡𝑠  #𝐴𝑃  (𝐺𝑁𝑚𝑘 #𝐴𝑃  𝐺𝑁𝑛𝑙) = (𝐺𝑁𝑡𝑠 #𝐴𝑃 𝐺𝑁𝑚𝑘 )#𝐴𝑃 𝐺𝑁𝑛𝑙 , 
where, n, m, t = 1, 2, 3 and k, l, s ∈ {1, 2, … , n}. 

viii) 𝐺𝑆𝑡𝑖  #𝑂 (𝐺𝑆𝑚𝑖  #𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  #𝑂 𝐺𝑆𝑚𝑖 )#𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 #𝑃 (𝐺𝑆𝑚𝑖  #𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  #𝑃 𝐺𝑆𝑚𝑖  )#𝑃 𝐺𝑁𝑛𝑖. 
     𝐺𝑆𝑡𝑖 #𝐴𝑂 (𝐺𝑆𝑚𝑖  #𝐴𝑂 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  #𝐴𝑂 𝐺𝑆𝑚𝑖  )#𝐴𝑂 𝐺𝑆𝑛𝑖 , 
     𝐺𝑆𝑡𝑖 #𝐴𝑃 (𝐺𝑆𝑚𝑖  #𝐴𝑃 𝐺𝑆𝑛𝑖) = (𝐺𝑆𝑡𝑖  #𝐴𝑃 𝐺𝑆𝑚𝑖  )#𝐴𝑃 𝐺𝑆𝑛𝑖 , 
where, n, m, t = 1, 2, 3 and i = 1, 2, …., 3. 

Conclusions 

In this chapter, we generalize SVNQS and SVNQN. For each element in a GSVNQS, we define new 

operations according to the different T, I and F values. Thus, SVNQS and SVNQN would be more useful for 

decision making applications. Also, Thanks to GSVNQN, researcher can obtain refined GSVNQN, single 

valued GSVNQN, interval valued GSVNQN, similarity measure for single valued GSVNQN, similarity 

measure for interval valued GSVNQN. 
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Abbreviations 

NQ: Neutrosophic quadruple 

NQS: Neutrosophic quadruple set 

NQN: Neutrosophic quadruple number 

GSVNQS: Generalized set valued neutrosophic quadruple set 

GSVNQN: Generalized set valued neutrosophic quadruple number 
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ABSTRACT 

Real world problems are mainly based on multiple objectives rather than single objective. Today, in 
management sectors, most of the producers are more concerned about their own sense than the economic 
issues. It is necessary for all the managers to do their best to make as much effort as possible to increase the 

products. It is obvious that one of the ways is to apply mathematical programming model for the management 
systems. Application of a multi-objective programming model like goal programming model is an important 

tool for studying various aspects of management systems. To deal with undecidedness in real life, 
neutrosophic quadruple numbers are used as the coefficients of the problem in this paper. Moreover, we 

present a digital approach to solve linear goal programming by using Microsoft Excel Solver. 

Keywords: Neutrosophic sets, Neutrosophic Quadruple numbers, Goal programming, weights method, excel 

solver. 

INTRODUCTION 

  Goal programming is one of the most widely used methodologies in operations research and 
management science, and encompasses most classes of multiple objective programming models. In 

traditional linear programming models we optimize the single quantifiable objective such as profit, output, 
cost etc. However, setting clear-cut targets instead of simple maximization or minimization of objectives is 

always advantages in the pursuit of business problems. Unclear data is well go with fuzzy sets which were 
introduced by Zadeh [29] in 1965.  Fuzzy goal programming was achieved by L. Azzabi [2] (2014). The 
same method was introduce to stochastic LPP M. Mahmoud, et., al [12] in 2019. Goal programming problem 

[13 & 17], was solved with Intuitionistic fuzzy sets [1], which are the extension of fuzzy sets. Not many 
researchers have studied goal programming. Neutrosophic sets are the special sets which were introduced by 

[20] (2015). It has a wide application in real life business and decision-making problems. In all branches of 
mathematics, neutrosophic set played a major role. Single valued neutrosophic set[7] and neutrosophic multi-
sets [22] are broadly used. Using neutrosophic multisets MCDM problems were solved by Ulucay [25]. 

Decision making by neutrosophic soft expert sets were procured by [3 & 8 & 26 & 27]. Decision making 
based on neutrosophic soft expert sets in graph theory was done by [23].  Whereas multi-attribute decision 

making in bipolar neutrosophic sets were proposed by [4 & 28] and in centroid single valued triangular 
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neutrosophic numbers was proposed by [15 & 16].  Distance-Based Similarity Measure [24], were also 
studied in neutrosophic environment.   

In modern business world each and every business unit, however small may be, definitely will have 

multiple goals. Achievements of multiple goal objectives often create difficulties especially when goals are 
conflicting. In a situation with diversified objectives the complexity of the problem gets multiplied. Goal 

programming techniques are often useful in solving such problems with multiple and diversified goals. In 
such models the solution heavily depends upon the listed out priorities to the diversified objectives. Given the 

clearly established priority goals, the goal programming technique [5& 6 & 9 & 10 & 11 & 14 & 18 & 19] 
tries to minimize the deviation of each one of them from their respective target levels according to their listed 
out priorities. In such models, the goals are satisfied in a given sequential order, higher goals taking 

priorities, lower goals are pushed to lower levels. In the final solution, some goals may be over-satisfied and 
some others may be under-satisfied. Thus compromising rather than optimizing is the correct approach in 

goal programming. In the model formation, therefore, we incorporate all goals and try to solve them having 
the priority in mind. 

     Thus in goal programming, all the objects are assigned to specific target levels for achievement. Goal 
programming treats these targets as goals to aspire for and not as absolute constraints. It then attempts to find 

an optimal solution that comes as “close as possible” to the targets in the order of specified priorities. 

     The concept of Goal programming was introduced by Charles and Cooper[3] in 1961 by incorporating a 
method for solving infeasible linear programming problem involving various conflicting constraints. In 1965 

Ijiri[8] developed the model based on appropriate priorities for various goals and in the form of weightage for 
the same priority goals. Thus it is very much clear that the objective function formulation is not for optimum, 

as in the case of linear programming, but as far as possible very near to it. The latter work of Ignizio[7] 
(1972) shows several applications of goal programming business world. The goal programming is solved 
either by graphical method or by a suitably modified Simplex method. 

   Microsoft Excel is a well-built excel application that solves many optimization problems. From simple to 
complicated problems, this solver can be processed in a tabular grid manner. The solver helps to solve 
problems in linear algebra and it can handle much larger data also. 

 

BACKGROUND 
Definition 1. [20] Let X be a space of points (objects), with a generic element in X denoted by x. A 

neutrosophic set A in X is characterized by a truth-membership function TA, an indeterminacy membership 
function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real standard or non-standard 

subsets of ]0-,1+[. That is  

TA: X → ]0-,1+[,  IA: X → ]0-,1+[ , FA: X → ]0-,1+[ 

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0- ≤sup TA(x)+sup IA(x)+sup FA(x) ≤ 3+. 

Definition 2. [7] Let X be a space of points (objects), with a generic element in X denoted by x. A single 
valued neutrosophic set (SVNS) A in X is characterized by truth-membership function TA, indeterminacy-

membership function IA and falsity-membership function FA. For each point x in X, TA(x), IA(x), FA(x) ∈ 
[0,1]. 

When X is continuous, a SVNS A can be written as A= ∫ 〈T(x),I(x), F(x)〉/x, x ∈  X. 

When X is discrete, a SVNS A can be written as A= ∑ 〈 T(xi),  I(xi),  F(xi)〉/ xi, xi ∈ X. 

Definition 3. [21] Let’s consider an entity (i.e. a number, an idea, an object, etc.) which is represented by a 
known part (a) and an unknown part (𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹). 

Numbers of the form,         𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹,  
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where a, b, c, d are real (or complex) numbers (or intervals or in general subsets), and 

 T = truth / membership / probability, 

 I = indeterminacy, 

 F = false / membership / improbability,  

are called Neutrosophic Quadruple (Real respectively Complex) Numbers (or Intervals, or in general 

Subsets). “a” is called the known part of NQ, while “𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹” is called the unknown part of NQ. 

Definition 4. [21] Let  1 = 𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹,  𝑁𝑄2 = 𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹,  and 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) a 
real (or complex) scalar. Then, 

i) 𝑁𝑄1 + 𝑁𝑄2 = (𝑎1 + 𝑎2 ) + (𝑏1 + 𝑏2 )𝑇 + (𝑐1 + 𝑐2 )𝐼 + (𝑑1 + 𝑑2)𝐹.(Addition) 

ii) 𝑁𝑄1 − 𝑁𝑄2 = (𝑎1 − 𝑎2 ) + (𝑏1 − 𝑏2 )𝑇 + (𝑐1 − 𝑐2 )𝐼 + (𝑑1 − 𝑑2)𝐹.(Subtraction) 

iii) 𝛼 ∙ 𝑁𝑄 = 𝑁𝑄 ∙ 𝛼 = 𝛼𝑎 + 𝛼𝑏𝑇 + 𝛼𝑐𝐼 + 𝛼𝑑𝐹. (scalar Multiplication) 

iv) 0 ∙ 𝑇 = 0 ∙ 𝐼 = 0 ∙ 𝐹 = 0. 

v) 𝑚𝑇 + 𝑛𝑇 = (𝑚 + 𝑛)𝑇. 

vi) 𝑚𝐼 + 𝑛𝐼 = (𝑚 + 𝑛)𝐼. 
vii) 𝑚𝐹 + 𝑛𝐹 = (𝑚 + 𝑛)𝐹. 

In the next section, we will define the score function and accuracy function of neutrosophic quadruple 
numbers and some basic operations. 

Comparison of neutrosophic quadruple numbers by using score and 

accuracy function 

Definition 5: Let 𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹, be a neutrosophic quadruple number, then  

(i) Score function:  �̃�(NQ) = 
14 (𝑎 + (𝑎𝑇+2𝑏𝐼+𝑐𝐹3 )) 

(ii) Accuracy function:   �̃�(NQ) = 
14 {𝑥 − 𝑎𝑇(1 + 𝑏𝐼) − 𝑐𝐹(1 + 𝑏𝐼)}. 

Definition 6: Let NQ1 = 𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹 and NQ2 = 𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹 be two neutrosophic 
quadruple numbers. Then we have either of the following: 

a) If �̃�(𝑁𝑄1) <  �̃�(𝑁𝑄2), then 𝑁𝑄1 <  𝑁𝑄2. 
b) If �̃�(𝑁𝑄1) >  �̃�(𝑁𝑄2), then 𝑁𝑄1 >  𝑁𝑄2. 
c) If �̃�(𝑁𝑄1) =  �̃�(𝑁𝑄2), then 

1) If  �̃�(NQ1) <  �̃�(NQ2), then 𝑁𝑄1 <  𝑁𝑄2. 
2) If  �̃�(NQ1) >  �̃�(NQ2), then 𝑁𝑄 >  𝑁𝑄2. 
3) If  �̃�(NQ1) =  �̃�(NQ2), then 𝑁𝑄1 =  𝑁𝑄2. 

Note:    i) We will use the notation NQ = <x, aT, bI, cF> instead of NQ = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹. 

 ii) The values x, a, b, c are real numbers as the problem deals with day-to-day life. 
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GOAL PROGRAMMING: 

The formulation of goal programming is same as the formulation of linear programming problem. It 
contains three major steps: Multiple objective, Goal constraints and system constraints. 

STEPS IN FORMULATION: 

Step 1: Determine decision variables. 

Step 2: Select the priority level of each goal. 

Step 3: Use deviation variables for most important priority sequence. 

Step 4: Decide the system constraints. 

Step 5: Construct the objective function. 

Step 6: Solve all constraints and find the objective value which minimizes the objective function. 

The general form of goal programming is  

Minimize = ∑ 𝑤𝑖(𝑑𝑖− + 𝑑𝑖+)𝑚𝑖=1   

Subject to the constraints,  ∑ 𝑎𝑖𝑗𝑋𝑗 + 𝑑𝑖− − 𝑑𝑖+ =  𝑏𝑖𝑛𝑗=1 ; i = 1, 2,….m, 

and 𝑋𝑗, 𝑑𝑖−, 𝑑𝑖+ ≥ 0 for all i, j. 

The deviational variables   𝑑𝑖−, 𝑑𝑖+ denote the goal or sub goal. 

WEIGHTS METHOD: 

     In the weights method, a single objective function is formed as the weighted sum of the function 

representing the goals of the problem. Suppose that the goal programming model has n goals and that the ith 
goal is given as  

Minimize Gi , i= 1,2,.......,n 

The combined objective function used in the weights method is then defined as 

Minimize z = w1G1 + w2G2 +............+wnGn 

The parameters wi, i= 1,2,.....n, are positive weights that reflect the decision marker’s preferences regarding 
the relative importance of each goal. The determination of the specific values of these weights is subjective. 
Indeed, the apparently sophisticated analytic procedures developed in the literature are still rooted in 

subjective assessments. 

EXCEL SOLVER: 

      In Excel, Solver is part of a suite of commands sometimes called what-if analysis tools. With Solver, you can find 

an optimal (maximum or minimum) value for a formula in one cell — called the objective cell — subject 
to constraints, or limits, on the values of other formula cells on a worksheet. Solver works with a group of cells — 

called decision variable cells — that participate in computing the formulas in the objective and constraint cells. Solver 
adjusts the values in the decision variable cells to satisfy the limits on constraint cells and produce the result you want 
for the objective cell.   
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     Solver works with a group of cells, called decision variables or simply variable cells that are used in 
computing the formulas in the objective and constraint cells. Solver adjusts the values in the decision variable 

cells to satisfy the limits on constraint cells and produce the result you want for the objective cell. The 
objective, constraint and decision variable cells and the formulas inter-relating them form a Solver model; the final 
values found by Solver are a solution for this model.  Solver uses a variety of methods, from linear programming and 

nonlinear optimization to genetic and evolutionary algorithms, to find solutions. 

PROBLEM: 

A Project manager is trying to determine the quantities of three types of products to products. Producing one 
unit of products 1 & 2, he needs raw materials A & B, which will bring the company 5 crores of profit for 
product 1 and 8 crores of profit for the product 2 and 4 crores of profit for product 3.. The manager wants to 

meet three goals 

i. There are 100 tons of raw materials A and 10 tons of raw materials B in the Warehouse. The 
Manager wants to consume them all, no more or no less. 

ii. The total profit is expected to be at least 30 crores. 
The manger realizes that it probably will not be possible to attain these goals simultaneously. Therefore he 

sets some penalty weights for unmet goals. If the project needs more than 100 tons of raw materials A, each 
extra ton is associated with a penalty of 5. The penalty weight is unit less. If the total raw material B needed 
is different from 10 tons, each ton that is below this goal is associated with a penalty of 8, and each ton that is 

above this goal is associated with a penalty of 12. If the profit is less than 30 crores, each crore under the goal 
is associated with a penalty of 15. So, the manager wants to minimize the total penalty. 

Solution – Problem formulation: 

In this problem, we use neutrosophic quadruple numbers for the raw materials A and B, as they are formed with the 

composition of many chemicals. The composition ratios are taken for neutrosophic quadruple components. 

 

  Factors                Unit contribution Goals    Unit     

Penalty 
Product 1 Product 2 Product 3 

Raw Material A       < 150,8,12,8 > < 107,1,16,3.2 > < 74,3,1,2.8 > = 100 tons        5 

Raw Material B < 2,3,4,5 > < 12,1,3,0.4 > < 9,1,0.2,1 > = 10 tons  8(-), 12(+) 

Profit         5         8          4 ≥ 30crores        15 

 

The neutrosophic quadruple numbers are converted into crisp numbers by using the score function. 

  Factors                Unit contribution Goals    Unit     

Penalty 
Product 1 Product 2 Product 3 

Raw Material A        40         30         20 = 100 tons        5 

Raw Material B         2         4          3 = 10 tons   8(-) , 12(+) 

Profit         5         8          4 ≥ 30crores        15 
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Variables: 

Xi is the amount of product i , i=1,2,3 

40x1 + 30x2 + 20x3 ≤ 100 { Material } 

 2x1 + 4x2 + 3x3 = 10 {Material} 

5x1 + 8x2 +4x3  ≥ 30 {Profit} 

Introduce three variables y1 , y2 , and y3 to represents the deviations from the goals 

y1 =  40x1 + 30x2 + 20x3 -  100  (Material) 

y2 =  2x1 + 4x2 + 3x3 - 10  (Material) 

y3 =  5x1 + 8x2 +4x3  - 30 (Profit) 

 

yi
+ represents the amount over the goal 

yi
- represents the amount under the goal 

yi = yi
+ - yi

-  (yi
+ , yi

-  ≥ 0) 

40x1 + 30x2 + 20x3 – (y1
+ - y1

-  ) =  100  (Material) 

2x1 + 4x2 + 3x3 – (y2
+ - y2

-  ) = 10 (Material) 

5x1 + 8x2 +4x3   – (y3
+ - y3

-  ) = 30 (Profit) 

 

Min z = p1
+ y1

+ + p1
- y1

- + p2
+ y2

+ + p2
- y2

- + p3
+ y3

+ + p3
- y3

- 

40x1 + 30x2 + 20x3 – (y1
+ - y1

-  ) =  100  (Material) 

2x1 + 4x2 + 3x3 – (y2
+ - y2

-  ) = 10 (Material) 

5x1 + 8x2 +4x3  – (y3
+ - y3

-  ) = 30 (Profit) 

xj ≥ 0 (j = 1,2,3) ; yi
+ , yi

-  ≥ 0 (i = 1,2,3) 

Min z = 0* y1
+ + p1

- y1
- + p2

+ y2
+ + p2

- y2
- + p3

+ y3
+ + 0* y3

- 

40x1 + 30x2 + 20x3 – (y1
+ - y1

-  ) =  100  (Material) 

2x1 + 4x2 + 3x3 – (y2
+ - y2

-  ) = 10 (Material) 

5x1 + 8x2 +4x3  – (y3
+ - y3

-  ) = 30 (Profit) 

xj ≥ 0 (j = 1,2,3) ; yi
+ , yi

-  ≥ 0 (i = 1,2,3) 

 

SOLVING USING EXCEL SOLVER: 

Step 1: 

Select the data menu from the menu bar in Microsoft Excel. Click the Solver command to display the Solver 

Parameters dialog. 
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Step 2: 

In the Set Objective box, enter a cell reference or name for the objective cell. The objective cell must contain 
a formula. 
Do one of the following: 

 If you want the value of the objective cell to be as large as possible, click Max. 
 If you want the value of the objective cell to be as small as possible, click Min. 
 If you want the objective cell to be a certain value, click Value Of, and then type the value in the box. 

You may leave the Set Objective box empty. In this case Solver finds values for the decision variables that satisfy the 
constraints.  Using the Value Of option has the same effect as defining a constraint (see below) where the objective cell 
must be equal to the specified value. 
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Step 3:In the Subject to the Constraints box, enter any constraints that you want to apply. Enter the first 
constraint and click Add. 

 

 

Enter the second constraint and click Add. 

 

Enter the third constraint and click Add. 

Any changes can be made to the constraints by selecting Change or Delete. 

Step 4: 

Click Solve and in the Solver Results dialog box, read the message at the top and the more detailed 
explanation at the bottom of this dialog. 
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 After reading these messages, do one of the following: 
 To keep the final values in the decision variable cells, click Keep Solver Solution. 
 To restore the values of the decision variable cells at the time you clicked Solve, click Restore 

Original Values.  Select the Return to Solver Parameters Dialog check box if you want to modify the 
Solver model or re-solve as your next step.  Click OK or Cancel. 

 

 

Optimal solution: 

x1 =0 , x2 = 3.33 , x3 = 0 

y1 = y1
+ - y1

- = 0 - 0 = 0 
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y2 = y2
+ - y2

- = 3.33 – 0 = 3.33 

y3 = y3
+ - y3

- = 0 – 3.33 = -3.33 

z = 90 

CONCLUSION: 

This paper presented an easy method to solve the goal programming by using Excel solver. 
Optimization problems in many fields can be modelled and solved using Excel Solver. It does not require 

knowledge of complex mathematical concepts behind the solution algorithms. This way is particularly 
helpful for students who are non-math majors and still want to take these courses. 

Future Research Directions 

As a future work this article can be extended to preemptive goal programming which deals with many 
priority levels.  
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ABSTRACT 

 In this chapter, we obtain neutrosophic triplet field and neutrosophic triplet vector space based set 

valued neutrosophic quadruple number thanks to operations for set valued neutrosophic quadruple numbers. 

In this way, we define new structures using the together set valued neutrosophic quadruple number and 

neutrosophic triplet field and neutrosophic triplet vector space. Thus, we obtain new results for neutrosophic 

triplet field and neutrosophic triplet vector spaces with set valued neutrosophic quadruple number. 

Keywords: Neutrosophic triplet set, neutrosophic triplet field, neutrosophic triplet vector space, neutrosophic 

quadruple set, neutrosophic quadruple number, set valued neutrosophic quadruple set, set valued 

neutrosophic quadruple  number. 

INTRODUCTION 

Zadeh obtain fuzzy logic and fuzzy set [28], Atanassov introduced intuitionistic fuzzy logic and intuitionistic 
fuzzy set [29]. The concept of intuitionistic fuzzy logic and intuitionistic fuzzy set includes membership 

degree, degree of undeterminacy and degree of non-membership. But these degrees are defined dependently 
of each other. Also, Smarandache obtain neutrosophic logic and neutrosophic set [1] in 1998. In concept of 
neutrosophic logic and neutrosophic sets, these degrees are defined independently of each other. Hence, 

neutrosophic set is a generalized state of fuzzy and intuitionistic fuzzy set. Also, a lot of researchers obtain 
new structures and new applications in neutrosophic theory [2 -27]. 

Then, Smarandache and Ali obtained NTS and NTG [6].  For every element “x” in NTS A, there exist a 
neutral of “x” and an opposite of “x”. Also, neutral of “x” must different from the classical neutral element. 
Therefore, the NTS is different from the classical set. Furthermore, a NT “x” is showed by <x, neut(x), 
anti(x)>. Also, many researchers have introduced NT structures [30 - 44]. 

Furthermore, Smarandache introduced NQS and NQN [45]. The NQSs are generalized state of NS. A NQS is 

shown by {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. Where, x is called the known part and (yT, zI, tF) is called the 

mailto:mesahin@gantep.edu.tr
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unknown part and T, I, F have their usual neutrosophic logic means. Recently, researchers studied NQS and 
NQN. Recently, Akinleye, Smarandache, Agboola studied NQ algebraic structures [46]; Jun, Song, 

Smarandache obtained NQ BCK/BCI-algebras [47]; Muhiuddin, Al-Kenani, Roh, Jun introduced implicative 
NQ BCK-algebras and ideals [48]; Li, Ma, Zhang, Zhang studied NT extended group based on NQNs [49]; 
Şahin and Kargın obtained SVNQN and NTG based on SVNQN [50]. 

In this chapter, we give NTF based on SVNQN and NTVS based on SVNQN. In Section 2, we give 

definitions and properties for NQS, NQN [45]; NTS [30]; NTF [31]; NTVS [32] and SVNQS, SVNQN some 
operations SVNQN [50]. In Section 3, we obtain new operations for SVNQN. Also, we define NTF based on 

SVNQN thanks to new operations for SVNQN. In section 4, we define NTVS based on SVNQN thanks to 
new operations for SVNQN and NTF based on SVNQN.  In this way, we define new structures using the 

together with SVNQN, NTF and NTVS. 

 
BACKGROUND 

 

Definition 1: [6]:  Let # be a binary operation. A NTS (X, #) is a set such that for x ∈ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x, 

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x). 

Also, a NT “x” is showed with (x, neut(x), anti(x)). 

Definition 2: [6] Let (X, #) be a NT set. Then, X is called a NTG such that 

a) for all a, b ∈ X, a*b ∈ X. 

b) for all a, b, c ∈ X, (a*b)*c = a*(b*c)  

Definition 3: [31] Let (F,*, #) be a NTS together with two binary operations * and #. Then (F,*, #) 
is called NTF if the following conditions are satisfied. 

1. (F,*) is a commutative NT group with respect to *. 

2. (F, #) is a NT group with respect to #. 

3. k#(l*m)= (k#l)*(k#m); (l*m)#k = (l#k)*(m#k) for all k, l, m ∈ F.  

Definition 4: [32] Let (F,∗1, #1) be a  NTF  and let  (V,∗2, #2) be a NTS together with binary 

operations “∗2” and “#2”. Then (V,∗2 , #2 ) is called a NTVS if the following conditions are 

satisfied.  

i) m∗2n ∈ V and m #2s ∈ V; m, n ∈ V and s∈ F; 

ii) (m∗2n) ∗2l = m∗2 (n∗2l);  m, n, l ∈ V; 

iii) m∗2n = n∗2m;  m, n ∈ V; 

iv) (m∗2n) #2s = (m#2s) ∗2(n#2s); s ∈ F and m, n ∈ V;   

v) (s∗1p) #2m = (s#2m) ∗1(p#2m); s, p ∈ F and m ∈ V;  

vi) (s#1p) #2m = s#1(p#2m); s, p ∈ F and m ∈ V; 

vii) there exists at least an element s ∈ F for each element m such that  
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m#2 neut(s)= neut(s) #2 m = m; m ∈ V. 

Definition 5: [45] A NQN is a number of the form (x, yT, zI, tF), where T, I, F have their usual neutrosophic 

logic means and x, y, z, t ∈ ℝ or ℂ. The NQS defined by  

NQ = {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. 

For a NQN (x, yT, zI, tF), representing any entity which may be a number, an idea, an object, etc., x is called 

the known part and (yT, zI, tF) is called the unknown part. 

Definition 6: [50] Let N be a set and P(N) be power set of N. A SVNQN shown by the form                                    

(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F). Where, T, I and F are degree of membership, degree of undeterminacy, degree of            

non-membership in neutrosophic theory, respectively. Also, 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N). Then, a SVNQS shown 
by  𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)} 

where, similar to NQS, 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) is called the unknown part. 

Definition 7: [50] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. We define the 
following operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩ 𝐵1, (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F) 

A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 𝐴′ = (𝐴′1, 𝐴′2T, 𝐴′3I, 𝐴′4F)  

Definition 8: [50] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. If 𝐴1⊂ 𝐵1, 𝐴2⊂ 𝐵2,       𝐴3⊂ 𝐵3, 𝐴4⊂ 𝐵4, then it is called that A is subset of B. It is shown by A ⊂ B. 

Definition 9: [50]  Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs If A⊂ B and 𝐵⊂ 𝐴, 

then it is called that A is equal to B. It is shown by A = B. 

 

NEUTROSOPHIC TRIPLET FIELD BASED ON SET VALUED 

NEUTROSOPHIC QUADRUPLE NUMBER 

Theorem 10: Let N be a set and 𝑁𝑞= {(𝑁1, 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ P(N)}be a SVNQS and K, L be 

SVNQNs. Then,  

a) (𝑁𝑞, ∗∪) is a NTS such that K∗∪L = {K ∪ L,   if K, L ∈ P(N)\∅∅,      if K = ∅ or L =  ∅ . 
b) (𝑁𝑞, ∗∩) is a NTS such that K∗∩L = {K ∩ L,   if K, L ∈ P(N)\NN,      if K = N or l =  N . 
Proof: 

a) Let K = (N1, N2T, N3I, N4F) be a SVNQN in 𝑁𝑞. From Definition 7, we obtain that 

i) If K ∈ P(N)\∅, from Definition 7, we obtain that 

 K ∗∪ K = (N1, N2T, N3I, N4F) ∪ (N1, N2T, N3I, N4F) = (N1, N2T, N3I, N4F) = K.  

ii) If K = ∅ or L =  ∅, then we obtain that K∗∪L = ∅. 
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Thus, neut(K) = K for all K ∈ P(N).  Also, we obtain that anti(K) = K. Therefore, (𝑁𝑞, ∗∪) is a NTS.

b) Let K = (N1, N2T, N3I, N4F) be a SVNQN in 𝑁𝑞. From Definition 7, we obtain that

i) If K ∈ P(N)\N, from Definition 7, we obtain that

K ∗∩ K = (N1, N2T, N3I, N4F) ∩ (N1, N2T, N3I, N4F) = (N1, N2T, N3I, N4F) = K.

ii) If K = N or K =  N, then we obtain A∗∩B = K.

Thus, neut(K) = K for all K ∈ P(N).  Also, we obtain that anti(K) = K. Therefore, (𝑁𝑞, ∗∩) is a NTS.

Theorem 11: Let 𝑁𝑞= {(𝑁1, 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ P(N)}be a SVNQS and K, L, M be SVNQNs.

Then,  

a) (𝑁𝑞, ∗∪) is a NTG such that K∗∪L = {K ∪ L,   if K, L ∈ P(N)\∅∅,      if K = ∅ or L =  ∅ . 
b) (𝑁𝑞, ∗∩) is a NTG such that K∗∩L = {K ∩ L,   if K, L ∈ P(N)\NN,      if K = N or l =  N . 
Proof: 

a) Let K = (K1, K2T, K3I, K4F), L = (L1, L2T, L3I, L4F) and M = (M1, M2T, M3I, M4F) be a SVNQNs in 𝑁𝑞.

From Theorem 10, (𝑁𝑞, ∗∪) is a NTS.

i) From Definition 7, it is clear that K∗∪L ∈ 𝑁𝑞, for all K, L ∈ 𝑁𝑞.

ii) From Definition 7, it is clear that K∗∪ (L∗∪M) = (K∗∪L) ∗∪M for all K, L, M ∈ 𝑁𝑞.

Therefore, (𝑁𝑞, ∗∪) is a NTG. Also, (𝑁𝑞, ∗∪) is an abelian NTG.

b) Let K = (K1, K2T, K3I, K4F), L = (L1, L2T, L3I, L4F) and M = (M1, M2T, M3I, M4F) be a SVNQNs in 𝑁𝑞.

From Theorem 10, (𝑁𝑞, ∗∩) is a NTS.

i) From Definition 7, it is clear that K∗∩L ∈ 𝑁𝑞, for all K, L ∈ 𝑁𝑞.

ii) From Definition 7, it is clear that K∗∩ (L∗∩M) = (K∗∩L) ∗∩M for all K, L, M ∈ 𝑁𝑞.

Therefore, (𝑁𝑞, ∗∩) is a NTG. Also, (𝑁𝑞, ∗∪) is an abelian NTG.

Definition 12: Let 𝑁𝑞= {(𝑁1, 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ P(N)}be a SVNQS; (𝑁𝑞, *) be a NTS and

(𝑁𝑞, #) be a NTS. If (𝑁𝑞, *, #) is a NTF, then (𝑁𝑞, *, #) is called NTF based on SVNQN.

Theorem 13: Let 𝑁𝑞= {(𝑁1, 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ P(N)}be a SVNQS. Then, (𝑁𝑞, ∗∪, ∗∩) is a

NTF based on SVNQN. 

Proof: Let K = (K1, K2T, K3I, K4F), L = (L1, L2T, L3I, L4F) and M = (M1, M2T, M3I, M4F) be a SVNQNs in𝑁𝑞. From Theorem 11, (𝑁𝑞, ∗∪) and (𝑁𝑞, ∗∩) is a NTG. Thus, we show that

K∗∩ (L∗∪M) = (K∗∩L) ∗∪(K∗∩M).  (1) 

and (L∗∪M)∗∩K = (L∗∩K) ∗∪(M∗∩K).  (2) 

Also, from Definition 7, (1) is satisfied. Then, from (1) and Theorem 11; (2) is satisfied. 
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Corollary 14: Let 𝑁𝑞= {(𝑁1 , 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1 , 𝑁2 , 𝑁3 , 𝑁4  ∈ P(N)}be a SVNQS and 𝑀𝑞 ⊂ 𝑁𝑞 . Then,         

(𝑀𝑞, ∗∪, ∗∩) is a NTF based on SVNQN. 

Theorem 15: Let 𝑁𝑞= {(𝑁1, 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ P(N)}be a SVNQS. Then, (𝑁𝑞, ∗∩, ∗∪) is a 

NTF based on SVNQN. 

Proof: Let K = (K1, K2T, K3I, K4F), L = (L1, L2T, L3I, L4F) and M = (M1, M2T, M3I, M4F) be a SVNQNs in 𝑁𝑞. From Theorem 11, (𝑁𝑞, ∗∩) and (𝑁𝑞, ∗∪) is a NTG. Thus, we show that 

K∗∪ (L∗∩M) = (K∗∪L) ∗∩(K∗∪M).                                                          (3) 

and 

 (L∗∩M)∗∪K = (L∗∪K) ∗∩(M∗∪K).                                                          (4) 

Also, from Definition 7, (3) is satisfied. Then, from (3) and Theorem 11; (4) is satisfied. 

Corollary 16: Let 𝑁𝑞= {(𝑁1 , 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1 , 𝑁2 , 𝑁3 , 𝑁4  ∈ P(N)}be a SVNQS and 𝑀𝑞 ⊂ 𝑁𝑞 . Then,         

(𝑀𝑞, ∗∩, ∗∪) is a NTF based on SVNQN. 

NEUTROSOPHIC TRIPLET VECTOR SPACE BASED ON SET 

VALUED NEUTROSOPHIC QUADRUPLE NUMBER 

Definition 17: Let Nq = {( N1 , N2 T, N3 I, N4 F): N1 , N2 , N3 , N4  ∈ P(N) } be a SVNQS,                                   Vq= {(V1, V2T, V3I, V4F): V1, V2, V3, V4 ∈ P(N)}be a SVNQSs; (Nq, ∗1, #1) be a NTF based on SVNQN; (𝑉𝑞 , ∗2) be a NTS and  (𝑉𝑞 , #2) be a NTS. If (Vq, ∗2, #2) is a NTVS on (Nq, ∗1, #1), then (Vq, ∗2, #2) is called 

NTVS based on SVNQN. 

Definition 18: Let Nq = {( N1 , N2 T, N3 I, N4 F): N1 , N2 , N3 , N4  ∈ P(N) } be a SVNQS,                                   Vq= {(V1, V2T, V3I, V4F): V1, V2, V3, V4 ∈ P(N)}be a SVNQSs; (Nq, ∗1, #1) be a NTF based on SVNQN; (Vq, ∗2, #2) be a NTVS on       (Nq, ∗1, #1) and Mq ⊂ Vq. If (Mq, ∗2, #2) be a NTVS on (Nq, ∗1, #1) then, (Mq, ∗2, #2) is called NT subvector space based on SVNQN. 

Theorem 19: Let 𝑁𝑞= {(𝑁1, 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ P(N)} be a SVNQS. Then, (𝑁𝑞, ∗∪, ∗∩) is a 

NTVS based on SVNQN. 

Proof: From Theorem 13, (𝑁𝑞, ∗∪, ∗∩) is a NTF based on SVNQN. We show that (𝑁𝑞, ∗∪, ∗∩) is a NTVS on 

(𝑁𝑞, ∗∪, ∗∩).  

 Let K = (K1, K2T, K3I, K4F), L = (L1, L2T, L3I, L4F), M = (M1, M2T, M3I, M4F), S = (S1, S2T, S3I, S4F),           

P = (P1, P2T, P3I, P4F) be a SVNQNs in 𝑁𝑞 . From Theorem 11, (𝑁𝑞 , ∗∪) and (𝑁𝑞 , ∗∩) is a NTG. Thus,                

(𝑁𝑞, ∗∪, ∗∩) is satisfies conditions i, ii, iii, vi, vii. 

Also, since (𝑁𝑞, ∗∪, ∗∩) is a NTF based on SVNQN, (𝑁𝑞, ∗∪, ∗∩) is satisfies conditions iv and v. 

Thus, (𝑁𝑞, ∗∪, ∗∩) is a NTVS based on SVNQN. 

Corollary 20: Let  𝑁𝑞= {(𝑁1 , 𝑁2T, 𝑁3 I, 𝑁4F): 𝑁1 , 𝑁2 , 𝑁3 , 𝑁4  ∈ P(N)} be a SVNQS, Nq ⊂  Vq . Then,          

(𝑉𝑞 , ∗∪, ∗∩) is NT subvector space based on SVNQN of  (𝑁𝑞, ∗∪, ∗∩). 

Theorem 21: Let 𝑁𝑞= {(𝑁1, 𝑁2T, 𝑁3I, 𝑁4F): 𝑁1, 𝑁2, 𝑁3, 𝑁4 ∈ P(N)} be a SVNQS. Then, (𝑁𝑞, ∗∩, ∗∪) is a 

NTVS based on SVNQN. 

Proof: From Theorem 15, (𝑁𝑞, ∗∩, ∗∪) is a NTF based on SVNQN. We show that (𝑁𝑞, ∗∩, ∗∪) is a NTVS on 

(𝑁𝑞, ∗∩, ∗∪).  
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 Let K = (K1, K2T, K3I, K4F), L = (L1, L2T, L3I, L4F), M = (M1, M2T, M3I, M4F), S = (S1, S2T, S3I, S4F),           

P = (P1, P2T, P3I, P4F) be a SVNQNs in 𝑁𝑞 . From Theorem 11, (𝑁𝑞 , ∗∩) and (𝑁𝑞 , ∗∪) is a NTG. Thus,                

(𝑁𝑞, ∗∩, ∗∪) is satisfies conditions i, ii, iii, vi, vii. 

Also, since (𝑁𝑞, ∗∩, ∗∪) is a NTF based on SVNQN, (𝑁𝑞, ∗∩, ∗∪) is satisfies conditions iv and v. 

Thus, (𝑁𝑞, ∗∩, ∗∪) is a NTVS based on SVNQN. 

Corollary 22: Let  𝑁𝑞= {(𝑁1 , 𝑁2T, 𝑁3 I, 𝑁4F): 𝑁1 , 𝑁2 , 𝑁3 , 𝑁4  ∈ P(N)} be a SVNQS, Nq ⊂  Vq . Then,           

(𝑉𝑞 , ∗∩, ∗∪) is NT subvector space based on SVNQN of  (𝑁𝑞, ∗∩, ∗∪). 

Conclusions 

In this study, we give some NTF based on SVNQN and NTVS based on SVNQN thanks to operations for 

SVNQN. Thus, we have added a new structure to NT structures and NQ structures. Thanks to NTF based on 
SVNQN and NTVS based on SVNQN, NT normed spaces and NT inner product space can be defined similar 

to this study. 

Abbreviations 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTG: Neutrosophic triplet group 

NTF: Neutrosophic triplet field 

NTVS: Neutrosophic triplet vector space 

NQ: Neutrosophic quadruple 

NQS: Neutrosophic quadruple set 

NQN: Neutrosophic quadruple number 

SVNQS: Set valued neutrosophic quadruple set 

SVNQN: Set valued neutrosophic quadruple number 
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ABSTRACT 

 In this chapter, we obtain neutrosophic triplet metric space based set valued neutrosophic quadruple 

number thanks to operations for set valued neutrosophic quadruple numbers. In this way, we define new 

structures using the together set valued neutrosophic quadruple number and neutrosophic triplet metric space. 

Thus, we obtain new results for neutrosophic triplet metric spaces with set valued neutrosophic quadruple 

number. 

Keywords: Neutrosophic triplet set, neutrosophic triplet metric space, neutrosophic quadruple set, 

neutrosophic quadruple number, set valued neutrosophic quadruple set, set valued neutrosophic quadruple  

number. 

INTRODUCTION 

Smarandache and Ali obtained NTS and NTG [1] in 2018.  For every element “x” in NTS A, there exist a 
neutral of “x” and an opposite of “x”. Also, neutral of “x” must different from the classical neutral element. 
Therefore, the NTS is different from the classical set. Furthermore, a NT “x” is showed by <x, neut(x), 
anti(x)>. Also, many researchers have introduced NT structures [2 – 16, 23-30]. 

Also, Smarandache introduced NQS and NQN [17]. The NQSs are generalized state of NS. A NQS is shown 

by {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. Where, x is called the known part and (yT, zI, tF) is called the 

unknown part and T, I, F have their usual neutrosophic logic means. Recently, researchers studied NQS and 
NQN. Recently, Akinleye, Smarandache, Agboola studied NQ algebraic structures [18]; Jun, Song, 

Smarandache obtained NQ BCK/BCI-algebras [19]; Muhiuddin, Al-Kenani, Roh, Jun introduced implicative 
NQ BCK-algebras and ideals [20]; Li, Ma, Zhang, Zhang studied NT extended group based on NQNs [21]; 
Şahin and Kargın obtained SVNQN and NTG based on SVNQN [22]. 

In this chapter, we give NTMS based on SVNQN. In Section 2, we give definitions and properties for NQS, 
NQN [17]; NTS, NTG [1]; NTMS [4] and SVNQS, SVNQN, some operations SVNQN [22]. In Section 3, 
we obtain some NTMS based on SVNQN thanks to operations for SVNQN. In this way, we define new 

structures using the together with SVNQN and NTMS. 
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BACKGROUND 
 

Definition 1: [1]:  Let # be a binary operation. A NTS (X, #) is a set such that for x ∈ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x, 

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x). 

Also, a NT “x” is showed with (x, neut(x), anti(x)). 

Definition 2: [1] Let (X, #) be a NT set. Then, X is called a NTG such that 

a) for all a, b ∈ X, a*b ∈ X. 

b) for all a, b, c ∈ X, (a*b)*c = a*(b*c)  

Definition 3: [4] Let (N,*) be a NTS and 𝑑𝑁:NxN→ ℝ+∪{0} be a function. If 𝑑𝑁:NxN→ ℝ+∪{0} and (N, *) 

satisfies the following conditions, then 𝑑𝑁 is called NTM.  

a) x*y ∈ N; 

b) 𝑑𝑁(x, y) ≥ 0; 

c) If x = y, then 𝑑𝑁(x, y) = 0; 

d) 𝑑𝑁(x, y) = 𝑑𝑁(y, x); 

e) If there exits at least a y ∊ N for each x, z ∊N such that 𝑑𝑁(x, z) ≤ 𝑑𝑁(x, z*neut(y)), then 𝑑𝑁(x, z*neut(y)) ≤ 𝑑𝑁(x, y) + 𝑑𝑁(y, z).  

Also, ((N,*), 𝑑𝑁) is called a NTMS. 

Definition 4: [17] A NQN is a number of the form (x, yT, zI, tF), where T, I, F have their usual neutrosophic 

logic means and x, y, z, t ∈ ℝ or ℂ. The NQS defined by  

NQ = {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. 

For a NQN (x, yT, zI, tF), representing any entity which may be a number, an idea, an object, etc., x is called 

the known part and (yT, zI, tF) is called the unknown part. 

Definition 5: [22] Let N be a set and P(N) be power set of N. A SVNQN shown by the form                                    

(𝐴1 , 𝐴2T, 𝐴3I, 𝐴4F). Where, T, I and F are degree of membership, degree of undeterminacy, degree of            

non-membership in neutrosophic theory, respectively. Also, 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N). Then, a SVNQS shown 
by  𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}, 

where, similar to NQS, 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) is called the unknown part. 

Definition 6: [22] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. We define the 
following operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩ 𝐵1, (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F) 

A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 𝐴′ = (𝐴′1, 𝐴′2T, 𝐴′3I, 𝐴′4F)  
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Definition 7: [22] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T < I < F. We 
define the following operations  

A*1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) 

          = (𝐴1 ∩ 𝐵1, ((𝐴1 ∩ 𝐵2) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2) ∪ (𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F) 

and 

A*2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) 

           =(𝐴1 ∪ 𝐵1, ((𝐴1 ∪ 𝐵2) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩ (𝐴3 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ ( 𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵3) ∩ (𝐴4 ∪ 𝐵4))F). 

Definition 8: [22]  

Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T > I > F. We define the following 
operations  

A #1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)  

           = (𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2 ) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2)  ∪ (𝐴3 ∩ 𝐵2)  ∪ (𝐴4 ∩ 𝐵2)  ∪ (𝐴2 ∩ 𝐵3)  ∪ (𝐴2 ∩𝐵4))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵4))F) 

and 

A#2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) 

          = (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩  (𝐴2 ∪ 𝐵1)  ∩  (𝐴2 ∪ 𝐵2) ∩  (𝐴3 ∪ 𝐵2)  ∩  (𝐴4 ∪ 𝐵2)  ∩  (𝐴2 ∪ 𝐵3)  ∩  (𝐴2 ∪𝐵4))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵4))F). 

Definition 9: [22] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. If 𝐴1⊂ 𝐵1, 𝐴2⊂ 𝐵2,       𝐴3⊂ 𝐵3, 𝐴4⊂ 𝐵4, then it is called that A is subset of B. It is shown by A⊂ B. 

Definition 10: [22] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs If A⊂ B and 𝐵⊂ 𝐴, 

then it is called that A is equal to B. It is shown by A = B. 

Theorem 1: [22] Let N be a set and 𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}be a SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTS  

b) (𝑁𝑞, *2) is a NTS 

Theorem 2: [22] Let N be a set and 𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}be a SVNQS. Then,  

a) (𝑁𝑞, *1) is a NTG  

b) (𝑁𝑞, *2) is a NTG  

Theorem 3: [22]  Let N be a set and 𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}be a SVNQS. Then,  

a) (𝑁𝑞, #1) is a NTS  

b) (𝑁𝑞, #2) is a NTS  

Theorem 4: [22] Let N be a set and 𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}be a SVNQS. Then,  

a) (𝑁𝑞, #1) is a NTG  
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b) (𝑁𝑞, #2) is a NTG

NEUTROSOPHIC TRIPLET METRIC SPACE BASED ON SET 

VALUED NEUTROSOPHIC QUADRUPLE NUMBER 

Definition 11: Let 𝑁𝑞 = {( 𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F): 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4  ∈ P(N) } be a SVNQS and

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞; (𝑁𝑞 , *) be a NTS;  𝑑𝑁 : 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a

function. If 𝑑𝑁 is a NTM, then ((𝑁𝑞, *), 𝑑𝑁) is called NTMS based on SVNQN.

Theorem 5: Let 𝑁𝑞 = {( 𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F): 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4  ∈ P(N) \ ∅ } be a SVNQS and

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function such that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|. Then, 𝑑𝑁 is a NTM on (𝑁𝑞, ∪).

Proof: 

It is clear that (𝑁𝑞, ∪) is a NTS such that neut(A) = A, anti(A) = A. Now, we show that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| is a NTM.

a) Since A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞, it is clear that A∪B ∈ 𝑁𝑞 .
b) 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| ≥0.

c) If A = B, then from Definition 10, 𝐴1 = 𝐵1, 𝐴2 = 𝐵2, 𝐴3 = 𝐵3, 𝐴4 = 𝐵4. Thus,𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|
=  |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)]| = 0.

d) 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|
= |−([𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)])|
= |[𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)] − [𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)]|
= 𝑑𝑁(B, A)

e) Let C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F)  ∈ Nq. If C ⊂ B, then 𝑑𝑁(A, B) = 𝑑𝑁(A, B∪neut(C)). Because C = neut(C) and𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|.
Also,  𝑑𝑁(A, B∪neut(C)) =|[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠((𝐵1 ∪ 𝐶1) ∪ (𝐵2 ∪ 𝐶2) − 𝑠((𝐵3 ∪ 𝐶3) ∪ (𝐵4 ∪ 𝐶4))]|

=|[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|≤ |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐶1 ∪ 𝐶2) − 𝑠(𝐶3 ∪ 𝐶4)]| +|[𝑠(𝐶1 ∪ 𝐶2) − 𝑠(𝐶3 ∪ 𝐶4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| .
Thus, 𝑑𝑁(A, B∪neut(C))≤ 𝑑𝑁(A, C) + 𝑑𝑁(C, B).

Therefore ((Nq,∪), 𝑑𝑁) is a NTMS.

Also, 𝑑𝑁 is a NTM based on SVNQN. ((Nq,∪), 𝑑𝑁) is a NTMS based on SVNQN.
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Theorem 6: Let 𝑁𝑞 = {( 𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F): 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4  ∈ P(N) \N} be a SVNQS and                                  

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function such that  𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]|. Then, 𝑑𝑁 is a NTM on (𝑁𝑞, ∩). 

Proof: It is clear that (𝑁𝑞, ∩) is a NTS such that neut(A) = A, anti(A) = A. Now, we show that 

 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| is a NTM. 

a) Since A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞, it is clear that A∩B ∈ 𝑁𝑞 . 
b) 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| ≥0. 

c) If A = B, then from Definition 10, 𝐴1 = 𝐵1, 𝐴2 = 𝐵2, 𝐴3 = 𝐵3, 𝐴4 = 𝐵4. Thus, 

 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| 
                = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)]| = 0.  

d) 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| 
                    = |−([𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)])|  
                    =|[𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)] − [𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)]|  
                    = 𝑑𝑁(B, A) 

e) Let C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F)  ∈ Nq. If C ⊃ B, then  𝑑𝑁(A, B) = 𝑑𝑁(A, B∩neut(C)). Because C = neut(C) and  𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| . Also,  𝑑𝑁(A, B∩neut(C)) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠((𝐵1 ∩ 𝐶1) ∩ (𝐵2 ∩ 𝐶2) − 𝑠((𝐵3 ∩ 𝐶3) ∩ (𝐵4 ∩ 𝐶4))]|         
                               =|[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| 
                               ≤ |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐶1 ∩ 𝐶2) − 𝑠(𝐶3 ∩ 𝐶4)]| + 

                                   |[𝑠(𝐶1 ∩ 𝐶2) − 𝑠(𝐶3 ∩ 𝐶4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| .  
Thus,  𝑑𝑁(A, B∩neut(C))≤ 𝑑𝑁(A, C) + 𝑑𝑁(C, B). 

Therefore ((Nq, ∩), 𝑑𝑁) is a NTMS.  

Also, 𝑑𝑁 is a NTM based on SVNQN. ((Nq,∩), 𝑑𝑁) is a NTMS based on SVNQN. 

Theorem 7: Let 𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)} be a SVNQS and  A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function such that  𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|. Then, 𝑑𝑁 is a NTM on (𝑁𝑞, ∗1). 

Proof: From Theorem 1, (𝑁𝑞, ∗1) is a NTS such that neut(A) = A, anti(A) = A. Now, we show that 

 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| is a NTM. 

a) For A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞, from Theorem 2, A∗1B ∈ 𝑁𝑞 . 
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b), c) and d) are shown similar to Theorem 5. 

e) Let C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F)  ∈ Nq. If C ⊃ B, 𝐵1 and 𝐵2  ⊂ 𝐵3, 𝐵1 and 𝐵2 ⊂ 𝐵4; then 𝑑𝑁(A, B) = 𝑑𝑁(A,

B∗1neut(C)). Because C = neut(C) and

A*1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)

= (𝐴1 ∩ 𝐵1, ((𝐴1 ∩ 𝐵2) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2)∪ (𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F)

Also,  𝑑𝑁(A, B*1neut(C)) =𝑑𝑁(A, B) =|[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|≤ |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐶1 ∪ 𝐶2) − 𝑠(𝐶3 ∪ 𝐶4)]| +|[𝑠(𝐶1 ∪ 𝐶2) − 𝑠(𝐶3 ∪ 𝐶4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| .
Thus, 𝑑𝑁(A, B*1neut(C))≤ 𝑑𝑁(A, C) + 𝑑𝑁(C, B).

Therefore ((Nq, *1), 𝑑𝑁) is a NTMS.

Also, 𝑑𝑁 is a NTM based on SVNQN. ((Nq, *1), 𝑑𝑁) is a NTMS based on SVNQN.

Theorem 8: Let 𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)} be a SVNQS and  A = (𝐴1, 𝐴2T, 𝐴3I,𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function such that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|. Then, 𝑑𝑁 is a NTM on (𝑁𝑞, #1).

Proof: From Theorem 3, (𝑁𝑞, #1) is a NTS such that neut(A) = A, anti(A) = A. Now, we show that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| is a NTM.

a) For A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞, from Theorem 4, A#1B ∈ 𝑁𝑞 .
b), c) and d) are shown similar to Theorem 5. 

e)Let C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F)  ∈ Nq. If C ⊃ B, 𝐵3 ⊂ 𝐵2 and 𝐵4 = 𝐵2;  then 𝑑𝑁(A, B) = 𝑑𝑁(A, B#1neut(C)).

Because C = neut(C) and

A #1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)

= (𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2 ) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2)  ∪ (𝐴3 ∩ 𝐵2)  ∪ (𝐴4 ∩ 𝐵2)  ∪ (𝐴2 ∩ 𝐵3)  ∪ (𝐴2 ∩𝐵4))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵4))F)

Also,  𝑑𝑁(A, B#1neut(C)) =𝑑𝑁(A, B) =|[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]|≤ |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐶1 ∪ 𝐶2) − 𝑠(𝐶3 ∪ 𝐶4)]| +|[𝑠(𝐶1 ∪ 𝐶2) − 𝑠(𝐶3 ∪ 𝐶4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| .
Thus, 𝑑𝑁(A, B#1neut(C))≤ 𝑑𝑁(A, C) + 𝑑𝑁(C, B).

Therefore ((Nq, #1), 𝑑𝑁) is a NTMS.
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Also, 𝑑𝑁 is a NTM based on SVNQN. ((Nq, #1), 𝑑𝑁) is a NTMS based on SVNQN.

Corollary 1: Let 𝑁𝑞 = {( 𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F): 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4  ∈ P(N) } be a SVNQS and

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function. 𝑑𝑁(A, B) =|[𝑠(𝐴1 ∗ 𝐴2) − 𝑠(𝐴3 ∗ 𝐴4)] − [𝑠(𝐵1 ∗ 𝐵2) − 𝑠(𝐵3 ∗ 𝐵4)]| . If * = *1 or* = #1, then from Theorem 7 and
Theorem 8,  𝑑𝑁(A, B) = |[𝑠(𝐴1 ∪ 𝐴2) − 𝑠(𝐴3 ∪ 𝐴4)] − [𝑠(𝐵1 ∪ 𝐵2) − 𝑠(𝐵3 ∪ 𝐵4)]| is a NTM on (𝑁𝑞, ∗).
Theorem 9: Let 𝑁𝑞 = {( 𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F): 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4  ∈ P(N) } be a SVNQS and

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function such that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]|. Then, 𝑑𝑁 is a NTM on (𝑁𝑞, ∗2).

Proof: From Theorem 1, (𝑁𝑞, ∗2) is a NTS such that neut(A) = A, anti(A) = A. Now, we show that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| is a NTM.

a) For A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞, from Theorem 2, A*2B ∈ 𝑁𝑞 .
b), c) and d) are shown similar to Theorem 6. 

e)Let C = (𝐶1 , 𝐶2T, 𝐶3 I, 𝐶4F)  ∈  Nq. If C ⊂ B, 𝐵1  ⊂ 𝐵3  and 𝐵4 , 𝐵2  ⊂ 𝐵3  and 𝐵4 , then 𝑑𝑁 (A, B) =𝑑𝑁(A, B∗2neut(C)). Because C = neut(C) and

A*2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)

= (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩(𝐴3 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ ( 𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵3) ∩ (𝐴4 ∪ 𝐵4))F).

Also,  𝑑𝑁(A, B*2neut(C)) =𝑑𝑁(A, B) =|[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]|≤ |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐶1 ∩ 𝐶2) − 𝑠(𝐶3 ∩ 𝐶4)]| +|[𝑠(𝐶1 ∩ 𝐶2) − 𝑠(𝐶3 ∩ 𝐶4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| .
Thus, 𝑑𝑁(A, B*2neut(C)) ≤ 𝑑𝑁(A, C) + 𝑑𝑁(C, B).

Therefore ((Nq, *2), 𝑑𝑁) is a NTMS.

Also, 𝑑𝑁 is a NTM based on SVNQN. ((Nq, *2), 𝑑𝑁) is a NTMS based on SVNQN.

Theorem 10: Let 𝑁𝑞 = {( 𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F): 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4  ∈ P(N) } be a SVNQS and

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function such that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]|. Then, 𝑑𝑁 is a NTM on (𝑁𝑞, #2).

Proof: From Theorem 3, (𝑁𝑞, #2) is a NTS such that neut(A) = A, anti(A) = A. Now, we show that𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| is a NTM.

a) For A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞, from Theorem 5, A#2B ∈ 𝑁𝑞 .
b), c) and d) are shown similar to Theorem 6. 
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e)Let C = (𝐶1, 𝐶2T, 𝐶3I, 𝐶4F)  ∈ Nq. If C ⊂ B, 𝐵2 ⊂ 𝐵4;  then 𝑑𝑁(A, B) = 𝑑𝑁(A, B#2neut(C)). Because C = 
neut(C) and  

A#2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)  

          = (𝐴1 ∪ 𝐵1 , ((𝐴1 ∪ 𝐵2 ) ∩  (𝐴2 ∪ 𝐵1)  ∩  (𝐴2 ∪ 𝐵2) ∩  (𝐴3 ∪ 𝐵2)  ∩  (𝐴4 ∪ 𝐵2)  ∩  (𝐴2 ∪ 𝐵3)  ∩  (𝐴2 ∪𝐵4))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵4))F). 

Also,  𝑑𝑁(A, B#2neut(C)) =𝑑𝑁(A, B) =|[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]|  
                                                  ≤ |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐶1 ∩ 𝐶2) − 𝑠(𝐶3 ∩ 𝐶4)]| + 

                                                      |[𝑠(𝐶1 ∩ 𝐶2) − 𝑠(𝐶3 ∩ 𝐶4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| .  
Thus,  𝑑𝑁(A, B#2neut(C)) ≤ 𝑑𝑁(A, C) + 𝑑𝑁(C, B). 

Therefore ((Nq, #2), 𝑑𝑁) is a NTMS.  

Also, 𝑑𝑁 is a NTM based on SVNQN. ((Nq, #2), 𝑑𝑁) is a NTMS based on SVNQN. 

Corollary 2: Let 𝑁𝑞 = {( 𝐴1 , 𝐴2 T, 𝐴3 I, 𝐴4 F): 𝐴1 , 𝐴2 , 𝐴3 , 𝐴4  ∈ P(N) } be a SVNQS and                                    

A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) ∈ 𝑁𝑞;  𝑑𝑁: 𝑁𝑞x𝑁𝑞→ ℝ+∪{0} be a function. 𝑑𝑁(A, B) = |[𝑠(𝐴1 ∗ 𝐴2) − 𝑠(𝐴3 ∗ 𝐴4)] − [𝑠(𝐵1 ∗ 𝐵2) − 𝑠(𝐵3 ∗ 𝐵4)]| . If * = *2 or # 2, then from Theorem 9 and        

Theorem 10,  𝑑𝑁(A, B) = |[𝑠(𝐴1 ∩ 𝐴2) − 𝑠(𝐴3 ∩ 𝐴4)] − [𝑠(𝐵1 ∩ 𝐵2) − 𝑠(𝐵3 ∩ 𝐵4)]| is a NTM on (𝑁𝑞, ∗). 
Conclusions 

In this study, we give some NTM based on SVNQN thanks to operations for SVNQN. Thus, we have added a 
new structure to NT structures and NQ structures. Thanks to SVNQN, other NTMS can be defined similar to 

this study. Also, Thanks to SVNQN, NT normed spaces can be defined similar to this study. 

 

Abbreviations 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTG: Neutrosophic triplet group 

NTM: Neutrosophic triplet metric 

NTMS: Neutrosophic triplet metric space 

NQ: Neutrosophic quadruple 

NQS: Neutrosophic quadruple set 

NQN: Neutrosophic quadruple number 

SVNQS: Set valued neutrosophic quadruple set 

SVNQN: Set valued neutrosophic quadruple number 
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ABSTRACT 

This paper deals with finding an optimal solution for Neutrosophic Quadruple transportation 
problem which is achieved by using stepping stone method. Moreover, the optimal solution is verified with 
Excel solver to validate the optimal solution.  

Keywords: Neutrosophic sets, Neutrosophic Quadruple numbers, Transportation Problem, optimal solution, 

stepping stone method, MS - excel solver.  

INTRODUCTION 

In business industries and business organizations, the main goal is to transfer goods/products from 

the industry or organization to the destination, with minimum cost, which is tagged as Transportation 

problem. Having perception into mathematical models and knowledge is not enough to solve the real life 

problems with indeterminacy. The perceptive should able to solve the modern world economically oriented 

issues. As far as the Transportation problem is considered, the key is to take decisions to minimize the cost. 

Many researchers have solved transportation problems in crisp numbers. But some actuality problem cannot 

be solved by the traditional method. To interpret cloudy or unclear, hazy data, researchers commenced 

transportation problem with fuzzy numbers. Zadeh [13] (1965) introduced fuzzy set theory, which has a 

membership value. Fuzzy set theory is a generalization of classical set theory. Membership value denotes the 

degree of truthfulness. To describe higher possibility, intuitionistic fuzzy sets were found by Atanassov [1] 

(1986). It comprises of membership and non-membership values. Both sets were utilized in many decision 

making problems.  

To deal with uncertain data, Smarandache [9] (2005), introduced neutrosophic set which is an 

extension of fuzzy set. This set has three degrees namely, truth membership, false membership and 

indeterminacy membership. After this, Wang. et, [12] (2010) al. introduced single valued neutrosophic set. 

This set is useful in many decision making problems in real life situations. Many researchers have worked on 

transportation problem in fuzzy numbers, intuitionistic fuzzy numbers and neutrosophic numbers. Chanas 

and Kutcha [2] (1996), solved fuzzy transportation problem with cost as fuzzy numbers. Triangular fuzzy 
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numbers and trapezoidal fuzzy numbers were also used in transportation problem. OhEigeartaigh [7] (1982) 

worked on fuzzy transportation problem with triangular fuzzy demand and supply. Transportation problem 

with trapezoidal fuzzy numbers was solved by Jimenez and Verdegay [3] (1999). Intuitionistic fuzzy 

transportation problem was solved by many researchers[4, 5]. Thamaraiselvi and santhi[6] (2016) proposed a 

method for solving transportation problem in neutrosophic environment. Sathya geetha and selvakumari [8] 

(2019) came up with a new algorithm for solving transportation problem by using zero suffix method. In this 

paper, transportation problem with neutrosophic quadruple numbers is initiated. Digital approach is 

employed here, as computer technologies can also be reflect real life situations.  

The paper is structured as follows: In Background section, the basic definitions and operations are 
recalled. In the next section, score function and accuracy function are defined to compare the neutrosophic 
quadruple numbers. Mathematical formulation of transportation problem and the methods to find IBFS and 
optimal solution are given in next sections. Two transportation problems are illustrated with neutrosophic 
quadruple numbers. MS – excel 2007 version is used to compute. Finally, Conclusions and further research 
are given. 

 

 
BACKGROUND 

Definition 1. [1] Let X be a space of points (objects), with a generic element in X denoted by x. A 
neutrosophic set A in X is characterized by a truth-membership function TA, an indeterminacy 
membership function IA and a falsity-membership function FA. TA(x), IA(x) and FA(x) are real 
standard or non-standard subsets of ]0-,1+[. That is  

TA: X → ]0-,1+[,  IA: X → ]0-,1+[ , FA: X → ]0-,1+[ 

There is no restriction on the sum of TA(x), IA(x) and FA(x), so 0- ≤sup TA(x)+sup IA(x)+sup FA(x) 
≤ 3+. 

Definition 2 [1] Let X be a space of points (objects), with a generic element in X denoted by x. A 
single valued neutrosophic set (SVNS) A in X is characterized by truth-membership function TA, 
indeterminacy-membership function IA and falsity-membership function FA. For each point x in X, 

TA(x), IA(x), FA(x) ∈ [0,1]. 

When X is continuous, a SVNS A can be written as A= ∫ 〈T(x),I(x), F(x)〉/x, x ∈  X. 

When X is discrete, a SVNS A can be written as A= ∑ 〈 T(xi),  I(xi),  F(xi)〉/ xi, xi ∈ X. 

Definition 3. [2] Let’s consider an entity (i.e. a number, an idea, an object, etc.) which is represented 

by a known part (a) and an unknown part (𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹). 

Numbers of the form,         𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹,  

where a, b, c, d are real (or complex) numbers (or intervals or in general subsets), and 

 T = truth / membership / probability, 

 I = indeterminacy, 

 F = false / membership / improbability,  

are called Neutrosophic Quadruple (Real respectively Complex) Numbers (or Intervals, or in 

general Subsets). “a” is called the known part of NQ, while “𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹” is called the unknown 

part of NQ. 
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Definition 4. [2] Let  1 = 𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹,  𝑁𝑄2 = 𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹,  and 𝛼 ∈ ℝ (or 𝛼 ∈ ℂ) a real (or complex) scalar. Then, 

viii) 𝑁𝑄1 + 𝑁𝑄2 = (𝑎1 + 𝑎2 ) + (𝑏1 + 𝑏2 )𝑇 + (𝑐1 + 𝑐2 )𝐼 + (𝑑1 + 𝑑2)𝐹.(Addition) 

ix) 𝑁𝑄1 − 𝑁𝑄2 = (𝑎1 − 𝑎2 ) + (𝑏1 − 𝑏2 )𝑇 + (𝑐1 − 𝑐2 )𝐼 + (𝑑1 − 𝑑2)𝐹.(Subtraction) 

x) 𝛼 ∙ 𝑁𝑄 = 𝑁𝑄 ∙ 𝛼 = 𝛼𝑎 + 𝛼𝑏𝑇 + 𝛼𝑐𝐼 + 𝛼𝑑𝐹. (scalar Multiplication) 

xi) 0 ∙ 𝑇 = 0 ∙ 𝐼 = 0 ∙ 𝐹 = 0. 

xii) 𝑚𝑇 + 𝑛𝑇 = (𝑚 + 𝑛)𝑇. 

xiii) 𝑚𝐼 + 𝑛𝐼 = (𝑚 + 𝑛)𝐼. 
xiv) 𝑚𝐹 + 𝑛𝐹 = (𝑚 + 𝑛)𝐹. 

In the next section, we will define the score function and accuracy function of neutrosophic quadruple 
numbers and some basic operations. 

Comparison of neutrosophic quadruple numbers by using score and 

accuracy function 

Definition 5: Let 𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹, be a neutrosophic quadruple number,  then  

(iii) Score function:  �̃�(NQ) = 
14 (𝑎 + (𝑎𝑇+2𝑏𝐼+𝑐𝐹3 )) 

(iv) Accuracy function:   �̃�(NQ) = 
14 {𝑥 − 𝑎𝑇(1 + 𝑏𝐼) − 𝑐𝐹(1 + 𝑏𝐼)}. 

Definition 6: Let NQ1 = 𝑎1 + 𝑏1𝑇 + 𝑐1𝐼 + 𝑑1𝐹 and NQ2 = 𝑎2 + 𝑏2𝑇 + 𝑐2𝐼 + 𝑑2𝐹 be two 

neutrosophic quadruple numbers. Then we have either of the following: 

d) If �̃�(𝑁𝑄1) <  �̃�(𝑁𝑄2), then 𝑁𝑄1 <  𝑁𝑄2. 
e) If �̃�(𝑁𝑄1) >  �̃�(𝑁𝑄2), then 𝑁𝑄1 >  𝑁𝑄2. 
f) If �̃�(𝑁𝑄1) =  �̃�(𝑁𝑄2), then 

4) If  �̃�(NQ1) <  �̃�(NQ2), then 𝑁𝑄1 <  𝑁𝑄2. 
5) If  �̃�(NQ1) >  �̃�(NQ2), then 𝑁𝑄 >  𝑁𝑄2. 
6) If  �̃�(NQ1) =  �̃�(NQ2), then 𝑁𝑄1 =  𝑁𝑄2. 

Note:    i) We will use the notation NQ = <x, aT, bI, cF> instead of NQ = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹. 

 ii) The values x, a, b, c are real numbers as the problem deals with real life. 

Example 7: Let A = <100, 12, 4, 1.8> and B = <56, 3.2, 6, 2.4> be two neutrosophic quadruple 
numbers, then  

 �̃�(𝐴) = 26.82 and �̃�(𝐵) = 15.47, so �̃�(𝐴) <  �̃�(𝐵). 
That is,  A < B. 

 In the forthcoming section we define algorithm for finding Initial Basic feasible solution and Optimal 

solution by using stepping stone method.  
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Mathematical Formulation of neutrosophic quadruple transportation 

problem. 

The Transportation problem is a special type of Linear Programming problem in which the purpose 
is to minimize the cost of transporting goods from ‘m’ sources to the demand of ‘n’ destinations. The origin 
of a TP (Transportation Problem) is the point from where the goods are despatched. The destination of a TP 
is locality where the goods are transported. The unit transportation cost is the cost of sending one unit of 
goods from the origin to the destination. The objective of the problem is to determine the quantity of goods to 
be shifted from each source to each destination so as to sustain the supply and demand requirements at the 
lowest transportation cost. Unlike simplex method, this needs a significant method of solution. 

In this paper, transportation problem in neutrosophic quadruple number coefficients are discussed. 
The Major objective to define this problem is, in real life, there are many factors affecting transportation cost 
like the demand, supply, etc., To deal with the uncertainties in the transportation cost, this problem is 
developed.  Let us suppose there are Si(i=1,2,....m), sources and Dj(j=1,2,...n) destinations. Let Cij be the 
cost of transpotring one unit product from ith source to jth destination. Assume that the cost of shifting one 
unit product from ith source is directly proportional  to the  jth destination. Let Xij be the number of units 
transferred from ith source to jth destination.  The problem is to determine transportation cost so that ∑ ∑ 𝑋𝑖𝑗𝐶𝑖𝑗𝑛𝑗=1𝑚𝑖=1  is minimum. The total supply is equal to the total demand for a balanced transportation

problem. 
The tabular representation of a transportation problem is given below. 

Source/origin Destination Capacity 
D1 D2 ... .... Dj ..... Dn 

S1 C11(X11) C12(X12) ... ... C1j(X1j) .... C1n(X1n) a1 
S2 C21(X21) C22(X22) ... ... C2j(X2j) .... C2n(X2n) a2 
... 
Si Ci1(Xi1) Ci2(Xi2) ... ... Cij(Xij) .... Cin(Xin) ai 
... 

Sm Cm1(Xm1) Cm2(Xm2) ... ... Cmj(Xmj) .... Cmn(Xmn) am 
Product 
Requirement 

b1 b2 bj bn 

Here, 
 Total supply = total demand.(i.e) ∑ 𝑎𝑖𝑚𝑖=1 = ∑ 𝑏𝑗𝑛𝑗=1 , where

 Capacity constraint: ∑ 𝑥𝑖𝑗𝑚𝑖=1 = 𝑎𝑖 .
 Product requirement constraint: ∑ 𝑥𝑖𝑗 = 𝑏𝑗𝑛𝑖=1 . 

 Both supply and demand must satisfy the non-negativity conditions.
 The cost cij are assumed to be neutosophic quaduple numbers so as to meet the uncertainity.
 The solution should satisfy the rim conditions.
 If the number of positive allocations must be  m + n - 1, where

(m – number of rows, n – number of columns.)
then TP has non-degenerate solution. Otherwise it has a degenerate solution.

 The method of finding Initial basic feasible solution and optimal solution is given below.

Procedure for finding Initial Basic feasible solution and optimal solution 
for neutrosophic quadruple transportation problem. 

Method 1: (Initial Basic feasible solution) 
Initial basic feasible solution is achived by Vogel’s  approximation procdure. In this 

method, the costs are under uncertainity whereas the demand and supply are known. 
Step 1:  Convert the Neutosophic quadruple transportation problem into a classical crisp transportation 
problem by using the score function and check whether the TP is balanced. 
Step 2: Determine  the smallest and the next smallest cost in each row and column, to find the penalty for 
each row and column. If there are two smallest costs, then the penalty value is zero. 
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Step 3: Pick the highest penalty value and make the allocation in the row/column where the corresponding 
cell having the minimum cost. 
Step 4: If  there is a tie in choosing the penalty or allocating, then pick random penalty or cost. 
Step 5: After allocating, delete the row/column. Repeat this procedure until a single cell with same demand 
and supply values, is obtained. 
Step 6: Calculate the transportation cost, which is the Initial basic feasible solution. 

 

Method 2: 
In this method, the costs are known and fixed, whereas the demand and supply values are under 

uncertainity. The Initial basic feasible solution is obtained by VAM. The operations on demand and supply 
are established using definition [4] and definiton [6].  

Procedure for optimal solution to NQTP: 
 The optimal solution is obtained by using stepping stone method. This method is applied for 
checking whether the IBFS obtained in Method 1 and Method 2 are optimal. It uses the non-basic variables to 
find the optimal solution.  
Step 1: Find IBFS solution and check whether it has m+n-1 positive allocations. 
Step 2: Select any cell which is not allocated and form a closed loop, which starts and ends with the occupied 
cell.  
Step 3: To form the closed loop, the rules are 

 Horizontal movements and vertical movements are only allowed. 
 There must be only two occupied cells for any side of the loop.  
 The corners of the closed loop should be of allocated cells.  

Step 4: After creating the loop, starting with ‘+’, allot alternatively ‘+’ and ‘-‘ to all the corners of the closed 
loop. 
Step 5: For all the unoccupied cells, create the closed loop. Add all the transportation cost in the loop to get 
the Net change in terms of cost. 
Step 6: If all the net cost change is positive or equal to zero, then Optimal solution has been obtained.  
Step 7: If not, select the most negative net cost change and repeat step 4. The negative net cost change 
denotes that the optimal cost can be reduced. 
Step 8: Now, in the closed loop select the minimum allocated value and add & subtrac it to the remaining 
corners of the loops marked with ‘+’ & ‘-‘  respectively. 
Step 9: The demand and supply are now balanced. Repeat  step 3 – step 6. 
Step 10: Compute the Optimal transportation cost. 
Step 11: For Method I, the optimal solution is verified with MS – Excel solver.  

 

Illustrative example 1:  
A company needs to supply sugarcane juice from three industries E1, E2, E3  to four departmental stores F1, 
F2, F3, F4. The possible number of juice packets that can be transported and the requirements of the four 
departmental store are given in table. Determine the minimum transportation cost. 

 
 F1 F2 F3 F4 Supply 

E1 <180,1.8,1,4> <280,1.2,6,3> <130,1.2,16,3> <290,14,24,12> 19 

E2 <190,2.8,4,3.6> <240,18,12,1.6> <120,64,36,4> <270,24,3,6> 21 

E3 < 250,4.5,7,7.5 > < 110,15,6,1.2 > < 150,4,12,12 > < 190,6,16,7 > 10 

Demand 11 15 14 10  

Table 1 

 
Solution: Given problem is a balanced neutrosopic quaduple transportation problem, Now, by using Score 
function, the neutrosophic quaduple numbers are converted into crisp numbers.  If the score value is a 
decimal, then it can be round up to the nearest integer. In Table 2, the crisp values are given. In the next 
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table, the penalties for each row and each column are given. By uisng VAM, let us choose the highest penalty 
(given in bracket), which corresponds to column 2. Allot the minimum supply  value 10 to the cell (3,2) and 
update the remaining demand units(Table 4). Contiuing this procedure until a single cell with equal demand 
units and supply units left out, which is given in table . The resulting solution is called as Initial Basic 
feasible solution for the given neutrosopic quaduple transportation problem. 

F1 F2 F3 F4 Supply 

E1 46 71 35 77 19 

E2 49 63 39 71 21 

E3 64 30 40 50 10 

Demand 11 15 14 10 
Table 2

F1 F2 F3 F4 Supply 
Row 
penalty 

E1 46 71 35 77 19 11 

E2 49 63 39 71 21 10 

E3 64 30 40 50 10 10 

Demand 11 15 14 10 

Column 
penalty 

3 (33) 4 21 

Table 3 

F1 F2 F3 F4 Supply 
Row 

penalty 

E1 46 71 35 77 19 11 

E2 49 63 39 71 21 10 

E3 64 30𝟏𝟎 40 50 10 10 

Demand 11 15 14 10 

Column 
penalty 

3 (33) 4 21 

Table 4 

F1 F2 F3 F4 Supply 
Row 

penalty 

E1 46 71 35𝟏𝟒 77 19 (11) 

E2 49 63 39 71 21 10 

Demand 11 5 14 10 

Column 
penalty 

3 8 4 6 

Table 5 

F1 F2 F4 Supply 
Row 

penalty 

E1 46𝟓 71 77 5 (25) 

E2 49 63 71 21 14 
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Demand 11 5 10 

Column 
penalty 

3 8 6 

Table 6 

Proceeding like this, the Initial basic feasible solution is given by the table, 

F1 F2 F3 F4 Supply Row penalty 

E1 46𝟓 71 35𝟏𝟒 77 19 11|11|25|-|-|-| 

E2 49𝟔 63𝟓 39 71𝟏𝟎 21 
10|10|14|14|14

|49 

E3 64 30𝟏𝟎 40 50 10 10|-|-|-|-|-| 

Demand 11 15 14 10 

Column 
penalty 

3 
3 
3 
49 
49 
49 

33 
8 
8 

63 
63 
- 

4 
4 
- 
- 
- 
- 

21 
6 
6 
71 
- 
- 

Table 7 

Total number of allocated cells = m+n-1 = 6. 
This solution is non-degenerate. 
Minimum transportation cost =(46*5)+(35*14)+(63*5)+(71*10)+(49*6)+(30*10) = 2339. 

The optimal solution is obtained by stepping stone method which is given in algorithm. 

The allocation table is  

F1 F2 F3 F4 Supply 

E1 46𝟓 71 35𝟏𝟒 77 19 

E2 49𝟔 63𝟓 39 71𝟏𝟎 21 

E3 64 30𝟏𝟎 40 50 10 

Demand 11 15 14 10 

By step 2, draw closed loop for unoccupied cells, with the corners as allocated cells and calculate 
the net change of cost. 

For example, for the cell a22, the closed loop is a22-a11-a21-a22 and the cost is 11.   Similarly, the 
closed loops for other unallocated cells are created. 

a14: a14-a11-a21-a24 = 77-46+49-71 = 9 

a23: a23-a21-a11-a13 = 39-49+46-35 = 1 

a31: a31-a32-a22-a21 = 64-30+63-49 = 48 

a33: a33-a32-a22-a21-a11-a13 = 40-30+63-49+46-35 = 35 

a34: a34-a32-a22-a24 = 50-30+63-71 = 12. 

Here, all the net cost changes are positive. So the optimal solution has been arrived, with the 

allocation a11 → 5, a13 → 14, a21 → 6, a22 → 5, a24 → 10, a32 → 10. 
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Therefore, the minimum transportation cost = Rs. 2339. 

Comparison with excel solver: 

Step 1: The problem is given into MS – excel. 

  

Step 2: Using the “sum” function, the “Total In” and ”Total Out” values are computed. This calculates the total number 
of sugarcane packet juices shipped from each industry to each departmental store. 
 

 
 
Step 3: Total cost is found by using “Sumproduct” function. In solver, “Simplex LP” is chosen so that the global optimal 
solution will be obtained. “GRG nonlinear” is utilized to find local optimal solution. 

 
 

Step 4: After entering the solver parameters, we get, 

 
 
Step 5: The solver result is displayed in a box. 

 
 
Step 6: The transportation cost is calculated now, which is same as the cost that we havw computed. So, the 
optimal solution is the minimum transportation cost.  

 
Therefore, Optimal solution calculated by stepping stone method is same as the MS – Excel solver solution. 
 

Illustrative example 2:  
An agency exports regular icecream and premium Icecream in three flavours X,Y,Z to four states A,B,C,D. 
As the season is winter, the agency could not predict the supply units. There arises a uncertainity due to 
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environmental factors.So, this problem can be formed as NQTP to deal with the issue. The costs are given in 
crisp values whereas the demand & supply values are taken as NQ numbers.  
 
Solution: 
 

 A B C D Supply 

X 60 40 45 55 < 82,7.8,8,12.2 > 

Y 70 55 65 60 < 86,30,4.2,10 > 

Z 80 60 55 75 < 114,18.6,8.2,4.4> 

Demand 
< 60,4.8,7,32> 

< 80,32,6.6,4> 
< 46,20,5,10.2> 

< 80,38,3.6,12> 
 

Table 1 
The row penalty and column penalty are computed. 

 A B C D Supply 
Row 

penalty 

X 60 40<82,7.8,8,12.2> 45 55 < 82,7.8,8,12.2 > 5 

Y 70 55 65 60 < 86,30,4.2,10 > 5 

Z 80 60 55 75 < 114,18.6,8.2,4.4 > 5 

Demand < 60,4.8,7,32 > < 80,32,6.6,4 > < 46,20,5,10.2 > < 80,38,3.6,12 >   

Column 
penalty 

10 (15) 10 5  
 

Table 2 
 

The minimum value in the column is 40. To find the minimum value between supply & demand, score 
function is used. The crisp value for the supply value < 82,7.8,8,12.2 > is 24 and for demand value   < 80,32,6.6,4 > is 25. Allocate the minimum value to he cell a12 and proceed tothe next step. 
 

 A B C D Supply 
Row 

penalty 

Y 70 55 65 60<80,38,3.6,12> < 86,30,4.2,10 > 5 

Z 80 60 55 75 < 114,18.6,8.2,4.4 > 5 

Deman
d 

< 60,4.8,7,32> 
< −2,24.2, −1.4, −8.2> 

< 46,20,5,10.2 > < 80,38,3.6,12 >  
 

Column 
penalty 

10 5 10 (15)  
 

     Table 3 

 A B C Supply Row penalty 

Y 70<6,−8,0.6,−2> 55 65 < 6,−8,0.6,−2 > 
10 

Z 
80 60 55 < 114,18.6,8.2,4.4 > 

5 

Demand < 60,4.8,7,32 > 
< −2,24.2,−1.4,−8.2> 

< 46,20,5,10.2 >  
 

Column 
penalty 

(10) 5 10  
 

     Table 4 

The final allocated table is 
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A B C D Supply 

X 60 40<82,7.8,8,12.2> 45 55 < 82,7.8,8,12.2 > 

Y 70<6,−8,0.6,−2> 55 65 60<80,38,3.6,12> < 86,30,4.2,10 > 

Z 80<32,4.8,3.2,0.6> 60<−2,24.2,−1.4,−8.2>55<46,20,5,10.2> 75 < 114,18.6,8.2,4.4> 

Demand 
< 60,4.8,7,32> 

< 80,32,6.6,4> 
< 46,20,5,10.2> 

< 80,38,3.6,12> 
Table 5 

Total numbe of allocated cells = m+n-1 = 6. 
This solution is non-degenerate. 
Minimum transportation cost = (40*< 82,7.8,8,12.2 >) + (70*< 6,−8,0.6, −2 >) + 

(60*< 6,−8,0.6, −2 >) + (80*< 32,4.8,3.2,0.6 >) + (60*< 32,4.8,3.2,0.6 >) + (55*< 32,4.8,3.2,0.6 >) 

= < 13470,4968,1025,1617 >  

Conclusions 

In this article, transportation problem is dealt with neutrosophic quadruple numbers. In Method 1 
costs are considered in neutrosophic quadruple numbers, whereas in Method 2, the demand and supply values 
are given in neutrosophic quadruple numbers to meet the indeterminacy with uncertainty. The optimal 

solution in Method 1 is compared with MS – Excel solver to find whether the optimal solution is local or 
global.  

Future Research Directions 
In future, this research would be built up with computer coding. Also, neutrosophic 

quadruple number can be put into all methodologies in resource management systems, as many 

indeterminacy factors are there in any business. For method 2, comparison of optimal solution with excel 

solver will be done as a future work.
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Chapter Seven 

To Solve Assignment Problem by Centroid Method in 
Neutrosophic Environment 
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ABSTRACT 

     The motivation of the present work is to solve an assignment problem in an uncertain atmosphere where 
each entry of the cost matrix is a single valued triangular neutrosophic number (SVTrN-number). Using the 
co-ordinates of centroids of three triangles in the geometrical configuration of an SVTrN-number, a 
parameter (graded in [0,1]) based linear ranking function is newly constructed for ranking of SVTrN-
numbers. Adopting this ranking function, an assignment problem is solved by developing an efficient 
solution algorithm. Here,  decision maker (i.e., manager of a farm house, managemet supervisor of an 
industry, etc) will have a flexibility to optimise a problem with respect to the different grades of a parameter 
(This grade may be refered as a hiden state of optimisation problem to be solved as applicable in various 
situation). This is the key faeture of this study and such approach is essential in the present socio-economic 
scenario. Finally, a real life problem is demonstrated and solved by practicing the newly developed 
algorithm. 

Keywords :  Neutrosophic set; Single valued triangular neutrosophic number; Ranking function; Assignment 
problem. 

INTRODUCTION 

     The fuzzy set and intuitionistic fuzzy set theory were adopted effectively from their initiation to solve 
optimization problems at vague and uncertain situation in our daily life activities. The intuitionistic fuzzy set 
theory introduced by Atanassov [3] deals the degree of belongingness and the degree of non-belongingness 
of an object to a set simultaneously. Thus it is the more generalisation concept than fuzzy set theory which 
can provide only the degree of belongingness of an object to a set. Both the theories can only handle 
incomplete information not indeterminate. To access both incomplete and indeterminate information, 
Smarandache [15,16] generalised the intuitionistic fuzzy set to neutrosophic set (NS) where each proposition 
is estimated by three independent parameters namely truth-membership value (𝑇) , indeterminacy-
membership value (𝐼)  and falsity-membership value (𝐹)  with 𝑇, 𝐼, 𝐹 ∈]−0, 1+[  and  −0 ≤ sup𝑇 + sup𝐼 +
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sup𝐹 ≤ 3+. Smarandache used to practice the standard or nonstandard subsets of ]−0, 1+[ in philosophical 
ground. So, to incorporate this concept in real life scenario, Wang et al. [19] brought the concept of single 
valued neutrosophic set which takes the value from real standard subset of [0,1] only. Bera and Mahapatra 
[4-6] have developed some optimisation techniques in neutrosophic view and have applied these in real life. 
Recently, neutrosophic theory are being practiced sucessfully for decision making [8,13,14,17,18] in a 
progressive way. 
      The notion of fuzzy number, intuitionistic fuzzy number and finally neutrosophic number as well as their 
ranking plays a key role to develop the multi-attributive decision making and optimization theory in 
uncertain environment. So, researchers adopted several ranking techniques in fuzzy and intuitionistic fuzzy 
environment in different time. Lin and Wen [10] solved an assignment problem with fuzzy interval number 
costs. Chen [7] proposed a fuzzy assignment model and proved some related theorems. Mukherjee and Basu 
[11] took an attempt to solve fuzzy assignment problem by transforming it into a crisp assignment problem in 
linear programming form on the basis of Yager’s ranking method [20]. Angellov [2] studied the principles of 
fuzzy optimization problems critically and proposed intuitionistic fuzzy programming. Some different 
ranking techniques [ 1,9,12,21] of fuzzy and intuitionistic fuzzy number are reported in this literature.   
      Decision making is a process of solving the problem and achieving goals under asset of some constraints 
but it is very difficult in some cases due to incomplete and imprecise information. The hiden characters in 
several cases (e.g., degree of road condition for driving a bus to get a profit, the different maintenance costs 
of a bus to have a maximum profit, degree of expenditure of a business farm in a financial year to meet a 
maximum profit, awareness level of nearer society to attain the smooth run of a clinical pharmacy etc) are not 
considered by decision makers. Then the result of decision making may not be fruitful as a whole. In this 
study, we have tried to emphasize all these in decision making process to have a fair output. Decision maker 
may apply the method innovated here in different atmosphere successfully. Thus the asset of constraints 
provided and hiden criterions    are allowed together to reach a conclusion and it is the novelty of this work.  
     In the present work, the basic goal is to solve an assignment problem in an uncertain atmosphere where 
each entry of the cost matrix is an SVTrN-number. For that, a parameter (graded in [0,1]) based linear 
ranking function is constructed (for the first time) by use of centroids of three triangles in the geometrical 
configuration of an SVTrN-number. The parameter of ranking function and its grade are respectively refered 
as a hiden criteria and the degree of hiden criteria of a problem. The concept of centroid based ranking 
function used here is a completely new idea. Adopting this ranking function, an efficient solution algorithm is 
developed. Here, decision makers (i.e., manager of a farm house, managemet supervisor of an industry, etc) 
will have a flexibility to optimise a problem with respect to the different grades of a hiden state of 
optimisation problem as applicable in various situations. Such approach is essential in the present socio-
economic scenario. The efficiency of newly developed algorithm is examined by solving a real life problem.  
     The contents are organized as follows. Some useful definitions and results related to neutrosophic set, 
fuzzy number are placed in Section 2. The concept of SVTrN-number, its structural characteristics and the 
ranking of two or more SVTrN-numbers are introduced in Section 3. Section 4 deals with the concept of 
assignment problem in neutrosophic environment and it solution approach. In Section 5, the concept is 
demonstrated to solve a real problem. Finally, the present study is briefly drawn in Section 6. 

 
 

BACKGROUND 
We shall now remember some definitions related to fuzzy set and neutrosophic set for completeness. 

   
Definition 1. [15]  Let 𝑼 be a space of points and 𝒖 ∈ 𝑼 be an arbitrary element. Then an NS 𝑩 over 𝑼 is 
defined by a triplet namely truth-membership function 𝑻𝑩, an indeterminacy-membership function 𝑰𝑩 and a 
falsity-membership function 𝑭𝑩  which are real standard or non-standard subsets of ]−𝟎, 𝟏+[  i.e., 𝑻𝑩, 𝑰𝑩, 𝑭𝑩: 𝑼 →]−𝟎, 𝟏+[. Thus an NS on 𝑼 is defined as : 𝑩 = {< 𝒖, 𝑻𝑩(𝒖), 𝑰𝑩(𝒖), 𝑭𝑩(𝒖) >: 𝒖 ∈ 𝑼} so that  −𝟎 ≤ 𝐬𝐮𝐩𝑻𝑩(𝒖) + 𝐬𝐮𝐩𝑰𝑩(𝒖) + 𝐬𝐮𝐩𝑭𝑩(𝒖) ≤ 𝟑+. Here 𝟏+ = 𝟏 + 𝜺, where 1 is its standard part and 𝜺 is its 
non-standard part. Similarly  −𝟎 = 𝟎 − 𝜺, where 0 is its standard part and 𝜺 is its non-standard part. The non-
standard subset of ]−𝟎, 𝟏+[ is basically practiced in philosophical ground but it is difficult to adopt in real 
field. So, the standard subset of ]−𝟎, 𝟏+[ i.e., [0,1] is used in real neutrosophic environment. 

 
Definition 2. [19]  A single valued neutrosophic set 𝑩 over a universe 𝑼 is a special type of NS where 



Editors: Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 

              

 

86 

 

𝑻𝑩(𝒖), 𝑰𝑩(𝒖) and 𝑭𝑩(𝒖) are real standard elements of [𝟎, 𝟏] for 𝒖 ∈ 𝑼. Thus a single valued neutrosophic 
set 𝑩  is defined as : 𝑩 = {< 𝒖,𝑻𝑩(𝒖), 𝑰𝑩(𝒖), 𝑭𝑩(𝒖) >: 𝒖 ∈ 𝑼}  with 𝑻𝑩(𝒖), 𝑰𝑩(𝒖), 𝑭𝑩(𝒖) ∈ [𝟎, 𝟏]}  and 𝟎 ≤ 𝐬𝐮𝐩𝑻𝑩(𝒖) + 𝐬𝐮𝐩𝑰𝑩(𝒖) + 𝐬𝐮𝐩𝑭𝑩(𝒖) ≤ 𝟑. 

 
Definition 3. [1]  A trapezoidal fuzzy number is expressed as 𝑨 = (𝒙𝟎, 𝒚𝟎, 𝝈, 𝜼) where [𝒙𝟎, 𝒚𝟎] is interval 
defuzzifier and 𝝈(> 𝟎), 𝜼(> 𝟎) are respectively called left fuzziness, right fuzziness. The support of 𝑨 is (𝒙𝟎 − 𝝈, 𝒚𝟎 + 𝜼) and the membership function is given as :  

 𝐴(𝑥) = {  
  1𝜎 (𝑥 − 𝑥0 + 𝜎), 𝑥0 − 𝜎 ≤ 𝑥 ≤ 𝑥0,1,                                 𝑥 ∈ [𝑥0, 𝑦0],1𝜂 (𝑦0 − 𝑥 + 𝜂), 𝑦0 ≤ 𝑥 ≤ 𝑦0 + 𝜂,0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

Thus 𝐴  consists of a pair (𝐴𝐿 , 𝐴𝑅)  of functions so that 𝐴𝐿(𝑥) = 1𝜎 (𝑥 − 𝑥0 + 𝜎)  is bounded monotone 

increasing left continuous function and 𝐴𝑅(𝑥) = 1𝜂 (𝑦0 − 𝑥 + 𝜂)  is bounded monotone decreasing right 

continuous function. 

 

Single valued triangular neutrosophic number 
 
Here, an SVTrN-number is constructed in a different way with the study of its characteristics. Then a ranking 
function is defined to compare such numbers. 

 
Definition 4.  A single valued neutrosophic set �̃�  of the form 〈[𝒑𝟏, 𝒒𝟏, 𝝇𝟏, 𝜹𝟏], [𝒑𝟐, 𝒒𝟐, 𝝇𝟐, 𝜹𝟐] , [𝒑𝟑, 𝒒𝟑, 𝝇𝟑 ,𝜹𝟑]〉 defined on the set of real numbers 𝑹 where 𝝇𝒊(> 𝟎), 𝜹𝒊(> 𝟎) are respectively called left 
spreads, right spreads and [𝒑𝒊, 𝒒𝒊] are the modal intervals of truth-membership, indeterminacy-membership 
and the falsity-membership functions for 𝒊 = 𝟏, 𝟐, 𝟑, respectively in �̃� is called a single valued neutrosophic 
number (SVN-number). The truth-membership, indeterminacy-membership and the falsity-membership 
functions of �̃� are given as follows :  

 𝑇�̃�(𝑥) = {  
  1𝜍1 (𝑥 − 𝑝1 + 𝜍1),    𝑝1 − 𝜍1 ≤ 𝑥 ≤ 𝑝1 ,1,                                           𝑥 ∈ [𝑝1, 𝑞1],1𝛿1 (𝑞1 − 𝑥 + 𝛿1),    𝑞1 ≤ 𝑥 ≤ 𝑞1 + 𝛿1,0,                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

 𝐼�̃�(𝑥) = {  
  1𝜍2 (𝑝2 − 𝑥),     𝑝2 − 𝜍2 ≤ 𝑥 ≤ 𝑝2,0,                                     𝑥 ∈ [𝑝2, 𝑞2],1𝛿2 (𝑥 − 𝑞2),     𝑞2 ≤ 𝑥 ≤ 𝑞2 + 𝛿2,1,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

                               𝐹�̃�(𝑥) = {  
  1𝜍3 (𝑝3 − 𝑥),    𝑝3 − 𝜍3 ≤ 𝑥 ≤ 𝑝3,0,                                    𝑥 ∈ [𝑝3, 𝑞3],1𝛿3 (𝑥 − 𝑞3),     𝑞3 ≤ 𝑥 ≤ 𝑞3 + 𝛿3,1,                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

 

Thus an SVN-number �̃�  consists of three pairs (𝑇�̃�𝑙 , 𝑇�̃�𝑢), (𝐼�̃�𝑙 , 𝐼�̃�𝑢 ), (𝐹�̃�𝑙 , 𝐹�̃�𝑢)  of functions satisfying the 
following requirements. 

(i) 𝑇�̃�𝑙 (𝑥) = 1𝜍1 (𝑥 − 𝑝1 + 𝜍1), 𝐼�̃�𝑢 (𝑥) = 1𝛿2 (𝑥 − 𝑞2), 𝐹�̃�𝑢(𝑥) = 1𝛿3 (𝑥 − 𝑞3)  are bounded monotone increasing 

continuous function. 

(ii) 𝑇�̃�𝑢(𝑥) = 1𝛿1 (𝑞1 − 𝑥 + 𝛿1), 𝐼�̃�𝑙 (𝑥) = 1𝜍2 (𝑝2 − 𝑥), 𝐹�̃�𝑙 (𝑥) = 1𝜍3 (𝑝3 − 𝑥) are bounded monotone decreasing 

continuous function. 
 

Definition 5  If three modal intervals in an SVN-number �̃� are replaced by a point, then �̃� is called an 
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SVTrN-number. Thus �̃� = 〈[𝒄𝟎, 𝝈𝟏, 𝜼𝟏], [𝒄𝟎, 𝝈𝟐, 𝜼𝟐], [𝒄𝟎, 𝝈𝟑, 𝜼𝟑]〉 is an SVTrN-number. 
Let 𝑝 = 〈[𝑝, 𝜍1, 𝜂1], [𝑝, 𝜍2, 𝜂2], [𝑝, 𝜍3, 𝜂3]〉 and �̃� = 〈[𝑞, 𝜉1, 𝛿1], [𝑞, 𝜉2, 𝛿2], [𝑞, 𝜉3, 𝛿3]〉 be two SVTrN-numbers. 
Then for any real number 𝜆, 
 (i) Addition :  
   𝑝 + �̃� = 〈[𝑝 + 𝑞, 𝜍1 + 𝜉1, 𝜂1 + 𝛿1], [𝑝 + 𝑞, 𝜍2 + 𝜉2, 𝜂2 + 𝛿2], [𝑝 + 𝑞, 𝜍3 + 𝜉3, 𝜂3 + 𝛿3]〉. 
 (ii) Scalar multiplication : 
     𝜆𝑝 = 〈([𝜆𝑝, 𝜆𝜍1, 𝜆𝜂1], [𝜆𝑝, 𝜆𝜍2, 𝜆𝜂2], [𝜆𝑝, 𝜆𝜍3, 𝜆𝜂3]〉   for 𝜆 > 0. 
    𝜆𝑝 = 〈[𝜆𝑝, −𝜆𝜂1, −𝜆𝜍1], [𝜆𝑝, −𝜆𝜂2, −𝜆𝜍2], [𝜆𝑝, −𝜆𝜂3, −𝜆𝜍3]〉   for 𝜆 < 0. 

 
Graphical mode 6  By Definition 5, we consider different support (i.e. bases of triangles formed ) for truth-
membership, indeterminacy-membership and falsity-membership functions.  Thus, the supports and heights 
are allowed together to differ the value of truth-membership, indeterminacy-membership and falsity-
membership functions in the present study. Then decision maker has a scope of flexibility to choose and 
compare different SVTrN-numbers in their study. The fact is shown by the graphical presentation  (Figure : 
SVTrN-number).  
 

Definition 7  The zero SVTrN-number is denoted by �̃� and is defined as :  �̃� = 〈[𝟎, 𝟎, 𝟎], [𝟎, 𝟎, 𝟎], [𝟎, 𝟎, 𝟎]〉. 
 

Ranking function 8 The co-ordinate of different points corresponding to an SVTrN-number �̃� = 〈[𝑎, 𝜎1, 𝜂1], [𝑎, 𝜎2, 𝜂2], [𝑎, 𝜎3, 𝜂3]〉  in the graphical presentation are 𝐽(𝑎 − 𝜎1, 0), 𝐸(𝑎, 1), 𝑃(𝑎 + 𝜂1, 0)  for truth 
membership function, 𝐷(𝑎 − 𝜎2, 0),𝑀(𝑎, 0), 𝑆(𝑎 + 𝜂2, 0)  for indeterminacy membership function and 𝐶(𝑎 − 𝜎3, 0),𝑀(𝑎, 0), 𝐺(𝑎 + 𝜂3, 0)  for falsity membership function. Divide each triangle along the 
perpendicular line 𝐸𝑀. 
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                                        Figure :  SVTrN-number 

 
     Thus we get another two triangles namely 𝐽𝐸𝑀 and 𝑃𝐸𝑀 corresponding to truth membership function. 

The centroid of triangles 𝐽𝐸𝑀 and 𝑃𝐸𝑀 are 𝐺1 = (𝑎0 − 𝜎13 , 13) and 𝐺2 = (𝑎0 + 𝜂13 , 13) respectively. The center 

of the centroids 𝐺1 and 𝐺2 is the midpoint i.e., (6𝑎0−𝜎1+𝜂16 , 13). Define the value of �̃� corresponding to truth 

membership function as 𝑉𝑇(�̃�) = 13 (6𝑎0−𝜎1+𝜂16 ). The centroids are obviously balancing points of triangles 𝐽𝐸𝑀 and 𝑃𝐸𝑀 respectively. But their center is chosen to construct a ranking function as it is more balancing 
point for these triangles. 
     Corresponding to indeterminacy membership function, we get two triangles 𝐷𝑀𝐸 and 𝑆𝑀𝐸. The centroid 

of triangles 𝐷𝑀𝐸  and 𝑆𝑀𝐸  are 𝐺3 = (𝑎0 − 𝜎23 , 23)  and 𝐺4 = (𝑎0 + 𝜂23 , 23)  respectively. Their center is 
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(6𝑎0−𝜎2+𝜂26 , 23) . Define the value of �̃�  corresponding to indeterminacy membership function as 𝑉𝐼(�̃�) =23 (6𝑎0−𝜎2+𝜂26 ). 
     Finally, the triangle for falsity membership function is divided into two triangles 𝐶𝑀𝐸 and 𝐺𝑀𝐸. Their 

centroid are 𝐺5 = (𝑎0 − 𝜎33 , 23) and 𝐺6 = (𝑎0 + 𝜂33 , 23) respectively. The center of 𝐺5 and 𝐺6 is (6𝑎0−𝜎3+𝜂36 , 23). 
Define the value of �̃� corresponding to falsity membership function as 𝑉𝐹(�̃�) = 23 (6𝑎0−𝜎3+𝜂36 ). 
     For an arbitrary parameter 𝜌 graded in [0,1], the 𝜌 - weighted value of an SVTrN- number �̃� is denoted by 𝑉𝜌(�̃�) and is defined as :                𝑉𝜌(�̃�) = 𝑉𝑇(�̃�)𝜌𝑛 + 𝑉𝐼(�̃�)(1 − 𝜌𝑛) + 𝑉𝐹(�̃�)(1 − 𝜌𝑛),   𝑛  being any natural number = 118 [(6𝑎0 − 𝜎1 + 𝜂1)𝜌𝑛 + 2{(6𝑎0 − 𝜎2 + 𝜂2) + (6𝑎0 − 𝜎3 + 𝜂3)}(1 − 𝜌𝑛)]. 
 

Proposition 9  The 𝝆 - weighted value obeys the following disciplines for two SVTrN-numbers �̃�, �̃�.  

 (i)  𝑉𝜌(�̃� ± �̃�) = 𝑉𝜌(�̃�) ± 𝑉𝜌(�̃�). 
 (ii) 𝑉𝜌(𝜇�̃�) = 𝜇𝑉𝜌(�̃�), 𝜇 being any real number.  

 (iii) 𝑉𝜌(�̃� − �̃�) = 𝑉𝜌(0̃). 
 (iv) 𝑉𝜌(�̃�)  is monotone increasing or decreasing or constant according as 𝑉𝑇(�̃�) >    𝑉𝐼(�̃�) +   𝑉𝐹(�̃�)  or       𝑉𝑇(�̃�) < 𝑉𝐼(�̃�) +            𝑉𝐹(�̃�) or 𝑉𝑇(�̃�) = 𝑉𝐼(�̃�) + 𝑉𝐹(�̃�) respectively. 
 

 
Definition 10  Let 𝑺𝑽𝑻𝒓𝑵(𝑹) be the set of all SVTrN-numbers defined over 𝑹. For 𝝆 ∈ [𝟎, 𝟏], a mapping 𝕽𝝆: 𝑺𝑽𝑻𝒓𝑵(𝑹) → 𝑹  is called a ranking function and it is defined as : 𝕽𝝆(�̃�) = 𝑽𝝆(�̃�)  for �̃� ∈𝑺𝑽𝑻𝒓𝑵(𝑹). For �̃�, �̃� ∈ 𝑺𝑽𝑻𝒓𝑵(𝑹), their order is defined as follows : 
 
               𝑉𝜌(�̃�) > 𝑉𝜌(�̃�) ⇔ �̃� >ℜ𝜌 �̃�,   𝑉𝜌(�̃�) < 𝑉𝜌(�̃�) ⇔ �̃� <ℜ𝜌 �̃�,   𝑉𝜌(�̃�) = 𝑉𝜌(�̃�) ⇔ �̃� =ℜ𝜌 �̃�. 

 
Corollary 11  Consider two SVTrN-numbers �̃� = 〈[𝒙, 𝝈𝟏, 𝜼𝟏], [𝒙, 𝝈𝟐, 𝜼𝟐], [𝒙, 𝝈𝟑, 𝜼𝟑]  and  �̃� = 〈[𝒑,𝝎𝟏, 𝝃𝟏], [𝒑,𝛚𝟐, 𝝃𝟐], [𝒑,𝝎𝟑, 𝝃𝟑]〉 with 𝒙 = 𝒑. Then �̃� >𝕽𝝆 �̃� iff the followings hold. 

 (i)  (𝜂1 + 𝜔1) > (𝜎1 + 𝜉1) for 𝜌 = 1.  
 (ii) (𝜂2 + 𝜂3) + (𝜔2 + 𝜔3) > (𝜎2 + 𝜎3) + (𝜉2 + 𝜉3) for 𝜌 = 0. 

 
Proof.  (i)          �̃� >ℜ𝜌 �̃� ⇔ 𝑉𝜌(�̃�) > 𝑉𝜌(�̃�) 
                          ⇔ 118 [(6𝑥 − 𝜎1 + 𝜂1)𝜌𝑛 + 2{(6𝑥 − 𝜎2 + 𝜂2) + (6𝑥 − 𝜎3 + 𝜂3)}(1 − 𝜌𝑛)] 
                               > 118 [(6𝑝 − 𝜔1 + 𝜉1)𝜌𝑛 + 2{(6𝑝 − 𝜔2 + 𝜉2) + (6𝑝 − 𝜔3 + 𝜉3)}(1 − 𝜌𝑛)]                            ⇔ (𝜂1 − 𝜎1)𝜌𝑛 + 2{(𝜂2 − 𝜎2) + (𝜂3 − 𝜎3)}(1 − 𝜌𝑛) 

              > (𝜉1 − 𝜔1)𝜌𝑛 + 2{(𝜉2 − 𝜔2) + (𝜉3 − 𝜔3)}(1 − 𝜌𝑛)    (𝑎𝑠        𝑥  =   𝑝) 
                ⇔ (𝜂1 − 𝜎1)𝜌𝑛 > (𝜉1 − 𝜔1)𝜌𝑛               (𝑎𝑠        𝜌  =   1)                                                                            ⇔ 𝜂1 + 𝜔1 > 𝜎1 + 𝜉1               (𝑎𝑠        𝜌  =   1)  
 

    (ii)         �̃� >ℜ𝜌 �̃� ⇔ 𝑉𝜌(�̃�) > 𝑉𝜌(�̃�)                                             ⇔ 118 [(6𝑥 − 𝜎1 + 𝜂1)𝜌𝑛 + 2{(6𝑥 − 𝜎2 + 𝜂2) + (6𝑥 − 𝜎3 + 𝜂3)}(1 − 𝜌𝑛)] 
                     > 118 [(6𝑝 − 𝜔1 + 𝜉1)𝜌𝑛 + 2{(6𝑝 − 𝜔2 + 𝜉2) + (6𝑝 − 𝜔3 + 𝜉3)}(1 − 𝜌𝑛)] 

                         ⇔ (𝜂1 − 𝜎1)𝜌𝑛 + 2{(𝜂2 − 𝜎2) + (𝜂3 − 𝜎3)}(1 − 𝜌𝑛) 
                              > (𝜉1 − 𝜔1)𝜌𝑛 + 2{(𝜉2 − 𝜔2) + (𝜉3 − 𝜔3)}(1 − 𝜌𝑛)   (  𝑎𝑠  𝑥  =   𝑝)  
                                      ⇔ {(𝜂2 − 𝜎2) + (𝜂3 − 𝜎3)}(1 − 𝜌𝑛) > {(𝜉2 −𝜔2) + (𝜉3 − 𝜔3)}(1 − 𝜌𝑛)   (𝑎𝑠  𝜌  =  0)  
                              ⇔ (𝜂2 + 𝜂3) + (𝜔2 + 𝜔3) > (𝜎2 + 𝜎3) + (𝜉2 + 𝜉3)      (𝑎𝑠        𝜌  =   0)  
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Assignment problem in neutrosophic environment 
 
       In classical sense, an assignment problem is defined by an 𝑛 × 𝑛 cost matrix of real numbers as given in 
Table 1 which assigns men to offices, jobs to machines, cars to routes, drivers to cars, problems to different 
research teams etc. It is assumed that one person can perform one job at a time and thus all the jobs will be 
assigned to all available persons and so on in other cases. The problem is optimal if it minimizes the total 
cost or maximizes the profit of performing all the jobs.  
 
                                 Table 1 : Cost matrix for crisp assignment problem 
                                                         JOBS   

 
 

   PERSONS 

 
 
where 𝑐𝑖𝑗  is the cost of assigning the 𝑗𝑡ℎ job to the 𝑖𝑡ℎ person. Mathematically, the problem can be put as : 

 
  Determine 𝑥𝑖𝑗 ≥ 0,   𝑖, 𝑗 = 1,2,⋯ , 𝑛 which  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒   𝑧 = ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝑐𝑖𝑗𝑥𝑖𝑗  

    𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡   ∑  𝑛𝑗=1 𝑥𝑖𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑛 

         𝑎𝑛𝑑   ∑  𝑛𝑖=1 𝑥𝑖𝑗 = 1, 1 ≤ 𝑗 ≤ 𝑛 

     𝑤𝑖𝑡ℎ   𝑥𝑖𝑗 = {1,   𝑖𝑓  𝑡ℎ𝑒  𝑗𝑡ℎ   𝑗𝑜𝑏  𝑖𝑠  𝑎𝑠𝑠𝑖𝑔n𝑒𝑑  𝑡𝑜  𝑡ℎ𝑒  𝑖𝑡ℎ  𝑝𝑒𝑟𝑠𝑜𝑛 0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .  

In the present context, we consider the costs 𝑐𝑖𝑗  as SVTrN-numbers (we write �̃�𝑖𝑗 ), then the total cost �̃� =ℜ𝜌 ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�𝑖𝑗𝑥𝑖𝑗  becomes an SVTrN-number. Then, we can not apply the crisp concept directly to 

optimize it. We shall adopt the following technique for that. 
 
Proposed method 12  The following steps are proposed to solve an assignment problem in neutrosophic 
environment. 
Step 1. From the given problem, form a neutrosophic cost matrix [�̃�𝑖𝑗] (say) whose each entry is SVTrN-

number. 
Step 2. Find out the least cost in each row from 𝜌-weighted value functions using a pre-assigned 𝜌 and 
subtract that least cost from all costs in respective row. Proceed the fact in each column also. 

Step 3. Mark those cells where subtraction results are equivalent to 𝑉𝜌(0̃). 
Step 4. Draw the least number of horizontal and vertical lines to cover all the marked cells of present matrix. 
Step 5. If the number of lines drawn is equal to the order of matrix, optimality arises. Then go to Step 6, 
otherwise go to Step 8. 
Step 6. Specify a number of marked cells equal to the order of matrix such that each column and each row 
contains exactly one marked cell. 
Step 7. Add the costs of neutrosophic cost matrix [�̃�𝑖𝑗] corresponding to the position of specified marked 

cells and calculate the 𝜌-weighted value function of that sum. This gives the optimal numeric value for the 
pre-assigned 𝜌. 
Step 8. Find the smallest SVTrN-number among the uncovered SVTrN-numbers left after drawing the lines 
as in Step 4 using 𝜌-weighted value function for the pre-assigned 𝜌. Subtract it from all uncovered SVTrN-
numbers of the present matrix and add it with the SVTrN-number lying at the intersection of horizontal and 
vertical lines. Keep intact all remaining SVTrN-numbers. 
Step 9. Repeat the steps from 3 to 5.  

   
Remark 13  
1. The algorithm developed here is applied for only the minimization problem. For the maximization problem 
(e.g. the cost matrix is profit matrix), before to go to Step 2, we need to multiply each cost by (-1). Thus the 
maximum profit is equivalent to minimum cost. Our effort will be then find the solution to get the minimum 

   𝐽1   𝐽2   𝐽3   ⋯   𝐽𝑛  𝑃1   𝑐11   𝑐12   𝑐13   ⋯   𝑐1𝑛  𝑃2   𝑐21   𝑐22   𝑐23   ⋯   𝑐2𝑛  ⋯   ⋯   ⋯   ⋯   ⋯   ⋯  𝑃𝑛   𝑐𝑛1   𝑐𝑛2   𝑐𝑛3   ⋯   𝑐𝑛𝑛  
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cost which will attain the maximum profit of the primary problem. 
 
2. If the neutrosophic cost matrix of an assignment problem contains some costs �̃�𝑖𝑗  such that �̃�𝑖𝑗 <ℜ𝜌 0̃  then 

we add a constant SVTrN-number of large value with each cost to make all the costs non-negative. Then we  
proceed Step 2. 
 
3. If the neutrosophic cost matrix is not square i.e., if the number of persons and number of jobs are not 
equal, the problem is then an unbalanced problem. We add a fictitious job or person, whichever has the 
deficiency, with zero SVTrN-number as the respective costs. Then the resulting problem is a balanced one 
and we therefore apply the algorithm. 
 
Definition 14  An SVTrN-number is said to be constant if it is 𝝆 independent after transforming it into a 𝝆-
weighted value function. 

Thus �̃� = 〈[5,3,89], [5,4,1], [5,1,2]〉  is a constant SVTrN-number as 𝑉𝜌(�̃�) = 6.44  (approx) whatever the 

value of 𝜌 may be. 
 

Theorem 15  If a constant SVTrN-number be added to any row and / or any column of the cost matrix of an 
assignment problem in neutrosophic environment, then the optimal solution is unique for both the new 
problem and the original problem.  
 

Proof. Let [�̃�𝑖𝑗] be the cost matrix and suppose two constant SVTrN-numbers 𝜒𝑖 , �̃�𝑗 be added to the 𝑖-th row 

and 𝑗-th column respectively for 𝑖, 𝑗 = 1,⋯ , 𝑛. Let [�̃�′𝑖𝑗] be the new cost matrix where �̃�′𝑖𝑗 = �̃�𝑖𝑗 + 𝜒𝑖 + �̃�𝑗 
and the two objective functions be �̃� =ℜ𝜌 ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�𝑖𝑗𝑥𝑖𝑗, �̃�′ =ℜ𝜌 ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�′𝑖𝑗𝑥𝑖𝑗.  Now,  

            �̃�′ =ℜ𝜌 ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�′𝑖𝑗𝑥𝑖𝑗 
 ⇒ 𝑉𝜌(�̃�′) = 𝑉𝜌(∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�′𝑖𝑗𝑥𝑖𝑗) 
 ⇒ 𝑉𝜌(�̃�′) = ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝑉𝜌(�̃�′𝑖𝑗𝑥𝑖𝑗)     [ 𝑏𝑦  𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  9  ] 
 ⇒ 𝑉𝜌(�̃�′) = ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝑉𝜌[(�̃�𝑖𝑗 + 𝜒𝑖 + �̃�𝑗)𝑥𝑖𝑗] 
 ⇒ 𝑉𝜌(�̃�′) = ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝑉𝜌(�̃�𝑖𝑗𝑥𝑖𝑗) + ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝑉𝜌(𝜒𝑖𝑥𝑖𝑗) + ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝑉𝜌(�̃�𝑗𝑥𝑖𝑗) 
 ⇒ 𝑉𝜌(�̃�′) = 𝑉𝜌(∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�𝑖𝑗𝑥𝑖𝑗) + 𝑉𝜌(∑  𝑛𝑖=1 ∑  𝑛𝑗=1 𝜒𝑖𝑥𝑖𝑗) + 𝑉𝜌(∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�𝑗𝑥𝑖𝑗) 
 ⇒ 𝑉𝜌(�̃�′) = 𝑉𝜌(�̃�) + 𝑉𝜌(∑  𝑛𝑖=1 𝜒𝑖 ∑  𝑛𝑗=1 𝑥𝑖𝑗) + 𝑉𝜌(∑  𝑛𝑗=1 �̃�𝑗 ∑  𝑛𝑖=1 𝑥𝑖𝑗) 
 ⇒ 𝑉𝜌(�̃�′) − 𝑉𝜌(�̃�) = 𝑉𝜌(∑  𝑛𝑖=1 𝜒𝑖) + 𝑉𝜌(∑  𝑛𝑗=1 �̃�𝑗)     [ 𝑎𝑠   ∑  𝑛𝑖=1 𝑥𝑖𝑗 = ∑  𝑛𝑗=1 𝑥𝑖𝑗 = 1] 
 ⇒ 𝑉𝜌(�̃�′ − �̃�) = ∑  𝑛𝑖=1 𝑉𝜌(𝜒𝑖) + ∑  𝑛𝑗=1 𝑉𝜌(�̃�𝑗) 
 ⇒ 𝑉𝜌(�̃�′ − �̃�) = 𝛼 + 𝛽     [ 𝑓𝑜𝑟   ∑  𝑛𝑖=1 𝑉𝜌(𝜒𝑖) = 𝛼, ∑  𝑛𝑗=1 𝑉𝜌(�̃�𝑗) = 𝛽] 

 Thus the two objective functions �̃�′ and �̃� differ by a constant not involving any decision variable 𝑥𝑖𝑗  and so 

the original problem as well as the new problem both attain same optimal solution. 
 

Theorem 16  If all costs �̃�𝒊𝒋 ≥𝕽𝝆 �̃� and there be found a set 𝒙𝒊𝒋 = 𝐱𝒊𝒋∗  so that ∑  𝒏𝒊=𝟏 ∑  𝒏𝒋=𝟏 �̃�𝒊𝒋𝐱𝒊𝒋∗ =𝕽𝝆 �̃� hold 

for a minimization problem, then this solution is optimal. 
 
 Proof. Since �̃�𝑖𝑗 ≥ℜ𝜌 0̃   and 𝑥𝑖𝑗 ≥ 0 , then ∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�𝑖𝑗𝑥𝑖𝑗 ≥ℜ𝜌 0̃.  This implies min (∑  𝑛𝑖=1 ∑  𝑛𝑗=1 �̃�𝑖𝑗𝑥𝑖𝑗) =ℜ𝜌 0̃ for 𝑥𝑖𝑗 = x𝑖𝑗∗ . Hence, it is an optimal solution. 

Theorem 17  Let the value of SVTrN-number in some cells of a matrix B of order (n×n) are equivalent to 𝑽𝝆(�̃�). Suppose, these cells be covered by k lines and let 𝐩 be the least SVTrN-number among all uncovered 

numbers of matrix B. If 𝐩 ̃be subtracted from every SVTrN-number of B and added to the SVTrN-numbers of 
all columns covered by a line, resulting a new matrix D, then the sum of SVTrN-numbers of D is 𝒏(𝒏 − 𝒌) 𝐩 
less than the sum of SVTrN-numbers of B. 
 
 Proof. Adding p̃to every SVTrN-number covered by both horizontal and vertical lines (i.e., lying at the 
intersection of horizontal and vertical lines) results the increment of an SVTrN-number by a total of 2p̃ and 
remaining increases by p̃  only. Now, subtraction by p ̃  from every SV TrN-number finally results the 
increment of an SVTrN-number lying at the intersection of horizontal and vertical lines by p̃  only and the 
decrement of all uncovered SVTrN-numbers by p̃ . All others covered by one line remains unchanged. 
    If each number in B be decreased by p̃ then the decrease of the sum of elements is 𝑛2p̃. By adding p̃ to 
each numbers in every line, the total increase is np̃ per line. For k lines, it is 𝑛𝑘p̃. Hence the net decrease in 
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the sum of SVTrN-numbers in D is 𝑛2p̃-𝑛𝑘p̃ = 𝑛(𝑛 − 𝑘) p̃. 
    Clearly, this net decrease is a positive SVTrN-number if 𝑛 > 𝑘 (as p̃  ≠ℜ𝜌 0̃ ) i.e., when the number of 

lines required to cover all the cells with SVTrN-number (whose value is equivalent to 𝑉𝜌(0̃)) is less than the 

order of matrix. Now since all the costs of B are non-negative, we can decrease the sum of costs up to zero 

(i.e., 𝑛(𝑛 − 𝑘) p̃ =ℜ𝜌  0̃). Maximum decrease occurs when the number of lines required to cover all such cells 

is equal to the order of matrix. As a result, each optimal assignment is trivial (0̃) at maximum point. 
 
 

Numerical  Example 
 
     Here, an assignment problem with the cost as SVTrN-number is solved by proposed method. For 
simplicity, we define the 𝜌- weighted value function for 𝑛 = 1. 

 
Example 18  A bus owner wishes to drive his four buses (𝑩𝟏, 𝑩𝟐, 𝑩𝟑, 𝑩𝟒)  in four different routes (𝑹𝟏, 𝑹𝟐, 𝑹𝟑, 𝑹𝟒). The neutrosophic cost matrix [�̃�𝒊𝒋] given in Table 2 refers the expected profit (taken as 

multiple of hundred) per day from each bus in each route after applying the maintenance cost. Allot the route 
to each bus so that the profit in aggregate becomes maximum. 
 
                          Table 2 : Expected profit of buses in different routes.  
 

 
 
 
 
 

 
                               
  
    where         �̃�11 = 〈[10,3,6], [10,8,5], [10,2,9]〉,      �̃�12 = 〈[8,4,6], [8,6,9], [8,5,10]〉, 

 �̃�13 = 〈[9,3,5], [9,2,9], [9,1,12]〉,            �̃�14 = 〈[5,1,11], [5,4,8], [5,3,13]〉, 
 �̃�21 = 〈[7,3,9], [7,1,6], [7,2,8]〉,               �̃�22 = 〈[6,5,12], [6,4,8], [6,3,10]〉, 
 �̃�23 = 〈[5,2,7], [5,4,12], [5,4,5]〉,            �̃�24 = 〈[3,1,9], [3,2,14], [3,1,11]〉, 
 �̃�31 = 〈[8,1,4], [8,2,7], [8,7,2]〉,               �̃�32 = 〈[7,6,9], [7,5,5], [7,2,6]〉, 
 �̃�33 = 〈[6,2,10], [6,5,9], [6,4,7]〉,            �̃�34 = 〈[4,3,4], [4,1,10], [4,2,7]〉, 
 �̃�41 = 〈[5,4,2], [5,3,6], [5,2,10]〉,            �̃�42 = 〈[9,7,7], [9,3,13], [9,2,6]〉, 
 ã43 = 〈[6,2,6], [6,5,9], [6,1,7]〉,               �̃�44 = 〈[7,6,2], [7,5,4], [7,3,10]〉. 

  
 
 Solution. The problem can be put in the following form :      𝑀𝑎𝑥   �̃� =ℜ𝜌 �̃�11𝑥11 + �̃�12𝑥12 + �̃�13𝑥13 + �̃�14𝑥14 + �̃�21𝑥21 + �̃�22𝑥22 + �̃�23𝑥23 + �̃�24𝑥24 + 

 �̃�31𝑥31 + �̃�32𝑥32 + �̃�33𝑥33 + �̃�34𝑥34 + �̃�41𝑥41 + �̃�42𝑥42 + �̃�43𝑥43 + �̃�44𝑥44   
  such that             𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 = 1,   𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 = 1, 

 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 = 1,   𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 = 1, 
 𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 = 1,   𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 = 1, 
 𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 = 1,   𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 = 1,  with    𝑥𝑖𝑗 ∈ {0,1}. 

  
The 𝜌 - weighted value for the SVTrN-numbers are calculated as :        𝑉𝜌(�̃�11) = 118 (248 − 185𝜌),   𝑉𝜌(�̃�12) = 118 (208 − 158𝜌),   𝑉𝜌(�̃�13) = 118 (252 − 196𝜌)       𝑉𝜌(�̃�14) = 118 (148 − 108𝜌),   𝑉𝜌(�̃�21) = 118 (190 − 142𝜌),   𝑉𝜌(�̃�22) = 118 (166 − 123𝜌),       𝑉𝜌(�̃�23) = 118 (138 − 103𝜌),   𝑉𝜌(�̃�24) = 118 (116 − 90𝜌),     𝑉𝜌(�̃�31) = 118 (192 − 141𝜌), 

   𝑅1   R2    R3  R4 𝐵1  �̃�11  �̃�12   �̃�13   �̃�14  𝐵2  �̃�21   �̃�22  �̃�23  �̃�24 

B3 �̃�31  �̃�32   �̃�33   �̃�34  

B4  �̃�41  �̃�42  �̃�43  �̃�44 
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      𝑉𝜌(�̃�32) = 118 (176 − 131𝜌),   𝑉𝜌(�̃�33) = 118 (158 − 114𝜌),   𝑉𝜌(�̃�34) = 118 (124 − 99𝜌),       𝑉𝜌(�̃�41) = 118 (142 − 114𝜌),   𝑉𝜌(�̃�42) = 118 (186 − 132𝜌),   𝑉𝜌(ã43) = 118 (164 − 124𝜌),       𝑉𝜌(�̃�44) = 118 (180 − 142𝜌). 
 
Assuming 𝜌 = 0.6  and applying the computational procedure for maximization problem, we find the 
allocation of busses in different route with the maximum profit attained as follows.  

 𝐵1 → 𝑅3,   𝐵2 → 𝑅1,   B3 → 𝑅2,   𝐵4 → 𝑅4. 
The optimal solutions are : 𝑥13 = 𝑥21 = 𝑥32 = 𝑥44 = 1,  𝑥11 = 𝑥12 = 𝑥14 = 𝑥22 = 𝑥23 = 𝑥24 = 𝑥31 = 𝑥33 = 𝑥34 = 𝑥41 = 𝑥42 = 𝑥43 =0  and  𝑀𝑎𝑥   �̃� =ℜ𝜌 �̃�13 + �̃�21 + �̃�32 + �̃�44  which becomes 23.97 i.e., Rs. 2397 using 𝜌 -weighted value 

function for 𝜌 = 0.6. 
 

Sensitivity analysis 19  Depending on 𝝆 chosen , the number of iteration in computational procedure to 
reach at optimality stage may vary only but the optimal solution will remain unchange. However, 𝝆 plays an 
important role to produce the aggregate optimal value of an assignment problem in neutrosophic 
environment. Since the total profit from a bus depends on so many factors, we assume 𝝆 as the degree of 
maintenance cost of busses in the present problem. Following table (Table 3) shows the variation of optimal 

value with respect to different 𝝆 in the Example 5.1. Here 𝑽𝝆(�̃�) = 𝟏𝟏𝟖 (𝟕𝟗𝟖 − 𝟔𝟏𝟏𝝆).  
 
                        Table 3 : Profit of buses with respect to different maintenance cost 

 𝜌   0   0.1   0.2  0.3   0.4   0.5  0.6 0.7 0.8 0.9 1 𝑉𝜌(�̃�)  44.33  40.94  37.54  34.15  30.75  27.36  23.97 20.57 17.18 13.78 10.39 

 

 

Conclusion 
 
   The present study deals with a solution approach of an assignment problem in neutrosophic environment. 
The basic motivation of this study is to incorporate the provided asset of constraints of a problem to be 
optimised with the hiden criterions, generally ignored by decision makers, so that a most fair result is 
achieved. Using the centroids of triangles in the geometrical configuration of an SVTrN-number, a parameter 
(graded in [0,1]) based linear ranking function is constructed for ranking of SVTrN-numbers. This ranking 
function plays a key role to develop an efficient solution algorithm and thus helps the decision makers to 
draw a nice conclusion in several situations . The efficiency of this concept is executed by solving a practical 
problem.  
    The industrial data are not always precise, rather neutrosophic (imprecise with truth, falsity and 
indeterminacy values ) in nature. The newly developed algorithm will help the industrialists, corporate 
houses, researchers and many more to solve such type of practical assignment problem involving 
neutrosophic parameters. 
    
 

Future Research Directions 
 
     Here, we have presented and solved a single objective assignment problem. In future, it can be extended 
to multiobjective assignment problem with different types of papameters namely crisp, fuzzy, stochastic, etc. 
It is expected that this model of assignment problem and its solution methodology will bring an opportunity 
for future research in linear and non-linear programming problem. Especially, the ranking function adopted 
here may be practiced to solve several decision making problems. Moreover we may try to extend this 
concept over `Refined neutrosophic set' [Smarandache, 2013] and `Plithogenic set' [Smarandache, 2018]. 

 



                               

Quadruple Neutrosophic Theory And Applications   

 Volume I 

 

93 

 

 
References 

 
[1] Abbasbandy, S. & Asady, B. (2006). Ranking of fuzzy numbers by sign distance, Information Sciences, 
176, 2405-2416.  
[2] Angelov, P. (1997). Optimization in an intuitionistic fuzzy environment, Fuzzy Sets and Systems 86, 299-
306. 
[3] Atanassov, K. (1986). Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1), 87-96. 
[4] Bera, T. & Mahapatra, N. K. (2018). Assignment problem with neutrosophic costs and its solution 
methodology, Asia Mathematika, 2( 2) , 11 -12. 
[5] Bera, T. & Mahapatra, N. K. (2019). Optimisation by dual simplex approach in neutrosophic 
environment, Int. J. Fuzzy Computation and Modelling, 2(4), 334 -352. 
[6] Bera, T. & Mahapatra, N. K. (2019). Generalised single valued neutrosophic number and its application 
to neutrosophic linear programming, Accepted, Book chapter for `Neutrosophic Sets in decision analysis and 
operation research', IGI Global. 
[7] Chen, M. S. (1985). On a fuzzy assignment problem, Tamkang J., 22, 407-411. 
[8] Hassan, N., Uluçay, V. & Şahin, M. (2018). Q-neutrosophic soft expert set and its application in decision 
making. International Journal of Fuzzy System Applications (IJFSA), 7(4), 37-61. 
[9] Li, D. F. (2010). A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to 
MADM problems, Comput. Math. Appl., 60, 1557-1570. 
[10] Lin, C. J. & Wen, U. P. (2004). A labeling algorithm for the fuzzy assignment problem, Fuzzy sets and 
systems, 142, 373-391. 
[11] Mukherjee, S. & Basu, K. (2010). Application of fuzzy ranking method for solving assignment problems 
with fuzzy costs, Int. J. of Computational and App. Math., 5(3), 359-368. 
[12] Rao, P. P. B. & Shankar, N. R. (2013). Ranking fuzzy numbers with an area method using 
circumferance of centroid, Fuzzy Information and Engineering, 1, 3-18. 
[13] Şahin, M., Olgun, N., Uluçay, V., Kargın, A. & Smarandache, F. (2017). A new similarity measure on 
falsity value between single valued neutrosophic sets based on the centroid points of transformed single 
valued neutrosophic numbers with applications to pattern recognition, Neutrosophic Sets and Systems, 15, 
31-48, doi: org/10.5281/zenodo570934. 
[14] Şahin, M., Ecemiş, O., Uluçay, V. & Kargın, A. (2017). Some new generalized aggregation operators 
based on centroid single valued triangular neutrosophic numbers and their applications in multi-attribute 
decision making, Asian Journal of Mathematics and Computer Research , 16(2), 63-84. 
[15] Smarandache, F. (1998). Neutrosophy, neutrosophic probability, set and logic, Amer. Res. Press, 
Rehoboth, USA., p. 105, http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (sixth version). 
[16] Smarandache,F. (2005). Neutrosophic set, A generalisation of the intuitionistic fuzzy sets, Inter. J. Pure 
Appl. Math., 24, 287-297. 
[17] Ulucay, V., Şahin, M. & Olgun, N. (2018). Time-Neutrosophic Soft Expert Sets and its decision making 
problem. Matematika, 34(2), 246-260. 
[18] Uluçay, V., Kiliç, A., Yildiz, I. & Sahin, M. (2018). A new approach for multi-attribute decision-making 
problems in bipolar neutrosophic sets. Neutrosophic Sets and Systems, 23(1), 142-159. 
[19] Wang, H., Zhang, Y., Sunderraman, R. & Smarandache, F. (2011). Single valued neutrosophic sets, 
Fuzzy Sets, Rough Sets and Multivalued Operations and Applications, 3(1), 33-39. 
[20] Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval, Information sciences, 
24, 143-161. 
[21] Yao, J. S. & Wu, K. (2000). Ranking of fuzzy numbers based on decomposition principle and signed 
distance, Fuzzy Sets and System, 16, 275-288.  

 



Editors: Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 

              

 

94 

 

Chapter Eight 
 

 

 

Comparison of Cooking Methods in the Scope of Cuisine 

Dynamics: An Assessment From the Views of the Chefs 

in Neutrosophic Environment 

Ece Doğantan1, Ezgi Demir2, Bahri Baran Koçak3, Çağlar Karamaşa4 
1Department of Hospitality Management, Anadolu University, Eskişehir-Turkey 

2Department of Management Information Systems, Piri Reis University, İstanbul-Turkey 
3Department of Civil Aviation Management, Dicle University, Diyarbakır-Turkey 

4Department of Business Administration, Anadolu University, Eskişehir-Turkey 

E-mail: edogantan@anadolu.edu.tr, edemir@pirireis.edu.tr, bahribarankocak@gmail.com, 

ckaramasa@anadolu.edu.tr 

 

ABSTRACT 

 In this study, dry heat cooking methods have been evaluated and compared from the chefs point of 

view. For this purpose, grilled, boiled, sautéing and baking alternatives cuisine dynamics (maintaining the 
nutrition facts, food safety, use creativity, ease of cooking, pre-cooking, cooking speed, appearance, cost and 

flavor) have been taken into account. In the analysis, the dynamics of the cuisine have been firstly 

considered. The weighting of these criteria has been based on the single valued neutrosophic AHP method 

which better modeled the uncertain views of the chefs as the decision-makers. After the determination of the 

criteria weights, the cooking methods have been alternatively listed with single value neutrosophic COPRAS 

which is one of the multi-criteria decision making techniques. 

Keywords: Cooking methods, cuisine dynamics, Neutrosophic AHP, Neutrosophic COPRAS 

INTRODUCTION 

Although it has not been known exactly when cooking has been considered as the first scientific 

revolution, it has been estimated to begin with the discovery of fire [5]. Thus, the heat source required for 

cooking food has been discovered and the first transformation from raw foods to cooked foods has started in 

food and culinary culture. With the help of the transition to settled life, tools and equipment used in farming, 

feeding methods, food preparation and storage methods have changed rapidly. Food has not become only a 

physical requirement, but also a pleasure situation [19]. According to archaeological data, it has been 

observed that the first cooking methods had been dry heat cooking techniques such as broiling and roasting 

on fire. During the Neolithic Age, fire-resistant, waterproof pottery had been built and methods of cooking at 

humid temperatures had emerged [22,27].  

mailto:edogantan@anadolu.edu.tr
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Industrial food production has started in the world with the establishment of large industrial plants 

and factories in the process of industrial transformation. New technologies and cooking methods have been 

developed to provide the increasing demands [18]. New cooking methods have been the subject of different 

researches over time. Especially, in the field of gastronomy, different groupings have been made. In this 

context, cooking methods have been examined under three groups as aqueous, dry and micro oven cooking 

methods. In another study, humid heat and dry heat have been divided into two groups. In another study, 

cooking has been classified as grilling, broiling, roasting, panfrying, sautéing, stir-frying, covered sautéing, 
boiling, steaming, canning, pot-roasting and stewing, baking, cooking in oil and smoking [20]. Microwave, 

infrared, induction, solar cooking and sous-vide cooking (vacuum cooking) methods, which has been 

developing rapidly today, have been grouped as modern cooking techniques because of the intensive use of 

technology. Especially, cook-cool and cook-freeze food production systems that have been used in industrial 

kitchens but have been also widely used in retail, have been also considered within the scope of 

contemporary technologies. It has been noteworthy that some authors also discuss cooking methods without 

making a classification [14]. When the researches on these cooking techniques have been examined, it has 

seen that the effects of cooking techniques on various diseases such as cancer [3], the effects of various foods 

such as vegetables [7,16,29]  and meat on the nutrition facts have been focused on food safety [13,15,24], 

food quality [8,9,10]  and food chemistry [4,18,21,23]. The purpose of cooking foods is to increase their taste 

and to facilitate digestion. Another purpose is to ensure that foods do not lose their unique taste, smell and 

nutrients while cooking. In the study, the dynamics of cuisine have been compared and the sautéing, grilling 
oven, roasting, baking and boiling methods, which are the most preferred dry cooking methods of the cooks, 

have been evaluated. 

DYNAMICS OF CUISINE 

Maintaining Nutrition Facts 

Nutritional quality has been determined by the value of the product for the physical health, growth, 
development, reproduction and overall well-being of the consumer. Nutritional quality has defined the 

biological or health value of the product, including the ratio of harmful substances to harmful substances, 
taste, odor, freshness, shelf life, and risk of pathogen contamination as important quality characteristics 
governing consumer behavior. Pre-harvest strategies to ensure the microbiological safety of fruit and 

vegetables from manure-based production systems. 

Food Safety 

As a concept, food safety was emerged in the mid-1970s during the Global Food Crisis in the 
discussions of international food problems. Initially, the term food safety was used to describe whether a 

country had access to sufficient food to meet dietary energy requirements. At the World Food Summit in 
1996, it has been argued that food security would exist when the people had access to safe and nutritious 

food, both physically and economically, to meet the dietary needs of all people to ensure their healthy lives 
[12]. In this context, some of the factors that threaten food safety are; chemical pharmaceuticals, fertilizers, 
artificial additives. Residues on food produced as a result of the use of preservatives, bird flu, mad cow etc. 

animal diseases, natural toxins, environmental metals such as lead and mercury, bacteria, viruses and 
biological risk factors are sourced from microbiological contamination that can cause interference [11]. 

Using Creativity 

Creativity is related with creating an original, valuable and applicable idea or product. Creativity in 

the kitchen is related with the emergence of new, more delicious and better food ideas than the present. It has 
been suggested that a good chef should develop her/his artistic point of view by focusing on customer needs 

and it has been stated that focusing on customer needs might have an impact on creativity. Culinary activities 
have been created by cooking and preparing various food and beverage products grown and produced in 
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many different regions. In this context, creativity will bring innovative results in the cooks cooking process. 
The use of chefs' potentials of creativity will affect the process. 

Ease of Cooking 

Ease of cooking has been evaluated that the cooking method used does not stick to the cooked cup, 
does not cool down quickly, and does not tire the chef physically while cooking. 

Preparation Before Cooking 

This part is consisted of, the marination before cooking, saucing, resting, thawing, chopping and so 

on. Additionally, the part also involves processes, to reach the food to the appropriate temperature and 
cleaning. 

Cooking Speed and Appearance 

Cooking speed and appearance are among the variables to be considered when evaluating the 

dynamics of the cuisine. 

Cost 

Losses during production, creativity and design in the cooking process, the type and amount of 
energy used (electricity, gas, coal, etc.), the amount of material used in cooking, etc. elements have been 
evaluated among the factors that increase the costs in the cooking process. Cooking is an important process 

for flavor development as well as improving the digestibility of food. 

Neutrosophic Sets 

 Smarandache [25] introduced the concept of Neutrosophic Sets (NS) having with degree of truth, 

indeterminacy and falsity membership functions in which all of them are totally independent. Let U be a 

universe of discourse and Ux . The neutrosophic set (NS) N can be expressed by a truth membership 

function 
)(xTN , an indeterminacy membership function 

)(xIN and a falsity membership function 
)(xFN , 

and is represented as 
 UxxFxIxTxN NNN  ,)(),(),(:

. Also the functions of 
)(xTN ,

)(xIN

and 
)(xFN  are real standard or real nonstandard subsets of   1,0 , and can be presented as 

  1,0:,, UFIT There is not any restriction on the sum of the functions of 
)(xTN ,

)(xIN and 

)(xFN , so 
  3)(sup)(sup)(sup0 xFxIxT NNN . 

The complement of a NS N is represented by 
CN  and described as below: 

1)(xTC
N ⊖ 

)(xTN                                                                                                                    (1)         

1)(xI C
N ⊖ 

)(xIN                                                                                                                      (2) 

1)(xFC
N ⊖ 

)(xFN     for all Ux                                                                                        (3) 

A NS, N is contained in other NS P in other words , PN  if and only if 
)(inf)(inf xTxT PN 

,

)(sup)(sup xTxT PN 
, 

)(inf)(inf xIxI PN 
, 

)(sup)(sup xIxI PN 
,

)(inf)(inf xFxF PN 
, 

)(sup)(sup xFxF PN 
for all Ux  [6]. 
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Single Valued Neutrosophic Sets (SVNS) 

Wang [28] developed the term of Single Valued Neutrosophic Set (SVNS) which is a case of NS in order to 

deal with indeterminate, inconsistent and incomplete information. They handle the interval  1,0 instead of 

  1,0  in order to better apply in real world problems. Let U be a universe of discourse and Ux . A 

single valued neutrosophic set B in U is described by a truth membership function )(xTB , an indeterminacy 

membership function )(xIB and a falsity membership function )(xFB . When U is continuous a SVNS, B is 

depicted as 
 
x

BBB Ux
x

xFxIxT
B :

)(),(),(

. When U is discrete a SVNS B can be represented as  

Ux
x

xFxIxT
B i

n

i
i

iBiBiB 
:

)(),(),(
1

 [17]. The functions of )(xTB , )(xIB and )(xFB  are real 

standard subsets of  1,0 that is  1,0:)( UxTB ,  1,0:)( UxIB and  1,0:)( UxFB . Also the 

sum of )(xTB , )(xIB and )(xFB are in  3,0  that  3)()()(0  xFxIxT BBB   [6]. 

Let a single valued neutrosophic triangular number �̃� = 〈(𝑏1, 𝑏2, 𝑏3); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉  is a special 

neutrosophic set on R. Additionally 𝛼�̃� , 𝜃�̃� , 𝛽�̃� ∈ [0,1]  and 𝑏1, 𝑏2, 𝑏3 ∈ 𝑅  where 𝑏1 ≤ 𝑏2 ≤ 𝑏3 . 

Truth, indeterminacy and falsity membership functions of this number can be computed as below [2]. 

T�̃�(𝒙) = {  
  α�̃� ( x−𝑏1𝑏2−𝑏1)α�̃�𝛼�̃� ( 𝑏3−𝑥𝑏3−𝑏2)0

(𝑏1 ≤ 𝑥 ≤ 𝑏2)(x = 𝑏2)(𝑏2 < 𝑥 ≤ 𝑏3)otherwise                                                                                     (4) 

 

I�̃�(𝒙) = {  
  (𝑏2−x+𝜃�̃�(x−𝑏1)𝑏2−𝑏1 )θ�̃�(𝑥−𝑏2+𝜃�̃�(𝑏3−𝑥)𝑏3−𝑏2 )1

(𝑏1 ≤ 𝑥 ≤ 𝑏2)(x = 𝑏2)(𝑏2 < 𝑥 ≤ 𝑏3)otherwise                                                                             (5) 

F�̃�(𝒙) = {  
  (𝑏2−x+𝛽�̃�(x−𝑏1)𝑏2−𝑏1 )β�̃�(𝑥−𝑏2+𝛽�̃�(𝑏3−𝑥)𝑏3−𝑏2 )1

(𝑏1 ≤ 𝑥 ≤ 𝑏2)(x = 𝑏2)(𝑏2 < 𝑥 ≤ 𝑏3)otherwise                                                                            (6) 

According to the Eqs.(4)-(6) 𝛼�̃� , 𝜃�̃� , 𝑎𝑛𝑑 𝛽�̃�  denote maximum truth membership, minimum 

indeterminacy membership and minimum falsity membership degrees respectively. 



Editors: Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 

              

 

98 

 

Suppose �̃� = 〈(𝑏1, 𝑏2, 𝑏3); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉  and �̃� = 〈(𝑐1, 𝑐2, 𝑐3); 𝛼𝑐̃, 𝜃𝑐̃, 𝛽𝑐̃〉  as two single valued 

triangular neutrosophic numbers and 𝜆 ≠ 0  as a real number. Considering abovementioned conditions 

addition of two single valued triangular neutrosophic numbers are denoted as follows [2]. �̃� + �̃� = 〈(𝑏1 + 𝑐1, 𝑏2 + 𝑐2, 𝑏3 + 𝑐3); 𝛼�̃� ∧ 𝛼𝑐̃ , 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉                                             (7) 

Subtraction of two single valeued triangular neutrosophic numbers are defined as Eq.(8): �̃� − �̃� = 〈(𝑏1 − 𝑐3, 𝑏2 − 𝑐2, 𝑏3 − 𝑐1); 𝛼�̃� ∧ 𝛼𝑐̃ , 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉                                             (8) 

Inverse of a single valued triangular neutrosophic number (�̃� ≠ 0)can be denoted as below: �̃�−1 = 〈( 1𝑏3 , 1𝑏2 , 1𝑏1) ; 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉                                                                                                           (9) 

Multiplication of a single valued triangular neutrosophic number by a constant value are represented as 

follows: 𝜆�̃� = {〈(𝜆𝑏1, 𝜆𝑏2, 𝜆𝑏3); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 𝑖𝑓 (𝜆 > 0)〈(𝜆𝑏3, 𝜆𝑏2, 𝜆𝑏1); 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉 𝑖𝑓 (𝜆 < 0)                                                                            (10) 

Division of  a single valued triangular neutrosophic number by a constant value are denoted as Eq.(11): 

�̃�𝜆 = {〈(𝑏1𝜆 , 𝑏2𝜆 , 𝑏3𝜆 ) ; 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉  𝑖𝑓 (𝜆 > 0)〈(𝑏3𝜆 , 𝑏2𝜆 , 𝑏1𝜆 ) ; 𝛼�̃� , 𝜃�̃� , 𝛽�̃�〉  𝑖𝑓 (𝜆 < 0)                                                                                         (11) 

Multiplication of two single valued triangular neutrosophic numbers can be seen as follows: 

�̃��̃� = {〈(𝑏1𝑐1, 𝑏2𝑐2, 𝑏3𝑐3); 𝛼�̃� ∧ 𝛼𝑐̃, 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉 𝑖𝑓 (𝑏3 > 0, 𝑐3 > 0)〈(𝑏1𝑐3, 𝑏2𝑐2, 𝑏3𝑐1); 𝛼�̃� ∧ 𝛼𝑐̃, 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉 𝑖𝑓 (𝑏3 < 0, 𝑐3 > 0)〈(𝑏3𝑐3, 𝑏2𝑐2, 𝑏1𝑐1); 𝛼�̃� ∧ 𝛼𝑐̃, 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉 𝑖𝑓 (𝑏3 < 0, 𝑐3 < 0)                            (12) 

Division of two single valued triangular neutrosophic numbers can be denoted as Eq.(13): 

�̃�𝑐̃ = {  
  〈(𝑏1𝑐3 , 𝑏2𝑐2 , 𝑏3𝑐1) ; 𝛼�̃� ∧ 𝛼𝑐̃, 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉  𝑖𝑓 (𝑏3 > 0, 𝑐3 > 0)〈(𝑏3𝑐3 , 𝑏2𝑐2 , 𝑏1𝑐1) ; 𝛼�̃� ∧ 𝛼𝑐̃, 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉  𝑖𝑓 (𝑏3 < 0, 𝑐3 > 0)〈(𝑏3𝑐1 , 𝑏2𝑐2 , 𝑏1𝑐3) ; 𝛼�̃� ∧ 𝛼𝑐̃, 𝜃�̃� ∨ 𝜃𝑐̃, 𝛽�̃� ∨ 𝛽𝑐̃〉  𝑖𝑓 (𝑏3 < 0, 𝑐3 < 0)                                        

(13) 

Score function (𝑠𝑏) for a single valued triangular neutrosophic number  𝑏 = (𝑏1, 𝑏2, 𝑏3) can be found as 

below [26]. 𝑠𝑏 = (1 + 𝑏1 − 2 ∗ 𝑏2 − 𝑏3)/2                                        

(14) 

where 𝑠𝑏 ∈ [−1,1]. 
There are a lot of studies ([6,9,17,30,31,33,34,35,36]) integrating neutrosophic sets with mcdm methods in 

recent years. New trend of neutrosophic theory is especially based on neutrosophic soft expert sets, refined 
neutrosophic sets and bipolar complex neutrosophic sets. 
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Neutrosophic AHP 

Steps of neutrosophic AHP can be explained as follows [2]: 

1- Decision problem is constructed as hierarchical view consisting of goal, criteria, sub-criteria and 

alternatives respectively. 

2-Pairwise comparisons are made to form neutrosophic evaluation matrix composed of triangular 

neutrosophic numbers representing decision makers’ views. Neutrosophic pairwise evaluation matrix (�̃�)is 

seen as below: 

�̃� = [ 1̃ �̃�12 ⋯ �̃�1𝑛⋮ ⋮ ⋮ ⋮�̃�𝑛1 �̃�𝑛2 ⋯ 1̃ ]                                                                                                  
(15) 

According to Eq(1) �̃�𝑗𝑖 = �̃�𝑖𝑗−1 is valid. 

3-Neutrosophic pairwise evaluation matrix is constructed by using scale arranged for neutrosophic 
environment such as Table 1: 

Table 1. AHP scale transformed for neutrosophic triangular numbers 

Value Explanation Neutrosophic triangular scale 

1 Equally influential 1̃ = 〈(1,1,1); 0.5,0.5,0.5〉 
3 Slightly influential 3̃ = 〈(2,3,4); 0.3,0.75,0.7〉 
5 Strongly influential 5̃ = 〈(4,5,6); 0.8,0.15,0.2〉 
7 Very strongly influential 7̃ = 〈(6,7,8); 0.9,0.1,0.1〉 
9 Absolutely influential 9̃ = 〈(9,9,9); 1,0,0〉 
2 

4 

6 

8 

 

Intermediate values between two 
close scales 

2̃ = 〈(1,2,3); 0.4,0.65,0.6〉 4̃ = 〈(3,4,5); 0.6,0.35,0.4〉 6̃ = 〈(5,6,7); 0.7,0.25,0.3〉 8̃ = 〈(7,8,9); 0.85,0.1,0.15〉 
Resource: Abdel-Basset [1] 

4-Neutrosophic pairwise evaluation matrix is transformed into deterministic pairwise evaluation matrix for 

obtaining the weights of criterion as follows: 

Let �̃�𝑖𝑗 = 〈(𝑑1, 𝑒1, 𝑓1), 𝛼�̃�, 𝜃�̃� , 𝛽�̃�〉 be a single valued neutrosophic number, then the score and accuracy 

degrees of �̃�𝑖𝑗  are computed as following equations: 
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𝑆(�̃�𝑖𝑗) = 116 [𝑑1 + 𝑒1 + 𝑓1]𝑥(2 + 𝛼�̃� − 𝜃�̃� − 𝛽�̃�)                                        

(16) 𝐴(�̃�𝑖𝑗) = 116 [𝑑1 + 𝑒1 + 𝑓1]𝑥(2 + 𝛼�̃� − 𝜃�̃� + 𝛽�̃�)                                        

(17) 

In order to obtain the score and accuracy degree of �̃�𝑖𝑗  following equations are used. 𝑆(�̃�𝑗𝑖) = 1/𝑆(�̃�𝑖𝑗)                                     

(18) 𝐴(�̃�𝑗𝑖) = 1/𝐴(�̃�𝑖𝑗)                                        

(19) 

Deterministic pairwise evaluation matrix is constructed with compensation by score value of each triangular 

neutrosophic number in neutrosophic pairwise evaluation matrix. Obtained deterministic matrix can be seen 
as follows: 

𝐷 = [ 1 𝑑12 ⋯ 𝑑1𝑛⋮ ⋮ ⋮ ⋮𝑑𝑛1 𝑑𝑛2 ⋯ 1 ]                                                                                                  
(20) 

Ranking of priorities as eigen vector X is obtained according to following steps: 

a)Firstly column entries are normalized by dividing each entry to the sum of column 

b)Then row averages are summed. 

5-Consistency index (CI) and consistency ratio (CR) values are computed to measure the inconsistency for 

decision makers’ judgments in entire pairwise evaluation matrix. If CR is greater than 0.1, process should be 
repeated due to unreliable decision makers’ judgments.  

CI is computed according to following steps: 

a)Each value in first column of the pairwise evaluation matrix is multiplied by the priority of first criterion 

and this process is applied for all columns. Values are summed across the rows to construct the weighted sum 
vector. 

b) The elements of weighted sum vector are divided by corresponding the priority of each criterion. Then the 

average of values are acquired and represented by 𝜆𝑚𝑎𝑥. 

c) The value of CI is calculated as Eq.(21): 𝐶𝐼 = 𝜆𝑚𝑎𝑥−𝑛𝑛−1                                        

(21) 

According to Eq.(7) number of elements being compared are denoted by n. 

After the value of CI is found, CR is computed as follows: 𝐶𝑅 = 𝐶𝐼𝑅𝐼                                        

(22) 
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where RI denotes the consistency index for randomly generated pairwise evaluation matrix and can be shown 
as Table 2. 

 

Table 2. RI table used for computing CR value 

Order 

of 

random 

matrix 

(n) 

0 2 3 4 5 6 7 8 9 10 

Related 

RI 

value 

0 0 0.58 0.9 1.12 1.24 1.32 1.4 1.45 1.49 

Resource: Abdel-Basset [2] 

6-Overall priority values for each alternative are computed and ranking process is applied.  

COPRAS 

Therefore,  Eqs. (2) and (3) are the special cases of Eq. (1). Then, for the distance measure, we have the 

following proposition. The complex proportional assessment method (COPRAS) was developed by 
Zavadskas [30] and the steps of this method can be summarized as follows: 

1-Determine k alternatives and l criteria that are assessed by decision makers. 

2-Construct decision matrix  𝑌 composed of elements namely 𝑦𝑖𝑗that is identified as the value of ith (𝑖 = 1,2, … , 𝑘) alternative jth (𝑗 = 1,2, … , 𝑙) criterion. 

𝑌 = [𝑦11 𝑦12 ⋯ 𝑦1𝑙𝑦21 𝑦22 ⋯ 𝑦2𝑙⋮ ⋮ ⋱ ⋮𝑦𝑘1 𝑦𝑘2 ⋯ 𝑦𝑘𝑙]𝑘𝑥𝑙                                                                                                
(23) 

3- Criteria weights 𝑐𝑤𝑗  are determined and considered for analysis. 

4- Decision matrix 𝑌 is normalized according to Eq. (24) shown as below: �̅�𝑖𝑗 = 𝑦𝑖𝑗∑ 𝑦𝑖𝑗𝑘𝑖=1      𝑖 = 1,2, … , 𝑘;   𝑗 = 1,2, … , 𝑙                                                                                         
(24) 

5- Weighted normalized decision matrix 𝑍 is constructed and elements of this matrix (𝑧𝑖𝑗) are obtained as 

follows: 𝑧𝑖𝑗 = �̅�𝑖𝑗. 𝑐𝑤𝑗     𝑖 = 1,2, … , 𝑘;     𝑗 = 1,2, … , 𝑙                                                                                    
(25) 

6- Criterion values are computed as summation according to the optimization way for each alternative and 
shown as Eq. (26): 
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𝑅+𝑖 = ∑ 𝑧+𝑖𝑗𝑀𝑚𝑎𝑥𝑗=1 ;   𝑅−𝑖 = ∑ 𝑧−𝑖𝑗𝑀𝑚𝑖𝑛𝑗=1                                                                                                  

(26) 

Where maximized criteria are represented by the value of 𝑧+𝑖𝑗 and minimized criteria are shown by the 

value of 𝑧−𝑖𝑗. 

7-Minimal constituent of the 𝑅−𝑖 is founded according to Eq.(27): 𝑅−𝑚𝑖𝑛 = min𝑖 𝑅−𝑖 ;   𝑖 = 1,2, … ,𝑀𝑚𝑖𝑛                                                                                                  

(27) 

8- Score value of each alternative 𝑆𝑉𝑖 is obtained as follows:  𝑆𝑉𝑖 = 𝑅+𝑖 + (𝑅−𝑚𝑖𝑛 ∑ 𝑅−𝑖𝑀𝑚𝑖𝑛𝑖=1 )(𝑅−𝑚𝑖𝑛 ∑ 𝑅−𝑚𝑖𝑛𝑅−𝑖𝑀𝑚𝑖𝑛𝑖=1 )                                                                                                             
(28) 

9- Optimality criterion for the alternatives 𝑇 is identified as Eq.(29): 𝑇 = max𝑖 𝑆𝑉𝑖  ;   𝑖 = 1,2, … , 𝑘                                                                                                                  
(29) 

10- Alternatives are ranked according to descending value of score value 𝑆𝑉𝑖. Thus alternative having 

greater score value gets higher rank than others. 

COPRAS for Single Valued Neutrosophic Sets 

In this study evaluations of decision makers related to the importance of alternatives in terms of attributes are 
firstly converted from linguistic terms to single valued neutrosophic sets by using scale given as Table 3. 

Table 3. Scale composed of linguistic terms related to rating importance of alternatives 

Linguistic terms Single valued neutrosophic numbers 

Extremely good (1,0,0) 

Very very good (0.9,0.1,0.1) 

Very good (0.8,0.15,0.2) 

Good (0.7,0.25,0.3) 

Medium good (0.6,0.35,0.4) 

Medium (0.5,0.5,0.5) 

Medium bad (0.4,0.65,0.6) 

Bad (0.3,0.75,0.7) 

Very bad (0.2,0.85,0.8) 

Very very bad (0.1,0.9,0.9) 

Extremely bad (0,1,1) 
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Steps of COPRAS for single valued neutrosophic sets are summarized as below: 

1- Importance weight of each decision maker (𝜃𝑑) is determined and taking into the account for making 

analysis. By the way 𝜃𝑑 ≥ 0 and ∑ 𝜃𝑑𝐷𝑑=1 = 1. 

2- Decision matrix 𝑌𝑑  is constructed by taking each decision maker’s views into the account. Elements of 
decision matrix (𝑦𝑖𝑗𝑑) represent the dth decision maker’s judgment for the ith alternative by the jth criterion. 
This matrix can be shown as below: 

𝑌𝑑 = [  
 𝑦11𝑑 𝑦12𝑑 ⋯ 𝑦1𝑙𝑑𝑦21𝑑 𝑦22𝑑 ⋯ 𝑦2𝑙𝑑⋮ ⋮ ⋱ ⋮𝑦𝑘1𝑑 𝑦𝑘2𝑑 ⋯ 𝑦𝑘𝑙𝑑 ]  

 
𝑘𝑥𝑙

                                                                                                  

(30) 

3- Aggregated weights of the criteria are found as Eq.(31): 𝑐𝑤𝑗 = 𝜃1𝑐𝑤𝑗1⋃𝜃2 𝑐𝑤𝑗2⋃… ⋃𝜃𝑑 𝑐𝑤𝑗𝑑 =                                                                                          

(31) 〈(1 − ∏ (1 − 𝑡𝑗𝑐𝑤𝑑)𝜃𝑑𝐷𝑑=1 ) ,∏ (𝑖𝑗𝑐𝑤𝑑)𝜃𝑑 , ∏ (𝑓𝑗𝑐𝑤𝑑)𝜃𝑑𝐷𝑑=1𝐷𝑑=1 〉  
4- Aggregated weighted single valued decision matrix is formed and shown as follows: 

�̃� = [�̃�11 �̃�12 ⋯ �̃�1𝑙�̃�21 �̃�22 ⋯ �̃�2𝑙⋮ ⋮ ⋱ ⋮�̃�𝑘1 �̃�𝑘2 ⋯ �̃�𝑘𝑙]𝑘𝑥𝑙                                                                                                
(32) 

Elements of the aggregated weighted single valued decision matrix can be described as �̃�𝑖𝑗 = (�̃�𝑖𝑗, 𝑖̃𝑖𝑗, 𝑓𝑖𝑗) 

that shows the rating of ith alternative related to jth criterion and are calculated as Eq. (33): �̃�𝑖𝑗 = 𝜃1𝑦𝑖𝑗1 ⋃𝜃2 𝑦𝑖𝑗2 ⋃… ⋃𝜃𝑑 𝑦𝑖𝑗𝑑 =                                                                                           

(33) 〈(1 − ∏ (1 − 𝑡𝑖𝑗𝑦𝑑)𝜃𝑑𝐷𝑑=1 ) , ∏ (𝑖𝑖𝑗𝑦𝑑)𝜃𝑑 , ∏ (𝑓𝑖𝑗𝑦𝑑)𝜃𝑑𝐷𝑑=1𝐷𝑑=1 〉  
5- Weighted decision matrix 𝑍  is constructed and elements of weighted decision matrix 𝑧𝑖𝑗 =�̃�𝑖𝑗 . 𝑐𝑤𝑗     𝑖 = 1,2, … , 𝑘;     𝑗 = 1,2, … , 𝑙 can be computed as below: 𝑧𝑖𝑗 = (𝑡𝑖𝑗�̃� 𝑡𝑗𝑐𝑤 , 𝑖𝑖𝑗�̃� + 𝑖𝑗𝑐𝑤 − 𝑖𝑖𝑗�̃� 𝑖𝑗𝑐𝑤, 𝑓𝑖𝑗�̃� + 𝑓𝑗𝑐𝑤 − 𝑓𝑖𝑗�̃�𝑓𝑗𝑐𝑤)                                        

(34) 

6- Summation of the values in terms of benefit is calculated. Assume 𝑀+ = {1,2, … ,𝑀𝑚𝑎𝑥} as a set of 

criteria that will be maximized and the benefit index for each alternative is found as Eq.(35): 
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𝑅+𝑖 = ∑ 𝑧+𝑖𝑗𝑀𝑚𝑎𝑥𝑗=1                                       

(35) 

7- Summation of the values in terms of cost is calculated. Assume 𝑀− = {1,2, … ,𝑀𝑚𝑖𝑛} as a set of 

criteria that will be minimized and the cost index for each alternative is found as Eq.(36): 𝑅−𝑖 = ∑ 𝑧−𝑖𝑗𝑀𝑚𝑖𝑛𝑗=1                                        

(36) 

8- Minimal value for 𝑅−𝑖 is obtained as 𝑅−𝑚𝑖𝑛. 

9-Score values related to aggregated values for benefit and cost (𝑆(𝑅+𝑖) 𝑎𝑛𝑑 𝑆(𝑅−𝑖)) are computed by 

using Eq. (37). Then the score value of each alternative 𝑆𝑉𝑖 is obtained as follow: 𝑆𝑉𝑖 = 𝑆(𝑅+𝑖) + (𝑆(𝑅−𝑚𝑖𝑛)∑ 𝑆(𝑅−𝑖)𝑀𝑚𝑖𝑛𝑖=1 )(𝑆(𝑅−𝑚𝑖𝑛)∑ 𝑆(𝑅−𝑚𝑖𝑛)𝑆(𝑅−𝑖)𝑀𝑚𝑖𝑛𝑖=1 )                                            

(37) 

10- Optimality criterion for the alternatives 𝑇 is identified as Eq.(38): 𝑇 = max𝑖 𝑆𝑉𝑖  ;   𝑖 = 1,2, … , 𝑘                                        

(38) 

11- Alternatives are ranked according to descending value of score value 𝑆𝑉𝑖 . Thus alternative having 

greater score value gets higher rank than others. 

Analysis 

In this study nine criteria considered for cooking techniques are weighted via neutrosophic AHP firstly. For 
this purpose evaluations of 21 decision makers related to cooking techniques are considered.  

Neutrosophic evaluation matrix in terms of criteria considered for cooking techniques is constructed through 
decision makers’ linguistic judgments which are seen as Table 1. A part of the neutrosophic evaluation 
matrix for criteria can be shown as Table 4. 

Table 4. Neutrosophic evaluation matrix for criteria 

C
ri

te
ri

a
 

Maintaining Nutrition 

Fact 

Food Safety Using Creativity Ease of Cooking Preparation Before 

Cooking 

Cooking Speed Apperance Cost Flavor 

M
a

in
ta

in
in

g 

N
u

tr
it

io
n

 F
a

ct
 

〈(1,1,1); 0.5,0.5,0.5〉 〈(2,3,4); 0.3,0.75,0.7〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(2,3,4); 0.3,0.75,0.7〉 〈(2,3,4); 0.3,0.75,0.7〉 〈(6,7,8); 0.9,0.1,0.1〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(1,2,3); 0.4,0.65,0.6〉 

F
o
o
d

 S
a
fe

ty
 

〈(14 , 13 , 12) ; 0.3,0.75,0.7〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(9,9,9); 1,0,0〉 〈(6,7,8); 0.9,0.1,0.1〉 〈(6,7,8); 0.9,0.1,0.1〉 〈(6,7,8); 0.9,0.1,0.1〉 〈(6,7,8); 0.9,0.1,0.1〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(2,3,4); 0.3,0.75,0.7〉 
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U
si

n
g

 C
re

a
ti

vi
ty

 

〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(19 , 19 , 19) ; 1,0,0〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(6,7,8); 0.9,0.1,0.1〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(1,2,3); 0.4,0.65,0.6〉 〈(3,4,5); 0.6,0.35,0.4〉 

E
a

se
 o

f 
C

o
o

k
in

g
 

〈(14 , 13 , 12) ; 0.3,0.75,0.7〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(2,3,4); 0.3,0.75,0.7〉 〈(2,3,4); 0.3,0.75,0.7〉 

P
re

p
a

ra
ti

o
n

 
B

ef
or

e 

C
o

o
k

in
g

 

〈(14 , 13 , 12) ; 0.3,0.75,0.7〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(6,7,8); 0.9,0.1,0.1〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(4,5,6); 0.8,0.15,0.2〉 

C
o
o
k

in
g
 S

p
ee

d
 

〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(5,6,7); 0.7,0.25,0.3〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(6,7,8); 0.9,0.1,0.1〉 

A
p

p
er

a
n

ce
 

〈(1,1,1); 0.5,0.5,0.5〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(17 , 16 , 15) ; 0.7,0.25,0.3〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(4,5,6); 0.8,0.15,0.2〉 〈(6,7,8); 0.9,0.1,0.1〉 

C
o
st

 

〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(13 , 12 , 1) ; 0.4,0.65,0.6〉 〈(14 , 13 , 12) ; 0.3,0.75,0.7〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(1,1,1); 0.5,0.5,0.5〉 〈(4,5,6); 0.8,0.15,0.2〉 

F
la

v
or

 

〈(13 , 12 , 1) ; 0.4,0.65,0.6〉 〈(14 , 13 , 12) ; 0.3,0.75,0.7〉 〈(15 , 14 , 13) ; 0.6,0.35,0.4〉 〈(14 , 13 , 12) ; 0.3,0.75,0.7〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(18 , 17 , 16) ; 0.9,0.1,0.1〉 〈(16 , 15 , 14) ; 0.8,0.15,0.2〉 〈(1,1,1); 0.5,0.5,0.5〉 

 

After that neutrosophic evaluation matrix is transformed to crisp one by using Equation (16) and taking the 

geometric means of 21 decision makers’ judgments. Crisp evaluation matrix for criteria is presented in Table 
5. 

Table 5. The crisp evaluation matrix for criteria 

Criteria Maintaining 

Nutrition 

Fact 

Food 

Safety 

Using 

Creativity 

Ease of 

Cooking 

Preparation 

Before 

Cooking 

Cooking 

Speed 

Apperance Cost Flavor 

Maintaining 

Nutrition 

Fact 

1 0.727796 1.25014 1.527633 1.315727 1.036983 0.695737 0.899589 0.603949 

Food Safety 1.374011 1 1.353279 1.701836 1.751794 1.598556 1.223622 1.003063 0.751704 

Using 

Creativity 

0.79991 0.738946 1 1.033799 0.894755 0.968991 0.524114 0.672649 0.662644 
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Ease of 

Cooking 

0.654607 0.587601 0.967306 1 0.859487 0.873294 0.878775 0.618077 1.214862 

Preparation 

Before 

Cooking 

0.760036 0.570843 1.117624 1.163485 1 0.870216 0.960695 0.642382 0.952786 

Cooking 

Speed 

0.964336 0.625565 1.032001 1.14509 1.14914 1 0.913409 0.720211 1.05269 

Apperance 1.437325 0.817246 1.907981 1.137948 1.040913 1.0948 1 0.838522 1.094613 

Cost 1.111619 0.996946 1.486659 1.617921 1.556706 1.388482 1.192575 1 0.961737 

Flavor 1.655769 1.330311 1.509105 0.823139 1.049554 0.949947 0.913565 1.039785 1 

 

Normalized evaluation matrix for criteria is formed as Table 6. 

Table 6. The normalized evaluation matrix for criteria 

C
ri

te
ri

a
 

Maintaining 

Nutrition 

Fact 

Food 

Safety 

Using 

Creativity 

Ease of 

Cooking 

Preparation 

Before 

Cooking 

Cooking 

Speed 

Apperance Cost Flavor 

M
a

in
ta

in
i

n
g

 

N
u

tr
it

io
n

 0.102484 0.098414 0.107547 0.136997 0.123914 0.106017 0.083799 0.121006 0.072809 

F
o

o
d

 

S
a

fe
ty

 

0.140814 0.135222 0.116420 0.152619 0.164982 0.16343 0.14738 0.134924 0.090622 

U
si

n
g

 

C
re

a
ti

v
it

y
 0.081978 0.099922 0.086028 0.09271 0.084267 0.099066 0.063127 0.090479 0.079885 

E
a

se
 

o
f 

C
o

o
k

in
g

 

0.067087 0.079456 0.083215 0.089679 0.080946 0.089282 0.105845 0.083139 0.146457 

P
re

p
a

ra
ti

o
n

 
B

ef
o

re
 

C
o

o
k

in
g

 

0.077892 0.077191 0.096147 0.10434 0.094179 0.088968 0.115712 0.086408 0.114863 

C
o

o
k

in
g

 

S
p

ee
d

 

0.098829 0.08459 0.088781 0.102691 0.108225 0.102236 0.110016 0.096877 0.126907 
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A
p

p
er

a
n

c

e 
0.147303 0.11051 0.164140 0.10205 0.098032 0.111928 0.120446 0.112791 0.131961 

C
o

st
 

0.113923 0.134809 0.127894 0.145094 0.146609 0.141953 0.143641 0.134512 0.115942 

F
la

v
o

r 

0.16969 0.179887 0.129825 0.073818 0.098846 0.097119 0.110035 0.139864 0.120555 

 

Finally the priorities for criteria as the eigen vector X can be calculated by taking the overall row averages 
and seen as below: 

𝑋 =
[  
   
   
0.1058870.138490.0863850.0916790.0950780.1021280.1221290.133820.124404]  

   
   
 

According to the eigen vector X while cost was found as the most important criterion having the value of 
0.13382, using creativity was obtained as the least important one having the value of 0.086385. 

Then the consistency of decision makers’ judgments is checked by computing CI and CR values. CI value is 

found as 0.016 and by using Equation (22) CR value is acquired as 0.011. Decision makers’ evaluations are 
consistent because of having CR value smaller than 0.1. 

After obtaining criteria weights four alternatives as cooking techniques (oven, grill ) are ranked via single 
valued neutrosophic sets based Copras method. 

Firstly neutrosophic evaluations of four cooking techniques obtained by taking the geometric means of 21 

decision makers’ judgments are presented as Table 7. 

Table 7. Neutrosophic evaluation matrix for four cooking techniques obtained from 21 decision makers 

C
ri

te
ri

a
 

Maintaining 

Nutrition 

Fact 

Food Safety Using 

Creativity 

Ease of 

Cooking 

Preparation 

Before 

Cooking 

Cooking 

Speed 

Apperance Cost Flavor 

B
a

k
in

g
 

〈0.69,0.27,0.31〉 〈0.78,0.19,0.22〉 〈0.66,0.32,0.34〉 〈0.84,0.15,0.16〉 〈0.75,0.24,0.25〉 〈0.71,0.26,0.29〉 〈0.73,0.25,0.27〉 〈0.68,0.31,0.32〉 〈0.8,0.18,0.2〉 
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B
o

il
in

g
 

〈0.72,0.26,0.28〉 〈0.8,0.18,0.2〉 〈0.57,0.43,0.43〉 〈0.76,0.22,0.24〉 〈0.76,0.22,0.24〉 〈0.7,0.29,0.3〉 〈0.59,0.39,0.41〉 〈0.8,0.18,0.2〉 〈0.72,0.26,0.28〉 

G
ri

ll
 

〈0.76,0.21,0.24〉 〈0.72,0.26,0.28〉 〈0.77,0.2,0.23〉 〈0.76,0.23,0.24〉 〈0.72,0.26,0.28〉 〈0.75,0.22,0.25〉 〈0.86,0.13,0.14〉 〈0.7,0.28,0.3〉 〈0.88,0.11,0.12〉 

S
a

u
te

in
g

 

〈0.69,0.26,0.31〉 〈0.73,0.23,0.27〉 〈0.79,0.18,0.21〉 〈0.79,0.18,0.21〉 〈0.68,0.29,0.32〉 〈0.81,0.17,0.19〉 〈0.77,0.21,0.23〉 〈0.69,0.27,0.31〉 〈0.83,0.15,0.17〉 

 

Then the cells in Table 7 are transformed to crisp one by using Equation (14) as score functions and obtained 

deterministic pairwise matrix for four cooking techniques are seen as Table 8. 

Table 8. Deterministic pairwise matrix for four cooking techniques 

C
ri

te
ri

a
 

Maintaining 

Nutrition 

Fact 

Food 

Safety 

Using 

Creativity 

Ease of 

Cooking 

Preparation 

Before 

Cooking 

Cooking 

Speed 

Görünüm Cost Flavor 

B
a

k
in

g
 

0.420435 0.594285 0.340704 0.687115 0.510115 0.448391 0.481008 0.369066 0.627965 

B
o

il
in

g
 

0.45638 0.617556 0.143355 0.541296 0.538664 0.408671 0.203095 0.611895 0.458623 

G
ri

ll
 

0.55452 0.465339 0.56583 0.5283 0.462035 0.527789 0.722915 0.414642 0.767978 

S
a

u
te

in
g

 

0.430835 0.495965 0.61226 0.601243 0.390446 0.63546 0.558783 0.420307 0.675659 

 

Weighted pairwise matrix is constructed and presented as Table 9. 

Table 9. Weighted pairwise matrix for four cooking techniques 

C
ri

te
ri

a
 

Maintaining 

Nutrition 

Fact 

Food 

Safety 

Using 

Creativity 

Ease of 

Cooking 

Preparation 

Before 

Cooking 

Cooking 

Speed 

Apperance Cost Flavor 
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B
a

k
in

g
 

0.044519 0.082303 0.029431 0.062994 0.048501 0.045793 0.058745 0.049388 0.078121 

B
o

il
in

g
 

0.048325 0.085525 0.012383 0.049625 0.051215 0.041737 0.024804 0.081884 0.057055 

G
ri

ll
 

0.058716 0.064445 0.048879 0.048434 0.043929 0.053902 0.088289 0.055487 0.09554 

S
a

u
te

in
g

 

0.04562 0.068686 0.052890 0.055121 0.037123 0.064898 0.068244 0.056245 0.084055 

 

The values of 𝑅+𝑖, 𝑅−𝑖, 𝑆𝑉𝑖 and ranking of four cooking techniques are presented as Table 10. 

Table 10. The values of 𝑅+𝑖, 𝑅−𝑖, 𝑆𝑉𝑖 and ranking of four cooking techniques 

Criteria 𝑹+𝒊 𝑹−𝒊 𝑺𝑽𝒊 Ranking 

Baking 0.450407 0.049388 0.522487 3 

Boiling 0.370669 0.081884 0.442749 4 

Grill 0.502134 0.055487 0.574214 1 

Sauteing 0.476637 0.056245 0.548717 2 

 

According to Table 10 while grill technique was found as the most important cooking alternative having the 𝑆𝑉𝑖 value of 0.574214, boiling technique was obtained as the least important one having the 𝑆𝑉𝑖 value of 

0.442749. 

Conclusions 

In this study cooking techniques are ranked by using neutrosophic AHP based neutrosophic Copras approach. 
For this aim firstly criteria for selecting the cooking techniques are determined according to extensive 

literature review process and weighted via single valued neutrosophic sets based AHP approach. Then the 
four cooking techniques as alternatives are ranked by using single valued neutrosophic sets based Copras 

method. Single valued neutrosophic sets are preferred compared to crisp, fuzzy, interval-valued and 
intuitionistic sets due to efficiency, flexibility and easiness for explaining decision makers’ indeterminate 
judgments. Furthermore selection of cooking technique as a complex real world decision making problem 

can be efficiently solved under neutrosophic sets based environment.  

For further researhes criteria related to cooking technique selection can be expanded and results can be 
compared with different multi criteria decision making methods. Also various hybrid techniques can be 

proposed and applied for real world complex decision making problems.  
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Restrictions of Research 

This research has been limited to the dry heat cooking method. In the future research, apart from the dry and 

wet heat cooking methods, modern cooking methods such as sou-vide can also be examined and compared 
within the framework of cuisine dynamics. 

In this research, cooking methods have been evaluated from the chefs’ point of view, who can be described 
as cuisine producers. The comparison of cooking methods within the framework of variables being important 
for consumers such as taste, presentation and price may bring a more comprehensive perspective to the issue. 
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ABSTRACT 

It becomes even more complex with complex architectural problems, and decision-

making methods are needed, and it is understood how important decision-making methods 

are. While the use of decision-making methods in the field of engineering is dominant, 

their use in the field of architecture is becoming more and more widespread. It can be 

listed as reaching an optimum solution with the targeted and designed alternatives with 

these methods, evolving the design process, allowing recycling, controlling these processes 

and creating data for architecture in the future. In this chapter, we developed construction 

method of converting intuitionistic fuzzy set into neutrosophic set to intuitionistic fuzzy 

soft set into neutrosophic soft set. Here we consider a problem of decision making the 

application of architecture in fuzzy soft set and presented a method to generalize it into 

neutrosophic soft set based decision making problem for modelling the problem in a better 

way. In the process we used the construction method and score function of neutrosophic 

number. 

Keywords: intuitionistic fuzzy soft set, neutrosophic soft set, decision making, 

architecture.  

INTRODUCTION 

For proper description of objects in uncertain and ambiguous environment, 
indeterminate and incomplete information has to be properly handled. Intuitionistic fuzzy 
sets were introduced by Atanassov [1], followed by Molodtsov [2] on soft set and 
neutrosophy logic [3] and neutrosophic sets [4] by Smarandache. The term neutro-sophy 

mailto:derya.bakbak@tbmm.gov.tr
mailto:vulucay27@gmail.com
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means knowledge of neutral thought and this neutral represents the main distinction 
between fuzzy and intuitionistic fuzzy logic and set. Presently, work on soft set theory is 
progressing rapidly. Various operations and applications of soft sets were developed 
rapidly including neutrosophic soft expert multiset [5], on neutrosophic soft lattices [6], 
isomorphism theorems for soft G-modules [7], time-neutrosophic soft expert sets [8], a 
new approach for multi-attribute decision-making problems in bipolar neutrosophic sets 
[9], generalized neutrosophic soft expert set for multiple-criteria decision-making [10], A 
new similarity measure based on falsity value between single valued neutrosophic sets 
based on the centroid points of transformed single valued neutrosophic numbers with 
applications to pattern recognition [11]. The above set theories have been applied to many 
different areas including real decision making problems [12-29]. 

 
Bakbak [30] the properties, future expectations and plans of the houses in Syria 

were evaluated. Bakbak, [31] has evaluated sports fields, recreation areas,  playgrounds, 
car parks, parking lots, shopping areas,  resting facilities, pedestrian roads, mosques, 
condolences, parks, cafes and tea gardens. Therefore, the proposed method in this study 
will help to make the most appropriate decision for housing construction. 

In this chapter, we have presented a neutrosophic soft set theoretic approach 
towards solution of the above decision making problem in architecture. 

In the Section 2 we have presented a brief note on the preliminaries related to soft 
sets definitions centered around our problem. Section 3 deals with again the basics of 
neutrosophic soft sets and some relevant definitions. A decision making problem has been 
discussed and solved in the Section 4 and Section 5. We have some conclusions in the 
concluding Section 6. 

 

BACKGROUND 
 

Definition 1. [4] Let T be a universe of discourse, with a generic element in T denoted by t, 

then a  neutrosophic (NS) set A is an object having the form   

       , , , , A A AA t t t t t T     

where the functions      , , : 0,1
A A A
t t t T  

     define respectively the degree 

of membership (or Truth) , the degree of indeterminacy, and the degree of non-

membership (or Falsehood) of the element t T  to the set A with the condition.  

     0 3 .
A A A
t t t  

 
     

Definition 2. [17] Let 𝑇  be an initial universe set and 𝐸  be a set of parameters. 

Consider 𝑇𝐸. Let 𝑁𝑆(𝑇) denotes the set of all neutrosophic sets of  𝑇. The collection (𝐹, 𝐴) is termed to be the neutrosophic soft set (NSS) over  𝑇, where F is a mapping given 

by  𝐹: 𝐴 → 𝑁𝑆(𝑇). 
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Definition 3. [22] The complement of a NSS (𝐹, 𝐴) denoted by (𝐹, 𝐴)𝑐 and is defined as (𝐹, 𝐴)𝑐=(𝐹𝑐,￢A)  where 𝐹𝑐 =￢A → 𝑃(𝑇)  is mapping given by 𝐹𝑐(𝑥)= neutrosophic 

soft complement with 𝜇𝐹𝑐(𝑥) = 𝑤𝐹(𝑥),   𝑣𝐹𝑐(𝑥) = 𝑣𝐹(𝑥),   𝑤𝐹𝑐(𝑥) = 𝜇𝐹(𝑥). 
 

Definition 4. [22]   Let (𝐻, 𝐴) and (𝐺, 𝐵) be two NSSs over the common universe T. Then 

the union of (𝐻, 𝐴)  and (𝐺, 𝐵)  is denoted by “ (𝐻, 𝐴)(𝐺, 𝐵) ” and is defined 
by (𝐻, 𝐴)(𝐺, 𝐵) = (𝐾, 𝐶), where 𝐶 = 𝐴 ∪ 𝐵 and the truth-membership, indeterminacy-

membership and falsity-membership of (K, C) are as follows: 

𝜇𝐾(𝑒)(𝑡) = {𝜇𝐻(𝑒)(𝑡)         ,                         𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,𝜇𝐺(𝑒)(𝑡)        ,                          𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,𝑚𝑎𝑥 (𝜇𝐻(𝑒)(𝑡), 𝜇𝐺(𝑒)(𝑡)) ,   𝑖𝑓 𝑒 ∈ 𝐴𝐵. 
 𝑣𝐾(𝑒)(𝑚) = {  

  𝑣𝐻(𝑒)(𝑡)        ,                        𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵, 𝑣𝐻(𝑒)(𝑡)         ,                        𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,𝑣𝐻(𝑒)(𝑡) + 𝑣𝐺(𝑒)(𝑡)2        ,   𝑖𝑓 𝑒 ∈ 𝐴𝐵.      
𝑤𝐾(𝑒)(𝑚) = {𝑤𝐻(𝑒)(𝑡)         ,                          𝑖𝑓 𝑒 ∈ 𝐴 − 𝐵,𝑤𝐺(𝑒)(𝑡)        ,                           𝑖𝑓 𝑒 ∈ 𝐵 − 𝐴,𝑚𝑖𝑛 (𝑤𝐻(𝑒)(𝑡), 𝑤𝐺(𝑒)(𝑡)) ,   𝑖𝑓 𝑒 ∈ 𝐴𝐵.      

Definition 5. [22] Let (𝐻, 𝐴) and (𝐺, 𝐵) be two NSSs over the common universe 𝑇. Then 

the intersection of (𝐻, 𝐴)  and (𝐺, 𝐵)  is denoted by “ (𝐻, 𝐴)(𝐺, 𝐵) ” and is defined 
by(𝐻, 𝐴)(𝐺, 𝐵) = (𝐾, 𝐶), where 𝐶 = 𝐴𝐵 and the truth-membership, indeterminacy-

membership and falsity-membership of (𝐾, 𝐶) are as follows:  𝜇𝐾(𝑒)(𝑡) = 𝑚𝑖𝑛 (𝜇𝐻(𝑒)(𝑡), 𝜇𝐺(𝑒)(𝑡))                                                      𝑣𝐾(𝑒)(𝑡) =  𝑣𝐻(𝑒)(𝑡) + 𝑣𝐺(𝑒)(𝑡)2                              𝑤𝐾(𝑒)(𝑡) = 𝑚𝑎𝑥 (𝑤𝐻(𝑒)(𝑡), 𝑤𝐺(𝑒)(𝑡)) , 𝑖𝑓 𝑒 ∈ 𝐴𝐵. 

 

Definition 6.  [27]   Let 
1 1 1 1

, ,v w      be a single valued neutrosophic number. 

Then, the score function  1
s   , accuracy function  1

a   and certainty function 

 1
c   of an SNN are defined as below; 

i.    1s 1 1 3 ;v w       
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ii.  1a ;v    

iii.  1c .   

Definition 7.  [27]   Let 
1 1 1 1

, ,v w     and 
2 2 2 2

, ,v w     be two single 

valued neutrosophic numbers. The comparison method can be defined as follows: 

i.  If    1 2s s  , then 
1

  is greater than 
2

 , that is, 
1

  is superior to 
2

 , 

denoted by 
1 2

  ; 

ii. If    1 2s s   and     1 2a a  , then 
1

  is greater than 
2

 , that is, 
1

  

is superior to 
2

 , denoted by 
1 2

  ; 

iii. If    1 2s s  ,    1 2a a   and    1 2c c   then 
1

  is greater than 

2
 , that is, 

1
  is superior to 

2
 , denoted by 

1 2
  ; 

iv. If    1 2s s  ,    1 2a a   and    1 2c c   then 
1

  is equal to 
2

 , 

that is, 
1

  is indifferent to 
2

 , denoted by 
1 2

.   

 

Neutrosophic Soft Set with Construction method 

     In this section, a method of construction of neutrosophic set from fuzzy set given by 

Jurio et al. [28] is presented. In this method we represent the truth-membership, 

indeterminacy-membership and falsity-membership degrees of each element. 

Let  
F
A FSs T  where  FSs T  denotes the set of all fuzzy sets in the universal set T  

and let , : 0,1T       be three mappings. Then 

        , , , :i A i i i iF
N t f t t t t T     

is a neutrosophic set corresponding fuzzy set 
F
A , where the mapping   

2 *: 0,1 0,1 Lf          

given by         , , , , , , , , , , ,v wf x y f x y f x y f x y     where  

   , , 1 ,f x y x y     
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                , , 1 1f x y x y yv        

   , , 1 , , ,
w
f x y f x y    

      * , : , 0,1 0,1  and 1L x y x y x y     , 

(The smallest element of *L is  *0 0,0,1
L

  and the greatest one is  *1 1,0,0
L

 .) 

satisfies that  

i. If 
1 2
y y then      1 2, , , ,f x y f x y      for all  , 0,1x   

ii.    , , 1 , ,f x y x f x y      for all 0,1x      

iii.    ,0, ,1f x x x    

iv.    0, , 0,1f y y    

v.    , ,0 ,1f x y x x   

vi.   , ,f x y y    

Example 8 Let  1 2 3 4, , ,T t t t t  and let  
F
A FSs T  given by  

3 41 2, , , ,
0,4 0,6 0,5 1F

t tt t
A x

  
 
  

 

and    0.4,  1i it t    for all 
i
t T . By using the above method fuzzy soft set 

converted in netrosophic soft set given as follows: 

     

   
   

, , 1 =0.4 1 0.4 0.24,

, , 1 1 1 0.24 0.4 0.36,

, , 1 , , 1 0.24 0.76,
w

f x y x y

f x y x y yv

f x y f x y





 

  

 

   

       

    

 

       
3 41 2

1 , , , ,
0.24,0.36,0.76 0.24,0.16,0.76 0.25,0.25,0.75 0.6,0.0,0.4SVNSs

t tt t
A x

  
 
  

. 
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Decision Making based on NSs 

       In this section we present neutrosophic soft set and some results of it. We discussed 

and extended the approach to fuzzy soft sets based decision making presented by Roy and 

Maji [29]. 

       Let  1 2 3, , ,..., kT t t t t  be set of k -objects, which may be characterized by a set of 

parameters  1 2 3, , ,..., iF F F F . The parameters space E  may be written as

 1 2 3 ... iE F F F F     . Let each parameter set 
i
F  represent the i th class of 

parameters and elements of 
i
F  represent a specific property set. Comparison table is a 

square table in which columns both are labeled by the objects names 
1 2 3
, , , ...,

n
t t t t  of the 

universe and the entries , 1, 2, ...,ij nijc   given by ijc = the number of parameters for 

which the NSN of it  exceeds or equal to the SVNSN of jt . 

       Clearly, 0 ijc k   and ,   i, jijc k   where k  is the number of parameters present 

in a NSS. 

       Thus ijc  indicates a numerical measure, which integer number and it dominates jt  

in ijc  number of parameters out of k  parameters. 

     The row sum of an object it  is denoted by ir  and is calculated by using the formula, 

1

n

j
i ijr c


  

Clearly, ir  indicates the total number of parameters in which it  dominates all the 

members of T . 

The column sum of an object it  is denoted by ic  and is calculated by using the formula, 

1

n

j
i ijc c


  
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Clearly, ic  indicates the total number of parameters in which it  dominates all the 

members of T . 

The score of an object it is iS may be given as 

i i iS r c  . 

The algorithm consists of the following steps: 

A. Identify the parameters and alternatives of NSSs 

B. Input the neutrosophic soft set    , , ,NS NSF A G B  and  ,NSH C  with the 

appropriate parameter set P  as observed by observer. 

C. Compute the corresponding resultant neutrosophic soft set   ,S P  from the 

neutrosophic soft sets    , , ,NS NSF A F B  and  ,NSF C  and place it in tabular 

form. 

D. Construct the comparison table of neutrosophic soft set  ,S P  and compute ir  and 

ic  for it , i . 

E. Compute the score of it , i . 

F. The optimal decision is to select kt  if 
ikS s . 

G. If k has more than one value then any one of kt  may be chosen. 

Application in a decision making problem 

     In this section we discussed the problem taken by Roy and Maji [29] in neutrosophic 

soft set by using the method construction of neutrosophic number from fuzzy number.  

     Let  1 2 3 4 5 6, , , , ,T t t t t t t , be the set of objects having different foundation, walls 

and roofs. The set of parameters is given by  

 1 2 3 4 5 6 7 8 9 10 11 12 13, , , , , , , , , , , ,E e e e e e e e e e e e e e , 

where 
i
e  stand for concrete 

1
e , ground concrete 

2
e , lean concrete 

3
e , crushed rock 

blockage 
4
e , mudbrick 

5
e , Plasterboard 

6
e , Wall Ceramic 

7
e , Plaster holder 

8
e , Straw 
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Panel 
9
e , Membrane 

10
e , Crushed Rock 

11
e , Straw Panel 

12
e , Extruded Polystyrene 

13
e . 

Let    1 2 3 4 5 6 7 8 9, , , , , , , ,A e e e e B e e e e e   and  10 11 12 13, , ,C e e e e  be three 

subsets of the set of parameterE . ,  and A B C  represent the foundation, walls and roofs 

respectively.  

Consider the neutrosophic soft set    , , ,NS NSF A G B  and  ,NSH C  describe the 

objects having the foundation, walls and roofs of the architectural structure. The problem is 

to identify an unknown structure from the multi observes neutrosophic data, specified by 

different decision maker in terms of neutrosophic soft sets     , , ,NS NSF A G B  and

 ,NSH C . The neutrosophic soft sets may be computed as follows. The neutrosophic soft 

set   ,NSF A   is defined as 

 

1 2 3
1

4 5 6

1 2 3
2

4 5 6

,0.18,0.52,0.82 , ,0.18,0.52,0.82 , ,0.2,0.3,0.8
,

,0.08,0.02,0.92 , ,0.14,0.06,0.86 , ,0.0,0.0,1

,0.2,0.3,0.8 , ,0.0,0.0,1 , ,0.2,0.2,0.8
,0.14,0.56,0.86 , ,0.18,0.52,0.82 , ,0.

,

t t t
e

t t t

t t t
e

t t tNSF A

  
 



1 2 3

3
4 5 6

1 2 3
4

4 5

,
14,0.56,0.86

,0.18,0.12,0.82 , ,0.18,0.52,0.82 , ,0.08,0.02,0.92
,

,0.2,0.3,0.8 , ,0.18,0.12,0.82 , ,0.2,0.3,0.8

,0.0,0.0,1 , ,0.2,0.2,0.8 , ,0.14,0.06,0.86
,0.08,0.02,0.92 , ,0.

t t t
e

t t t

t t t
e

t t

 
 
 
  
 


62,0.2,0.8 , ,0.18,0.52,0.82t

 
 
 
 
 
 
 
 
       

 

 

1 2 3
5

4 5 6

1 2 3
6

4 5

,0.2,0.3,0.8 , ,0.08,0.02,0.92 , ,0.18,0.12,0.82
,

,0.0,0.0,1 , ,0.14,0.56,0.86 , ,0.18,0.52,0.82

,0.14,0.56,0.86 , ,0.18,0.12,0.82 , ,0.2,0.3,0.8
,0.08,0.02,0.92 , ,0.08,0.72,0.

,

t t t
e

t t t

t t t
e

t t

NSG B

  
 



6

1 2 3
7

4 5 6

1 2 3
8

4

,
92 , ,0.14,0.56,0.86

,0.08,0.02,0.92 , ,0.18,0.52,0.82 , ,0.2,0.3,0.8
,

,0.14,0.56,0.86 , ,0.08,0.72,0.92 , ,0.08,0.02,0.92

,0.18,0.12,0.82 , ,0.08,0.72,0.92 , ,0.08,0.72,0.92
,0

t

t t t
e

t t t

t t t
e

t

 
 
 
  
 


5 6

1 2 3
9

4 5 6

,
.08,0.72,0.92 , ,0.08,0.02,0.92 , ,0.18,0.12,0.82

,0.2,0.3,0.8 , ,0.14,0.06,0.86 , ,0.14,0.06,0.86
,0.18,0.12,0.82 , ,0.14,0.06,0.86 , ,0.2,0.3,0.8

t t

t t t
e

t t t

 
 
 
 
 
 
 
 
    

  
      
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 

1 2 3
10

4 5 6

1 2 3
11

4 5

,0.18,0.42,0.82 , ,0.18,0.12,0.82 , ,0.2,0.2,0.8
,

,0.14,0.56,0.86 , ,0.18,0.12,0.82 , ,0.08,0.02,0.92

,0.2,0.3,0.8 , ,0.2,0.2,0.8 , ,0.18,0.12,0.82
,0.18,0.12,0.82 , ,0.18,0.1

,

t t t
e

t t t

t t t
e

t tNSH C

  
 


 6

1 2 3
12

4 5 6

1 2 3
13

4

,
2,0.82 , ,0.14,0.56,0.86

,0.08,0.02,0.92 , ,0.2,0.3,0.8 , ,0.18,0.42,0.82
,

,0.18,0.12,0.82 , ,0.2,0.2,0.8 , ,0.14,0.06,0.86

,0.0,0.0,1 , ,0.2,0.2,0.8 , ,0.18,0.12,0.82
,0.18,0

t

t t t
e

t t t

t t t
e

t

 
 
 
  
 


5 6.42,0.82 , ,0.2,0.3,0.8 , ,0.0,0.0,1t t

 
 
 
 
 
 
 
 
       

 

The tabular representations of the neutrosophic soft set    , , ,NS NSF A G B  and

 ,NSH C  are shown in Table 1, Table 2 and Table 3 respectively. 

Table 1: Tabular Representation of the Neutrosophic Soft Set  ,NSF A  

 

T  
concrete 

1
a  ground concrete 

2
a  lean concrete 

3
a  crushed rock blockage 

4
a  

1
t  0.18,0.52,0.82  0.2,0.3,0.8  0.18,0.12,0.82  0.0,0.0,1  

2
t  0.18,0.52,0.82  0.0,0.0,1  0.18,0.52,0.82  0.2,0.2,0.8  

3
t  0.2,0.3,0.8  0.2,0.2,0.8  0.08,0.02,0.92  0.14,0.06,0.86  

4
t  0.08,0.02,0.92  0.14,0.56,0.86  0.2,0.3,0.8  0.08,0.02,0.92  

5
t  0.14,0.06,0.86  0.18,0.52,0.82  0.18,0.12,0.82  0.2,0.2,0.8  

6
t  0.0,0.0,1  0.08,0.02,0.92  0.2,0.3,0.8  0.18,0.52,0.82  

 

Table 2: Tabular Representation of the Neutrosophic Soft Set  ,NSG B  

 

T  
mudbrick 

1
b  Plasterboard 

2
b  

Wall Ceramic 

3
b  

Plaster holder 
4
b  Straw Panel 

5
b  

1
t  0.2,0.3,0.8  0.14,0.56,0.86  0.08,0.02,0.92  0.18,0.12,0.82  0.2,0.3,0.8  

2
t  0.08,0.02,0.92  0.18,0.12,0.82  0.18,0.52,0.82  0.08,0.72,0.92  0.14,0.06,0.86  

3
t  0.18,0.12,0.82  0.2,0.3,0.8  0.2,0.3,0.8  0.08,0.72,0.92  0.14,0.06,0.86  

4
t  0.0,0.0,1  0.08,0.02,0.92  0.14,0.56,0.86  0.08,0.72,0.92  0.18,0.12,0.82  

5
t  0.14,0.56,0.86  0.18,0.52,0.82  0.08,0.72,0.92  0.08,0.02,0.92  0.14,0.06,0.86  
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6
t  0.18,0.52,0.82  0.14,0.56,0.86  0.08,0.02,0.92  0.18,0.12,0.82  0.2,0.3,0.8  

 

Table 3: Tabular Representation of the Neutrosophic Soft Set  ,NSH C  

 

T  
Membrane 

1
c  Crushed Rock 

2
c  Straw Panel 

3
c  Extruded Polystyrene 

4
c  

1
t  0.18,0.42,0.82  0.2,0.3,0.8  0.08,0.02,0.92  0.0,0.0,1  

2
t  0.08,0.52,0.92  0.2,0.2,0.8  0.2,0.3,0.8  0.2,0.2,0.8  

3
t  0.2,0.2,0.8  0.18,0.12,0.82  0.18,0.42,0.82  0.18,0.12,0.82  

4
t  0.14,0.56,0.86  0.18,0.12,0.82  0.18,0.12,0.82  0.18,0.42,0.82  

5
t  0.18,0.12,0.82  0.18,0.12,0.82  0.2,0.2,0.8  0.2,0.3,0.8  

6
t  0.08,0.02,0.92  0.14,0.56,0.86  0.14,0.06,0.86  0.18,0.52,0.82  

 

Considering the above two neutrosophic sets    ,  and ,NS NSF A G B  if we perform 

   " , , "NS NSF A G B  (like AND, OR etc.) then we have will 4 5 20   parameters 

of the form 
ij i j
e a b   for all 1, 2, 3, 4 and 1, 2, 3, 4, 5.i j  If we require the 

neutrosophic soft set for the parameters  11 14 22 23 45, , , ,P e e e e e , then the resultant 

neutrosophic soft sets    ,  and ,NS NSF A G B  will be  , ,NSK P say. 

So, after performing the    " , , "NS NSF A G B  for some parameters the tabular 

representation of the resultant neutrosophic soft set, say, will take the form as 

Table 4: Tabular Representation of the Resultant Neutrosophic Soft Set  ,NSK P  

 

T  11
e  

14
e  

22
e  

23
e  

45
e  

1
t  0.18,0.52,0.82  0.0,0.52,1  0.14,0.56,0.86  0.08,0.3,0.92  0,0.3,1  

2
t  0.08,0.02,0.92  0.18,0.52,0.82  0.0,0.12,1  0.0,0.52,1  0.14,0.2,0.86  

3
t  0.18,0.12,0.82  0.14,0.3,0.86  0.2,0.3,0.8  0.2,0.3,0.8  0.14,0.06,0.86  

4
t  0.0,0.56,1  0.08,0.02,0.92  0.14,0.56,0.86  0.08,0.72,0.92  0.08,0.12,0.92  

5
t  0.14,0.56,0.86  0.14,0.2,0.86  0.18,0.52,0.82  0.08,0.52,0.92  0.14,0.2,0.86  
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6
t  0.0,0.52,0.92  0.0,0.52,1  0.08,0.56,0.92  0.08,0.12,0.92  0.18,0.52,0.82  

 

Let us now see how the algorithm may be used to solve our original problem. Let  

 11 1 14 3 22 2 23 4 45 2
, , , ,P e c e c e c e c e c       

be the set of choice parameters of an observer. Then the resultant neutrosophic soft set with 

parameters P is  ,S P  placed in Table 5.  

Table 5: Tabular Representation of the Resultant Neutrosophic Soft Set  ,S P  

 

T  11 1e c  
14 3e c  

22 2e c  
23 4e c  

45 2e c  

1
t  0.18,0.42,0.82  0.0,0.52,1  0.14,0.56,0.86  0.0,0.3,1  0,0.3,1  

2
t  0.08,0.52,0.92  0.18,0.52,0.82  0.0,0.2,1  0.0,0.52,1  0.14,0.2,0.86  

3
t  0.18,0.2,0.82  0.14,0.42,0.86  0.18,0.3,0.82  0.18,0.3,0.82  0.14,0.06,0.86  

4
t  0.0,0.56,1  0.08,0.12,0.92  0.14,0.56,0.86  0.08,0.72,0.92  0.08,0.12,0.92  

5
t  0.14,0.56,0.86  0.14,0.2,0.86  0.18,0.52,0.82  0.08,0.52,0.92  0.14,0.2,0.86  

6
t  0.0,0.52,0.92  0.0,0.52,1  0.08,0.56,0.92  0.08,0.52,0.92  0.14,0.56,0.86  

 

The comparison table of the above resultant neutrosophic soft set is shown in Table 6.  

Table 6: Comparision Table of the Neutrosophic Soft Set  ,S P  

 

 1
t  

2
t  

3
t  

4
t  

5
t  

6
t  

1
t  7 3 1 2 1 3 

2
t  2 7 2 3 2 3 

3
t  5 4 7 5 5 5 

4
t  4 2 0 7 1 4 

5
t  4 4 3 3 7 5 

6
t  3 3 1 3 2 7 

 

We compute the row-sum, column-sum and the score for each 
i
t  as shown in Table 7. 
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Table 7: Score Table of the Neutrosophic Soft Set  ,S P  

 

 
Row-sum Column-sum Score 

1
t  17 25 -8 

2
t  19 23 -4 

3
t  31 14 17 

4
t  18 23 -5 

5
t  26 18 8 

6
t  19 27 -8 

 

From the above score table, it is clear that the maximum score is 17, scored by 
3
t and the 

decision is in favour of selecting 
5
t . 

Comparison Analysis 

In order to verify the feasibility and effectiveness of the proposed decision-making 

approach, a comparison analysis with neutrosophic soft decision method, used by Roy and 

Maji et al. [29], is given, based on the same illustrative example.  

Clearly, the ranking order results are consistent with the result obtained in [29]; however, 

the best alternative is the same as 
3
t , because the ranking principle is different, these two 

methods produced the same best and worst alternatives. 

Conclusion 

   In this chapter, in his piooner work [2] originated the soft set theory as a general 
mathematical tool for dealing with uncertain, fuzzy, intuitionistic, neutrosophic or vague 
objects. We consider a problemof decision making in fuzzy soft set theory and presented a 
method to generalize it into neutrosophic soft set based decision making problem for 
modelling the problem in a better way. This new extension will provide a significant 
addition to existing theories for handling indeterminacy, and spurs more developments of 
further research and pertinent applications. 

 

Future Research Directions 
This study can be extended by using other type of neutrosophic decision making 
approaches, including interval valued neutrosophic soft sets, bipolar neutrosophic soft sets. 
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ABSTRACT 
 
Inside the Neutrosophic Philosophy, a Neutrosophic Set counts three components: Truth, 

Indeterminacy and Falsehood. In this study the link will be made between Neutrosophic Sets and 

Multiple Objectives Decision Analysis. In other words, which method of Multiple Objectives 

Decision Analysis does respond the best to a Neutrosophic Set?  

 First an overview is brought of the forerunners and pioneers of Multiple Objectives 

Decision Analysis. The choice for a Multiple Objectives Decision Analysis Method is a function of 

reading a Decision Matrix, either horizontally or vertically. The horizontal reading is brought by 

the SAW methods, the vertical reading by methods more or less related to a Reference Point. 

The methods which are proved to be entirely false on a first glance are automatically 

excluded. Some methods are partly True or/and Indeterminate and partly false. Finally, the best 

methods will be True or/and Indeterminate but not at all False. 

 
Keywords: Neutrosophic Set; True; Indeterminate; False; Electre; MOORA; MULTIMOORA. 

 

INTRODUCTION 
 

In 1998 Smarandache defined a Neutrosophic Set as composed of three components: Truth, 

Indeterminacy and Falsehood (T, I, F - Concept), which is T% true, I% indeterminate and F% false, 

or more general a more refined concept: (T1, T2,…..; I1, I2,……; F1, F2,…….) [49]. 

 After Webster’s Dictionary “indeterminate data” mean: “having inexact limits; indefinite; 

indistinct; vague” [66]. 

 Neutrosophic Statistics may have indeterminate (imprecise, ambiguous, vague, incomplete, 

unknown) data. In economics the term “Indifference” is rather used. 

mailto:willem.brauers@uantwerpen.be
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 Following references illustrate a new trend in Neutrosophic theory: Şahin, Olgun et al. 

[47]; Şahin, Ecemiş et al. [48].  

Other studies make the connection with the Decision Making Process: Broumi et al. [18]; 

Hassan et al. [26]; Sahin et al. [48]; Uluçay & Şahin [59]; Uluçay et al. [61] and [63].  

 From now on the link will be made between Neutrosophic Sets and Multiple Objectives or 

Criteria Decision Analysis (MODA). Bakbak et al. study the Neutrosophic Multiset Applied to 

MODA [5]. Uluçay et al. present neutrosophic expert set for MODA [62]. 

In a first part several Multi-Objective Decision Analysis methods, in regard to 

Neutrosophy, will be mentioned. Uluçay et al. present an Outranking Approach for MODA-Problems 

with Neutrosophic Multi-Sets [60]. 

In a second part, linked to Neutrosophy, the Indifference Method of MODA is discussed. 

Thirdly, the MOORA method and in a fourth Part MULTIMOORA, in relation to Neutrosophy, are 

explained. The fifth part brings the Choice of Alternatives and Objectives and the Final Choice for 

the Most Robust Neutrosophic Solution with the Conclusion as a sixth part. 

 

The Relation between some Methods of Multiple Objective Decision Analysis 
and Neutrosophic Sets 

 
 The Forerunners and Pioneers 
 
 Cost-Benefit Analysis is a method with a monetary unit as the common unit of 

measurement of benefits and costs. Even benefits are expressed in the chosen monetary unit, either 

in a direct or in an indirect way. Ipso facto the net benefit, is either positive or negative. The 

proposed solution is then, or the acceptance of the project, or the status quo, which sometimes go 

hand in hand with deteriorating circumstances. Some comments are useful. 

- The Money Illusion: for instance, changes in prices of electricity can influence costs 

and benefits differently. 

- Its Materialistic Approach: cost-benefit presents a materialistic approach, whereby for 

instance unemployment and health care are degraded to monetary items. 

People are more easily solution-minded rather than objective-oriented: Cost-Benefit analysis is a 

product of this way of thinking. For instance, cost-benefit about a new underground railway in 

London starts with thinking of an eventual construction of that railway [24] and not of objectives 

such as: slimming of London, diminishing of transport flows: home-work, home-supplies, home-

entertainment and home-office. At that moment, entirely other solutions interfere, such as 

teleworking, teleshopping and teleconferences. 
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As the world is getting more and more objective-minded, such as thinking of ecology, cost-

benefit studies will have fewer and fewer chances today than before. Conclusion: Cost-Benefit 

Analysis is for a high percentage False. 

 Cost-Effectiveness: several projects are taken into account simultaneously. The analysis is 

bi-objective: costs expressed in a common monetary unit on the one side and a single effectiveness-

indicator on the other. For instance, in defense a weapon system could balance costs against the rate 

of kill, expressed in one or another military indicator [9].  

As initially optimality was absent in cost-effectiveness, several addenda were proposed. 

Lange launched his Economic Principle. The Economic Principle of Lange runs like this: either 

costs are kept constant with maximization of an objective (Effectiveness), or an objective is kept 

constant with minimization of costs (Efficiency) [32]. From linear programming it is known that for 

such a dual the solution is identical, only an assumption for nonlinear systems. At that moment, the 

question remains if an optimal solution is found. Conclusion: Cost-Effectiveness is for a high % 

True, partly as the existence of a single optimal solution is missing. 

 Fractional Programming forms a substitute for the dual problem: 
 
max. E / C  =  max. effectiveness/ min. costs. 

Fractional Programming is True, but effectiveness defined as a single component can 

be difficult to determine. 

 The Condorcet Paradox, against Binary Comparisons [20]: 

  FALSE (with T% =0; I% = 0): beer preferred to milk; milk preferred to wine is in 

contradiction with wine preferred to beer [12].  

In the 1963-edition of his book Arrow maintains that in the first edition of 1951 he was not 

aware of the work of Condorcet: 

"when I first studied the problem and developed the contradictions in the majority rule 
system, I was sure that this was no original discovery, although I had no explicit reference, 
and sought to express this knowledge by referring to the well known 'paradox of voting” [3]. 

Nevertheless, the whole MODA method of Saaty, called AHP, The Analytic Hierarchy Process, is 

based on these False binary comparisons [44-45]. AHP/ANP is the most typical example of 

“comparing alternatives in pairs” [46]. 

 Minkowski [38, 39]: T = 100%: “a convex set has the characteristic that all points on a line 

between two points of that set have to belong to that set”. 

 Pareto Optimum and Indifference Curves Analysis: Pareto [41] (the editions of 1906 and 

1927 are not similar).  
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 Indifference Curve Analysis: Pareto following Minkowski: “all points on an 

Indifference Curve or Surface have the same importance towards the objectives 

considered”. 

 Pareto Optimum  

False (100%): a Pareto Optimum represents the Absolute Maximum. 

Instead, Pareto called a point an optimum (Pareto Optimum) when it is not possible 

to move away from that point without hurting one or another party. Much confusion 

exists about the Pareto Optimum. In order to make this clear the French translation of 

the original Italian text by Pareto himself runs as follows:  

"Nous dirons que les membres d'une collectivité jouissent, dans une certaine 
position, du maximum d'ophélimité, quand il est impossible de trouver un moyen de 
s'éloigner très peu de cette position, de telle sorte que l'ophélimité dont jouit chacun des 
individus de cette collectivité augmente ou diminue. C'est-à-dire que tout petit 
déplacement à partir de cette position a nécessairement pour effet d'augmenter 
l'ophélimité dont jouissent certains individus, et de diminuer celle dont jouissent d’autres 
: d'être agréable aux uns, désagréable aux autres". 

False (100%): Mostly, it was accepted that for each set of data only one single 

Pareto Optimum existed. 

True (100%): if the Indifference Loci (indifference curve, surface or manifold) show 

the aspiration level of the stakeholders, each point belonging to the highest possible 

Indifference Locus, given limited resources, represents a Pareto optimum.  

Consequently, for a given set of data, several Pareto Optima are possible 

simultaneously.  

MODA goes even further: a situation is considered better if the total of the 

advantages of the winners is larger than the total of the advantages of the losers 

striving to an optimum situation. This general rule may hurt the defenders of 

democracy, but here some limits are built in such as:” Democracy represents the point 

of view of the majority respecting this one of the minorities. Therefore, important 

decisions, like changing the Constitution, the form of government, like the change of a 

Kingdom for a Presidency, would ask for a 2/3 or even a 3/4 majority vote. 

Moreover, the maximum and minimum optima have only a relative and not an 

absolute meaning; an absolute meaning could be a utopian optimum reference point 

(see therefore underneath the definition of a Reference Point under MOORA).  

In addition, the number of objectives and solutions considered could be 

incomplete. Therefore, some authors speak of the relative meaning as a satisficing 

result or of bounded rationality [67, 1, 25, 21].  
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 True (100%): Minkowski puts the basis of the Reference Point Theory. 

The Minkowski Metric brings the most general synthesis for measuring the distances between 

the coordinates of the alternatives and the reference point coordinates (Minkowski, [38,39]; 

Pogorelov, [42]: 

{ ( ) }-∑
=

=
= α/1α*

ijx
ni

1i
irjM.Min                                                   (1) 

                    with:  Mj = Minkowski metric for alternative j,  
                        where j = 1,2,....,m; m: the number of alternatives  

                                     i = 1,2,....,n; n: the number of objectives 
                                    ri = the ith co-ordinate of the reference point  

                                   xij
* = a dimensionless number representing the response of alternative j on objective i.  

 

From the Minkowski formula, the different forms of Reference Point Theory are deduced. The metric 

shows these forms depending on the values given to α. 

 With the rectangular distance metric α = 1, the results are very unsatisfactory. Assume a 

reference point (100;100), then all the points, (100;0), (0;100), (50;50), (60;40), (40;60), (30;70), and 

(70;30), show the same rectangular distance. Ipso facto, a midway solution like (50;50) takes the same 

ranking as the extreme positions (100;0) and (0;100). In addition, the points: (30;30), (20;40), (40;20), 

(50;10), (25;35), (0;60) and (60;0), show the same rectangular distance to a reference point (50;40). 

Even worse, theoretically for each line, an infinite number of points will result in the same ranking, 

meaning a weak robustness. A problem arises for the method VIKOR as VIKOR is based on 

Rectangular distances [40] (for the method VIKOR see underneath). 

 With α = 2, radii of concentric circles, with the reference point as central point, will represent 

the Euclidean Distance Metric. Applying the Euclidean distance metric for the first example, which is 

given above, the outcome is very unusual. The midway solution (50;50) is ranked with symmetry in 

ranking for the extreme positions: (100;0) and (0;100); the same for (60;40) and (40;60), for (30;70) 

and (70;30) etc. meaning a weak robustness. A problem arises for the method TOPSIS as TOPSIS is 

based on Euclidean distances: ([27] pp. 128-134) (for the method TOPSIS see underneath). 

 Radii of concentric spheres represent the Euclidean Distance Metric characterized by three 

coordinates, with the reference point for center.  

For more than three coordinates the corresponding manifolds are geometrically not possible 

to demonstrate. It is also not clear if many solutions do or do not try to go for optimality. 

  With α = 3, negative results are possible if some co-ordinates of the alternatives exceed the 

corresponding co-ordinate of the reference point, however neutralized by the squared root applied 

afterwards. 
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  It is also not clear if many solutions do or do not try to fight for optimality in the case of: α › 

3, with exception for α → ∞. Indeed, in this special case of the Minkowski metric only one distance 

per point is kept in the running, an increase in robustness. The Minkowski metric becomes the 

Tchebycheff Min-Max Metric [28] (p. 280). If the following matrix is given: 

             ( )
*iji xr     -

( )*
ijxir    -

                                

(2) 
 

   with:      i = 1,2,    , n as the attributes 
    j = 1, 2,   , m as the alternatives 
    ri = the ith co-ordinate of the reference point 

xij* = a dimensionless number representing the response of alternative j on 
objective i 

 

then this matrix is subject to the Min-Max Metric of Tchebycheff: 

   
( ) ( )

    - *ijxir
i

max
j

Min                                             

(3) 

ir - *ijx  means the absolute value if xij* is larger than ri for instance by minimization. 

 
1.1. The Method of Correlation of Ranks 

 

 False (100%): The Method of Correlation of Ranks consists of totalizing ranks. Rank 

Correlation was introduced first by psychologists such as Spearman [52, 53, 54] and later taken 

over by the statistician Kendall in 1948. he argues [30] (p. 1): “we shall often operate with these 

numbers as if they were the cardinals of ordinary arithmetic, adding them, subtracting them and 

even multiplying them,” but he never gives a proof of this statement. in his later work this 

statement is dropped [31]. 

 In ordinal ranking 3 is farther away from 1 than 2 from 1, but Kendal [30] (p. 1) goes 
too far (table 1). 

 

Table 1 Ordinal versus cardinal: comparing the price of one commodity 
 

 ordinal cardinal 

 1  

 2  

 3  

 
 

4  

a 5 6.03$ 

 6 6.02$  

 7 6.01$ 

b 8 6$ 
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For Kendal b is far away from a as it has 7 ranks before and a only 4, whereas it is not true cardinally. 

In addition, a supplemental notion, the statistical term of correlation, is introduced. Suppose 

the statistical universe is just represented by two experts, it could be two methods. If they both rank in 

a same order different items to reach a certain goal, it is said that the correlation is perfect. however, 

perfect correlation is a rather exceptional situation. The problem is then posited: how in another 

situation correlation is measured. Therefore, the following Spearman's coefficient is used (Kendall 

[30], (p.8); Spearman [52, 53, 54]: 

    
)1N(N

D6
1

2

2


  ,     (4) 

 
where D stands for the difference between paired ranks, and N for the number of items ranked. 

According to this formula, perfect correlation yields the coefficient of one. An acceptable 

correlation reaches the coefficient of one as much as possible. No correlation at all yields a 

coefficient of zero. If the series are exactly in reverse order, there will be a negative correlation of 

minus one, as shown in the following example (table 2). 

 

Table 2. – Negative rank order correlations 
 

items expert 1 expert 2 sum of ranks d d2 

1 1 7 8 -6 36 

2 2 6 8 -4 16 

3 3 5 8 -2 4 

4 4 4 8 0 0 

5 5 3 8 2 4 

6 6 2 8 4 16 

7 7 1 8 6 36 

      

112 

This table shows that the sum of ranks in the case of an ordinal scale has no sense. Correlation leads 
to:  

 

     )149(7

1126
1


  = - 1 

 
However, as a sum of ranks is not allowed also a subtraction in the differences D is not permitted.  

The full multiplicative method with its huge outcomes illustrates the best the trend break 

between cardinal and ordinal numbers as shown in next table 3. 
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Table 3. – Ranking of scenarios for the Belgian Regions by the full-multiplicative method in 1996. 

 

 scenario name  total/100000 
(a) 

1 scenario ix optimal economic policy in Wallonia and Brussels 203267 
2 scenario x optimal economic policy in Wallonia and Brussels even 

agreeing on the partition of the national public debt 
196306 

3 scenario vii Flanders asks for the partition of the national public debt 164515 
4 scenario viii no solidarity at all 158881 
5 scenario ii unfavorable growth rate for Flanders          90 
6 scenario iv an unfavorable growth rate for Flanders and at that moment 

asks also for the partition of the national public debt 
         87 

7 scenario iii partition of the national public debt          54 
8 scenario i the average Belgian          51 
9 scenario v average Belgian, but as compensation Flanders asks for the 

partition of the national public debt 
         49 

10 scenario o status quo          43 
11 scenario vi Flanders asks for the partition of the national public debt          42 

(a) max. private income in Bef per capita (Wallonia*Brussels*Flanders); min transfer payments in Bef per capita from Flanders 
to Wallonia; min in % of public debt to GRP (Wallonia*Brussels*Flanders). substitution of one Bef from transfer payments to 
private income in not possible.  
Previously 1 Bef = 0.0247893€. 
Source: [11], (p. 15). 

 

In a usual arithmetical progression: 1, 2, 3, 4, 5, … the distance from the rank 4 to 5 would be the 

same as from 3 to 4 which is certainly not the case here.  

In addition, an ordinal ranking fails to discover a Trend Break, such as demonstrated in 

Table 3. 

 

Arbitrary methods to go from an ordinal scale to a cardinal scale 
 
1) Arithmetical Progression e.g.: 1, 2, 3, 4, 5. 

the ordinal scale 5 gets 1 cardinal point 

the ordinal scale 4 gets 2 cardinal points etc. 

2) Geometric progression: 1, 2, 4, 8, 16… 

3) The fundamental scale of Saaty [44]: 1, 3, 5, 7, 9 

4) The normal scale of Lootsma [33]: 

e° = 1 

e1 = 2.7 

e2 = 7.4 

e3 = 20.1……… 

5) The stretched scale of Lootsma [33]: 
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e° = 1 

e2 = 7.4 

e4 = 54.6 

e6 = 403.4……… 

6) The point of view of the psychologists [36]: 

Ordinal scales: 1, 2, 3, 4, 5, 6, 7. after 7 an individual would no more know the cardinal 

significance compared to the previous seven numbers. 

In fact, infinite variations are possible. All stress an acceleration or a dis-acceleration process 

but are not aware of a possible trend break. 

 

The Impossibility Theorem of Arrow 

“Obviously, a cardinal utility implies an ordinal preference but not vice versa” [4].  

Axioms on Ordinal and Cardinal Scales 

1. A deduction of an Ordinal Scale, a ranking, from cardinal data is always possible. 

2. An Ordinal Scale can never produce a series of cardinal numbers. 

3. An Ordinal Scale of a certain kind, a ranking, can be translated in an ordinal scale of another 

kind. 

If a cardinal scale is absolutely missing, for instance for quality, after the opinion of the author 

quality as a cardinal number has to remain moderate. E.g. 

 Quality “Good” gets 4 cardinal points 

 Quality “Moderate” gets 3 cardinal points 

 Quality “Bad” gets 2 cardinal points, i.e. Good is only the double from Bad.  

 

1.3. SAW as a basis for MODA Methods:  
 

In order to understand SAW one has to refer to the Decision Matrix of MODA (Table 4). 

 

Table 4. Decision Matrix with the Multiple Objectives as Columns  
and the Alternative Solutions as Row 
 

 Obj. 1 Obj. 2 …………… Obj. I  Obj. N 

Alternative 1 x11 x21 …………… xi1 ……………… xn1 

Alternative 2 x12 x22 …………… xi2  xn2 

………….. ……. …….. …………… ………  ……….. 

Alternative J x1j x2j …………… xij  xnj 

……….. …… ……… …………… …….  ……… 
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Alternative M x1m x2m …………… xim  xnm 

All the objectives have different denominations. Consequently, there is a question of uniformness, 

composed of normalization and importance. Therefore, a method has to be chosen to respond to 

this necessity. 

The Additive Weighting Procedure [34] (pp. 29–33) which was called SAW, Simple Additive 

Weighting Method by Hwang and Yoon [27] (p. 99) starts from the Horizontal Reading of the 

Decision Matrix with use of the following formula: 

           (5) 

 
 
with:                                             

           1
ni

1i
iw 




∑       (6) 

 
  creates a Super-Objective on basis of the sum of weights = 1 
 
Weights: mixture of normalization and importance. What is what? 

Numerous Number of objectives would ask for many, many weights, how to choose? 

For instance: Brauers and Zavadskas [17] studied the 27 EU-countries as a preparation for 2020 on 

basis of 22 objectives expressed in 22 different units. How would it be possible to find weights 

(subjective?) for these 22 different units? Normalization mixed with importance of the 22 

objectives have to be estimated (True, 100%). 

 

ELECTRE is one of the first developed methods of MODA [43], ELECTRE follows SAW. 

- There are many versions of ELECTRE such as Electre I, Electre Iv, Electre Is, Electre TRI, 

Electre II, Electre III and Electre IV. Schärlig [50, 51] calls them “Methods of Partial 

Aggregation”.  

- Uses terminology comparable to the Neutrosophic Set: 

 TRUE :  

Outranking (surclassement) 

Preference 

Transitivity 

Concordance and discordance,  

Dominance, etc. 

 INDETERMINATE 

Indifference 

Thresholds, etc. 

njxn w+..…+ijxiw+..…+ 2jx2 w+ 1jx 1w= jx    Max.
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 FALSE 

Non preference 

Incomparability 

Intransitivity 

From the school of ELECTRE several other Methods can be mentioned, such as: 

 Promethee since 1984 [6, 7], 

 Qualiflex (see therefore: Schärlig, [50]. 

 

1.4. The Reference Point Methods 

 

1.4.1. TOPSIS, Hwang and Yoon [27] (pp. 128-134). 

A problem arises for TOPSIS as TOPSIS is based on Euclidean distances (see above under 

Minskowski). However, Euclidean distances would lead to an infinite number of solutions. In order 

to come to a single solution Hwang and Yoon introduce weights. 

TOPSIS works with two solutions: 

Mj
+  gives per objective to be maximized the highest value and per objective to be minimized the 

lowest value 

Mj
--  gives per objective to be maximized the lowest value and per objective to be minimized the 

highest. 

TOPSIS considers the importance of both in an aggregation: 

 

             Mj
- 

Max. Mj
*= ___________ 

      Mj
+    +    Mj

-    (7) 

 

False (100%): is extremely arbitrarily between M j
+ and Mi

- 

 

1.4.2. VIKOR, Opricovic, Tzeng, 2004 [40].  

 

Being a Reference Point Method and in order to satisfy Minskowski, VIKOR works with weights, 

with as basic formula after weights: 

    Min Mj    =   
i=n∑ (ri   -  xij*)              (8) 

In the example of the mountain climber [40] (p. 452) the risk factor, a Subjective Evaluation from 1 

till 5, has to be increased with 5 and the altitude in meters to be divided by 1000 and then 
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diminished by one in order to make the two criteria more or less comparable, i.e. introduction of 

weights. 

 

Table 5. The example of a mountain climber in VIKOR 

 A1 A2 A3 

Before normalization 

Risk 

Altitude in meters 

 

1 

3000 

 

2 

3750 

 

5 

4500 

After normalization 

Risk 

Altitude in meters 

 

6 

2 

 

7 

2.75 

 

10 

3.5 

 

Conclusion: False (100%): weights being extremely arbitrarily. 

 

The Indifference Method 

 

In 1965 Brauers introduced the Indifference Method in a study for the Belgian Department of 

Defense concerning the procurement of a heavy truck of six tons [8] (pp. 2-3).  

   The candidate trucks had to undergo heavy tests: to climb slopes of 70%, to drive through 

1.60m of water, to stay in water for some time, to overcome a lot of obstacles, to use consecutively 

petrol and light fuel, etc. The characteristics of the trucks were written down before and after the 

tests. Finally, the military specialists were indifferent among a limited number of types (I of. 

Neutrosophy). 

   In a next step, economists will interfere, and in that case, the lowest macro-cost will decide 

the choice (T of Neutrosophy)..In that way the German MAN heavy truck was chosen. A good 

choice! Though the Belgian Army has the name to keep material a long time it is admirable that 

some MAN trucks were still in operation in 2019. 

   Next application concerned the choice in the tank renewal program ending in a competition 

between the German Leopard tank and the French AMX 30 [10]. 

   Finally; The Indifference Approach was also used in Belgium for procurement of other 

imported heavy military equipment such as rockets, tactical aircraft and escort vessels. 

 Though the given examples only concern military defense the Indifference Method is 

applicable in all fields of the public or private domain [8] (pp. 8-11). 

This indifference approach has the intention to solve the problem of optimizing several 

objectives if several alternatives are possible and the stakeholders are indifferent.  
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Conclusion: The Indifference Method is True. 
 
 
 
 

The MOORA Method 
 
 

Ratio Analysis of MOORA (Multiple Objectives Optimization by Ratio Analysis) 
 
Simple averages are taken by column when the Decision Matrix (table4) is read vertically: 
 𝑥𝑖𝑗∗ = 𝑥𝑖𝑗/∑𝑥𝑖𝑗       (9) 

 
Table 6. An example with 2 objectives and 2 solutions 

 
 MAX. Employment in person 

years 
MAX. Value Added in million 
€ 

Solution 1 (chemical) 20 70 
Solution 2 (retail) 80 30 
 100 100 

 
When the percentages are compared, they become Dimensionless Measurements. 

However, simple averages are inconsistent as they may change the sign and even lead to no 

sense results. A study of 2006 showed several other solutions [15] but concluding as the best one: 

∑
m

ij

2
ijx

ijx
ijx



*
      

 (10) 

with no problem for the number of objectives and with all objectives of the same importance 

leading to: 

 

           
 (11) 

i  = 1,2,…,g, objectives to maximized 
          i  = g+1, g+2,…, n objectives to minimized 
 

                         =  alternative j concerning all objectives and showing the final preference  
 

3.2. Second Part of MOORA: the Method of Reference Point 
 

Which Reference Point? 
 

1) Maximal Objective Reference Point  

 
Suppose 2 points: A(100,20) and B (50,100) 

∑-∑
n=i

1+g=i
ijx

g=i

1=i
ijx=jy ***

*jy



Editors: Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 

              

 

140 

 

Dominating coordinates  Rm(100;100) 

2) Utopian Objective Reference Point  

is farther away than the Maximal Objective Reference Point 

3) Aspiration Objective Reference Point is more nearby than the Maximal Objective 

Reference Point  

As said earlier the Minkowski Metric is the most General Synthesis of the Reference Point (see 

formula 1). Moving farther away than the Rectangular or the Euclidean position until infinity, the 

Minkowski metric becomes the Tchebycheff Min-Max Metric (formula 3). 

From its side the outcome of MOORA will not change if linked to significance coefficients 

(see proof in [13]). Instead introduction of Sub-Objectives is possible like:  

                        - the significance coefficient 2 of employment is replaced by the objectives 

direct and indirect employment  

                        - the significance coefficient 3 of pollution is replaced by three kind of 

pollution instead of a single one. 

 

The conclusion is extremely important: in MOORA it is only necessary to determine alternatives 

and objectives instead of the original five conditions, including also normalization, importance, 

large number of objectives and of alternatives. 

 

3.3. Some Examples of Practical Experience with Competing Methods 
 

Chakraborty [19] (p. 1165) studying Machine Manufacturing presents more information on all 

above-mentioned methods concerning: computational time, simplicity, mathematical calculation 

involved, stability and informative type. 

Table 7. Comparative performance of some popular MODM methods 
 

MODM method Computational 
time 

Simplicity Mathematical 
calculation 
involved 

Stability Information 
Type 

MOORA Very less Very simple Minimum Good Quantitative 
AHP Very high Very critical Maximum Poor Mixed 
TOPSIS Moderate Moderately 

critical 
Moderate Medium Quantitative 

VIKOR Less Simple Moderate Medium Quantitative 
ELECTRE High Moderately 

critical 
Moderate Medium Mixed 

PROMETHEE High Moderately 
critical 

Moderate Medium Mixed 

 
Karuppanna and Sekar [29] (p. 61), studying Manufacturing but also Service Sectors, looked 

after computational time, calculation and simplicity. 
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Table 8. Comparison of MOORA with other Approaches 
 

MADM method Computational Time Simplicity Mathematical 
calculations 

 

MOORA very less very simple Minimum 

AHP very high  very critical Maximum 
ANP  Moderate Moderately critical  Moderate  
VIKOR Less Simple Moderate 
TOPSIS Moderate Moderately critical Moderate 
ELECTRE High Moderately critical Moderate 
PROMOTHEE High Moderately critical Moderate 

 
Conclusion: to MOORA the True 100% of Neutrosophic Theory may be given. The same 

qualification could be attributed to MOORA with Interval Grey Numbers [55]. 

 

The MULTIMOORA Method 

 
 Adding a Full Multiplicative Form MOORA becomes MULTIMOORA 
 
The Full Multiplicative Form adds a third method to MOORA, by simply multiplying all objectives 

per alternative. In this way MULTIMOORA is born, all together composed of three methods 

controlling each other. 

 Mathematical economics is familiar with the multiplicative models like in production 

functions (e.g. Cobb-Douglas and Input-Output formulas) and demand functions [58], but the 

multiplicative form for multi-objectives was introduced in 1969 by Miller and Starr [37] and 

further developed by Brauers [12]. 

The following n-power form for multi-objectives is called from now on a full-multiplicative 

form in order to distinguish it from mixed forms:      

           

 (12)     

∏
=

=
n

1i
ijxjU

     

                    

with:  
j = 1, 2, ..., m; m the number of alternatives, 
i = 1, 2,…, n; n being the number of objectives, 
xij = response of alternative j on objective i, 
Uj = overall utility of alternative j.  
 

The overall utilities (Uj), obtained by multiplication of different units of measurement, become 

dimensionless.  
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Stressing the importance of an objective can be done as indicated under 3.2. on condition 

that it occurs with unanimity or at least with a strong convergence in opinion of all the stakeholders 

concerned.  

How is it possible to combine a minimization problem with the maximization of the other 

objectives? Therefore, the objectives to be minimized are denominators in the formula: 

           

 (13)   

j

j

j B

A
U ='

 
                                                                                                                  
 (14) 

∏
i

1g
gjxjA


  

with:  
j = 1, 2,..., m; m the number of alternatives, 
i = the number of objectives to be maximized.  

 

            
=jB

∏
+=

n

1ik
kjx

                                          
(15) 
with:  

n-i = the number of objectives to be minimized,  
Uj' = the utility of alternative j with objectives to be maximized and objectives to be 

minimized. 
 

The Full Multiplicative Form is read horizontally in the Decision Matrix of Table 1. Nevertheless, 

with the full-multiplicative form, the overall utilities, obtained by multiplication of different units 

of measurement, become dimensionless measures. This situation would not bias the outcomes 

amidst the several alternatives as the last ones are “formally independent of the choice of units” 

[22]. 

In the Full Multiplicative Form per row of an alternative all objectives are simply 

multiplied, but the objectives to be minimized are parts of the multiplication process as 

denominators. A single zero or a negative number for one of the objectives would make the final 

product zero or entirely negative. In order to escape of this nonsense solution, 0.001 replaces zero 

and for instance -2 becomes 0.0002 and -269 becomes 0.00000269 but only for the objective under 

consideration. 

The Ordinal Dominance Theory 

 

For MOORA the ranking for the two methods is done on view, no more possible for 

MULTIMOORA with its three methods. Therefore, the Ordinal Dominance Theory will interfere. 
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Adding of ranks, ranks mean an ordinal scale (1st, 2nd, 3rd etc.) signifies a return to a 

cardinal operation (1 + 2 +3 + …). Is this allowed? The answer is “no” following the Noble prize 

Winner Arrow: 

The Impossibility Theorem of Arrow 

“Obviously, a cardinal utility implies an ordinal preference but not vice versa” [3].  

Axioms on Ordinal and Cardinal Scales 

1. A deduction of an Ordinal Scale, a ranking, from cardinal data is always possible. 

2. An Ordinal Scale can never produce a series of cardinal numbers. 

3. An Ordinal Scale of a certain kind, a ranking, can be translated in an ordinal scale of another 

kind. 

In application of axiom 3 the rankings of three methods of MULTIMOORA are translated 

into another ordinal scale based on Dominance, being Dominated, Transitivity and Equability. 

Dominance. Absolute Dominance means that an alternative, solution or project is dominating in 

ranking all other alternatives, solutions or projects which all are being dominated. This absolute 

dominance shows as rankings for MULTIMOORA: (1–1–1). General Dominance in two of the 

three methods is of the form with a < b < c <d:  

 (d–a–a) is generally dominating (c–b–b); 

 (a–d–a) is generally dominating (b–c–b); 

 (a–a–d) is generally dominating (b–b–c); 

and further transitiveness plays fully. 

Transitiveness. If a dominates b and b dominates c than also a will dominate c. 

Overall Dominance of one alternative on the next one. For instance (a–a–a) is overall dominating 

(b–b–b) which is overall being dominated. 

Equability. Absolute Equability has the form: for instance (e–e–e) for 2 alternatives. Partial 

Equability of 2 on 3 exists e. g. (5–e–7) and (6–e–3). 

 

4.2. Combination of Methods 

 

Recently researchers are getting more and more convinced that ensemble methods perform better 

than individual methods [57, 65; 68]. Other maintain that averaging predictions from different 

methods lead to more accurate forecasts [56]. 
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  MULTIMOORA is such a combination of three methods: Ratio Analysis of MOORA, 

Reference Point Method of MOORA and the Multiplicative Form. In addition, the Ordinal 

Dominance Theory leads to a single solution. 

The Choice of Alternatives and Objectives and the Final Choice for the Most Robust 

Neutrosophic Solution 

 
The Choice of Alternative Solutions 

 
For MOORA it is only necessary to determine alternatives and objectives instead of the original 

five conditions, mostly needed for a full multi-objective optimization, including normalization, 

importance and no limit on the number of objectives and alternatives. This situation does not 

change for MULTIMOORA. Also, for MULTIMOORA only Alternative Solutions and Objectives 

have to be formulated. 

 For the greatest part no problems will arrive for alternatives. For instance, in the building 

industry the choice of contractors with propositions will be principally more than enough.  

Sometimes project management forms the basis of the choice of alternatives. Project 

Management assumes “that the project to be analyzed will constitute a new economic activity. In 

practice, however, many projects will only modify an existing economic activity” [69] (p. 5). At 

the end, different competing projects are taken into account, and a final choice is made by Multiple 

Objective Optimization. 

 

5.2. The Choice of Objectives 
 

The choice of objectives is much more difficult as all stakeholders, everybody involved in an issue, 

have to be contacted. Indeed, these stakeholders can be very numerous. Nevertheless, the following 

example mentions a case where the effort was rather simple.  

 In 2002 the Facilities Sector was only a very small sector in Lithuania, composed of a 

limited number of small firms, which even performed other tasks outside facilities management, 

such as waste management. The largest firm in the sector counted only 179 employees. Official 

statistics were not separately available for the Facilities Sector.  

In theory the facilities sector could include the entire management of Corporate Real 

Estate. This means the effective management, which is called the Fifth Resource. Indeed, in the 

report of “The Industrial Development Research Foundation of the United States” the corporate 

real estate assets are indicated as a fifth resource, after the resources of people, technology, 

information and capital [35]. 
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 A panel was formed around the Vilnius Gediminas Technical University to study the 

impact of the Facilities Sector on the general wellbeing of Lithuania considering possible 

economic, technical, political, social, medical and other events for the period 2003-2012. 

 To find “the stakeholders concerned” was not too complicated. Given the small firms in the 

sector, no trade unions were involved. In addition, at that moment, no representative consumer 

union existed in Lithuania. A delegation from the academic world, specialists in the field, was 

assumed to represent the general wellbeing. A further delegation came from the facilities sector 

itself and finally from the ministerial departments concerned, altogether 15 persons [12]. 

Once the stakeholders known, the objectives were not formulated in an open discussion, 

given the doubtful conclusions of such meetings [8] (pp. 38-39). Preference was given to the 

“Ameliorated Nominal Group Technique” as formulated in Brauers and Zavadskas [16]. 

 If there is a discussion about the breakdown of an objective in several sub-objectives the 

Delphi Technique could be helpful (see: [11] (pp. 40-44). 

 

5.3. The Final Choice for the Most Robust Neutrosophic Solution 
 

Already in 1983 at least 96 methods for Multi-Objective Optimization existed [23]. Since then 

numerous other methods appeared. Therefore, only the probably most used methods for Multi-

Objective Optimization are mentioned. In comparison, also the most recent book on Multi-

Objective Decision Analysis limits the discussion to 27 most used methods [2]. 

 Which is the Final Choice for the Most Robust Neutrosophic Solution? The methods 

MOORA and MULTIMOORA, the Indifference Method and the Electre Methods are total or 

partially Neutrosophic True. All other methods are from the Neutrosophic point of view not 

acceptable. 

Conclusion 

 

Inside the Neutrosophic Philosophy, a Neutrosophic Set counts three components: Truth, 

Indeterminacy and Falsehood. In this study the link is made between Neutrosophic Sets and 

Multiple Objectives Decision Analysis. In other words: which method of Multiple Objectives 

Decision Analysis does respond the best to a Neutrosophic Set? Therefore, the methods which are 

proved to be entirely false are automatically excluded. Some methods are acceptable partly True 

or/and Indeterminate and partly false. Finally, the best methods will be these one being True or/and 

Indeterminate but not at all false. The methods MOORA and MULTIMOORA are T, 100%: one 

hundred percent Neutrosophic True. The Indifference Method is 100% True or Indifferent. The 
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Electre Methods are partially Neutrosophic True. All other methods are from the Neutrosophic 

point of view not acceptable. 
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ABSTRACT 

 In this chapter, neutrosophic triplet bipolar metric spaces are studied. Then, some definitions and examples 
are given for neutrosophic triplet bipolar metric space. Based on these definitions, new theorems are given 

and proved. In addition, it is shown that neutrosophic triplet bipolar metric spaces are different from the 
classical bipolar metric spaces and the neutrosophic triplet metric spaces. 

Keywords: neutrosophic triplet set, neutrosophic triplet metric space, bipolar metric space, neutrosophic 
triplet bipolar metric space 

INTRODUCTION 

Smarandache defined neutrosophic logic and neutrosophic set [1] in 1998. In neutrosophic logic and 

neutrosophic sets, there are T degree of membership, I degree of undeterminacy and F degree of non-
membership. These degrees are defined independently of each other. It has a neutrosophic value (T, I, F) 
form. In other words, a condition is handled according to both its accuracy and its inaccuracy and its 

uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncertainties in our 
lives. In addition, many  researchers have made studies on this theory [2-27]. 

In fact, fuzzy logic and fuzzy set [28] were obtained by Zadeh in 1965. In the concept of fuzzy logic and 
fuzzy sets, there is only a degree of membership. In addition, intuitionistic fuzzy logic and intuitionistic fuzzy 
set [29] were obtained by Atanassov in 1986. The concept of intuitionistic fuzzy logic and intuitionistic fuzzy 

set include membership degree, degree of indeterminacy and degree of non-membership. But these degrees 
are defined dependently of each other. Therefore, neutrosophic set is a generalized state of fuzzy and 

intuitionistic fuzzy set. 
Furthermore, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet groups 
(NTG) [6].  For every element “x” in NTS A, there exist a neutral of “x” and an opposite of “x”. Also, neutral 
of “x” must different from the classical neutral element. Therefore, the NTS is different from the classical set. 
Furthermore, a neutrosophic triplet (NT) “x” is showed by   <x, neut(x), anti(x)>. Also, many researchers 
have introduced NT structures [30 - 44]. 

Mutlu and Gürdal introduced bipolar metric space [45] in 2016. Bipolar metric space is generalized of metric 
space. Also, bipolar metric spaces have an important role in fixed point theory. Recently, Mutlu, Özkan and 
Gürdal studied fixed point theorems on bipolar metric spaces [46]; Kishore, Agarwal, Rao, and Rao 
introduced contraction and fixed point theorems in bipolar metric spaces with applications [47]; Rao, Kishore 
and Kumar obtained Geraghty type contraction and common coupled fixed point theorems in bipolar metric 

spaces with applications to homotopy [48]. 
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In this chapter, we introduce neutrosophic triplet bipolar metric space. In Section 2, we give definitions and 
properties for bipolar metric space [45], neutrosophic triplet sets [30], neutrosophic triplet metric spaces [32]. 

In Section 3, we define neutrosophic triplet bipolar metric space and we give some properties for 
neutrosophic triplet bipolar metric space. Also, we show that neutrosophic triplet bipolar metric spaces are 
different from the classical bipolar metric spaces and the neutrosophic triplet metric spaces. Then, we 

examine relationship between neutrosophic triplet bipolar metric spaces and neutrosophic triplet metric 
spaces. In Section 4, we give conclusions.   

 
BACKGROUND 

 

Definition 1: [6] Let # be a binary operation. A NTS (X, #) is a set such that for x ∊ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x, 

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x). 

Also, a neutrosophic triplet “x” is showed with (x, neut(x), anti(x)). 

Definition 2: [32] Let (N,*) be a NTS and 𝑑𝑁:NxN→ ℝ+∪{0} be a function. If 𝑑𝑁:NxN→ ℝ+∪{0} and         

(N, *) satisfies the following conditions, then 𝑑𝑁 is called NTM.  

a) x*y ∈ N; 

b) 𝑑𝑁(x, y) ≥ 0; 

c) If x = y, then 𝑑𝑁(x, y) = 0; 

d) 𝑑𝑁(x, y) = 𝑑𝑁(y, x); 

e) If there exits at least a y ∊ N for each x, z ∊N such that 𝑑𝑁(x, z) ≤ 𝑑𝑁(x, z*neut(y)), then 𝑑𝑁(x, z*neut(y)) ≤ 𝑑𝑁(x, y) + 𝑑𝑁(y, z).  

Also, ((N,*), 𝑑𝑁) is called a NTMS. 

Definition 3: [45] Let X and Y be nonempty sets and d:NxN→ ℝ+∪{0} be a function. If d satisfies the 
following conditions, then d is called bipolar metric (bM). 

i) For ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑌, if d(x, y) = 0, then x =y 

ii) For∀𝑢 ∈ 𝑋 ∩ 𝑌, d(u, u) = 0 

iii) For)∀𝑢 ∈ 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) 
iv) For(𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝑋 × 𝑌, 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑦′) + 𝑑(𝑥′, 𝑦) 
Also, (X, Y), d) is called bipolar metric space (bMS). 

Definition 4: [45]  Let ( , , )X Y d be a bMS. Then the points of the sets X, Y and X ∩ Y are named as left, 
right and central points, respectively, and any sequence, that is consisted of only left (or right, or central) 

points is called a left (or right, or central) sequence in (X, Y, d).  

Definition 5: [45] Let (X, Y, d) be a bMS. A left sequence  nx converges to a right point y (symbolically (𝑥𝑛) ⇁ 𝑦 or lim𝑛→∞(𝑥𝑛) = 𝑦  ) if and only if for every ε > 0 there exists an 𝑛0 ∈ ℕ , such that 𝑑(𝑥𝑛 , 𝑦) < 𝜀 

for all 𝑛 ≥ 𝑛0 . Similarly, a right sequence (𝑦𝑛)   converges to a left point x (denoted as 𝑦𝑛 ⇀ 𝑥  or 
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lim𝑛→∞(𝑦𝑛) = 𝑥 ) if and only if, for every ε > 0 there exists an 𝑛0 ∈ ℕ  such that, whenever 𝑛 ≥ 𝑛0 ,𝑑(𝑥, 𝑦𝑛) < 𝜀.Also, If it is written (𝑢𝑛) ⇁ 𝑢 and (𝑢𝑛) ⇀ 𝑢, then (𝑢𝑛) converges to point u ((𝑢𝑛) is a central

sequence). 

Definition 6: [45] Let (X,Y,d) be a bMS, (𝑥𝑛) be a left sequence and (𝑦𝑛) be a right sequence in this space.(xn, yn)  is called bisequence. Furthermore, If (𝑥𝑛)  and (𝑦𝑛)  are convergent, then (xn, yn)  is called

convergent bipolar sequence. Also, if  (𝑥𝑛)  and (𝑦𝑛)  converge to same point, then (xn, yn)  is called
biconvergent. 

Definition 7: [45] Let (X,Y,d) be a bMS and (xn, yn) be a bisequence. (xn, yn) is called Cauchy bisequence

if and only if  for every ε > 0 there exists an 𝑛0 ∈ ℕ , such that 𝑑(𝑥𝑛 , 𝑦𝑛) < 𝜀 for all 𝑛 ≥ 𝑛0.

Neutrosophic Triplet Bipolar Metric Space 

Definition 8: Let (X,∗) and (Y,∗) be NTSs, 𝑑: 𝑋 × 𝑌 → ℝ+ ∪ {0} be a function. If d, (X,∗) and (Y,∗) satify

the following conditions, then d is called neutrosophic triplet bipolar metric (NTbM). 

i) For ∀𝑎, 𝑏 ∈ 𝑋, 𝑎 ∗ 𝑏 ∈ 𝑋;

for ∀𝑐, 𝑑 ∈ 𝑌 için 𝑐 ∗ 𝑑 ∈ 𝑌;

ii) For ∀𝑎 ∈ 𝑋  and ∀𝑏 ∈ 𝑌, if 𝑑(𝑎, 𝑏) = 0, then 𝑎 = 𝑏;

iii) For ∀𝑢 ∈ 𝑋 ∩ 𝑌, d(𝑢, 𝑢) = 0;

iv) For  ∀𝑢, 𝑣 ∈ 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢)
v) Let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝑋 × 𝑌. For each (𝑥, 𝑦), if there is at least a (𝑥′, 𝑦′) such that𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))  ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)),
then 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) ≤  𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑦′) + 𝑑(𝑥′, 𝑦).
Also, (((X, Y),∗), d) is called neutrosophic triplet bipolar metric space (NTbMS). 

Example 1: Let 𝑋 = {0, 2, 4, 6, 8} and 𝑌 = {0, 4 ,5, 6}. We show that (𝑋, . ) and (𝑌, . ) are NTS in (ℤ10, . ).
For (𝑋, . ), NTs are (0, 0, 0), (2, 6, 8), (4, 6, 4), (6, 6, 6), (8, 6, 2). 

Also, For (𝑌, . ), NTs are (0, 0, 0), (4, 6, 4), (5, 5, 5), (6, 6, 6). 

Thus, (𝑋, . ) and (𝑌, . ) are NTS. 

Furthermore, we define the 𝑑: 𝑋 × 𝑌 → ℝ+ ∪ {0} function such that 𝑑(𝑘,𝑚) = |2𝑘 − 2𝑚|. We show that d is

a NTbM. 

i) 0.0 = 0 ∈ 𝑋 , 0.2 = 0 ∈ 𝑋 , 0.4 = 0 ∈ 𝑋 , 0.6 = 0 ∈ 𝑋 , 0.8 = 0 ∈ 𝑋 , 2.2 = 4 ∈ 𝑋 , 2.4 = 8 ∈ 𝑋 ,2.6 = 2 ∈ 𝑋 , 2.8 = 6 ∈ 𝑋 , 4.4 = 6 ∈ 𝑋 ,  4.6 = 4 ∈ 𝑋 , 4.8 = 2 ∈ 𝑋 , 6.6 = 6 ∈ 𝑋 , 6.8 = 8 ∈ 𝑋 ,8.8 = 8 ∈ 𝑋. 

Thus, for ∀𝑎, 𝑏 ∈ 𝑋, 𝑎. 𝑏 ∈ 𝑋. 
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Also, 0.0 = 0 ∈ 𝑌 , 0.4 = 0 ∈ 𝑌 , 0.5 = 0 ∈ 𝑌 , 0.6 = 0 ∈ 𝑌 , 4.4 = 6 ∈ 𝑌 , 4.5 = 0 ∈ 𝑌 ,  4.6 = 4 ∈ 𝑌 , 5.5 = 5 ∈ 𝑌, 5.6 = 0 ∈ 𝑌, 6.6 = 6 ∈ 𝑌 

 Thus, for  ∀𝑐, 𝑑 ∈ 𝑌, 𝑐. 𝑑 ∈ 𝑌. 

ii) For ∀𝑎 ∈ 𝑋, ∀𝑏 ∈ 𝑌, if 𝑑(𝑎, 𝑏) = |2𝑎 − 2𝑏| = 0, then it is clear that a  =b.

iii) For ∀𝑢 ∈ 𝑋 ∩ 𝑌, it is clear that 𝑑(𝑢, 𝑢) = |2𝑢 − 2𝑢| = 0.

iv) For ∀𝑢, 𝑣 ∈ 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑣) = |2𝑢 − 2𝑣| = |2𝑣 − 2𝑢| = 𝑑(𝑣, 𝑢).

v) It is clear that𝑑(0,0) = 0 ≤ 𝑑(0,0. 𝑛𝑒𝑢𝑡(5)) = 0, 𝑑(0,0) = 0 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(2), 0) = 0, 𝑑(0,0) = 0 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(2), 0. 𝑛𝑒𝑢𝑡(5)) = 0.  

Also,  𝑑(0. 𝑛𝑒𝑢𝑡(2), 0. 𝑛𝑒𝑢𝑡(5)) = 𝑑(0,0) = |20 − 20| = 0 ≤ 𝑑(0,5) + 𝑑(2,5) + 𝑑(2,0) =|20 − 25| + |22 − 25| + |22 − 20| =31+28+3=62.

It is clear that  𝑑(0,4) = 15 ≤ 𝑑(0,4. 𝑛𝑒𝑢𝑡(6)) = 15 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(2), 4. 𝑛𝑒𝑢𝑡(6)) = 15, 𝑑(0,4) = 15 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(2), 4) = 15 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(2), 4. 𝑛𝑒𝑢𝑡(6)) = 15. 

Also, 𝑑(0. 𝑛𝑒𝑢𝑡(2), 4. 𝑛𝑒𝑢𝑡(6)) = 𝑑(0,4) = |20 − 24| = 15 ≤ 𝑑(0,6) + 𝑑(2,6) + 𝑑(2,4) =|20 − 26| + |22 − 26| + |22 − 24| = 63 + 60 + 12 = 135.

It is clear that 𝑑(0,5) = 31 ≤ 𝑑(0,5. 𝑛𝑒𝑢𝑡(5)) = 31 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(8), 5. 𝑛𝑒𝑢𝑡(5)) = 31, 𝑑(0,5) = 31 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(8), 5) = 31 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(8), 5. 𝑛𝑒𝑢𝑡(5)) = 31. 

Also, 𝑑(0. 𝑛𝑒𝑢𝑡(8), 5. 𝑛𝑒𝑢𝑡(5)) = 𝑑(0,5) = |20 − 25| = 31 ≤ 𝑑(0,5) + 𝑑(8,5) + 𝑑(8,5) =|20 − 25| + |28 − 25| + |28 − 25| = 31 + 224 + 224 = 479.

It is clear that 𝑑(0,6) = 63 ≤ 𝑑(0,6. 𝑛𝑒𝑢𝑡(4)) = 63 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(4)) = 63, 𝑑(0,6) = 63 ≤ 𝑑(0. 𝑛𝑒𝑢𝑡(8), 6)=63≤ 𝑑(0. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(4)) = 63. 

Also, 𝑑(0. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(4)) = 𝑑(0,6) = |20 − 26| = 63 ≤ 𝑑(0,4) + 𝑑(8,4) + 𝑑(8,6) =|20 − 24| + |28 − 24| + |28 − 26| = 15 + 240 + 192 = 447.

It is clear that 𝑑(2,0) = 3 ≤ 𝑑(2,0. 𝑛𝑒𝑢𝑡(6))=3 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(6)) = 3, 
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𝑑(2,0) = 3 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(4), 0)=3 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(6)) = 3. 

Also, 𝑑(2. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(6)) = 𝑑(2,0) = |22 − 20| = 3 ≤ 𝑑(2,6) + 𝑑(4,6) + 𝑑(4,0) =|22 − 26| + |24 − 26| + |24 − 20| = 60 + 48 + 15 = 123.

It is clear that 𝑑(2,4) = 12 ≤ 𝑑(2,4. 𝑛𝑒𝑢𝑡(6)) = 12 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(6)) = 12, 𝑑(2,4) = 12 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(8), 4)=12≤ 𝑑(2. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(6)) = 12. 

Also, 𝑑(2. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(6)) = 𝑑(2,4) = |22 − 24| = 12 ≤ 𝑑(2,6) + 𝑑(8,6) + 𝑑(8,4) =|22 − 26| + |28 − 26| + |28 − 24| = 60 + 192 + 240 = 492.

It is clear that 𝑑(2,5) = 28 ≤ 𝑑(2,5. 𝑛𝑒𝑢𝑡(5)) = 28 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(0), 5. 𝑛𝑒𝑢𝑡(5)) = 31, 𝑑(2,5) = 28 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(0), 5) = 31 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(0), 5. 𝑛𝑒𝑢𝑡(5)) = 31. 

Also, 𝑑(2. 𝑛𝑒𝑢𝑡(0), 5. 𝑛𝑒𝑢𝑡(5)) = 𝑑(0,5) = |20 − 25| = 31 ≤ 𝑑(2,5) + 𝑑(0,5) + 𝑑(0,5) =|22 − 25| + |20 − 25| + |20 − 25| = 28 + 31 + 31 = 90.

It is clear that 𝑑(2,6) = 60 ≤ 𝑑(2,6. 𝑛𝑒𝑢𝑡(4)) = 60 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(0), 6. 𝑛𝑒𝑢𝑡(4)) = 63, 𝑑(2,6) = 60 ≤ 𝑑(2. 𝑛𝑒𝑢𝑡(0), 6)=63≤ 𝑑(2. 𝑛𝑒𝑢𝑡(0), 6. 𝑛𝑒𝑢𝑡(4)) = 63. 

Also, 𝑑(2. 𝑛𝑒𝑢𝑡(0), 6. 𝑛𝑒𝑢𝑡(4)) = 𝑑(0,6) = |20 − 26| = 63 ≤ 𝑑(2,4) + 𝑑(0,4) + 𝑑(0,6) =|22 − 24| + |20 − 24| + |20 − 26| = 12 + 15 + 63 = 90.

It is clear that 𝑑(4,0) = 15 ≤ 𝑑(4,0. 𝑛𝑒𝑢𝑡(6)) = 15 ≤  𝑑(4. 𝑛𝑒𝑢𝑡(2), 0. 𝑛𝑒𝑢𝑡(6)) = 15, 𝑑(4,0) = 15 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(2), 0)=15≤ 𝑑(4. 𝑛𝑒𝑢𝑡(2), 0. 𝑛𝑒𝑢𝑡(6)) = 15. 

Also, 𝑑(4. 𝑛𝑒𝑢𝑡(2), 0. 𝑛𝑒𝑢𝑡(6)) = 𝑑(4,0) = |24 − 20| = 15 ≤ 𝑑(4,6) + 𝑑(2,6) + 𝑑(2,0) =|24 − 26| + |22 − 26| + |22 − 20| = 48 + 60 + 3 = 111.

It is clear that 𝑑(4,4) = 0 ≤ 𝑑(4,4. 𝑛𝑒𝑢𝑡(0)) = 15 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(0)) = 15, 𝑑(4,4) = 0 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 4) = 0 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(0)) = 15. 

Also, 𝑑(4. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(0)) = 𝑑(4,0) = |24 − 20| = 15 ≤ 𝑑(4,0) + 𝑑(8,0) + 𝑑(8,4) =|24 − 20| + |28 − 20| + |28 − 24| = 15 + 255 + 240 = 510.

It is clear that 𝑑(4,5) = 16 ≤ 𝑑(4,5. 𝑛𝑒𝑢𝑡(5)) = 16 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 5. 𝑛𝑒𝑢𝑡(5)) = 16, 
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𝑑(4,5) = 16 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 5) = 16 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 5. 𝑛𝑒𝑢𝑡(5)) = 16. 

Also,  𝑑(4. 𝑛𝑒𝑢𝑡(8), 5. 𝑛𝑒𝑢𝑡(5)) = 𝑑(4,5) = |24 − 25| = 16 ≤ 𝑑(4,5) + 𝑑(8,5) + 𝑑(8,5) =  |24 − 25| + |28 − 25| + |28 − 25| = 16 + 224 + 224 = 464. 

It is clear that 𝑑(4,6) = 48 ≤ 𝑑(4,6. 𝑛𝑒𝑢𝑡(2)) = 48 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(2)) = 48, 𝑑(4,6) = 48 ≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 6)=48≤ 𝑑(4. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(2)) = 48. 

Also, 𝑑(4. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(2)) = 𝑑(4,6) = |24 − 26| = 48 ≤ 𝑑(4,2) + 𝑑(8,2) + 𝑑(8,6) = |24 − 22| + |28 − 22| + |28 − 26| = 12 + 252 + 192 = 456. 

It is clear that 𝑑(6,0) = 63 ≤ 𝑑(6,0. 𝑛𝑒𝑢𝑡(5)) = 63 ≤ 𝑑(6. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(5)) = 63, 𝑑(6,0) = 63 ≤ 𝑑(6. 𝑛𝑒𝑢𝑡(4), 0) = 63≤ 𝑑(6. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(5)) = 63. 

Also, 𝑑(6. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(5)) = 𝑑(6,0) = |26 − 20| = 63 ≤ 𝑑(6,5) + 𝑑(4,5) + 𝑑(4,0) = |26 − 25| + |24 − 25| + |24 − 20| = 32 + 16 + 15 = 63. 

It is clear that 𝑑(6,4) = 48 ≤ 𝑑(6,4. 𝑛𝑒𝑢𝑡(0)) = 63≤ 𝑑(6. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(0)) = 63, 𝑑(6,4) = 48 ≤ 𝑑(6. 𝑛𝑒𝑢𝑡(8), 4) = 48≤ 𝑑(6. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(0)) = 63. 

Also, 𝑑(6. 𝑛𝑒𝑢𝑡(8), 4. 𝑛𝑒𝑢𝑡(0)) = 𝑑(6,0) = |26 − 20| = 63 ≤ 𝑑(6,0) + 𝑑(8,0) + 𝑑(8,4) = |26 − 20| + |28 − 20| + |28 − 24| = 63 + 255 + 240 = 558. 

It is clear that 𝑑(6,5) = 32 ≤ 𝑑(6,5. 𝑛𝑒𝑢𝑡(4)) = 63 ≤ 𝑑(6. 𝑛𝑒𝑢𝑡(2), 5. 𝑛𝑒𝑢𝑡(4)) = 63, 𝑑(6,5) = 32 ≤ 𝑑(6. 𝑛𝑒𝑢𝑡(2), 5)=32≤ 𝑑(6. 𝑛𝑒𝑢𝑡(2), 5. 𝑛𝑒𝑢𝑡(4)) = 63. 

Also, 𝑑(6. 𝑛𝑒𝑢𝑡(2), 5. 𝑛𝑒𝑢𝑡(4)) = 𝑑(6,0) = |26 − 20| = 63 ≤ 𝑑(6,4) + 𝑑(2,4) + 𝑑(2,5) = |26 − 24| + |22 − 24| + |22 − 25| = 48 + 12 + 28 = 88. 

It is clear that 𝑑(6,6) = 0 ≤ 𝑑(6,6. 𝑛𝑒𝑢𝑡(4)) = 0≤ 𝑑(6. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(4)) = 0, 𝑑(6,6) = 0 ≤ 𝑑(6. 𝑛𝑒𝑢𝑡(8), 6) = 0 ≤ 𝑑(6. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(4)) = 0. 

Also, 𝑑(6. 𝑛𝑒𝑢𝑡(8), 6. 𝑛𝑒𝑢𝑡(4)) = 𝑑(6,6) = |26 − 26| = 0 ≤ 𝑑(6,4) + 𝑑(8,4) + 𝑑(8,6) =  |26 − 24| + |28 − 24| + |28 − 26| = 48 + 240 + 192 = 480. 

It is clear that 𝑑(8,0) = 255 ≤ 𝑑(8,0. 𝑛𝑒𝑢𝑡(5)) = 255 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(5)) = 255, 
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𝑑(8,0) = 255 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(4), 0)=255≤ 𝑑(8. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(5)) = 255. 

Also, d(8. 𝑛𝑒𝑢𝑡(4), 0. 𝑛𝑒𝑢𝑡(5)) = 𝑑(8,0) = |28 − 20| = 255 ≤ 𝑑(8,5) + 𝑑(4,5) + 𝑑(4,0) =|28 − 25| + |24 − 25| + |24 − 20| = 224 + 16 + 15 = 255.

It is clear that 𝑑(8,4) = 240 ≤ 𝑑(8,4. 𝑛𝑒𝑢𝑡(0)) = 255 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(6), 4. 𝑛𝑒𝑢𝑡(0)) = 255, 𝑑(8,4) = 240 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(6), 4)=240≤ 𝑑(8. 𝑛𝑒𝑢𝑡(6), 4. 𝑛𝑒𝑢𝑡(0)) = 255. 

Also, 𝑑(8. 𝑛𝑒𝑢𝑡(6), 4. 𝑛𝑒𝑢𝑡(0)) = 𝑑(8,0) = |28 − 20| = 255 ≤ 𝑑(8,0) + 𝑑(6,0) + 𝑑(6,4) =|28 − 20| + |26 − 20| + |26 − 24| = 255 + 63 + 48 = 366.

It is clear that 𝑑(8,5) = 224 ≤ 𝑑(8,5. 𝑛𝑒𝑢𝑡(0))=255≤ 𝑑(8. 𝑛𝑒𝑢𝑡(4), 5. 𝑛𝑒𝑢𝑡(0)) = 255, 𝑑(8,5) = 224 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(4), 5) = 224 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(4), 5. 𝑛𝑒𝑢𝑡(0)) = 255. 

Also, 𝑑(8. 𝑛𝑒𝑢𝑡(4), 5. 𝑛𝑒𝑢𝑡(0)) = 𝑑(8,0) = |28 − 20| = 255 ≤ 𝑑(8,0) + 𝑑(4,0) + 𝑑(4,5) =|28 − 20| + |24 − 20| + |24 − 25| = 255 + 15 + 16 = 286.

It is clear that 𝑑(8,6) = 192 ≤ 𝑑(8,6. 𝑛𝑒𝑢𝑡(5)) = 255 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(2), 6. 𝑛𝑒𝑢𝑡(5)) = 255, 𝑑(8,6) = 192 ≤ 𝑑(8. 𝑛𝑒𝑢𝑡(2), 6)=192≤ 𝑑(8. 𝑛𝑒𝑢𝑡(2), 6. 𝑛𝑒𝑢𝑡(5)) = 255. 

Also, 𝑑(8. 𝑛𝑒𝑢𝑡(2), 6. 𝑛𝑒𝑢𝑡(5)) = 𝑑(8,0) = |28 − 20| = 255 ≤ 𝑑(8,5) + 𝑑(2,5) + 𝑑(2,6) =|28 − 25| + |22 − 25| + |22 − 26| = 224 + 28 + 60 = 312.

Thus, for each (𝑥, 𝑦), if there is at least a (𝑥′, 𝑦′) such that𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))  ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)),
then 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) ≤  𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑦′) + 𝑑(𝑥′, 𝑦).
Therefore, d is a NTbM and (((X, Y), ∗), d) is a NTbMS.  

Example 2: Let X = {x, y, z} and P(X) be power set of X, Y = {k, l, m} and P(Y) be power set of Y and s(A) 

be number of elements in A. We show that (P(X)\X, ∪) and (P(Y)\X, ∪) are NTS. 

It is clear that A∪A = A∪A = A. Thus, we can take neut(A) = A and anti(A) = A for all A ∊ P(X)\X and for 

all     A ∊ P(Y)\Y. 

We define d: P(X)\X x P(Y)\Y → ℝ+∪{0} such that d(A,B) = |3s(A) − 3s(B))|. d is not a NTbMS. Because,
for    A ={x, y}, B ={k, l}; 

d(A, B) = |3s(A) − 3s(B))| = |32-32| = 0, but A≠B.
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Corollary 1: From Definition 8 and Definition 3, a NTbMS is different from a bMS. Because, there is not a 
* binary operation in Definition 3. Also, triangle inequalities are different in definitions.  

Corollary 2: From Definition 8 and Definition 2, a NTbMS is different from a NTMS. Because, there is only 

one NTS in Definition 3. Also, triangle inequalities are different in definitions.  

Theorem 1: Let (((𝑋, 𝑌),∗), 𝑑) be a NTbMS.  If the following conditions are satisfied, then ((𝑋,∗), 𝑑) is a 

NTMS. 

a) 𝑌 = 𝑋 

b) 𝑦′ = 𝑥′, in Definition 8 at triangle inequality. 

Proof: 

i) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for ∀𝑥, 𝑧 ∈ 𝑋, 𝑥 ∗ 𝑧 ∈ 𝑋 and for ∀𝑦, 𝑡 ∈ 𝑌, 𝑦 ∗ 𝑡 ∈ 𝑌. 

Also, from condition a) it is clear that for ∀𝑥, 𝑦 ∈ 𝑋 = Y, 𝑥 ∗ 𝑦 ∈ 𝑋 = Y. 

ii) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write for ∀𝑎 ∈ 𝑋 and ∀𝑏 ∈ 𝑌, 𝑑(𝑎, 𝑏) ≥ 0. 

iii) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write for ∀𝑢 ∈ 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑢) = 0. Also, from condition a), if 𝑦 = 𝑥, then 𝑑(𝑥, 𝑦) = 0. 

iv) Since  (((𝑋, 𝑌),∗), 𝑑)  is a NTbMS, we can write for ∀𝑢, 𝑣 ∈ 𝑋 ∩ 𝑌 , 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢) . Also, from 

condition a), we can write 𝑋 ∩ 𝑌 = X. Thus, for ∀𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 
v) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that 

For each (𝑥, 𝑦), if there is at least a (𝑥′, 𝑦′) such that 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))  ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)), 
then 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) ≤  𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑦′) + 𝑑(𝑥′, 𝑦). 
From condition b), we can write that 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))  ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) ≤  𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑥′) + 𝑑(𝑥′, 𝑦) =   

 𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑦). 
Also, from condition a), we can write that 

If there exits at least a 𝑦′ ∊ X = Y for each x, y ∊ X = Y such that d(x, y) ≤ 𝑑𝑁(x, y*neut(𝑦′)), then d(x, y*neut(𝑦′)) ≤ d(x, 𝑦′) + d(𝑦′, y). 

Thus, ((𝑋,∗), 𝑑) is a NTMS. 

Theorem 2: Let (((𝑋, 𝑌), ∗), 𝑑) be a NTbMS. If (X∩Y, ∗) is a NTS, then (((𝑋 ∩ 𝑌, 𝑋 ∩ 𝑌), ∗), 𝑑) is a 

NTbMS. 

Proof: We suppose that (X∩Y, ∗) is a NTS. 
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i) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for ∀𝑥, 𝑧 ∈ 𝑋, 𝑥 ∗ 𝑧 ∈ 𝑋 and for ∀𝑦, 𝑡 ∈ 𝑌, 𝑦 ∗ 𝑡 ∈ 𝑌. 

Thus, it is clear that ∀𝑎, 𝑏 ∈ 𝑋 ∩ 𝑌,  𝑎 ∗ 𝑏 ∈ 𝑋 ∩ 𝑌. 

ii) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for ∀𝑎 ∈ 𝑋  and ∀𝑏 ∈ 𝑌, if 𝑑(𝑎, 𝑏) = 0, then 𝑎 = 𝑏. 

Thus, it is celar that for  ∀𝑎 ∈ 𝑋 ∩ 𝑌,  ∀𝑏 ∈ 𝑋 ∩ 𝑌; 𝑑(𝑎, 𝑏) = 0 ⇒ 𝑎 = 𝑏. 

iii) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for ∀𝑢 ∈ 𝑋 ∩ 𝑌, d(u,u)=0. Thus, it is clear that 

for ∀𝑢 ∈ (𝑋 ∩ 𝑌) ∩ (𝑋 ∩ 𝑌) = 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑢) = 0. 

iv) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for  ∀𝑢, 𝑣 ∈ 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢). Thus, it is 

clear that for ∀𝑢, 𝑣 ∈ (𝑋 ∩ 𝑌) ∩ (𝑋 ∩ 𝑌) = 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑣) =  𝑑(𝑣, 𝑢). 
v) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝑋 × 𝑌. For each (𝑥, 𝑦), if there is 

at least a (𝑥′, 𝑦′) such that 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))  ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)), 
then 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) ≤  𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑦′) + 𝑑(𝑥′, 𝑦). 
Thus, it is clear that  

For each (𝑎, 𝑏) ∈ (𝑋 ∩ 𝑌) × (𝑋 ∩ 𝑌), if there is at least a (𝑎′, 𝑏′) ∈ (𝑋 ∩ 𝑌) × (𝑋 ∩ 𝑌) such that  𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑏 ∗ 𝑛𝑒𝑢𝑡(𝑏′)) 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎′), 𝑏) 𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎′), 𝑏 ∗ 𝑛𝑒𝑢𝑡(𝑏′)), 
then 𝑑(𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎′), 𝑏 ∗ 𝑛𝑒𝑢𝑡(𝑏′)) ≤  𝑑(𝑎, 𝑏′) + 𝑑(𝑎′, 𝑏′) + 𝑑(𝑎′, 𝑏).  
Thus, (((𝑋 ∩ 𝑌, 𝑋 ∩ 𝑌), ∗), 𝑑) is a NTbMS. 

Theorem 3: Let (((𝑋, 𝑌),∗), 𝑑)  be a NTbMS, A be a NT subset of X, and B be a NT subset of Y. (((𝐴, 𝐵),∗), 𝑑) is a NTbMS. 

Proof: We suppose that (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, A is a NT subset of X, and B is a NT subset of Y. 

i) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, for  ∀𝑎, 𝑐 ∈ 𝑋,  𝑎 ∗ 𝑐 ∈ 𝑋  and for ∀𝑏, 𝑑 ∈ 𝑌,  𝑏 ∗ 𝑑 ∈ 𝑌. Also, since       

A ⊂ X and B ⊂ Y, we can write that ∀𝑎, 𝑐 ∈ 𝐴,  𝑎 ∗ 𝑐 ∈ 𝐴 and for ∀𝑏, 𝑑 ∈ 𝐵,  𝑏 ∗ 𝑑 ∈ 𝐵. 

ii) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for ∀𝑎 ∈ 𝑋  and ∀𝑏 ∈ 𝑌, if 𝑑(𝑎, 𝑏) = 0, then 𝑎 = 𝑏. 

Thus, it is celar that for  ∀𝑎 ∈ 𝐴 ⊂ 𝑋,  ∀𝑏 ∈ 𝐵 ⊂ 𝑌; 𝑑(𝑎, 𝑏) = 0 ⇒ 𝑎 = 𝑏. 

iii) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for ∀𝑢 ∈ 𝑋 ∩ 𝑌, d(u,u)=0. Thus, it is clear that 

for ∀𝑢 ∈ (𝐴 ⊂ 𝑋) ∩ (𝐵 ⊂ 𝑌), 𝑑(𝑢, 𝑢) = 0. 

iv) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that for  ∀𝑢, 𝑣 ∈ 𝑋 ∩ 𝑌, 𝑑(𝑢, 𝑣) = 𝑑(𝑣, 𝑢). Thus, it is 

clear that for ∀𝑢, 𝑣 ∈ (𝐴 ⊂ 𝑋) ∩ (𝐵 ⊂ 𝑌), 𝑑(𝑢, 𝑣) =  𝑑(𝑣, 𝑢). 
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v) Since (((𝑋, 𝑌),∗), 𝑑) is a NTbMS, we can write that let (𝑥, 𝑦), (𝑥′, 𝑦′) ∈ 𝑋 × 𝑌. For each (𝑥, 𝑦), if there is

at least a (𝑥′, 𝑦′) such that𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))  ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′))𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)),
then 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑥′), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑦′)) ≤  𝑑(𝑥, 𝑦′) + 𝑑(𝑥′, 𝑦′) + 𝑑(𝑥′, 𝑦).
Thus, it is clear that  

For each (𝑎, 𝑏) ∈ (𝐴 ⊂ 𝑋) × (𝐵 ⊂ 𝑌), if there is at least a (𝑎′, 𝑏′) ∈ (𝐴 ⊂ 𝑋) × (𝐵 ⊂ 𝑌) such that𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎, 𝑏 ∗ 𝑛𝑒𝑢𝑡(𝑏′))𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎′), 𝑏)𝑑(𝑎, 𝑏) ≤ 𝑑(𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎′), 𝑏 ∗ 𝑛𝑒𝑢𝑡(𝑏′)),
then 𝑑(𝑎 ∗ 𝑛𝑒𝑢𝑡(𝑎′), 𝑏 ∗ 𝑛𝑒𝑢𝑡(𝑏′)) ≤  𝑑(𝑎, 𝑏′) + 𝑑(𝑎′, 𝑏′) + 𝑑(𝑎′, 𝑏).
Thus, (((𝐴,   𝐵), ∗), 𝑑) is a NTbMS. 

Definition 9: Let (((𝑋,   𝑌), ∗), 𝑑)  be a NTbMS. A left sequence ( 𝑥𝑛 ) converges to a right point y

(symbolically (𝑥𝑛) ⇁ 𝑦 or lim𝑛→∞(𝑥𝑛) = 𝑦  ) if and only if for every ε > 0 there exists an 𝑛0 ∈ ℕ , such that𝑑(𝑥𝑛, 𝑦) < 𝜀 for all 𝑛 ≥ 𝑛0. Similarly, a right sequence (𝑦𝑛)  converges to a left point x (denoted as 𝑦𝑛 ⇀ 𝑥
or lim𝑛→∞(𝑦𝑛) = 𝑥) if and only if, for every ε > 0 there exists an 𝑛0 ∈ ℕ such that, whenever 𝑛 ≥ 𝑛0 ,𝑑(𝑥, 𝑦𝑛) < 𝜀.Also, If it is written (𝑢𝑛) ⇁ 𝑢 and (𝑢𝑛) ⇀ 𝑢, then (𝑢𝑛) converges to point u ((𝑢𝑛) is a central
sequence). 

Definition 10: Let (((𝑋,   𝑌), ∗), 𝑑) be a NTbMS, (𝑥𝑛) be a left sequence and (𝑦𝑛) be a right sequence in

this space. (xn, yn) is called NT bisequence. Furthermore, If (𝑥𝑛) and (𝑦𝑛) are convergent, then (xn, yn) is
called NT convergent bisequence. Also, if  (𝑥𝑛) and (𝑦𝑛) converge to same point, then (xn, yn) is called NT
biconvergent bisequence. 

Definition 11: Let (((𝑋,   𝑌), ∗), 𝑑) be a NTbMS and (xn, yn) be a NT bisequence. (xn, yn) is called NT

Cauchy bisequence if and only if  for every ε > 0 there exists an 𝑛0 ∈ ℕ , such that 𝑑(𝑥𝑛 , 𝑦𝑛) < 𝜀 for all𝑛 ≥ 𝑛0.

Theorem 4: Let (((𝑋,   𝑌), ∗), 𝑑) be a NTbMS and (xn, yn) be a NT bisequence. If the following conditions

are satisfied, then (𝑥𝑛 , 𝑦𝑛) is a NT Cauchy bisequence.

a) (𝑥𝑛 , 𝑦𝑛) is NT biconvergent bisequence such that (𝑥𝑛) ⇁ 𝑥 and 𝑦𝑛 ⇀ 𝑥
b) There is at least a (𝑥, 𝑥) such that𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝑑(𝑥𝑛 , 𝑦𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥))  ≤ 𝑑(𝑥𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥), 𝑦𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥)),𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝑑(𝑥𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥), 𝑦𝑛) ≤ 𝑑(𝑥𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥), 𝑦𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥)).
Proof: Since (𝑥𝑛) ⇁ 𝑥 and 𝑦𝑛 ⇀ 𝑥, we can write that

for ∀𝑛,𝑚 ≥ 𝑛0, 𝑑(𝑥𝑛 , 𝑥) <  𝜀 and 𝑑(𝑦𝑛 , 𝑥) <  𝜀. (1)
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Also, From Definition 8 (triangle inequality) and condition b), we can write 𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝑑(𝑥𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥), 𝑦𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑦)) ≤ 𝑑(𝑥𝑛 , 𝑦) + d(x, y) + d(𝑦𝑛, x). 

From (1), we can write  𝑑(𝑥𝑛, 𝑦𝑛) ≤ 𝑑(𝑥𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑥), 𝑦𝑛 ∗ 𝑛𝑒𝑢𝑡(𝑦)) ≤ 𝑑(𝑥𝑛 , 𝑦) + d(x, y) + d(𝑦𝑛, x) = 
𝜀2+ 0 + 𝜀2 = 𝜀. 

Thus, (𝑥𝑛 , 𝑦𝑛) is a NT Cauchy bisequence. 

Definition 12: Let (((𝑋, 𝑌),∗), 𝑑) be a NTbMS. If each NT Cauchy bisequence is NT convergent, then (((𝑋, 𝑌),∗), 𝑑) is called NT bicomplete space. 

Conclusions 

In this study, we firstly obtain NTbMS. We show that NTbMS is different from bMS and NTMS. Also, we 
show that a NTbMS will provide the properties of a NTMS under which conditions are met. Thus, we have 

added a new structure to neutrosophic triplet structures. Also, thanks to NTbMS, we can obtain new theory 
for fixed point theory, we can define partial NTbMS and we can obtain their properties.  

Abbreviations 

bM: bipolar metric 

bMS: bipolar metric space 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTM: Neutrosophic triplet metric 

NTMS: Neutrosophic triplet metric space 

NTbM: Neutrosophic triplet bipolar metric  

NTbMS: Neutrosophic triplet bipolar metric space 
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ABSTRACT 

In this chapter, we will introduce the important measures for summarizing and describing neutrosophic data 
which include measures of central tendency, position, dispersion and shape under the neutrosophic statistics 
(NS). These measures are the extension of the central tendency, position, dispersion and shape under classical 
statistics (CS). The main purpose of this chapter is to introduce some important measures for exploring the 
data under uncertain environment. We will focus on the basic ideas of these measures such as neutrosophic 
arithmetic mean, neutrosophic geometric mean, neutrosophic harmonic mean, neutrosophic mode, 
neutrosophic median, relationship between these measures and quantiles, neutrosophic range, neutrosophic 
variance, etc., under the NS.  

Keywords: Neutrosophic Statistics, Indeterminacy, Measures of Central Tendency, Measures of Dispersion. 

2.1 INTRODUCTION 

For any data obtained under the uncertainty environment, the data analysists are always interested in 
exploring the data by determining and interpreting some measurements that summarize and describe the 
characteristics of the neutrosophic data [1-5]. Such measurements include the neutrosophic measures of 
central tendency, neutrosophic measures of position, neutrosophic measures of dispersion and neutrosophic 
measures of shape.  Neutrosophic statistics are based on the logic of neutrosophic sets and theory and for 
details readers may consider [5]. The neutrosophic measures of central tendency are one of the important 
aspects of summarizing the data under the NS. The measures of central tendency are used to summarize a 
data set with a single value that represent the middle, center or location of the data’s distribution under CS. 
Under NS, the neutrosophic measures of central tendency are neutrosophic values that represent the middle, 
center or location of the whole neutrosophic data. The neutrosophic measures of position are another aspect 
of the neutrosophic data analysis under the NS. The measures of position are used to show where a specific 
value falls within a data’s distribution under CS. Under NS, the neutrosophic measures of position are 
neutrosophic values that show where specific values fall within the whole neutrosophic data values. The 
neutrosophic measures of dispersion are another important aspect of describing the neutrosophic data under 
the NS. The measures of dispersion are used to describe a data set with a single value that represent the 
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spread of data’s distribution under CS. Under NS, the neutrosophic measures of dispersion are neutrosophic 
values that show how the whole neutrosophic data values are clustered or spread. The measures of shape are 
another important aspect of describing the neutrosophic data under NS. The measures of shape are used to 
show the pattern of a data set under CS. Also under NS, the neutrosophic measures of shape are used to show 
the pattern of the whole neutrosophic data values under study.  

 

2.2 NEUTROSOPHIC MEASURES OF CENTRAL TENDENCY 

The neutrosophic numbers that expressed in the indeterminacy interval that show where the majority of the 
neutrosophic data clustered are called the neutrosophic measures of central tendency. Note here that, the 
values of the neutrosophic measure of central tendency are not necessary to be always at the center of the 
data. Therefore, such as neutrosophic measures may called neutrosophic measure of location. 

Some important neutrosophic measures of central tendency that will be explained here are the neutrosophic 
arithmetic mean (NAM), see also [5], the neutrosophic weighted mean (NWM), the neutrosophic geometric 
mean (NGM), the neutrosophic harmonic mean (NHM), the neutrosophic median (NME) and the 
neutrosophic mode (NMO). 

 

2.2.1 Neutrosophic Arithmetic Mean (NAM) 

Suppose that 𝑋𝑖𝑁𝜖{𝑋𝐿 , 𝑋𝑈};  𝑖 =1,2,3,…,𝑛𝑁  be a neutrosophic random variable (nrv) of sample size 𝑛𝑁 , 
where 𝑋𝐿 and 𝑋𝑈 denote a lower value and an upper value of indeterminacy interval respectively. The sum of 
all neutrosophic observations divided by the neutrosophic sample size is known as neutrosophic arithmetic 
mean (NAM). The NAM is defined as follows �̅�𝑁𝜖 [∑ 𝑋𝑖𝐿𝑛𝐿𝑖=1𝑛𝐿 , ∑ 𝑋𝑖𝑈𝑛𝑈𝑖=1𝑛𝑈 ]; �̅�𝑁𝜖[�̅�𝐿 , �̅�𝑈]; 𝑛𝑁𝜖[𝑛𝐿 , 𝑛𝑈]  (2.2.1) 

Note here that �̅�𝐿  and �̅�𝑈  represent the arithmetic mean (AM) of lower values and upper values in the 
indeterminacy interval respectively. In addition, when 𝑛𝐿 = 𝑛𝑈 the NAM is given in Eq. (2.2.1) reduces to 
AM under CS.  

 

Example 2.2.1: Saudi’s students spending money on their lunch.   

The following neutrosophic data is the daily expenditure in Saudi Riyal (SR) of five Saudi students on their 
lunch at King Abdulaziz University (KAU) campus. Calculate the NAM.  

[10, 10], [5, 7], [8, 9], [15, 15], [12, 15]. 

Solution:  

We will apply the direct method to calculate the NAM for this neutrosophic data.  

�̅�𝑁𝜖 [∑ 𝑋𝑖𝐿𝑛𝐿𝑖=1𝑛𝐿 , ∑ 𝑋𝑖𝑈𝑛𝑈𝑖=1𝑛𝑈 ] 
�̅�𝑁 ∈ [10 + 5 + 8 + 15 + 125 , 10 + 7 + 9 + 15 + 155 ] = [505 , 565 ] = [10,11.2] 

Thus, the NAM is �̅�𝑁𝜖[10𝑆𝑅, 11.2𝑆𝑅]  
It means that the Saudi’s students spent between 10 to 11.2 SR on their daily lunch at the campus.  
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The NAM can be computed for grouped or ungrouped data. Table 2.2.1 shows some formulas used to 
compute NAM for grouped and ungrouped data.  

Table 2.2.1: Methods to compute NAM 

Methods under 
NS 

Types of neutrosophic data 

Ungrouped neutrosophic data Grouped neutrosophic data 

Direct under 
NS �̅�𝑁𝜖 [∑ 𝑋𝑖𝐿𝑛𝐿𝑖=1𝑛𝐿 , ∑ 𝑋𝑖𝑈𝑛𝑈𝑖=1𝑛𝑈 ] �̅�𝑁𝜖 [∑ 𝑓𝐿𝑋𝑖𝐿𝑛𝐿𝑖=1∑ 𝑓𝐿𝑛𝐿𝑖=1 , ∑ 𝑓𝑈𝑋𝑖𝑈𝑛𝑈𝑖=1∑ 𝑓𝑈𝑛𝑈𝑖=1 ] 

Indirect under 
NS 

�̅�𝑁 = 𝐴𝑁 + ∑ 𝐷𝑁𝑛𝑁𝑖=1𝑛𝑁
Where �̅�𝑁𝜖[�̅�𝐿 , �̅�𝑈]
Here 𝐷𝑁 = 𝑋𝑁 − 𝐴𝑁  and 𝐴𝑁  is any
assumed neutrosophic mean. 𝐴𝑁 ≠ �̅�𝑁

�̅�𝑁 = 𝐴𝑁 + ∑ 𝑓𝑁𝐷𝑁𝑛𝑁𝑖=1∑ 𝑓𝑁𝑛𝑁𝑖=1
Where �̅�𝑁𝜖[�̅�𝐿 , �̅�𝑈]
Here 𝐷𝑁 = 𝑋𝑁 − 𝐴𝑁  and 𝐴𝑁  is any
assumed neutrosophic mean. 𝐴𝑁 ≠ �̅�𝑁

Step-division 
under NS 

�̅�𝑁 = 𝐴𝑁 + ∑ 𝑈𝑁𝑛𝑁𝑖=1𝑛𝑁 × 𝑐𝑁
Where �̅�𝑁𝜖[�̅�𝐿 , �̅�𝑈]
Note here 𝑈𝑁 = 𝑋𝑁−𝐴𝑁𝑐𝑁 𝑜𝑟 ℎ𝑁 ; where 𝑐𝑁  is

common divisor and ℎ𝑁 is class interval.

�̅�𝑁 = 𝐴𝑁 +∑ 𝑓𝑁𝑈𝑁𝑛𝑁𝑖=1∑ 𝑓𝑁𝑛𝑁𝑖=1 × 𝑐𝑁
Where �̅�𝑁𝜖[�̅�𝐿 , �̅�𝑈]
Note here 𝑈𝑁 = 𝑋𝑁−𝐴𝑁𝑐𝑁 𝑜𝑟 ℎ𝑁 ; where 𝑐𝑁  is

common divisor and ℎ𝑁 is class interval.

Note that the NAM is the most important neutrosophic measure of central tendency since it is computed by 
using all the numerical values of the neutrosophic data set and varies less than the other neutrosophic 
measures of central tendency. 

2.2.2 Neutrosophic Weighted Mean (NWM) 

In classical statistics, weighted mean is calculated by assigning weights to the observations according to 
importance. NWM is calculated in the same way but the weights assigned in this case will be neutrosophic. If 𝑋𝑖𝑁𝜖{𝑋𝐿 , 𝑋𝑈};  𝑖 = 1,2,3,…, 𝑛𝑁  be a neutrosophic random variable (nrv) and the𝑊𝑖𝑁𝜖{𝑊𝐿 ,𝑊𝑈};  𝑖 =1,2,3,…,𝑛𝑁 be the neutrosophic weights assigned to the values of neutrosophic random
variable, then the formula for calculating NWM is as follow: �̅�𝑊𝑁 = 

∑ XiNWiNNni=1∑ WiNNni=1 ; �̅�𝑊𝑁 𝜖 [ �̅�𝑊𝐿 , �̅�𝑊𝑈] (2.2.2) 

Example 2.2.2 Punjab university’s students taking Panadol, tea or nap for headache. 

The neutrosophic data of the student’s preference of Panadol (1), tea (2) or nap (3) along with their priority 
are as follows: 

{1,2}, {2,3}, {3,1}, {1,2}, {3,2} with weights [1,1], [2,4], [3,2], [2,4], [1,6] respectively. 

Calculate the NWM. 

Solution: 

Using formula (2.2.2) 



                               

Quadruple Neutrosophic Theory And Applications   

 Volume I 

 

167 

 

                               �̅�𝑊𝑁 = [1×1+2×2+3×3+1×2+3×1,2×1+3×4+1×2+2×4+2×6][9,17]  

                                        = 
[19,36][9,17]  = [2.1, 2.12] 

                               �̅�𝑊𝑁 𝜖 [2.1,2.12] 

 

2.2.3 Neutrosophic Geometric Mean (NGM) 

The neutrosophic geomantic mean (NGM) is another measure of central tendency which is applied when the 
neutrosophic data is expressed in rates, ratios or percentages. 

The neutrosophic geomantic mean is the nth positive root of the product of 𝑛𝑁 neutrosophic observations. 
Mathematically, it is defined for ungrouped neutrosophic data as follows: 𝐺𝑀𝑁 = √𝑋1𝑁 × 𝑋2𝑁 …× 𝑋𝑛𝑁𝑛𝑁 ; 𝐺𝑀𝑁𝜖[𝐺𝑀𝐿 , 𝐺𝑀𝑈]  (2.2.3) 

Similarly, when the frequency is given for the corresponding neutrosophic data, the NGM is defined as 
follows: 𝐺𝑀𝑁 = √𝑋1𝑁𝑓1𝑛 × 𝑋2𝑁𝑓2𝑛 × …× 𝑋𝑛𝑁𝑓𝑛𝑁𝑛𝑁 ; 𝐺𝑀𝑁𝜖[𝐺𝑀𝐿 , 𝐺𝑀𝑈]  (2.2.4) 

Note here that 𝑓1𝑛 + 𝑓2𝑛 +⋯+ 𝑓𝑛𝑁 = 𝑛𝑁;  𝑛𝑁 ∈ [𝑛𝐿 , 𝑛𝑈] 
 

Example 2.2.3: Calculate the NGM for data presented in Example 2.2.1.  

[10, 10], [5, 7], [8, 9], [15, 15], [12, 15]. 

Solution:  

Using formula (2.2.3), we have  𝐺𝑀𝑁 = √[10, 10] × [5, 7] × [8, 9] × [15, 15] × [12, 15]5
                               = √[72000,141750]5 = [72000,141750]15 = [9.364,10.723]  

Therefore, 𝐺𝑀𝑁𝜖[9.364,10.723]. 
 

2.2.4 Neutrosophic Harmonic Mean (NHM) 

The neutrosophic harmonic mean (NHM) is the extension of the harmonic mean (HM) under classical 
statistics. The NHM is an important average, which is used to find the center of the neutrosophic data when 
expressed in rates, ratios and percentages. The NHM is defined using the sum of the reciprocal of 
observations and the number of neutrosophic observations and mathematically is given for neutrosophic 
ungrouped data by 𝐻𝑀𝑁 = 𝑛𝑁∑ ( 1𝑋𝑁)𝑛𝑁𝑖=1 ; 𝐻𝑀𝑁𝜖[𝐻𝑀𝐿 , 𝐻𝑀𝑈]   (2.2.5) 

For neutrosophic grouped data, the NHM is defined as 𝐻𝑀𝑁 = ∑𝑓𝑁∑ (𝑓𝑁𝑋𝑁)𝑛𝑁𝑖=1 ; 𝐻𝑀𝑁𝜖[𝐻𝑀𝐿 , 𝐻𝑀𝑈]   (2.2.6) 



Editors: Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 

168 

Example 2.2.4: Calculate the NHM using the data given in Example 2.2.1. The data is shown as follows: 

[10, 10], [5, 7], [8, 9], [15, 15], [12, 15]. 

Solution:  

Using the formulas (2.2.5), we have 𝐻𝑀𝑁 = 51[10,10]+ 1[5,7]+ 1[8,9] + 1[15,15]+ 1[12,15]𝐻𝑀𝑁 = 5[ 110+ 15 + 18 + 115+ 112 , 110+ 17 + 19 + 115+ 115]𝐻𝑀𝑁 = 5[0.575, 0.487] = [8.696,10.261] 
Therefore, 𝐻𝑀𝑁𝜖[8.696,10.261].
2.2.5 Neutrosophic Median (NME) 

As in classical statistics, NME is the center value of the neutrosophic data that is arranged in ascending order 
partially. In neutrosophic statistics, data cannot be arranged fully because of its two parts that is sure and 
unsure part. We have two formulas for calculating NME for ungrouped data as in classical statistics. These 
formulas are as follows: 𝑋�̃� = (𝑛𝑁 +1)2 th observation when 𝑛𝑁 is odd (2.2.7) 𝑋�̃�𝜖 [𝑋�̃� , 𝑋�̃�]𝑋�̃� = 

12[𝑛𝑁2 th + 
𝑛𝑁 +12 th] observation when 𝑛𝑁 is even (2.2.8) 𝑋�̃�𝜖 [𝑋�̃� , 𝑋�̃�]

For grouped data, NME can be calculated as follow 𝑋�̃� = 𝑙𝑁 + ℎ𝑁𝑓𝑁 (𝑛𝑁2 − 𝑐𝑁) ;  𝑋�̃�𝜖 [𝑋𝐿 ,̃𝑋�̃�] (2.2.9) 

Where, 𝑛𝑁 = total neutrosophic frequency𝑙𝑁 = lower boundary of the neutrosophic median class𝑓𝑁 = neutrosophic frequency of the neutrosophic median classℎ𝑁 = length of the neutrosophic median class𝑐𝑁 = neutrosophic cumulative frequency before the neutrosophic median class

Example 2.2.5: PU students study hours. 
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The following neutrosophic data is noted on the number of hours that PU’s students study per week. 
Calculate NME. 

[4,7], [9,10], [11,13], [6,9], [15,10], [4,6], [7,9], [6,6], [5,3] 

Solution: 

By arranging data in ascending order, we have 

[4,6], [4,7], [5,3], [6,6], [6,9], [7,9], [9,10], [11,13], [15,10]. 

Using the formula in 2.2.7, we get 𝑋�̃� 𝜖 [6,9] 
Thus, NME is [6,9] 

 

2.2.6 Neutrosophic Mode 

As in classical statistics, NMO is the most frequent value of the neutrosophic data, it attains all the properties 
of classical mode. It can be calculated by taking average of most frequent values. �̂�𝑁  = Most frequent value or average of frequent values  (2.2.10) 

For grouped data it can be calculated as follow: �̂�𝑁 = 𝑙𝑁 + ( 𝑓1𝑁−𝑓0𝑁2𝑓1𝑁−𝑓0𝑁−𝑓2𝑁) ∗ ℎ𝑁   ;  �̂�𝑁 𝜖[�̂�𝐿 , �̂�𝑈]  (2.2.11) 𝑙𝑁 = neutrosophic lower class boundary of the mode class 𝑓1𝑁 = neutrosophic frequency of the mode class 𝑓0𝑁 = neutrosophic frequency of the preceding mode class 𝑓2𝑁 = neutrosophic frequency of the succeeding mode class ℎ𝑁 = neutrosophic interval length of the mode class 

 

Example 2.2.6: For example 2.2.5, calculate the neutrosophic mode. 

Solution:  

Using formula in 2.2.10, we get �̂�𝑁 = [4,6] + [6,6] + [6,9]3 = [5.333,7] 
So, the mode is �̂�𝑁𝜖 [5.333, 7] 
 

2.3 NEUTROSOPHIC MEASURES OF POSITION 

The neutrosophic numbers that expressed in the indeterminacy interval that show where specific data values 
fall within neutrosophic data set are called the neutrosophic measures of position. Note that, the values of the 
neutrosophic measures of position indicate the relative standing of data values compared to the other values 
in the data set. Therefore, such as neutrosophic measures may called neutrosophic measure of relative 
standing. 
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Some important neutrosophic measures of position such as neutrosophic percentiles (NP), neutrosophic 
deciles (ND), neutrosophic quartiles (NQ) will be explained.   

2.3.1 Neutrosophic Quartiles (NQ) 

A set of neutrosophic observation can be ordered only partially in ascending or descending order since we are 
dealing with sets of observations instead of crisp numbers as in CS so there is no complete order. As in 
classical statistics, NQ divides data into 4 parts, each part contains 25% of the data values. First NQ shows 
25% of data values below it. Second NQ shows 50% of data values below it and 25% of data values between 
first NQ and second NQ. Third NQ shows 75% of data values under it, 25% of data values above it and 25% 
for data values between second NQ and third NQ.  

NQ for ungrouped data can be found using the following standing formula after ordering the neutrosophic 
data: 𝑄𝑖𝑁 = 𝑖(𝑛𝑁 +1)4  ; i=1,2,3  (2.3.1) 

 

Where 𝑛𝑁  is the sample size or number of neutrosophic observations in the data set.  

For grouped neutrosophic observations, NQ can be found using the following formula after determining the 

neutrosophic quartile standing class using 
𝑖∗𝑛𝑁4  ;  𝑖 = 1,2,3 : 𝑁𝑄𝑖 = 𝑙𝑁 + ℎ𝑁𝑓𝑁 (𝑖∗𝑛𝑁4 − 𝑐𝑁) ; i=1,2,3  (2.3.2) 

Where  𝑙𝑁 = neutrosophic lower boundary of the NQ class 𝑓𝑁 = neutrosophic frequency of the NQ class ℎ𝑁 = neutrosophic length of the NQ class 𝑐𝑁 = neutrosophic cumulative frequency for the class before NQ class 

Example 2.3.1 PU students study hours. 

The following neutrosophic data is noted on the number of hours that PU’s students study per week. Find 
NQ3. 

[4,7], [9,10], [11,13], [6,9], [15,10], [4,6], [7,9], [6,6], [5,3] 

Solution: 

By arranging data in ascending order, we have 

[4,6], [4,7], [5,3], [6,6], [6,9], [7,9], [9,10], [11,13], [15,10]. 

Using the formula in 2.3.1, we get 𝑄3𝑁 = 3(𝑛𝑁 +1)4 = 3(9+1)4 = 6.75 th observation 

𝑁𝑄3 ∈ [7,9] + [9,10]2 = [8,9.5] 
Thus, the third neutrosophic quartile is [8,9.5] 

2.3.2 Neutrosophic Deciles (ND) 

Same as in above section of NQ, the neutrosophic set of data is arranged in ascending or descending order 
partially. As in classical statistics, ND divides data into 10 parts. First neutrosophic decile represents 10% of 
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data below it, second ND shows 20% of data below it and so on. 5th ND is same as the 2nd NQ. For 
ungrouped neutrosophic data, ND can be found using the following standing formula after ordering the 
neutrosophic data: 𝐷𝑖𝑁 = 𝑖∗(𝑛𝑁 +1)10  th ; i=1,2,3….10  (2.3.3) 

 

Where i in the subscript denotes the number of ND.  𝑛𝑁  is the sample size or number of neutrosophic 
observations.  

For grouped neutrosophic data, ND can be found using the following formula after determining the 

neutrosophic decile standing class using 
𝑖∗𝑛𝑁10  ;  𝑖 = 1,2, . . . ,10 : 𝑁𝐷𝑖 = 𝑙𝑁 + ℎ𝑁𝑓𝑁 (𝑖∗𝑛𝑁10 − 𝑐𝑁) ; i=1,2,…,10  (2.3.4) 

Where 𝑙𝑁 = neutrosophic lower boundary of the ND class 𝑓𝑁 = neutrosophic frequency of the ND class ℎ𝑁 = neutrosophic length of the ND class 𝑐𝑁 = neutrosophic cumulative frequency of the class before ND class 

 

Example 2.3.2: Find 𝑁𝐷5, 𝑁𝐷8  by considering the neutrosophic data in 2.3.1. 

Solution: 

By arranging data in ascending order, we have 

[4,6], [4,7], [5,3], [6,6], [6,9], [7,9], [9,10], [11,13], [15,10]. 

Using the formula in 2.3.3, we get 𝐷5𝑁 = 5(9+1)10 = = 5th observation 

Thus, 𝑁𝐷5 𝜖[6,9] 𝐷8𝑁 = 8(9+1)10  = 8th observation 

Thus, 𝑁𝐷8 𝜖[11,13] 

 

2.3.3 Neutrosophic Percentiles (NP) 

The neutrosophic set of data for a variable is arranged in ascending or descending order partially. NP divides 
neutrosophic data into 100 parts as in classical statistics. First NP indicates 1% of data below it, second NP 
shows 2% of data below it and so on. 25th NP is same as to 1st NQ. 50th NP is same as 2nd NQ and 5th ND 
which is same as the median of the neutrosophic data set. 3rd NQ and 75th NP are the same. For ungrouped 
data, NP can be found using the following standing formula after ordering the neutrosophic data: 𝑃𝑖𝑁= 𝑖∗(𝑛𝑁 +1)100  ; i =1,2,3,…,100  (2.3.5) 

Where i in the subscript denotes the number of ND.  𝑛𝑁  is the sample size or number of neutrosophic 
observations.  
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For grouped neutrosophic data, NP can be found using the following formula after determining the NP 

standing class using 
𝑖∗𝑛𝑁100  ;  𝑖 = 1,2, . . . ,100 : 𝑁𝑃𝑖= 𝑙𝑁 + ℎ𝑁𝑓𝑁 (𝑖∗𝑛𝑁100 − 𝑐𝑁) ; i=1,2,…,100 (2.3.6) 

Where 𝑙𝑁 = neutrosophic lower boundary of the NP class𝑓𝑁 = neutrosophic frequency of the NP classℎ𝑁 = neutrosophic length of the NP class𝑐𝑁 = neutrosophic cumulative frequency for the class before the NP class

Example 2.3.3: Find 𝑁𝑃40 , 𝑁𝑃75  by considering the neutrosophic data in 2.3.1.

Solution  

By arranging data in ascending order, we have 

[4,6], [4,7], [5,3], [6,6], [6,9], [7,9], [9,10], [11,13], [15,10]. 

Using the formula in 2.3.5, we have 𝑃40𝑁 = 40∗(9 +1)100  = 4th observation 

Thus 𝑁𝑃40 ∈ [6,6] 𝑃75𝑁 = 75∗(9 +1)100  = 7.5th observation 

So, 𝑁𝑃75 ∈ [9,10]+[11,13]2  = [10,11.5] 

Thus, 𝑁𝑃75 𝜖 [10,11.5]

2.4 NEUTROSOPHIC MEASURES OF DISPERSION 

The neutrosophic numbers that expressed in the indeterminacy interval that show how the neutrosophic data 
clustered or scattered are called the neutrosophic measures of dispersion. Note here that, the values of the 
neutrosophic measures of dispersion are non-negative values since they measure the variability of the data 
values. Thus, such as neutrosophic measures may called neutrosophic measure of variation. 

Some important neutrosophic measures of dispersion that will be explained here are neutrosophic range 
(NR), neutrosophic coefficient of range (NCR), neutrosophic variance (NV), neutrosophic standard deviation 
(NSTD), neutrosophic mean deviation (NMD), neutrosophic quartile deviation (NQD) and neutrosophic 
coefficient of variation (NCV).  
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2.4.1 Neutrosophic Range (NR) 

Neutrosophic range is the difference between the highest and lowest observation of neutrosophic data. It is 
the measure of dispersion as in classical statistics. It shows the largest variation in a data set’s values. The 
applications and limitations of neutrosophic range are same as that of classical range. For ungrouped data NR 
can be calculated using the following formula 𝑅𝑁 = 𝑋𝑀𝑎𝑥𝑁 - 𝑋𝑀𝑖𝑛𝑁  ; 𝑅𝑁  𝜖 [ 𝑅𝐿 ,𝑅 𝑈 ]                               (2.4.1) 

Where 𝑋𝑀𝑎𝑥𝑁 = Maximum neutrosophic value 𝑋𝑀𝑖𝑛𝑁 = Minimum neutrosophic value 

For grouped data, NR can be calculated as the difference between the upper class boundary of the highest 
class and the lowest class boundary of the lowest class or simply the difference between the highest and 
lowest mid points of the interval class. 

 

2.4.2 Neutrosophic Coefficient of Range (NCR) 

Range can be used in calculation of neutrosophic coefficient of range (NCR). It is a relative measure of 
dispersion to study the spread of the neutrosophic data. it can be calculated as follow 𝐶𝑅𝑁 = 𝑋𝑀𝑎𝑥𝑁 − 𝑋𝑀𝑖𝑛𝑁     𝑋𝑀𝑎𝑥𝑁+ 𝑋𝑀𝑖𝑛𝑁      ; 𝐶𝑅𝑁  𝜖 [𝐶𝑅𝐿 , 𝐶𝑅𝑈 ]                         (2.4.2) 

 

Example 2.4.1: Using example 2.2.5, calculate the NR and NCR. 

Solution  

From example 2.2.5, we have 𝑋𝑀𝑖𝑛𝑁 = [4,6] and 𝑋𝑀𝑎𝑥𝑁 = [15,10] 

Using formula in 2.4.1, we have  𝑅𝑁 = [15,10] - [4,6] = [11,4] 

Thus, the neutrosophic range is 𝑅𝑁  𝜖 [11,4] 

For the neutrosophic coefficient of range, using formula in 2.4.2, we have 𝐶𝑅𝑛 = [15,10] − [4,6][15,10] + [4,6] = [11,4][19,16] = [0.579,0.25] 
Thus, the neutrosophic coefficient of range is 𝐶𝑅𝑁 𝜖 [0.25, 0.579] 

 

2.4.3 Neutrosophic Quartile Deviation (NQD) 

NQD is the relative measure of dispersion based on neutrosophic quartiles. It can be calculated using the 
following formula 𝑄𝐷𝑁 = 𝑄3𝑁−𝑄1𝑁2  ; QD𝑁 𝜖 [ QD𝐿 , QD𝑈]                           (2.4.3) 

 

Example 2.4.2: Using example 2.2.5, calculate NQD 
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Solution:  

we have 𝑄3𝑁 𝜖[8,9.5] and 𝑄1𝑁 𝜖 [4.5, 5] 

Using formula 2.4.3, we have 

 NQD = 𝑄𝐷𝑁 = [8,9.5]−[4.5,5]2 = [3.5,4,5]2  = [1.75, 2.25] 

Thus, 𝑁𝑄𝐷 𝜖 [1.75, 2.25] 

 

2.4.4 Neutrosophic Variance (NV) and Standard Deviation (NSD) 

As in classical statistics, neutrosophic variance also shows how much neutrosophic data vary about the 
neutrosophic mean. If values vary largely, then neutrosophic variance will be large and vice versa. 
Neutrosophic variance also have all the properties as the classical variance. The population and sample NV 
are denoted as 𝜎2𝑁 and 𝑆2𝑁 respectively.  

For ungrouped data it can be calculated using the following formula 𝜎2𝑁 =  ∑ (𝑿𝒊𝑵− �̅�𝑵)𝟐𝑛𝑁𝑛𝑁𝑖=1  ; 𝜎2𝑁𝜖[𝜎2𝐿 , 𝜎2𝑢 ]                                      (2.4.4) 

or 𝜎2𝑁 = ∑ (𝑋𝑖𝑁2𝑛𝑁 ) −𝑛𝑁𝑖=1  �̅�𝑁2 ; 𝜎2𝑁𝜖[𝜎2𝐿 , 𝜎2𝑢]                     (2.4.5) 

For sample data, the NV obtained from these formulas will be biased and hence unbiased neutrosophic 
variance can be obtained by the following formulas: 𝑆2𝑁 = ∑ (𝑿𝒊𝑵− �̅�𝑵)𝟐𝑛𝑁−1𝑛𝑁𝑖=1 = ; 𝑆2𝑁𝜖[𝑆2𝐿 , 𝑆2𝑢]                          (2.4.6) 

For grouped data, NV can be found as follow: 𝑆2𝑁 = ∑ 𝑓𝑖𝑁(𝑿𝒊𝑵− �̅�𝑵)𝟐𝑓𝑖𝑁−1𝑛𝑁𝑖=1  ; 𝑆2𝑁𝜖[𝑆2𝐿 , 𝑆2𝑢]                     (2.4.7) 

Pooled neutrosophic variance can be calculate when we have more than one neutrosophic data sets and are 
assumed to have the same variances but with different means. Its formulas are as follows 𝑆2𝑃𝑁 = 

𝑛1𝑁𝑆21𝑁+𝑛2𝑁𝑆22𝑁+⋯.+𝑛𝑚𝑁𝑆2𝑚𝑁𝑛1𝑁+𝑛2𝑁+⋯.𝑛𝑚𝑁   ; 𝑆2𝑃𝑁𝜖[𝑆2𝐿 , 𝑆2𝑢]            (2.4.8) 

The neutrosophic variance is a squared quantity that is difficult to be used to explain variation about the 
mean, hence the neutrosophic standard deviation which is the positive square root of the neutrosophic 
variance is used.  

Thus, the population NSD is calculated using  𝜎𝑵 = √𝜎𝑁2 ; 𝜎𝑵𝜖[𝜎𝐿 , 𝜎𝑢]  (2.4.9) 

and the sample NSD is calculated using  𝑆𝑵 = √𝑆𝑁2  ; 𝑆𝑵𝜖[𝑆𝐿 , 𝑆𝑢]  (2.4.10) 

NSD is a measure of dispersion that tells how much data is scattered around its mean. The smaller the value, 
the better the measure is. 
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Example 2.4.3 PU usage time of cell phones 

Punjab university students asked about how many hours they use cell phones, the following neutrosophic 
data was collected: 

[10,5], [7,5], [8,9], [3,6], [4,3] 

Calculate the NV and STD of the above data. 

Solution  

We have  𝑋1𝑁 = [10,5], 𝑋2𝑁 = [7,5], 𝑋3𝑁 = [8,9], 𝑋4𝑁 = [3,6], 𝑋5𝑁 = [4,3] with 𝑛𝑁 = 5.
Mean of the data is �̅�𝑁 = [6.4,5.6] 

Using the formula in 2.4.6 𝑿𝒊𝑵 (𝑿𝒊𝑵 − �̅�𝑵)𝟐
[10,5] [12.96,0.36] 
[7,5] [0.36,0.36] 
[8,9] [2.56,11.56] 
[3,6] [11.56,0.16] 
[4,3] [5.76,6.76] ∑ (𝑿𝒊𝑵 − �̅�𝑵𝑛𝑁𝑖=1 )2 = [33.2,19.2]

So, the NV is 𝑆2𝑁 𝜖 [8.3,4.8]
Using formula 2.4.10, NSD is 𝑆𝑁 𝜖 [2.881,2.191]
2.4.5 Neutrosophic Coefficient of Variation (NCV) 

As in classical statistics, neutrosophic coefficient of variation can be used for comparing positive values on 
ratio scale. It can also be used for comparing variability of different measures on different scales. the greater 
value of NCV indicates that the greater the values scatter around its mean. It is also known as relative 
neutrosophic standardized measure. It can be calculate using the following formula CVN = SNX̅N × 100 ;  CVN 𝜖 [CVL, CVU] (2.4.11) 

Example 2.4.4 Using NSD in example 2.4.3, obtain the NCV. 

Solution 

In reference to example 2.4.3, we have the following information 

NAM 𝜖 [6.4,5.6] and NSD 𝜖 [2.881,2.191] 

Putting these values in formula 2.4.11, we have 𝐶𝑉𝑁 = [2.881,2.191] [6.4,5.6] × 100 = [45,39] 
Thus, NCV 𝜖 [45,39] 
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2.4.6 Neutrosophic Mean Deviation (NMD) 

For a set of neutrosophic data of a variable, neutrosophic mean deviation is defined to be the sum of the 
absolute differences from their mean. For ungrouped data, NMD can be found as follow: MDN = ∑ |xiN − �̅�𝑁|𝑛𝑖NnNi=1 ; 𝑀𝐷N 𝜖 [𝑀𝐷L, 𝑀𝐷U] (2.4.12) 

For grouped data it can be calculated from following formula: MDN = ∑ 𝑓𝑖N|xiN − �̅�𝑁|𝑓𝑖NnNi=1  ;  𝑀𝐷N 𝜖 [𝑀𝐷L,𝑀𝐷U] (2.4.13) 

Example 2.4.5 PU students sleeping time 

Punjab university students are asked about their sleeping time in hours. The following neutrosophic data was 
obtained. Calculate the neutrosophic mean deviation. 

[9,1], [8,4], [5,3], [4,7], [7,9], [10,4], [6,3], [9,2], [5,4], [6,6] 

Solution 

We have 𝑋1𝑁  = [9,1], 𝑋2𝑁= [8,4], 𝑋3𝑁  = [5,3], 𝑋4𝑁  = [4,7], 𝑋5𝑁  = [7,9], 𝑋6𝑁  = [10,4], 𝑋7𝑁  = [6,3], 𝑋8𝑁  =
[9,2], 𝑋9𝑁 = [5,4], 𝑋10𝑁 = [6,6]. �̅�𝑁 = [6.9,4.3]𝑿𝒊𝑵 |𝐱𝐢𝐍  −  �̅�𝑵|

[9,1] [2.1,3.3] 
[8,4] [1.1,0.3] 
[5,3] [1.9,1.3] 
[4,7] [2.9,2.7] 
[7,9] [0.1,4.7] 

[10,4] [3.1,0.3] 
[6,3] [0.9,1.3] 
[9,2] [2.1,2.3] 
[5,4] [1.9,0.3] 
[6,6] [0.9,1.7] 
Total [17,18.2] 

Putting these values in formula 2.4.12, we get 𝑀𝐷N = [17,18.2]10 = [1.7,1.82] 
Thus, NMD 𝜖 [1.7,1.82] 

2.5 NEUTROSOPHIC MEASURES OF SHAPE 

The neutrosophic measure of shape are descriptive statistics that show how neutrosophic data are distributed 
and help in understanding the data patterns. There are many shapes that data can have. The most important 
shapes are symmetrical, left-skewed and right-skewed.   

The shape of neutrosophic data can be determined using some neutrosophic shape statistics such as 
neutrosophic empirical relationship between the NAM, NME and NMO, neutrosophic moments about origin, 
neutrosophic skewness, neutrosophic kurtosis and neutrosophic moment ratios.  
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2.5.1 Neutrosophic Empirical relation between NAM, NME and NMO 

The empirical relation of median, mean and mode will be same neutrosophically as in classical statistics for 
skewed data. 

NAM – NMO = 3 (NAM – NME) 

We can also write it as, �̅�𝑁 − �̂�𝑁 = 3( �̅�𝑁 - 𝑋�̃�) 
The shape of the neutrosophic data will symmetrical if NAM=NME=NMO and it will right-skewed if NAM 
> NME > NMO and left-skewed fi NAM < NME < NMO. 

 

2.5.2 Neutrosophic Moments about Mean 

Suppose 𝑋1𝑛 ,  𝑋2𝑛,….. , 𝑋𝑖𝑛  be the observations of a random variable of sample size 𝑛𝑁 , then the j-th 
neutrosophic moment about the mean for ungrouped data can be calculated as follow 

𝑚𝑗𝑁 =  ∑ (𝑥𝑖𝑁−�̅�𝑁)𝑗𝑛ℕ𝑖=1 𝑛𝑁  ; i, j = 1,2,…,n and 𝑚𝑗𝑁 ∈ [𝑚𝐿𝑗 , 𝑚𝑈𝑗] (2.5.1) 

For grouped data, it can be calculated as follows 

𝑚𝑗𝑁 = 
∑ 𝑓𝑖𝑁(𝑥𝑖𝑁−�̅�𝑁)𝑗𝑛ℕ𝑖=1∑ 𝑓𝑖𝑁𝑛𝑁𝑖=1  ; i, j = 1,2,…,n and 𝑚𝑗𝑁 ∈ [𝑚𝐿𝑗, 𝑚𝑈𝑗] (2.5.2) 

 

2.5.3 Neutrosophic Moments about Origin 

Neutrosophic moments about arbitrary origin is calculated by modifying the mean in the neutrosophic 
moments about a mean. In this case neutrosophic mean will be replaced by any neutrosophic arbitrary 
number. Its formula is as follow: 

𝑚′𝑗𝑁 = ∑ (𝑥𝑖𝑁−𝐴𝑁)𝑗𝑛ℕ𝑖=1 𝑛𝑁  ; i, j = 1,2,…,n and 𝑚′𝑗𝑁  ∈ [𝑚′𝐿𝑗 , 𝑚′𝑈𝑗] (2.5.3) 

For grouped data, it can be calculated as follows 

𝑚′𝑗𝑁= 
∑ 𝑓𝑖𝑁(𝑥𝑖𝑁−𝐴𝑁)𝑗𝑛ℕ𝑖=1∑ 𝑓𝑖𝑁𝑛𝑁𝑖=1  ; i, j= 1,2,….n and 𝑚′𝑗𝑁  ∈ [𝑚′𝐿𝑗 , 𝑚′𝑈𝑗] (2.5.4) 

When AN = 0, then the neutrosophic moments about arbitrary origin became neutrosophic moment about zero 

𝑚′𝑗𝑁 = ∑ (𝑥𝑖𝑁)𝑗𝑛ℕ𝑖=1𝑛𝑁  ; i, j = 1,2,…,n and 𝑚′𝑗𝑁  ∈ [𝑚′𝐿𝑗 , 𝑚′𝑈𝑗]  (2.5.5) 

For grouped data, it can be calculated as follows 

𝑚′𝑗𝑁= 
∑ 𝑓𝑖𝑁(𝑥𝑖𝑁)𝑗𝑛ℕ𝑖=1∑ 𝑓𝑖𝑁𝑛𝑁𝑖=1  ; i, j= 1,2,…,n and 𝑚′𝑗𝑁  ∈ [𝑚′𝐿𝑗 , 𝑚′𝑈𝑗] (2.5.6) 

 

Example 2.5.1 Using data in example 2.2.1, calculate the first four moments about the origin zero. The data 
are [10,10],[5,7],[8,9],[15,15],[12,15] 
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Solution  

Using formula 2.5.5, we have  𝑚′1𝑁 = 
[10,10]+[5,7]+[8,9]+15,15]+[12,15]5 = [50,56]5  = [10, 11.2] 

Thus, 𝑚′1𝑁 ∈ [10, 11.2] 𝑚′2𝑁 = [10,10]2+[5,7]2+[8,9]2+[15,15]2+[12,15]25 = [558,680]5  = [111.6, 136] 

Thus, 𝑚′2𝑁 ∈ [111.6, 136] 𝑚′3𝑁= 
[10,10]3+[5,7]3+[8,9]3+[15,15]3+[12,15]35 = [6740,1764,4]5  = [1348, 1764.4] 

Thus, 𝑚′3𝑁 ∈ [1348, 1764.4] 𝑚′4𝑁= 
[10,10]4+[5,7]4+[8,9]4+[15,15]4+[12,15]45 =

[86082,120212]5  = [17216.4, 24042.4] 

Thus, 𝑚′4𝑁 ∈ [17216.4, 24042.4] 

 

2.5.4 Neutrosophic Skewness (NSK) 

Neutrosophic skewness refers to the term when there is no symmetry in the neutrosophic data or there is non-
normality. There are two types of neutrosophic skewness. When there is positive skewness or tail is on right 
side then it is termed as neutrosophic positive skewness. When skewness is negative, or the tail of graph is on 
left side then it is termed as negative neutrosophic skewness. It can be calculated from the following formula 

SKN = 
�̅�𝑁−𝑥𝑁𝑆𝑁  ; 𝑆𝐾𝑁 ∈ [𝑆𝐾𝐿 , 𝑆𝐾𝑈]  (2.5.7) 

or 

SKN = 
3�̅�𝑁−𝑥𝑁𝑆𝑁  ; 𝑆𝐾𝑁 ∈ [𝑆𝐾𝐿 , 𝑆𝐾𝑈]  (2.5.8) 

 

2.5.5 Neutrosophic Kurtosis (NKU) 

Neutrosophic kurtosis measures the tails-heaviness of the distribution. As the value of the kurtosis increases 
as the tails of the distribution became heavier and as it decreases as the tails became lighter. Kurtosis can be 
defined as 𝐾𝑈𝑁 = ∑ (𝑥𝑖𝑁−�̅�𝑁)4𝑛ℕ𝑖=1𝑛𝑁𝑆𝑁4  ; 𝐾𝑈𝑁 ∈ [𝐾𝑈𝐿 , 𝐾𝑈𝑈]  (2.5.9) 

 

2.5.6 Neutrosophic Moment Ratios 

Neutrosophic coefficient of skewness and kurtosis can be calculated from neutrosophic moment ratios. Their 
formulas are as follow:  𝑏1𝑁 = 

𝑚3𝑁2𝑚2𝑁3   (2.5.10) 

The above formula is for neutrosophic coefficient of skewness. If it is 0 then its Symmetrix, if it is greater 
than 0 than it is positively skewed and vice versa. 𝑏2𝑁 = 

𝑚4𝑁𝑚2𝑁2   (2.5.11) 
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The above formula is for neutrosophic co-efficient of kurtosis. As the value of it increases as the tails of the 
distribution became heavier and vice versa. 

Example 2.5.2 Using example 2.5.1, calculate moment ratios. 

Solution  

Using formula 2.5.10, we have 𝑏1𝑁 = 
[1348,1764.4]2[111.6,136]3  = [1.307, 1.238] 

Thus, 𝑏1𝑁 ∈ [1.307, 1.238], hence its positively skewed.

Using formula 2.5.11, we have 𝑏2𝑁= 
[17216.4,24042.4][111.6,136]2  = [1.382, 1.3] 

Thus, 𝑏2𝑁 ∈ [1.382, 1.3] indicating light tails.
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ABSTRACT 

 In this chapter, neutrosophic triplet g - metric spaces are obtained. Then, some definitions and 

examples are given for neutrosophic triplet g - metric space. Based on these definitions, new theorems are 

given and proved. In addition, it is shown that neutrosophic triplet g - metric spaces are different from the 

classical  g - metric spaces, neutrosophic triplet metric spaces. 

Keywords: g - metric space, neutrosophic triplet set, neutrosophic triplet metric space, neutrosophic triplet g 

- metric space

INTRODUCTION 

Mustafa and Sims introduced g - metric spaces [45] in 2006. g - metric space is generalized form of metric 
space. The g - metric spaces have an important role in fixed point theory. Recently, researchers studied 

g - metric space [45-47]. 

Smarandache defined neutrosophic logic and neutrosophic set [1] in 1998. In neutrosophic logic and 
neutrosophic sets, there are T degree of membership, I degree of undeterminacy and F degree of 

non-membership. These degrees are defined independently of each other. It has a neutrosophic value (T, I, F) 
form. In other words, a condition is handled according to both its accuracy and its inaccuracy and its 

uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncertainties in our 
lives. In addition, many researchers have made studies on this theory [2-27]. In fact, neutrosophic set is a 
generalized state of fuzzy set [28] and intuitionistic fuzzy set [29].     

Furthermore, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet groups 

(NTG) [6].  For every element “x” in NTS A, there exist a neutral of “x” and an opposite of “x”. Also, neutral 
of “x” must different from the classical neutral element. Therefore, the NTS is different from the classical set. 

Furthermore, a neutrosophic triplet (NT) “x” is showed by   <x, neut(x), anti(x)>. Also, many researchers 
have introduced NT structures [31-44]. 

mailto:mesahin@gantep.edu.tr
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In this chapter, we introduce neutrosophic triplet g - metric space (NTgMS). In Section 2, we give 
definitions and properties for g - metric space (gMS) [45], neutrosophic triplet sets (NTS) [30], neutrosophic 
triplet metric spaces (NTMS) [32]. In Section 3, we define neutrosophic triplet g - metric space and we give 
some properties for neutrosophic triplet g - metric space. Also, we show that neutrosophic triplet g - metric 
spaces are different from the classical g - metric spaces and the neutrosophic triplet metric spaces. Then, we 
examine relationship between neutrosophic triplet g - metric spaces and neutrosophic triplet metric spaces. In 
Section 4, we give conclusions. 

BACKGROUND 

Definition 1: [6] Let # be a binary operation. A NTS (X, #) is a set such that for x ∊ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x,

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x).

Also, a neutrosophic triplet “x” is showed with (x, neut(x), anti(x)). 

Definition 2: [32] Let (N,*) be a NTS and 𝑑𝑁:NxN→ ℝ+∪{0} be a function. If 𝑑𝑁:NxN→ ℝ+∪{0} and

(N, *) satisfies the following conditions, then 𝑑𝑁 is called NTM.

a) x*y ∈ N;

b) 𝑑𝑁(x, y) ≥ 0;

c) If x = y, then 𝑑𝑁(x, y) = 0;

d) 𝑑𝑁(x, y) = 𝑑𝑁(y, x);

e) If there exits at least a y ∊ N for each x, z ∊N such that 𝑑𝑁(x, z) ≤ 𝑑𝑁(x, z*neut(y)), then𝑑𝑁(x, z*neut(y)) ≤ 𝑑𝑁(x, y) + 𝑑𝑁(y, z).

Also, ((N,*), 𝑑𝑁) is called a NTMS.

Definition 3: [45] Let X be a nonempty set. If g: 𝑋 × 𝑋 × 𝑋 → 𝑅+ ∪ {0}  is satisfied the following the

conditions, then it is a gM. 

i) If  𝑥 = 𝑦 = 𝑧, then g(𝑥, 𝑦, 𝑧) = 0,

ii) If 𝑥 ≠ 𝑦, then g(𝑥, 𝑦, 𝑧) > 0,

ii) 𝐼𝑓 𝑧 ≠ 𝑦, then  g(𝑥, 𝑥, 𝑦) ≤ g(𝑥, 𝑦, 𝑧),

iv) g(𝑥, 𝑦, 𝑧) = g(𝑥, 𝑧, 𝑦) = g(𝑦, 𝑧, 𝑥) = g(𝑦, 𝑥, 𝑧) = g(𝑧, 𝑥, 𝑦) = g(𝑧, 𝑦, 𝑥), for every 𝑥, 𝑦, 𝑧 ∈ 𝑋,

v) g(𝑥, 𝑦, 𝑧) ≤ g(𝑥, 𝑎, 𝑎) + g(𝑎, 𝑦, 𝑧), for every 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋.

Also, (X, g) is called gMS. 

Definition 4: [45] Let (X, g) be a g – metric space and {𝑥𝑛} be a sequence in this space. A point x ∈ X is

said to be limit of the sequence {𝑥𝑛}, if lim𝑛,𝑚 →∞ g(𝑥, 𝑥𝑛 , 𝑥𝑚) = 0 and {𝑥𝑛} is called g – convergent to x.
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Definition 5: [45] Let (X, g) be a g – metric space and {𝑥𝑛} be a sequence in this space. {𝑥𝑛} is called                 

g – Cauchy sequence if lim𝑛,𝑚,𝑙 →∞ g(𝑥𝑛 , 𝑥𝑚, 𝑥𝑙) = 0.  

Neutrosophic Triplet g – Metric Space 

Definition 6: Let (𝑋,∗)  be a neutrosophic triplet set. If the following conditions hold                                 

g: 𝑋 × 𝑋 × 𝑋 → 𝑅+ ∪ {0} is a NTgM. 

a) ∀𝑥, 𝑦 ∈ 𝑋 ; 𝑥 ∗ 𝑦 ∈ 𝑋, 

b) If 𝑥 = 𝑦 = 𝑧, then g(𝑥, 𝑦, 𝑧) = 0,   

c) If 𝑥 ≠ 𝑦, then g(𝑥, 𝑦, 𝑧) > 0, 

d) If 𝑧 ≠ 𝑦, then g(𝑥, 𝑥, 𝑦) ≤ g(𝑥, 𝑦, 𝑧), 
e) g(𝑥, 𝑦, 𝑧) = g(𝑥, 𝑧, 𝑦) =  g(𝑦, 𝑥, 𝑧) = g(𝑦, 𝑧, 𝑥) = g(𝑧, 𝑥, 𝑦) = g(𝑧, 𝑦, 𝑥), for every 𝑥, 𝑦, 𝑧 ∈ 𝑋, 

f) If there exists at least an element 𝑎 ∈ 𝑋  for each x, y, z elements such that                                    g(𝑥, 𝑦, 𝑧) ≤ g(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)), then 

 g(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) ≤ g(𝑥, 𝑎, 𝑎) + g(𝑎, 𝑦, 𝑧). 
Also, (X, *), g) is called NTgMS. 

Corollary 1: From Definition 6 and Definition 3, a NTgMS is different from a gMS. Because, there is not a 

* binary operation in Definition 3. Also, triangle inequalities are different in definitions.  

Corollary 2: From Definition 6 and Definition 2, a NTgMS is different from a NTMS. Because, triangle 
inequalities are different in definitions.     

Example 1: 𝑋 = {0, 4, 9, 10, 16} be a set. We show that (𝑋, ∗) is a NTS on ℤ18. Also, we obtain that 𝑛𝑒𝑢𝑡(0) = 0 , 𝑎𝑛𝑡𝑖(0) = 0 ; 𝑛𝑒𝑢𝑡(4) = 10 , 𝑎𝑛𝑡𝑖(4) = 16 ; 𝑛𝑒𝑢𝑡(9) = 9 , 𝑎𝑛𝑡𝑖(9) = 9 ; 𝑛𝑒𝑢𝑡(10) = 10 , 𝑎𝑛𝑡𝑖(10) = 10; 𝑛𝑒𝑢𝑡(16) = 16, 𝑎𝑛𝑡𝑖(16) = 16. 

Thus, (𝑋, ∗) is a NTS and NTs are (0,0,0), (4,10,16), (9, 9, 9), (10,10,10) and (16,16,16). 

Now we define g: 𝑋 × 𝑋 × 𝑋 → 𝑅+ ∪ {0} function such that 

g(𝑥, 𝑦, 𝑧) = {{1 + |2𝑥 − 2𝑦| + |2𝑥 − 2𝑧| + |2𝑦 − 2𝑧|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 |2𝑥 − 2𝑦| + |2𝑥 − 2𝑧| + |2𝑦 − 2𝑧|, 𝑖𝑓 𝑥 = 𝑦 = 𝑧 . 

We show that g is a NTgM. 

a) From Table 1, it is clear that for ∀𝑥, 𝑦 ∈ 𝑋; 𝑥 ∗ 𝑦 ∈ 𝑋. 
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. 0 4 9 10 

0 0 0 0 0 

4 0 16 0 4 

9 0 0 9 0 

10 0 4 0 10 

Table 1: ”*” binary operator under ℤ18 

b) If 𝑥 = 𝑦 = 𝑧, then g(𝑥, 𝑦, 𝑧) = |2𝑥 − 2𝑦| + |2𝑥 − 2𝑧| + |2𝑦 − 2𝑧| =  |2𝑥 − 2𝑥| + |2𝑥 − 2𝑥| + |2𝑥 − 2𝑥| = 0 

c) If x ≠ y, it is clear that g(𝑥, 𝑦, 𝑧) = 1 + |2𝑥 − 2𝑦| + |2𝑥 − 2𝑧| + |2𝑦 − 2𝑧| > 0. 

d) It is clear that g(𝑥, 𝑥, 𝑦) = |2𝑥 − 2𝑥| + |2𝑥 − 2𝑦| + |2𝑥 − 2𝑦| = 2. |2𝑥 − 2𝑦|. Thus, 

 g(𝑥, 𝑥, 𝑦) = 2. |2𝑥 − 2𝑦| ≤ 1 + |2𝑥 − 2𝑦| + |2𝑥 − 2𝑧| + |2𝑦 − 2𝑧|.  
Because |2𝑥 − 2𝑦| ≤ |2𝑥 − 2𝑧| + |2𝑦 − 2𝑧|. 
e) From absolute value function, it is clear that  g(𝑥, 𝑦, 𝑧) = g(𝑥, 𝑧, 𝑦) =  g(𝑦, 𝑥, 𝑧) = g(𝑦, 𝑧, 𝑥) = g(𝑧, 𝑥, 𝑦) = g(𝑧, 𝑦, 𝑥), for every 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

f)   

For 𝑥 = 0 , 𝑦 = 4 , 𝑧 = 10 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡 (𝑎) = 10; 

 since g(0,4,10) ≤ g(2 ∗ 10,4 ∗ 10,10 ∗ 10) = g(0,4,10), we obtain g(2,4,10) ≤ g(2,10,10) + g(10,4,10).  
For = 0, 𝑦 = 10, 𝑧 = 4, 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10 ; 

since g(0,10,4) ≤ g(0 ∗ 10,10 ∗ 10,4 ∗ 10) = g(0,10,4), we obtain g(0,10,4) ≤ g(0,10,10) + g(10,10,4). 
For 𝑥 = 10, 𝑦 = 0 , 𝑧 = 4, 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,0,4) ≤ g(10 ∗ 10,0 ∗ 10,4 ∗ 10) = g(10,0,4), we obtain g(10,0,4) ≤ g(10,10,10) + g(10,0,4). 
For 𝑥 = 10 , 𝑦 = 4 , 𝑧 = 0 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,4,0) ≤ g(10 ∗ 10,4 ∗ 10,0 ∗ 10) = g(10,4,0), we obtain g(10,0,4) ≤ g(10,10,10) + g(10,0,4).  
For 𝑥 = 10 , 𝑦 = 4 , 𝑧 = 0 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,4,0) ≤ g(10 ∗ 10,4 ∗ 10,0 ∗ 10) = g(10,4,0), we obtain g(10,4,0) ≤ g(10,10,10) + g(10,4,0). 
For 𝑥 = 0 , 𝑦 = 4 , 𝑧 = 16 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,4,16) ≤ g(0 ∗ 10,4 ∗ 10,16 ∗ 10) = g(0,4,16), we obtain g(0,4,16) ≤ g(0,10,10) + g(10,4,16).  
For 𝑥 = 0, 𝑦 = 16, 𝑧 = 4, 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 
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since g(0,16,4) ≤ g(0 ∗ 10,16 ∗ 10,10 ∗ 10) = g(0,16,4), we obtain g(0,16,4) ≤ g(0,10,10) + g(10,16,4).  
For 𝑥 = 4, 𝑦 = 16, 𝑧 = 0 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,16,0) ≤ g(4 ∗ 10,16 ∗ 10,0 ∗ 10) = g(4,16,0), we obtain g(4,16,0) ≤ g(4,10,10) + g(10,16,0). 
For  𝑥 = 16 , 𝑦 = 4, 𝑧 = 0 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,4,0) ≤ g(16 ∗ 10,4 ∗ 10,0 ∗ 10) = g(16,4,0), we obtain g(16,4,0) ≤ g(16,10,10) + g(10,4,0). 
For  𝑥 = 0 , 𝑦 = 10, 𝑧 = 16 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

Since g(0,10,16) ≤ g(0 ∗ 10,10 ∗ 10,16 ∗ 10) = g(0,10,16) , we obtain g(0,10,16) ≤ g(0,10,10) + g(10,10,16).           
For 𝑥 = 0, 𝑦 = 16, 𝑧 = 10, 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,16,10) ≤ g(0 ∗ 10,16 ∗ 10,10 ∗ 10) = g(0,16,10) , we obtain g(0,16,10) ≤ g(0,10,10) +g(10,16,10). 
For  𝑥 = 16 , 𝑦 = 0, 𝑧 = 10 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,0,10) ≤ g(16 ∗ 10,0 ∗ 10,10 ∗ 10) = g(16,0,10)  we obtain g(16,0,10) ≤ g(16,10,10) +g(10,0,10). 
For 𝑥 = 16 , 𝑦 = 10, 𝑧 = 0, 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,10,0) ≤ g(16 ∗ 10,10 ∗ 10,0 ∗ 10) = g(16,10,0) , we obtain g(16,10,0) ≤ g(16,10,10) +g(10,10,0). 
For 𝑥 = 0 , 𝑦 = 0, 𝑧 = 4 , 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,0,4) ≤ g(0 ∗ 10,0 ∗ 10,4 ∗ 10) = g(0,0,4), we obtain g(0,0,4) ≤ g(0,10,10) + g(10,0,4). 
For 𝑥 = 0 , 𝑦 = 4, 𝑧 = 0 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,4,0) ≤ g(0 ∗ 10,4 ∗ 10,0 ∗ 10) = g(0,4,0), we obtain  g(0,4,0) ≤ g(0,10,10) + g(10,4,0). 
For 𝑥 = 4 , 𝑦 = 0, 𝑧 = 0 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,0,0) ≤ g(4 ∗ 10,0 ∗ 10,0 ∗ 10) = g(4,0,0), we obtain g(4,0,0) ≤ g(4,10,10) + g(10,0,0). 
For  𝑥 = 0 , 𝑦 = 0, 𝑧 = 10 , 𝑎 = 16 , 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(0,0,10) ≤ g(0 ∗ 16,0 ∗ 16,10 ∗ 16) = g(0,0,16), we obtain g(0,0,10) ≤ g(0,16,16) + g(16,0,10). 
For 𝑥 = 0 , 𝑦 = 10, 𝑧 = 0 , 𝑎 = 16 , 𝑛𝑒𝑢𝑡(𝑎) = 16; 
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since g(0,10,0) ≤ g(0 ∗ 16,10 ∗ 16,0 ∗ 16) = g(0,16,0), we obtain g(0,10,0) ≤ g(0,16,16) + g(16,10,0).  
For 𝑥 = 10 , 𝑦 = 0, 𝑧 = 0 , 𝑎 = 16 , 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(10,0,0) ≤ g(10 ∗ 16,0 ∗ 16,0 ∗ 16) = g(16,0,0),  we obtain g(10,0,0) ≤ g(10,16,16) + g(16,0,0). 
For 𝑥 = 0 , 𝑦 = 0, 𝑧 = 16 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,0,16) ≤ g(0 ∗ 10,0 ∗ 10,16 ∗ 10) = g(0,0,16), we obtain g(0,0,16) ≤ g(0,10,10) + g(10,0,16). 
For 𝑥 = 0 , 𝑦 = 16, 𝑧 = 0 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since  g(0,16,0) ≤ g(0 ∗ 10,16 ∗ 10,0 ∗ 10) = g(0,16,0), we obtain g(0,16,0) ≤ g(0,10,10) + g(10,16,0). 
For  𝑥 = 16, 𝑦 = 0, 𝑧 = 0, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,0,0) ≤ g(16 ∗ 10,0 ∗ 10,0 ∗ 10) = g(16,0,0), we obtain g(16,0,0) ≤ g(16,10,10) + g(10,0,0). 
For 𝑥 = 4 , 𝑦 = 10, 𝑧 = 16 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

Since g(4,10,16) ≤ g(4 ∗ 10,10 ∗ 10,16 ∗ 10) = g(4,10,16) , we obtain g(4,10,16) ≤ g(4,10,10) +g(10,10,16). 
For 𝑥 = 4 , 𝑦 = 16, 𝑧 = 10 , 𝑎 = 10 , 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,16,10) ≤ g(4 ∗ 10,16 ∗ 10,10 ∗ 10) = g(4,16,10) , we obtain g(4,16,10) ≤ g(4,10,10) +g(10,16,10). 
For  𝑥 = 16 , 𝑦 = 4, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,4,10) ≤ g(16 ∗ 10,4 ∗ 10,10 ∗ 10) = g(16,4,10) , we obtain g(16,4,10) ≤ g(16,10,10) +g(10,4,10). 
For  𝑥 = 16, 𝑦 = 10, 𝑧 = 4, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,10,4) ≤ g(16 ∗ 10,10 ∗ 10,4 ∗ 10) = g(16,10,4) , we obtain g(16,10,4) ≤ g(16,10,10) +g(10,10,4. 

For  𝑥 = 4 , 𝑦 = 4, 𝑧 = 0, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,4,0) ≤ g(4 ∗ 16,4 ∗ 16,0 ∗ 16) = g(10,10,0),   we obtain g(4,4,0) ≤ g(4,16,16) + g(16,4,0). 
For 𝑥 = 4 , 𝑦 = 0, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,0,4) ≤ g(4 ∗ 16,0 ∗ 16,4 ∗ 16) = g(10,0,10), we obtain g(4,0,4) ≤ g(4,16,16) + g(16,0,4). 
For 𝑥 = 0 , 𝑦 = 4, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(0,4,4) ≤ g(0 ∗ 16,4 ∗ 16,4 ∗ 16) = g(0,10,10), we obtain g(0,4,4) ≤ g(0,16,16) + g(16,4,4).  
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For 𝑥 = 4 , 𝑦 = 4, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

Since g(4,4,10) ≤ g(4 ∗ 16,4 ∗ 16,10 ∗ 16) = g(10,10,16) , we obtain g(4,4,10) ≤ g(4,16,16) +g(16,4,10).  
For 𝑥 = 4 , 𝑦 = 10, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,10,4) ≤ g(4 ∗ 16,10 ∗ 16,4 ∗ 16) = g(4,10,4), we obtain g(4,10,4) ≤ g(4,16,16) + g(16,10,4).  
For 𝑥 = 10 , 𝑦 = 4, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(10,4,4) ≤ g(10 ∗ 16,4 ∗ 16,4 ∗ 16) = g(16,10,10) ,  we obtain g(10,4,4) ≤ g(10,16,16) +g(16,4,4). 
For 𝑥 = 4 , 𝑦 = 4, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,4,16) ≤ g(4 ∗ 10,4 ∗ 10,16 ∗ 10) = g(4,4,16), we obtain g(4,4,16) ≤ g(4,10,10) + g(10,4,16).  
For 𝑥 = 4 , 𝑦 = 16, 𝑧 = 4, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,16,4) ≤ g(4 ∗ 10,16 ∗ 10,4 ∗ 10) = g(4,16,4), we obtain g(4,16,4) ≤ g(4,10,10) + g(10,16,4).  
For 𝑥 = 16, 𝑦 = 4, 𝑧 = 4, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,4,4) ≤ g(16 ∗ 10,4 ∗ 10,4 ∗ 10) = g(16,4,4), we obtain g(16,4,4) ≤ g(16,10,10) + g(10,4,4).  
For 𝑥 = 10 , 𝑦 = 10, 𝑧 = 0, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,10,0) ≤ g(10 ∗ 10,10 ∗ 10,0 ∗ 10) = g(10,10,0) , we obtain g(10,10,0) ≤ g(10,10,10) +g(10,10,0). 
For 𝑥 = 10, 𝑦 = 0, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,0,10) ≤ g(10 ∗ 10,0 ∗ 10,10 ∗ 10) = g(10,0,10) , we obtain g(10,0,10) ≤ g(10,10,10) +g(10,0,10). 
For  𝑥 = 0, 𝑦 = 10, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,10,10) ≤ g(0 ∗ 10,10 ∗ 10,10 ∗ 10) = g(0,10,10) , we obtain g(0,10,10) ≤ g(0,10,10) +g(10,10,10). 
For  𝑥 = 10, 𝑦 = 10, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(10,10,4) ≤ g(10 ∗ 16,10 ∗ 16,4 ∗ 16) = g(16,16,10) , we obtain g(10,10,4) ≤ g(10,16,16) +g(16,10,4). 
For 𝑥 = 10, 𝑦 = 4, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 
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since g(10,4,10) ≤ 𝐺(10 ∗ 16,4 ∗ 16,10 ∗ 16) = g(16,10,16) , we obtain g(10,4,10) ≤ g(10,16,16) +g(16,4,10). 
For 𝑥 = 4 , 𝑦 = 10, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,10,10) ≤ g(4 ∗ 16,10 ∗ 16,10 ∗ 16) = g(10,16,16) , we obtain g(4,10,10) ≤ g(4,16,16) +g(16,10,10). 
For 𝑥 = 10, 𝑦 = 10, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,10,16) ≤ g(10 ∗ 10,10 ∗ 10,16 ∗ 10) = g(10,10,16) , we obtain g(10,10,16) ≤ g(10,10,10) +g(10,10,16. 

For 𝑥 = 10, 𝑦 = 16, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,16,10) ≤ g(10 ∗ 10,16 ∗ 10,10 ∗ 10) = g(10,16,10) , we obtain g(10,16,10) ≤ g(10,10,10) +g(10,16,10). 
For 𝑥 = 16, 𝑦 = 10, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,10,10) ≤ g(16 ∗ 10,10 ∗ 10,10 ∗ 10) = g(16,10,10) , we obtain g(16,10,10) ≤ g(16,10,10) +g(10,10,10). 
For 𝑥 = 16, 𝑦 = 16, 𝑧 = 0, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,16,0) ≤ g(16 ∗ 10,16 ∗ 10,0 ∗ 10) = g(16,16,0) , we obtain g(16,16,0) ≤ g(16,10,10) +g(10,16,0). 
For 𝑥 = 16, 𝑦 = 0, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,0,16) ≤ g(16 ∗ 10,0 ∗ 10,16 ∗ 10) = g(16,0,16) , we obtain g(16,0,16) ≤ g(16,10,10) +g(10,0,16). 
For 𝑥 = 16, 𝑦 = 16, 𝑧 = 0, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,16,0) ≤ g(16 ∗ 10,16 ∗ 10,0 ∗ 10) = g(16,16,0) , we obtain g(16,16,0) ≤ g(16,10,10) +g(10,16,0). 
For 𝑥 = 16, 𝑦 = 16, 𝑧 = 4, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,16,4) ≤ g(16 ∗ 10,16 ∗ 10,4 ∗ 10) = g(16,16,4) , we obtain g(16,16,4) ≤ g(16,10,10) +g(10,16,4). 
For 𝑥 = 16, 𝑦 = 4, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,4,16) ≤ g(16 ∗ 10,4 ∗ 10,16 ∗ 10) = g(16,4,16) , we obtain g(16,4,16) ≤ g(16,10,10) +g(10,4,16). 
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For 𝑥 = 4, 𝑦 = 16, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,16,16) ≤ g(4 ∗ 10,16 ∗ 10,16 ∗ 10) = g(4,16,16) , we obtain g(4,16,16) ≤ g(4,10,10) +g(10,16,16). 
For 𝑥 = 16, 𝑦 = 16, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,16,10) ≤ g(16 ∗ 10,16 ∗ 10,10 ∗ 10) = g(16,16,10) , we obtain g(16,16,10) ≤ g(16,10,10) +g(10,16,10). 
For  𝑥 = 16, 𝑦 = 10, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,10,16) ≤ g(16 ∗ 10,10 ∗ 10,16 ∗ 10) = g(16,10,16) , we obtain g(16,10,16) ≤ g(16,10,10) +g(10,10,16). 
For 𝑥 = 10, 𝑦 = 16, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,16,16) ≤ g(10 ∗ 10,16 ∗ 10,16 ∗ 10) = g(10,16,16) , we obtain g(10,16,16) ≤ g(10,10,10) +g(10,16,16). 
For 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,0,0) ≤ g(0 ∗ 10,0 ∗ 10,0 ∗ 10) = g(0,0,0), we obtain g(0,0,0) ≤ g(0,10,10) + g(10,0,0). 
For 𝑥 = 4, 𝑦 = 4, 𝑧 = 4, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,4,4) ≤ g(4 ∗ 10,4 ∗ 10,4 ∗ 10) = g(4,4,4), we obtain g(4,4,4) ≤ g(4,10,10) + g(10,4,4). 
For 𝑥 = 10, 𝑦 = 10, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(10,10,10) ≤ g(10 ∗ 16,10 ∗ 16,10 ∗ 16) = g(16,16,16) , we obtain g(10,10,10) ≤ g(10,16,16) +g(16,10,10). 
For 𝑥 = 16, 𝑦 = 16, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,16,16) ≤ g(16 ∗ 10,16 ∗ 10,16 ∗ 10) = g(16,16,16) , we obtain g(16,16,16) ≤ g(16,10,10) +g(10,16,16). 
For 𝑥 = 9, 𝑦 = 0, 𝑧 = 0, 𝑎 = 9, 𝑛𝑒𝑢𝑡(𝑎) = 9; 

since g(9,0,0) ≤ g(9 ∗ 9,0 ∗ 9,0 ∗ 9) = g(9,0,0), we obtain g(9,0,0) ≤ g(9,9,9) + g(9,0,0). 
For 𝑥 = 0, 𝑦 = 9, 𝑧 = 0, 𝑎 = 9, 𝑛𝑒𝑢𝑡(𝑎) = 9; 

since g(0,9,0) ≤ g(0 ∗ 9,9 ∗ 9,0 ∗ 9) = g(0,9,0), we obtain g(0,9,0) ≤ g(0,9,9) + g(9,9,0). 
For 𝑥 = 0, 𝑦 = 0, 𝑧 = 9, 𝑎 = 9, 𝑛𝑒𝑢𝑡(𝑎) = 9; 
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since g(0,0,9) ≤ g(0 ∗ 9,0 ∗ 9,9 ∗ 9) = g(0,0,9), we obtain g(0,0,9) ≤ g(0,9,9) + g(9,0,9). 
For 𝑥 = 9, 𝑦 = 0, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,0,4) ≤ g(9 ∗ 16,0 ∗ 16,4 ∗ 16) = g(0,0,10), we obtain g(0,0,10) ≤ g(0,16,16) + g(16,0,10). 
For 𝑥 = 9, 𝑦 = 4, 𝑧 = 0, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,4,0) ≤ g(9 ∗ 16,4 ∗ 16,0 ∗ 16) = g(0,10,0), we obtain g(0,10,0) ≤ g(0,16,16) + g(16,10,0). 
For 𝑥 = 0, 𝑦 = 9, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(0,9,4) ≤ g(0 ∗ 16,9 ∗ 16,4 ∗ 16) = g(0,0,10), we obtain g(0,0,10) ≤ g(0,16,16) + g(16,0,10). 
For 𝑥 = 0, 𝑦 = 4, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(0,4,9) ≤ g(0 ∗ 16,4 ∗ 16,9 ∗ 16) = g(0,10,0), we obtain g(0,10,0) ≤ g(0,16,16) + g(16,10,0). 
For 𝑥 = 4, 𝑦 = 9, 𝑧 = 0, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,9,0) ≤ g(4 ∗ 16,9 ∗ 16,0 ∗ 16) = g(10,0,0), we obtain g(10,0,0) ≤ g(10,16,16) + g(16,0,0). 
For 𝑥 = 4, 𝑦 = 0, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,0,9) ≤ g(4 ∗ 16,0 ∗ 16,9 ∗ 16) = g(10,0,0), we obtain g(10,0,0) ≤ g(10,16,16) + g(16,0,0). 
For 𝑥 = 9, 𝑦 = 0, 𝑧 = 9, 𝑎 = 9, 𝑛𝑒𝑢𝑡(𝑎) = 9; 

since g(9,0,9) ≤ g(9 ∗ 9,0 ∗ 9,9 ∗ 9) = g(9,0,9), we obtain g(9,0,9) ≤ g(9,9,9) + g(9,0,9). 
For 𝑥 = 9, 𝑦 = 9, 𝑧 = 0, 𝑎 = 9, 𝑛𝑒𝑢𝑡(𝑎) = 9; 

since g(9,9,0) ≤ g(9 ∗ 9,9 ∗ 9,0 ∗ 9) = g(9,9,0), we obtain g(9,9,0) ≤ g(9,9,9) + g(9,9,0). 
For 𝑥 = 0, 𝑦 = 9, 𝑧 = 9, 𝑎 = 9, 𝑛𝑒𝑢𝑡(𝑎) = 9; 

since g(0,9,9) ≤ g(0 ∗ 9,9 ∗ 9,9 ∗ 9) = g(0,9,9), we obtain g(0,9,9) ≤ g(0,9,9) + g(9,9,9). 
For 𝑥 = 9, 𝑦 = 0, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,0,10) ≤ g(9 ∗ 16,0 ∗ 16,10 ∗ 16) = g(0,0,16), we obtain g(0,0,16) ≤ g(0,16,16) + g(16,0,16). 
For 𝑥 = 9, 𝑦 = 10, 𝑧 = 0, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,10,0) ≤ g(9 ∗ 16,10 ∗ 16,0 ∗ 16) = g(0,16,0), we obtain g(0,16,0) ≤ g(0,16,16) + g(16,16,0). 
For 𝑥 = 10, 𝑦 = 9, 𝑧 = 0, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(10,9,0) ≤ g(10 ∗ 16,9 ∗ 16,0 ∗ 16) = g(16,0,0), we obtain g(16,0,0) ≤ g(16,16,16) + g(16,0,0). 
For 𝑥 = 10, 𝑦 = 0, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 
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since g(10,0,9) ≤ g(10 ∗ 16,0 ∗ 16,9 ∗ 16) = g(16,0,0), we obtain g(16,0,0) ≤ g(16,16,16) + g(16,0,0). 
For 𝑥 = 0, 𝑦 = 10, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(0,10,9) ≤ g(0 ∗ 16,10 ∗ 16,9 ∗ 16) = g(0,16,0), we obtain g(0,16,0) ≤ g(0,16,16) + g(16,16,0). 
For 𝑥 = 0, 𝑦 = 9, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(0,9,10) ≤ g(0 ∗ 16,9 ∗ 16,10 ∗ 16) = g(0,0,16), we obtain g(0,0,16) ≤ g(0,16,16) + g(16,0,16). 
For 𝑥 = 9, 𝑦 = 0, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,0,16) ≤ g(9 ∗ 10,0 ∗ 10,16 ∗ 10) = g(0,0,16), we obtain g(0,0,16) ≤ g(0,10,10) + g(10,0,16). 
For 𝑥 = 9, 𝑦 = 16, 𝑧 = 0, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,16,0) ≤ g(9 ∗ 10,16 ∗ 10,0 ∗ 10) = g(0,16,0), we obtain g(0,16,0) ≤ g(0,10,10) + g(10,16,0). 
For 𝑥 = 16, 𝑦 = 9, 𝑧 = 0, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,9,0) ≤ g(16 ∗ 10,9 ∗ 10,0 ∗ 10) = g(16,0,0), we obtain g(16,0,0) ≤ g(16,10,10) + g(10,0,0). 
For 𝑥 = 16, 𝑦 = 0, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,0,9) ≤ g(16 ∗ 10,0 ∗ 10,9 ∗ 10) = g(16,0,0), we obtain g(16,0,0) ≤ g(16,10,10) + g(10,0,0). 
For 𝑥 = 0, 𝑦 = 9, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,9,16) ≤ g(0 ∗ 10,9 ∗ 10,16 ∗ 10) = g(0,0,16), we obtain g(0,0,16) ≤ g(0,10,10) + g(10,0,16). 
For 𝑥 = 0, 𝑦 = 16, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(0,16,9) ≤ g(0 ∗ 10,16 ∗ 10,9 ∗ 10) = g(0,16,0), we obtain g(0,16,0) ≤ g(0,10,10) + g(10,16,0). 

For 𝑥 = 9, 𝑦 = 4, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,4,4) ≤ g(9 ∗ 16,4 ∗ 16,4 ∗ 16) = g(0,10,10), we obtain g(0,10,10) ≤ g(0,16,16) + g(16,10,10). 
For 𝑥 = 4, 𝑦 = 9, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,9,4) ≤ g(4 ∗ 16,9 ∗ 16,4 ∗ 16) = g(10,0,10), we obtain g(10,0,10) ≤ g(10,16,16) + g(16,0,10). 
For 𝑥 = 4, 𝑦 = 4, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,4,9) ≤ g(4 ∗ 16,4 ∗ 16,9 ∗ 16) = g(10,10,0), we obtain g(10,10,0) ≤ g(10,16,16) + g(16,10,0). 
For 𝑥 = 9, 𝑦 = 4, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,4,9) ≤ g(9 ∗ 16,4 ∗ 16,9 ∗ 16) = g(0,10,0), we obtain g(0,10,0) ≤ g(0,16,16) + g(16,10,0). 
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For 𝑥 = 9, 𝑦 = 9, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,9,4) ≤ g(9 ∗ 16,9 ∗ 16,4 ∗ 16) = g(0,0,10), we obtain g(0,0,10) ≤ g(0,16,16) + g(16,0,10). 
For 𝑥 = 4, 𝑦 = 9, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,9,9) ≤ g(4 ∗ 16,9 ∗ 16,9 ∗ 16) = g(10,0,0), we obtain g(10,0,0) ≤ g(10,16,16) + g(16,0,0). 
For 𝑥 = 9, 𝑦 = 4, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,4,10) ≤ g(9 ∗ 16,4 ∗ 16,10 ∗ 16) = g(0,10,16) , we obtain g(0,10,16) ≤ g(0,16,16) +g(16,10,16). 
For 𝑥 = 9, 𝑦 = 10, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(9,10,4) ≤ g(9 ∗ 16,10 ∗ 16,4 ∗ 16) = g(0,16,10) , we obtain g(0,16,10) ≤ g(0,16,16) +g(16,16,10). 
For 𝑥 = 10, 𝑦 = 9, 𝑧 = 4, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(10,9,4) ≤ g(10 ∗ 16,9 ∗ 16,4 ∗ 16) = g(16,0,10) , we obtain g(16,0,10) ≤ g(16,16,16) +g(16,0,10). 
For 𝑥 = 10, 𝑦 = 4, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(10,4,9) ≤ g(10 ∗ 16,4 ∗ 16,9 ∗ 16) = g(16,10,0) , we obtain g(16,10,0) ≤ g(16,16,16) +g(16,10,0). 
For 𝑥 = 4, 𝑦 = 9, 𝑧 = 10, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,9,10) ≤ g(4 ∗ 16,9 ∗ 16,10 ∗ 16) = g(10,0,16) , we obtain g(10,0,16) ≤ g(10,16,16) +g(16,0,16). 
For 𝑥 = 4, 𝑦 = 10, 𝑧 = 9, 𝑎 = 16, 𝑛𝑒𝑢𝑡(𝑎) = 16; 

since g(4,10,9) ≤ g(4 ∗ 16,10 ∗ 16,9 ∗ 16) = g(10,16,0) , we obtain g(10,16,0) ≤ g(10,16,16) +g(16,16,0). 
For 𝑥 = 9, 𝑦 = 4, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,4,16) ≤ g(9 ∗ 10,4 ∗ 10,16 ∗ 10) = g(0,4,16), we obtain g(0,4,16) ≤ g(0,10,10) + g(10,4,16). 
For 𝑥 = 9, 𝑦 = 16, 𝑧 = 4, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,16,4) ≤ g(9 ∗ 10,16 ∗ 10,4 ∗ 10) = g(0,16,4), we obtain g(0,16,4) ≤ g(0,10,10) + g(10,16,4). 
For 𝑥 = 16, 𝑦 = 9, 𝑧 = 4, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,9,4) ≤ g(16 ∗ 10,9 ∗ 10,4 ∗ 10) = g(16,0,4), we obtain g(16,0,4) ≤ g(16,10,10) + g(10,0,4). 
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For 𝑥 = 16, 𝑦 = 4, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,4,9) ≤ g(16 ∗ 10,4 ∗ 10,9 ∗ 10) = g(16,4,0), we obtain g(16,4,0) ≤ g(16,10,10) + g(10,4,0). 
For 𝑥 = 4, 𝑦 = 16, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,16,9) ≤ g(4 ∗ 10,16 ∗ 10,9 ∗ 10) = g(4,16,0), we obtain g(4,16,0) ≤ g(4,10,10) + g(10,16,0). 
For 𝑥 = 4, 𝑦 = 9, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(4,9,16) ≤ g(4 ∗ 10,9 ∗ 10,16 ∗ 10) = g(4,0,16), we obtain g(4,0,16) ≤ g(4,10,10) + g(10,0,16). 
For 𝑥 = 9, 𝑦 = 9, 𝑧 = 9, 𝑎 = 9, 𝑛𝑒𝑢𝑡(𝑎) = 9; 

since g(9,9,9) ≤ g(9 ∗ 9,9 ∗ 9,9 ∗ 9) = g(9,9,9), we obtain g(9,9,9) ≤ g(9,9,9) + g(9,9,9). 
For 𝑥 = 9, 𝑦 = 9, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,9,10) ≤ g(9 ∗ 10,9 ∗ 10,10 ∗ 10) = g(0,0,10), we obtain g(0,0,10) ≤ g(0,10,10) + g(10,0,10). 
For 𝑥 = 10, 𝑦 = 9, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,9,9) ≤ g(10 ∗ 10,9 ∗ 10,9 ∗ 10) = g(10,0,0), we obtain g(10,0,0) ≤ g(10,10,10) + g(10,0,0). 
For 𝑥 = 9, 𝑦 = 10, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,10,9) ≤ g(9 ∗ 10,10 ∗ 10,9 ∗ 10) = g(0,10,0), we obtain g(0,10,0) ≤ g(0,10,10) + g(10,10,0). 
For 𝑥 = 9, 𝑦 = 9, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,9,16) ≤ g(9 ∗ 10,9 ∗ 10,16 ∗ 10) = g(0,0,16), we obtain g(0,0,16) ≤ g(0,10,10) + g(10,0,16). 
For 𝑥 = 9, 𝑦 = 16, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,16,9) ≤ g(9 ∗ 10,16 ∗ 10,9 ∗ 10) = g(0,16,0), we obtain g(0,16,0) ≤ g(0,10,10) + g(10,16,0). 
For 𝑥 = 16, 𝑦 = 9, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,9,9) ≤ g(16 ∗ 10,9 ∗ 10,9 ∗ 10) = g(16,0,0), we obtain g(16,0,0) ≤ g(16,10,10) + g(10,0,0). 
For 𝑥 = 9, 𝑦 = 10, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,10,10) ≤ g(9 ∗ 10,10 ∗ 10,10 ∗ 10) = g(0,10,10) , we obtain g(0,10,10) ≤ g(0,10,10) +g(10,10,10). 
For 𝑥 = 10, 𝑦 = 9, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,9,10) ≤ g(10 ∗ 10,9 ∗ 10,10 ∗ 10) = g(10,0,10) , we obtain g(10,0,10) ≤ g(10,10,10) +g(10,0,10). 



Editors: Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 

194 

For 𝑥 = 10, 𝑦 = 10, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,10,9) ≤ g(10 ∗ 10,10 ∗ 10,9 ∗ 10) = g(10,10,0) , we obtain g(10,10,0) ≤ g(10,10,10) +g(10,10,0). 
For 𝑥 = 9, 𝑦 = 10, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,10,16) ≤ g(9 ∗ 10,10 ∗ 10,16 ∗ 10) = g(0,10,16) , we obtain g(0,10,16) ≤ g(0,10,10) +g(10,10,16). 
For 𝑥 = 9, 𝑦 = 16, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,16,10) ≤ g(9 ∗ 10,16 ∗ 10,10 ∗ 10) = g(0,16,10) , we obtain g(0,16,10) ≤ g(0,10,10) +g(10,16,10). 
For 𝑥 = 10, 𝑦 = 16, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,16,9) ≤ g(10 ∗ 10,16 ∗ 10,9 ∗ 10) = g(10,16,0) , we obtain g(10,16,0) ≤ g(10,10,10) +g(10,16,0). 
For 𝑥 = 10, 𝑦 = 9, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(10,9,16) ≤ g(10 ∗ 10,9 ∗ 10,16 ∗ 10) = g(10,0,16) , we obtain g(10,0,16) ≤ g(10,10,10) +g(10,0,16). 
For 𝑥 = 16, 𝑦 = 10, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,10,9) ≤ g(16 ∗ 10,10 ∗ 10,9 ∗ 10) = g(16,10,0) , we obtain g(16,10,0) ≤ g(16,10,10) +g(10,10,0). 
For 𝑥 = 16, 𝑦 = 9, 𝑧 = 10, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,9,10) ≤ g(16 ∗ 10,9 ∗ 10,10 ∗ 10) = g(16,0,10) , we obtain g(16,0,10) ≤ g(16,10,10) +g(10,0,10). 
For 𝑥 = 9, 𝑦 = 16, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(9,16,16) ≤ g(9 ∗ 10,16 ∗ 10,16 ∗ 10) = g(0,16,16) , we obtain g(0,16,16) ≤ g(0,10,10) +g(10,16,16). 
For 𝑥 = 16, 𝑦 = 9, 𝑧 = 16, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 

since g(16,9,16) ≤ g(16 ∗ 10,9 ∗ 10,16 ∗ 10) = g(16,0,16) , we obtain g(16,0,16) ≤ g(16,10,10) +g(10,0,16). 
For 𝑥 = 16, 𝑦 = 16, 𝑧 = 9, 𝑎 = 10, 𝑛𝑒𝑢𝑡(𝑎) = 10; 
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since g(16,16,9) ≤ g(16 ∗ 10,16 ∗ 10,9 ∗ 10) = g(16,16,0) , we obtain g(16,16,0) ≤ g(16,10,10) +g(10,16,0). 
Therefore, g is NTgM. 

Example 2: Let X = {x, y, z} and P(X) be power set of X and s(A) be number of elements in A. We show 

that (P(X)\X, ∪) is a NTS. 

It is clear that A∪A = A∪A= A. Thus, we can take neut(A)= A and anti(A) = A for all A ∊ P(X)\X. 

We define g: P(X) \X xP(X) \X xP(X) \X → ℝ+∪{0} such that g(𝐴, 𝐵, 𝐶) = |𝑆(𝐴) − 𝑆(𝐵)| + |𝑆(𝐴) − 𝑆(𝐶)| + |𝑆(𝐵) − 𝑆(𝐶)|. 
g is not a NTgM. Because, for A={x, y}, B={x, z}, B={y, z}; 𝐺(𝐴, 𝐵, 𝐶) = 0. But, A ≠ B ≠ C. 

Corollary 1: Let (𝑋,∗), g)  be a TNgMS and 𝑑: 𝑋 × 𝑋 → 𝑅+ ∪ {0}  be a function such that 𝑑(𝑥, 𝑦) =𝐺(𝑥, 𝑦, 𝑦). Then, 

i) If 𝑥 = 𝑦, then 𝑑(𝑥, 𝑦) = 0, 

ii)  𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for every 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Proof: 

i) If x = y, then d(𝑦, 𝑦) = g(𝑦, 𝑦, 𝑦) = 0. Because, (𝑋,∗), g) is a TNgMS. 

ii) We assume that there exists at least an element 𝑎 ∈ 𝑋  for each x, y, z elements such that                                    g(𝑥, 𝑦, 𝑧) ≤ g(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) . Since (𝑋,∗), g)  is a TNgMS, we can write that                 

g (x, y, y)≤ g(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎)) ≤ g(𝑥, 𝑎, 𝑎) + g(𝑎, 𝑦, 𝑦). Thus, 

d(x, y) ≤  𝑑(𝑥, 𝑎) + 𝑑(𝑎, 𝑦). If we assume that a = z, then d(x, y) ≤  𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦). 
Theorem 1: Let (𝑋,∗), 𝑑) be a NTMS. g𝑠(𝑥, 𝑦, 𝑧) = 13 [𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑥, 𝑧)] is a NTgM. 

Proof: 

a)  Since d is a NTM, it is clear that for ∀𝑥, 𝑦 ∈ 𝑋; 𝑥 ∗ 𝑦 ∈ 𝑋. 

b) Since d is a NTM, if 𝑥 = 𝑦 = 𝑧, then 𝑑(𝑥, 𝑦) = 𝑑(y, 𝑧) = 𝑑(𝑥, 𝑧) = 0. Thus, 

g𝑠(𝑥, 𝑦, 𝑧) = 13 [𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑥, 𝑧)] = 0. 

c) Since d is a NTM, If 𝑥 ≠ 𝑦; 𝑑(𝑥, 𝑦) > 0. Thus,  

g𝑠(𝑥, 𝑦, 𝑧) = 13 [𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑥, 𝑧)] > 0. 
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d) g𝑠(𝑥, 𝑥, 𝑦) = 13 [𝑑(𝑥, 𝑥) + 𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑦)] = 
23  𝑑(𝑥, 𝑦), since d is a NTM.                                            (1)        

Also, we suppose that there exits at least a z ∊ X for each x, y ∊ X such that d(x, y) ≤ d(x, y*neut(z)) and 𝑦 ≠ 𝑧. Since d is a NTM, we can write that  

d(x, y) ≤ d(x, z*neut(y)) ≤ 𝑑(x, z) + d(z, y).                                                                                                       (2)   

 From (2), we can write that  g𝑠(𝑥, 𝑦, 𝑧) = 13 [𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑥, 𝑧)] ≥ 
13 [𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑦)] = 

23  𝑑(𝑥, 𝑦).                                         (3) 

Furthermore, from (1) and (3); we can write g𝑠(𝑥, 𝑥, 𝑦) ≤ g𝑠(𝑥, 𝑦, 𝑧). 
e) Since d is a NTM, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 𝑑(𝑦, 𝑧) = 𝑑(𝑧, 𝑦), 𝑑(𝑥, 𝑧) = 𝑑(𝑧, 𝑥). Thus, it is clear that  g𝑠(𝑥, 𝑦, 𝑧) = g𝑠(𝑥, 𝑧, 𝑦) =  g𝑠(𝑦, 𝑥, 𝑧) = g𝑠(𝑦, 𝑧, 𝑥) = g𝑠(𝑧, 𝑥, 𝑦) = g𝑠(𝑧, 𝑦, 𝑥), for every 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

f)  g𝑠(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) =  

=
13 [𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎)) + 𝑑(𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) + 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎))].            (4) 

Also,  

we suppose that there exits at least a a ∊ X for each x, y ∊X such that d(x, y) ≤ d(x, y*neut(a)).                    (5) 

From (5), we can write that 

 d(x, y) ≤ d(x ∗ neut(a), y) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎)).                                                                         (6)  

From (5) and (6), we can write that  g𝑠(𝑥, 𝑦, 𝑧) ≤ g𝑠(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎))                                                                               (7) 

Since d is a NTM, from (5); we can write that  

d(x, z) ≤ d(x, z*neut(a)) ≤ 𝑑(x, a) + d(a, z) and d(x, z) ≤ d(x, y*neut(a)) ≤ 𝑑(x, a) + d(a, y)                            (8) 

From, (7) and (8); we can write that if there exists at least an element 𝑎 ∈ 𝑋 for each x, y, z elements such 

that g𝑠(𝑥, 𝑦, 𝑧) ≤ g𝑠(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)), then 

 g𝑠(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) ≤ g𝑠(𝑥, 𝑎, 𝑎) + g𝑠(𝑎, 𝑦, 𝑧). 
Where, g𝑠(𝑥, 𝑎, 𝑎) = 

13 [𝑑(𝑥, 𝑎) + 𝑑(𝑎, 𝑎) + 𝑑(𝑎, 𝑎)] and g𝑠(𝑎, 𝑦, 𝑧) = 
13 [𝑑(𝑎, 𝑦) + 𝑑(𝑦, 𝑧) + 𝑑(𝑎, 𝑧)]. 

Thus, g𝑠 is NTgM. 

Theorem 2: Let (𝑋,∗), 𝑑) be a NTMS. g𝑚(𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)} is a NTgM. 

Proof: 

a)  Since d is a NTM, it is clear that for ∀𝑥, 𝑦 ∈ 𝑋; 𝑥 ∗ 𝑦 ∈ 𝑋  

b) Since d is a NTM, if 𝑥 = 𝑦 = 𝑧, then 𝑑(𝑥, 𝑦) = 𝑑(y, 𝑧) = 𝑑(𝑥, 𝑧) = 0. Thus, g𝑚(𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)} = 0. 
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c) Since d is a NTM, If 𝑥 ≠ 𝑦; 𝑑(𝑥, 𝑦) > 0. Thus,g𝑚(𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)} > 0.

d)  g𝑚(𝑥, 𝑥, 𝑦) = max{𝑑(𝑥, 𝑥), 𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑦)} =

 max{ 𝑑(𝑥, 𝑥), 𝑑(𝑥, 𝑦)} since d is a NTM.  (9) 

Also, we suppose that there exits at least a z ∊ X for each x, y ∊X such that d(x, y) ≤ d(x, y*neut(z)) and 𝑦 ≠ 𝑧. Since d is a NTM, we can write that  

d(x, y) ≤ d(x, z*neut(y)) ≤ 𝑑(x, z) + d(z, y).  (10) 

 From (10), we can write that g𝑚(𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑧), 𝑑(𝑦, 𝑧)} ≥ 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑥, 𝑧)}.  (11) 

Furthermore, from (1) and (3); we can write, g𝑚(𝑥, 𝑥, 𝑦) ≤ g𝑚(𝑥, 𝑦, 𝑧).
e) Since d is a NTM, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 𝑑(𝑦, 𝑧) = 𝑑(𝑧, 𝑦), 𝑑(𝑥, 𝑧) = 𝑑(𝑧, 𝑥). Thus, it is clear thatg𝑚(𝑥, 𝑦, 𝑧) = g𝑚(𝑥, 𝑧, 𝑦) =  g𝑚(𝑦, 𝑥, 𝑧) = g𝑚(𝑦, 𝑧, 𝑥) = g𝑚(𝑧, 𝑥, 𝑦) = g𝑚(𝑧, 𝑦, 𝑥), for every 𝑥, 𝑦, 𝑧 ∈ 𝑋.

f) g𝑚(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) =
= 
13 [𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎)) + 𝑑(𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) + 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎))].  (12) 

Also,  

we suppose that there exits at least a a ∊ X for each x, y ∊X such that d(x, y) ≤ d(x, y*neut(a)).  (13) 

From (13), we can write that 

 d(x, y) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦) ≤ 𝑑(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎)).  (14) 

From (13) and (14), we can write that  g𝑚(𝑥, 𝑦, 𝑧) ≤ g𝑚(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)).  (15) 

Since d is a NTM, from (13); we can write that  

d(x, z) ≤ d(x, z*neut(a)) ≤ 𝑑(x, a) + d(a, z) and d(x, z) ≤ d(x, y*neut(a)) ≤ 𝑑(x, a) + d(a, y)  (16) 

From, (15) and (16); we can write that if there exists at least an element 𝑎 ∈ 𝑋 for each x, y, z elements such 

that g𝑚(𝑥, 𝑦, 𝑧) ≤ g𝑚(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)), theng𝑚(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) ≤ g𝑚(𝑥, 𝑎, 𝑎) + g𝑚(𝑎, 𝑦, 𝑧).
Where, g𝑚(𝑥, 𝑎, 𝑎) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑎), 𝑑(𝑥, 𝑎), 𝑑(𝑎, 𝑎)} and g𝑚(𝑎, 𝑦, 𝑧) = 𝑚𝑎𝑥{𝑑(𝑎, 𝑦), 𝑑(𝑎, 𝑧), 𝑑(𝑦, 𝑧)}.
Thus, g𝑠 is NTgM.
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Example 3: Let 𝑋 ⊂ ℝ be set, (𝑋,∗) be a neutrosophic triplet set and  𝑑 be a NTM such that 𝑑(𝑥, 𝑦) = |2𝑥 − 2𝑦|. Then from Theorem 1 and Theorem 2,g𝑠(𝑥, 𝑦, 𝑧) = 13 [|2𝑥 − 2𝑦| + |2𝑥 − 2𝑧| + |2𝑦 − 2𝑧|]
and g𝑚(𝑥, 𝑦, 𝑧) = 𝑚𝑎𝑥{|2𝑥 − 2𝑦|, |2𝑥 − 2𝑧|, |2𝑦 − 2𝑧|}  are NTgMs.

Theorem 3: Let (𝑋,∗), g) be a NTgMS. For 𝑘 > 0,  g1(𝑥, 𝑦, 𝑧) = 𝑚𝑖𝑛 {𝑘, g(𝑥, 𝑦, 𝑧)}  is a NTgM.

Proof:  

i) We assume that 𝐺1(𝑥, 𝑦, 𝑧) = 𝑚𝑖𝑛 {𝑘, 𝐺(𝑥, 𝑦, 𝑧)} = 𝐺(𝑥, 𝑦, 𝑧). Since (𝑋,∗), 𝐺) is a NTgMS, it is clear that𝐺1(𝑥, 𝑦, 𝑧) is a NTgM.

i) It is clear that if x = y = z, then g1(𝑥, 𝑦, 𝑧) = 𝑚𝑖𝑛 {𝑘, g(𝑥, 𝑦, 𝑧)}  = 0. (17) 

Because (𝑋,∗), g) is a NTgMS.  

We assume that x ≠ y  ≠ z and  g1(𝑥, 𝑦, 𝑧) = 𝑚𝑖𝑛 {𝑘, g(𝑥, 𝑦, 𝑧)} = k.

We show that g1(𝑥, 𝑦, 𝑧) is a NTgM.

a) Since (𝑋,∗), g) is a NTgMS, it is clear that for ∀𝑥, 𝑦 ∈ 𝑋; 𝑥 ∗ 𝑦 ∈ 𝑋.

b) From (17), if 𝑥 = 𝑦 = 𝑧, then g1(𝑥, 𝑦, 𝑧) = 0,

c) If 𝑥 ≠ 𝑦, then g1(𝑥, 𝑦, 𝑧) = k > 0.

d) If 𝑧 ≠ 𝑦, then g1(𝑥, 𝑥, 𝑦) = k ≤ g1(𝑥, 𝑦, 𝑧) = k.

e) g1(𝑥, 𝑦, 𝑧) = 𝑘 = g1(𝑥, 𝑧, 𝑦) = k = g1(𝑦, 𝑥, 𝑧) = k = g1(𝑦, 𝑧, 𝑥) = k = g1(𝑧, 𝑥, 𝑦) = k = g1(𝑧, 𝑦, 𝑥), for every𝑥, 𝑦, 𝑧 ∈ 𝑋. 

f) g1(𝑥, 𝑦, 𝑧) = 𝑘 ≤ g1(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) = k. Also,g1(𝑥 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑦 ∗ 𝑛𝑒𝑢𝑡(𝑎), 𝑧 ∗ 𝑛𝑒𝑢𝑡(𝑎)) = 𝑘 ≤ g1(𝑥, 𝑎, 𝑎) + g1(𝑎, 𝑦, 𝑧) = 𝑘.

Thus, g1 is NTgM.

Definition 7: Let (X, *), g) be a NTgMS and {𝑥𝑛} be a sequence in this space. A point x ∈ X is said to be

limit of the sequence {𝑥𝑛}, if lim𝑛,𝑚 →∞ g(𝑥, 𝑥𝑛 , 𝑥𝑚) = 0 and {𝑥𝑛} is called NT g – convergent to x.

Definition 8: Let (X, *), g) be a NTgMS and {𝑥𝑛} be a sequence in this space. {𝑥𝑛} is called NT g – Cauchy

sequence if lim𝑛,𝑚,𝑙 →∞ g(𝑥𝑛 , 𝑥𝑚, 𝑥𝑙) = 0.

Definition 9: Let (X, *), g) be a NTgMS. If every {𝑥𝑛} NT g - Cauchy sequence is NT  g - convergent, then

(X, *), g) is called NT complete NTgMS. 
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Conclusions 

In this study, we firstly obtain NTgMS. We show that NTgMS is different from gMS, NTMS. Also, we show 

that a NTgMS will provide the properties of a NTMS under which conditions are met. Thus, we have added a 
new structure to neutrosophic triplet structures. Also, thanks to NTgMS, we can obtain new theory for fixed 
point theory, we can define NT partial g –metric space and we can obtain their properties.  

Abbreviations 

gM: g - metric 

gMS: g – metric space 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTMS: Neutrosophic triplet metric space 

NTgM: Neutrosophic triplet g - metric 

NTgMS: Neutrosophic triplet g - metric space 
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Chapter Fourteen 
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ABSTRACT 

In this chapter, we deal with the algebraic structure of normed rings by applying soft set theory. We define 
the notion of a soft ideal and focus on the algebraic properties of soft normed rings. We introduce the notions 
of soft proper ideal, soft maximal ideal and extension of soft maximal ideal and give several theorems and 
illustrating examples. 
 

Keywords: soft set, soft normed rings, soft ideal, soft maximal ideal 

INTRODUCTION 

Most of our traditional tools for formal modeling, reasoning, and computing are crisp, deterministic, and 
precise in character. However, there are many complicated problems in economics, engineering, 
environment, social science, medical science, etc., that involve data which are not always all crisp. We 
cannot successfully use classical methods because of various types of uncertainties present in these problems. 
There are theories: theory of probability, theory of fuzzy sets, and the interval mathematics, (intuitionistic) 
fuzzy sets, the theory of vague sets and the theory of rough sets which we can consider as mathematical tools 
for dealing with uncertainties. But all these theories have their own difficulties. Consequently, Molodtsov [1] 
proposed a completely new approach for modeling vagueness and uncertainty. This so-called soft set theory 
is free from the difficulties affecting existing methods. Maji et al.[2] studied several operations on the theory 
of soft sets. 
At present, works on the soft set theory are progressing rapidly with wide-range applications especially in the 
mean of algebraic structures as in [3, 4, 5, 6, 9]. Moreover, Atagun and Sezgin [7] defined the concepts of 
soft subrings and ideals of a ring, soft subfields of a field and soft submodules of a module and studied their 
related properties with respect to soft set operations. Sezgin et al.[8] defined union soft subnear-rings (ideals) 
of a near-ring and union soft N-subgroups (N-ideals) of an N-group by using Molodtsov0s definition of soft 
sets and investigated their related properties with respect to soft set operations, soft anti-image and lower a 
inclusion of soft sets. Jun et al.[11] defined the notion of soft p-ideals and p-idealistic soft BCI-algebras, and 
then investigate their basic properties. Using soft sets, we give characterizations of (fuzzy) p-ideals in BCI 
algebras. Acar et al.[10] defined the notions of soft irreducible, prime and maximal soft ideals, irreducible, 
prime and maximal soft idealistic over on BCK/BCI algebras. Shilov, Georgii Evgen'evich.[12] defined on 
decomposition of a commutative normed ring in a direct sums of ideals. Gel'fand, Izrail' Moiseevich, et al. 
[13] defined commutative normed rings. Freundlich, Marianne [14] introduced completely continuous 
elements of a normed ring. Raikov, D. A. [15] defined to the theory of normed rings with involution. 
Naimark, et al. [16] defined normed rings. Shilov, Georgii Evgen'evich [17] defined analytic functions in a 
normed ring. Jarden, M. [18] defined normed rings in 2011 and studied norms ‖. ‖ of associative rings which 
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are generalizations of absolute values |. | of integral domains. The main purpose of this chapter is to introduce 
the algebraic structure of normed rings by applying soft set theory. Our definition of soft ideals on soft sets is 
similar to the definition of soft ideals on soft normed rings, but is constructed using different methods. We 
define the concept of a soft ideal and focus on the 
algebraic properties of soft normed rings. We introduce the concepts of soft proper ideal and soft maximal 
ideal, and give several illustrating examples. The organization of this chapter is as follows: In section 2, we 
brief present some basic definitions and preliminary results are given which will be used in the rest of the 
chapter. In section 3, soft maximal ideal on a soft normed ring is presented. Section 4 consists of the 
extension of a soft maximal ideal. In section 5, we conclude the chapter. 

 

BACKGROUND 
In this section, we site the fundamental definitions that will be used in the results. 

Definition 1 [1] Let U be an initial universe set and E be set of parameters. Consider A ⊂ E. Let P (U) denote 

the set of all soft sets U. The collection (F, A) is termed to be the soft set over U where F is a mapping given 
by F : A → P (U). 

Definition 2 [2] For two soft sets (F, A) and (G, B) over U, (F, A) is called a soft subsets of (G, B) if: 

• A ⊆ B 

• for all ε ∈ B, G(ε) ⊆ F (ε) 

The relationship is denoted by (F, A) ⊆ (G, B). In this case (G, B) is called a soft superset of (F, A). 

 

Definition 3[2] The union of two soft sets (F, A) and (G, B) over U denoted by (F, A)˜∪(G, B) is the 

soft set (H, C), where C = A ∪ B, and for all e ∈ C, 

 

we express it as (F, A)˜∪(G, B) = (H, C). 

Definition 4 [2] The intersection of two soft sets (F, A) and (G, B) over U denoted by (F, A)˜∩(G, B) is the 
soft set (H, C), where C = A ∩ B, and for all e ∈ C, 

 

we express it as (F, A)˜∩(G, B) = (H, C). 

Definition 5 [19] Let R be the set of real numbers and B(R) the collection of all non-empty bounded subsets 
of R and A taken as a set of parameters. then a mapping F : A → B(R) is called a soft real set. It is denoted 
by (F, A). If specifically (F, A) is a singleton soft set, then after identifying (F, A) with the corresponding soft 
element, it will be called a soft real number. 
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We use nations r˜, ˜s, t˜ to denote soft real numbers whereas r˜, ˜s, t˜ will denote a particular type of soft real 

numbers such that r(λ) = r, for all λ ∈ A etc. For example 0 is the soft real number where 0(λ) = 0, for all λ ∈ 

A. 

Definition 6 [18] Let A be commutative ring with 1. An ultrametric absolute value of A is a function || : A → 
R satisfying the following conditions: 

• |a| ≥ 0 and |a| = 0 ⇔ a = 0, 

• There exists a ∈ A such that 0 < |a| < 1, 

• |a.b| = |a|.|b| 

• |a + b| ≤ max(|a|, |b|). 

Definition 7 [18] Let R be commutative ring with 1. A norm on R is a function ‖. ‖ : R → R that satisfies the 

following conditions for all a, b ∈ R: 

i.  ‖𝑎‖ ≥ 0 and ‖𝑎‖ = 0 ⇔ 𝑎 = 0,  further ‖1‖ = ‖−1‖ = 1. 

ii. ∃ 𝑥 ∈ 𝑅,    0 ≤ ‖𝑥‖ ≤ 1. 
iii. ‖𝑎. 𝑏‖ ≤ ‖𝑎‖. ‖𝑏‖   

iv. ‖𝑎 + 𝑏‖ ≤̃ 𝑚𝑎𝑥(‖𝑎‖‖𝑏‖) 
Soft Maximal Ideals 

Definition 8 A soft set F (I, A) (or I(A)) of soft elements of a soft normed ring is called a soft ideal if it has 
the following properties: 

i. If ∀ �̃� ∈ 𝐹(𝐼, 𝐴)  and  �̃� ∈ 𝐹(𝐼, 𝐴),  then  �̃� + �̃� ∈ 𝐹(𝐼, 𝐴); 
ii. If ∀ �̃� ∈ 𝐹(𝐼, 𝐴), ∀ �̃� ∈ 𝐹(𝑅, 𝐴), then   �̃�. �̃� ∈ 𝐹(𝐼, 𝐴)   
iii. 𝐹(𝐼, 𝐴) ≠ 𝐹(𝑅, 𝐴)     

Example 9 Let C be the space of all soft complex function that are defined and continuous on the interval [0, 

1] with the soft norm given by ‖�̃�‖  = max0≤ �̃� ≤1 �̃� |(t)|.C is a soft normed ring under ordinary 

multiplication(with the unit soft element �̃�(t) ≡ 1.) 

A soft element of a soft normed ring F (R, A)(or(R(A)) that has an inverse soft element cannot be contained 

in any soft proper ideal. In particular, if the soft normed ring F (R, A) contains no soft proper ideals other 

than the soft zero ideal(consisting only of the soft element 0.), then F (R, A) is a soft field. It is easy to verify 

that the closure F (I, A) of a soft ideal F (I, A) satisfies the conditions 1 and 2 of Definition 8 

Definition 10 A soft maximal ideal is a soft proper ideal that is not contained in any other soft proper ideal. 
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Example 11 Let C be the space of all soft complex function that are defined and continuous on the interval 

[0, 1] with the soft norm given by ‖�̃�‖ = max0≤�̃�≤1 |�̃� (t)|. The soft set of all soft functions of C that vanish at 

an arbitrary fixed point of an interval in [0, 1] is a soft maximal ideal of C. 

The soft set F (Mτ , A) of all function x˜(t) ∈ C for which x˜(τ) = 0 is a soft proper ideal of C. Let y˜(t) be any 

soft function of C not belonging to F (Mτ , A).What we have to show is that there exists no soft proper ideal 

containing F (Mτ , A) and y˜(t). But this follows from the fact that every soft function z˜(t) ∈ C can be 

represented in the form 

and the first summand is a multiple of y˜(t). Now let F (M, A) be any soft maximal ideal of C. We shall show 

that all the functions that occur in this soft maximal ideal vanish at same fixed point of the interval [0, 1]. 

Indeed, if this were not so, then for every soft point τ ∈ [0, 1]. we could find a function x˜τ (t) ∈ F (M, A) 

such that x˜τ (t) = 0 and hence 

in some interval containing τ. Let τ1, τ2, ..., τn be the soft points corresponding to each of these intervals. The 

function 

is contained in F (M, A). But on the other hand 

and hence the soft function 1 exists in C so that in this case x˜(t), as we have seen, cannot belong to any x˜(t) 

soft proper ideal in particular, it cannot belong to soft maximal ideal F (M, A). This contradiction shows that 

there exists a soft point τ such that x˜(τ) = 0 for all x˜(τ) inF (M, A). But then F (M, A), being soft maximal, 

is the soft ideal F (Mτ , A) consisting of all the soft functions of C that vanish at the soft point τ. Soft 

elements ˜x, y˜ ∈ R(A) are called soft congruent module the soft ideal F (I, A) if x˜−y˜ ∈ F (I, A). Since the 

soft relation of congruence if soft reflexive, soft symmetric and soft transitive, R(A) splits into soft classes of 

soft congruent elements ˜x, y˜ from F (X, A), F (Y, A) and denoting by λ.F (X, A) (where λ is soft complex 

number) the soft class formed by the soft elements λx˜(x˜ ∈ F (X, A)), we obtain the soft ring R(A)/I(A) of 

residue soft classes of R(A) with respect to I(A). The zero soft element of this residue soft class ring is the 

soft class formed by all the soft elements x˜ ∈ I(A) and the soft unit element E is the soft class containing the 

soft unit element e of R(A). In R(A)/I(A) we introduce the soft norm 
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Theorem 12 If I(A) is a closed soft proper ideal, then R(A)/I(A) is a soft normed ring. 

. 
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Proof 16 Every soft proper ideal I(A) is contained in a soft maximal ideal. In particular, if the soft ring does 
not contain any non-zero soft maximal ideal, then it is a soft field. But if there were such a soft ideal J(A) in 
R(A)/I(A), then its inverse image in R(A) would be a soft proper ideal containing with it, in contradiction to 
the soft maximality of M(A). Note that, by Theorem 12,R(A)/M(A) is a soft normed ring, because-as we 
have seen above-a soft maximal ideal is always closed. 

It is easy to see that the converse of Theorem 12  is also true. 

Theorem 17 If the residue soft class ring R(A)/I(A) of R(A) with respect to a soft proper ideal I(A) is 

a soft field, then I(A) is a soft maximal ideal. It need not be assumed here that I(A) is closed. 

Proof 18 If R(A) were to contain a soft proper ideal J(A) containing I(A) and not coinciding with it, then its 
image R(A)/I(A) would be a non-zero soft proper ideal; and this is impossible since, by assumption 

R(A)/I(A) is a soft field. 

Extension of Soft Maximal Ideals 

In soft normed rings the analogous question can be asked, whether it is possible to extend multiplicative 

linear soft functionals, i.e., linear soft functional f(�̃�) satisfying the additional condition f(�̃��̃�) = f(�̃�).f(�̃�) for 

all �̃�, �̃�. In general the answer to this question is in the negative. For example, let F (N, A) be the soft space 
of all soft function of a complex variable, γ that are defined and soft continuous in the circle γ ≤1 and soft 
regular throughout the interior of this circle, with the soft norm given by 

F (N, A) is soft normed rings under ordinary multiplication. The multiplicative soft linear functional f(�̃�) 

=(0̃) cannot be extend with preservation of multiplication to the soft ring of all soft continuous functions on 
the circle γ = 1, which contains F (N, A) as a closed soft subring. But it does turn out that in every soft 

commutative normed ring SR1(A) there is a set of multiplicative soft linear functionals that can be extended 
with preservation of multiplication to every soft commutative normed ring SR(A) containing R1(A) as a 

closed soft subring. These soft functionals are precisely the multiplicative soft linear functionals Υ(R1(A)) of 
soft maximal ideals of R1(A). 

Before proceeding to a proof of this statement, let us note the following. Suppose that a multiplicative soft 

linear functional f(�̃�) is extended from a soft normed ring SR1(A) to a larger ring SR(A). Then, in particular 

the set SM1(A) of those �̃�1 ∈ SR1(A) for which f(�̃�) = 0. But SM1(A) is a soft maximal ideal of SR1(A) and

SM(A) a soft maximal ideal of SR(A). Thus, the extension of the multiplicative soft functional f(�̃�1) goes

hand in hand with an extension of the soft maximal ideal SM1(A) of SR1(A) to a soft maximal ideal SM(A) 
of SR(A). Conversely, if the soft maximal ideal SM1(A) of SR1(A) is extended to the soft maximal ideal 
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SM(A) of SR(A),then the multiplicative soft linear functional SM(A)(  �̃�) = �̃� .[SM(A)] on SR(A) is an 

extension of the multiplicative soft linear functional SM1(A)(x˜) given on SR1(A). Let �̃�0  ∈ SR1(A) and 

SM1(A)( �̃�0) = λ0. Then SM1(A)( �̃�0 − λ0.e) = 0, so that �̃�0 − λ0.e ∈ SM1(A) ˜⊂SM(A), and hence we also 

have that SM(A)( �̃�0) = λ0. Consequently, the problem of extending a multiplicative soft linear functional is 

equivalent to that of extending the corresponding soft maximal ideal. 

Theorem 20 In an arbitrary soft normed ring SR(A) containing SR1(A) as a closed soft normed subring, 
every soft maximal ideal of the boundary Λ1 of the space Υ(SM1(A)) can be extended to a soft maximal ideal 

of SR(A). 
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Conclusions 

In this chapter, unlike before, we define the notion of a soft ideal and focus on the algebraic properties of soft 
normed rings. Later, we introduce the notions of soft proper ideal, soft maximal ideal and extension of a soft 

maximal ideal and give several theorems and illustrating examples. To extend this work one can investigate 
the properties of soft normed rings in other algebraic structures and fields. This may lead to an ample scope 
on soft normed rings in soft set theory. 
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ABSTRACT 

 In this chapter, neutrosophic triplet m - metric spaces are obtained. Then, some definitions and 

examples are given for neutrosophic triplet m - metric space. Based on these definitions, new theorems are 

given and proved. In addition, it is shown that neutrosophic triplet m - metric spaces are different from the 

classical            m - metric spaces, neutrosophic triplet metric spaces and the neutrosophic triplet partial 

metric spaces.  

Keywords: neutrosophic triplet set, neutrosophic triplet metric space, neutrosophic triplet m - metric space  

INTRODUCTION 

Asadi, Karapinar and Salimi introduced m - metric spaces [45] in 2014. m – metric space is generalized form 

of metric space and partial metric space. The m – metric spaces have an important role in fixed point theory. 
Recently, researchers studied      m – metric space [45-47]. 

Neutrosophic logic and neutrosophic set [1] are obtained by Smarandache in 1998. In neutrosophic logic and 

neutrosophic sets, there are T degree of membership, I degree of undeterminacy and F degree of                      
non-membership. These degrees are defined independently of each other. It has a neutrosophic value (T, I, F) 

form. In other words, a condition is handled according to both its accuracy and its inaccuracy and its 
uncertainty. Therefore, neutrosophic logic and neutrosophic set help us to explain many uncertainties in our 
lives. In addition, many researchers have made studies on this theory [2-27]. Also, fuzzy logic and fuzzy set 

[28] were obtained by Zadeh in 1965. In the concept of fuzzy logic and fuzzy sets, there is only a degree of 
membership. In addition, intuitionistic fuzzy logic and intuitionistic fuzzy set [29] were obtained by 

Atanassov in 1986. The concept of intuitionistic fuzzy logic and intuitionistic fuzzy set include membership 
degree, degree of indeterminacy and degree of non-membership. But these degrees are defined dependently 
of each other. Therefore, neutrosophic set is a generalized state of fuzzy and intuitionistic fuzzy set.   

                                                                                         
Furthermore, Smarandache and Ali obtained neutrosophic triplet set (NTS) and neutrosophic triplet groups 

(NTG) [6].  For every element “x” in NTS A, there exist a neutral of “x” and an opposite of “x”. Also, neutral 
of “x” must different from the classical neutral element. Therefore, the NTS is different from the classical set. 
Furthermore, a neutrosophic triplet (NT) “x” is showed by <x, neut(x), anti(x)>. Also, many researchers have 
introduced NT structures [30 - 44]. 

In this chapter, we introduce neutrosophic triplet m - metric space (NTmMS). In Section 2, we give 
definitions and properties for m- metric space (mMS) [45], neutrosophic triplet sets (NTS) [30], neutrosophic 
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triplet metric spaces (NTMS) [32], neutrosophic triplet partial metric spaces (NTPMS) [36]. In Section 3, we 
define neutrosophic triplet m - metric space and we give some properties for neutrosophic triplet m - metric 
space. Also, we show that neutrosophic triplet m - metric spaces are different from the classical m - metric 
spaces and the neutrosophic triplet metric spaces. Then, we examine relationship between neutrosophic 
triplet    m -  metric spaces and neutrosophic triplet metric spaces. In Section 4, we give conclusions. 

 

 
BACKGROUND 

 

Definition 1: [6] Let # be a binary operation. A NTS (X, #) is a set such that for      x ∊ X, 

i) There exists neutral of “x” such that x#neut(x) = neut(x)#x = x, 

ii) There exists anti of “x” such that x#anti(x) = anti(x)#x = neut(x). 

Also, a neutrosophic triplet “x” is showed with (x, neut(x), anti(x)). 

Definition 2: [32] Let (N,*) be a NTS and 𝑑𝑁:NxN→ ℝ+∪{0} be a function. If 𝑑𝑁:NxN→ ℝ+∪{0} and       

(N, *) satisfies the following conditions, then 𝑑𝑁 is called NTM.  

a) x*y ∈ N; 

b) 𝑑𝑁(x, y) ≥ 0; 

c) If x = y, then 𝑑𝑁(x, y) = 0; 

d) 𝑑𝑁(x, y) = 𝑑𝑁(y, x); 

e) If there exits at least a y ∊ N for each x, z ∊N such that 𝑑𝑁(x, z) ≤ 𝑑𝑁(x, z*neut(y)), then 𝑑𝑁(x, z*neut(y)) ≤ 𝑑𝑁(x, y) + 𝑑𝑁(y, z).  

Also, ((N,*), 𝑑𝑁) is called a NTMS. 

Definition 3:[36] Let (N,*) be a NTS and 𝑝:NxN→ ℝ+∪{0}be a function. If p and N satisfy following 

conditions, then p is called a NTPM.   

a) For all x, y ∈ N,  x*y ∈ N; 

b) If p(x, x) = p(y, y) = p(x, y) = 0, then x = y; 

c) 𝑝(𝑥, 𝑥) ≤ p(x, y); 

d) p(x, y) = p(y, x); 

e) If there is at least an element y∊N for each x, z ∊N pair of element such that  𝑝(x, z) ≤ 𝑝(x, z*neut(y)), then 

p(x, z*neut(y)) ≤ p(x, y) + p(y, z) – p(y, y). 

Furthermore, ((N,*), 𝑝) is called a NTPMS. 

Definition 4:[45] Let X be a nonempty set and  𝑚: X × X → ℝ+ ∪ {0}  be a function. Then,     

(i) 𝑚𝑥𝑦 = min{m(x, x), m(y, y)} = m(x, x) ∨ m(y, y), 

(ii) 𝑀𝑥𝑦  = max{m(x, x), m(y, y)} = m(x, x) ∧ m(y, y). 
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Definition 5:[45]  Let X be a nonempty set and  m: X × X → ℝ+ ∪ {0}  be a function. If m satisfies the 

following conditions, then m is called a m – metric (mM). For, x, y, z ∈ X; 

(𝑚1) m(x, x) = m(y, y) = m(x, y) if and only if x = y, 

(𝑚2) 𝑚𝑥𝑦 ≤ m(x, y), 

(𝑚3) m(x, y) = m(y, x), 

(𝑚4) (m(x, z) – 𝑚𝑥𝑧) ≤ (m(x, y) – 𝑚𝑥𝑦)+(m(y, z) – 𝑚𝑦𝑧). 
Also, (X, 𝑚) is called a 𝑚 – metric space (mMS). 

Definition 6:[45] Let (X, m) be a  mMS and { 𝑥𝑛 } be a sequence in this space. For all ℇ >0,      𝑚(𝑥𝑛,x) − 𝑚𝑥𝑛,𝑥 < ℇ  if and only if {𝑥𝑛} is called  m - convergent to x ∊ X. It is shown by lim𝑛→∞ 𝑥𝑛= x or 𝑥𝑛→ x. 

Definition 7:[45] Let (X, m) be a  mMS and {𝑥𝑛} be a sequence in this space. {𝑥𝑛} is called m-Cauchy 

sequence, if for all ℇ>0, 𝑚(𝑥𝑛,𝑥𝑚)−𝑚𝑥𝑛,𝑥𝑚< ℇ and  𝑀𝑥𝑛,𝑥𝑚  - 𝑚𝑥𝑛,𝑥𝑚< ℇ. 

 

Neutrosophic Triplet m – Metric Space 

Definition 8: Let (N,*) be a NTS and m:NxN→ ℝ+∪{0} be a function. If (N, *) and m satisfy the following 

properties. Then m is called neutrosophic triplet m – metric (MTmM). 

 a) For all  x, y ∈ N, x*y ∈ N; 

b) If m(x, x) = m(y, y) = m(x, y) = 0, then x = y; 

c) mxy ≤ m(x, y);    

d) m(x, y) = m(y, x); 

e) If there is at least an element y∊N for each x, z ∊N pair of element such that m(x, z) ≤ m(x, z*neut(y)), then 

(m(x, z*neut(y))) – mxz) ≤ (m(x, y) – mxy)+(m(y, z) – myz).  
Furthermore, ((N,*), m) is called neutrosophic triplet m – metric space (NTmMS). 

Note 1: mxy, in Definition 8, is equal to mxy in Definition 4. 

Corollary 1: From Definition 8 and Definition 5, a NTmMS is different from a mMS. Because, there is not         

a * binary operation in Definition 5. Also, triangle inequalities are different in definitions.  

Corollary 2: From Definition 8 and Definition 2, a NTmMS is different from a NTMS. Because, triangle 
inequalities are different in definitions and in NTMS,     d(x, x) must equal to 0. 

Corollary 3: From Definition 8 and Definition 3, a NTmMS is different from a NTPMS. Because, triangle 

inequalities are different in definitions and in NTPMS,     there is not a mxy locution. 

Example 1: We take N={0, 2, 4}. We show that (N, .) is a NTS in ℤ6.   

For 0, neut(0)=0 and anti(0)=0; 

For 2, neut(2)=4 and anti(2)=2; 
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For 4, neut(4)=4 and anti(4)=4. 

Thus, (N, .) in ℤ6 is a NTS and NTs are (0, 0 ,0), (2, 4, 2), (4, 4, 4).

Now, we define m:NxN→ ℝ+∪{0}function such that m(x, y)= |3x-3y|. We show that m is NTmM.

a) 0.0 = 0 ∊ N, 0.2 = 0∊ N, 0.4 = 0∊ N, 2.2 = 4 ∊ N, 2.4 =8 = 2 ∊ N, 4.4 = 16 = 4∊ N

b) If m(x, x) = |3x-3x| = m(y, y) = |3y-3y|  = m(x, y) = |3x-3y|  =0, it is clear that x=y.

c) mxy = min{|3x-3x|, |3y-3y| }=0 and m(x, y) = |3x-3y|  ≥ 0. Thus, 0 = mxy ≤ m(x, y).

d) m(x, y) = |3x-3y| = |3y-3x|  = m(y, x).

e) For m(0, 0) = 0 ≤ m(0, 0*neut(2)) = m(0, 4) = 80,

(m(0, 0*neut(2))) – m0,0) = |30-30| - | - 0= 0 ≤  (m(0, 2) – m0,2)+(m(2, 0) – m2,0) =

(|30-32| - |30-30|) + (|32-30| - |30-30|) = 18.

         For m(0, 2) = 8 ≤ m(0, 2*neut(4))  = 8,   

(m(0, 2* neut(4))) – m0,2) = |30-32| - 0 = 9 ≤ (m(0, 4) – m0,4)+(m(4, 2) – m4,2) =

(|30-34| - |30-30|) + (|34-32| - |32-32|) = 153

  For m(0, 4) = 80 ≤ m(0, 4* neut(2)) = 80     

(m(0, 4* neut(2))) – m0,4) = |30-32| - 0 = 9  ≤ (m(0, 2) – m0,2)+(m(2, 4) – m2,4) =

(|30-32| - |30-30|) + (|32-34| - |32-32|) = 81

  For m(2, 0) = 8 ≤ m(2, 0* neut(4)) = 8,    

(m(2, 0* neut(4))) – m2,0) = |32-30| - 0 ≤ (m(2, 4) – m2,4)+(m(0, 4) – m0,4) =

(|32-34| - |32-32|) + (|30-34| - |30-30|) = 153

          For m(2, 4) = 72 ≤ m(2, 4* neut(2)) = 72,     

(m(2, 4* neut(2))) – m2,4) = |32-34| - 0  = 72 ≤ (m(2, 2) – m2,2)+(m(2, 4) – m2,4) =

(|32-32| - |32-32|) + (|32-34| - |34-34|) = 72

         For m(2, 2) = 0 ≤ m(2, 2* neut(4)) = 0, 

(m(2, 2* neut(4))) – m2,2) = |32-32| - 0 = 0 ≤ (m(2, 4) – m2,4)+(m(4, 2) – m4,2) =

(|32-34| - |32-32|) + (|34-32| - |32-32|) = 72

          For m(4, 0) = 80 ≤ m(4, 0* neut(2)) = 80,    

(m(4, 0* neut(2))) – m4,0) =|34-30| - 0 = 80 ≤ (m(4, 2) – m4,2)+(m(4, 2) – m4,2) =

(|34-32| - |32-32|) + (|34-32| - |32-32|) = 144

   For m(4, 2) = 72 ≤ m(4, 2* neut(0)) = 80  

(m(4, 2* neut(0))) – m4,2) = |34-30| - 0 = 80 ≤ (m(4, 0) – m4,0)+(m(0, 2) – m0,2)

(|34-30| - |30-30|) + (|30-32| - |30-30|) = 88.

Thus, m is a NTmMS.    
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Example 2: Let X = {0, 2, 3} and P(X) be power set of X and s(A) be number of elements in A. We show 

that (P(X)\X, ∪) is a NTS. 

It is clear that A∪A = A∪A= A. Thus, we can take neut(A)= A and anti(A) = A for all A ∊ P(X)\X. 

We define m: P(X)\XxP(X)\X→ ℝ+∪{0} such that m(A,B)= |s(A)-s(B)|. m is not a NTmMS. Because, for

A={0,2}, B={0,3}; 

 m(A, A) = |s(A)-s(A)| = |2-2| = 0, 

m(B, B)  = |s(B)-s(B)| = |2-2| = 0, 

m(A, B) = |s(A)-s(B)| = |2-2| = 0. 

But A≠B.      

Theorem 1: Let ((N, *), p) be a NTPMS. If the following condition satisfies, then   ((N, *), p) is a NTmMS. 

i) If there is at least an element y∊N for each x, z ∊N pair of element such that  p(x, z) ≤ p(x, z*neut(y)), then

p(x, x) ≤ p(y, y) ∨ p(z, z) ≤ p(y, y).

Proof: We suppose that (N,*) is a NTS and ((N, *), p) is a NTPMS. 

a) Since ((N, *), p) is a NTPMS, for all x, y ∈ N; x*y ∈ N;

b) From Definition 3, if  p(x, x) = p(y, y) = p(x, y) = 0, then x = y;

c) From Definition 3, we can take p(x, x) ≤ p(x, y)  and p(y, y) ≤ p(x, y) . Thus, mxy  = min p(x, x), p(y, y)}≤ p(x, y).

d) From Definition 3, p(x, y) = p(y, x);

e) From Definition 3, we suppose that there is at least an element y∊N for each  x, z ∊N pair of element such

that p(x, z) ≤ p(x, z*neut(y)), then

p(x, z*neut(y)) ≤ p(x, y) + p(y, z) – p(y, y).      (1) 

From condition i), p(x, x) ≤ p(y, y) ∨ p(z, z) ≤ p(y, y).  (2) 

We suppose that p(x, x) ≤ p(z, z) ≤ p(y, y). Thus, mxz = p(x, x), mxy = p(x, x) and myz = p(z, z). From (1), we can write

p(x, z*neut(y)) - mxz  ≤ p(x, y) - mxy+ p(y, z) – myz.
We suppose that p(z, z) ≤ p(x, x) ≤ p(y, y). Thus, mxz = p(z, z), mxy = p(x, x) and myz = p(z, z). From (1), we can write

p(x, z*neut(y)) - mxz  ≤ p(x, y) - mxy+ p(y, z) – myz.
We suppose that p(z, z) ≤ p(y, y) ≤ p(x, x). Thus, mxz = p(z, z), mxy = p(y, y) and myz = p(z, z). From (1), we can write

p(x, z*neut(y)) - mxz  ≤ p(x, y) - mxy+ p(y, z) – myz.
We suppose that p(x, x) ≤ p(y, y) ≤ p(z, z). Thus, mxz = p(x, x), mxy = p(x, x) and myz = p(y, y). From (1), we can write
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p(x, z*neut(y)) - mxz  ≤ p(x, y) - mxy+ p(y, z) – myz. 
Therefore, from Definition 8, ((N, *), p) is a NTmMS. 

 Theorem 2: Let ((N, *), m) be a NTmMS. If the following condition satisfies, then ((N, *), m) is a NTPMS. 

i) If there is at least an element y∊N for each x, z ∊N pair of element such that m(x, z) ≤ m(x, z*neut(y)), 

then mxy = m(y, y) and myz ≤ mxz. 
Proof: We suppose that (N,*) is a NTS and ((N, *), m) is a NTmMS.  

a) Since ((N, *), m) is a NTmMS, for all x, y ∈ N; x*y ∈ N;  

b) From Definition 8, if m(x, x) = m(y, y) = m(x, y) = 0, then x = y; 

c) From Definition 8, we can take, mxy = min{ m(x, x), m(y, y)}≤ m(x, y). Thus, 

 m(x, x) ≤ m(x, y) and  m(y, y) ≤ m(x, y).  
d) From Definition 8, m(x, y) = m(y, x); 

e) From Definition 8, we suppose that there is at least an element y∊N for each x, z ∊N pair of element such 

that m(x, z) ≤ m(x, z*neut(y)), then 

m(x, z*neut(y)) - mxz  ≤ m(x, y) - mxy+ m(y, z) – myz.                                                                                  (3) 

From condition i), mxy = m(y, y) and myz ≤ mxz.                                                                                           (4) 

From (3) and (4), we can write m(x, z*neut(y)) ≤ m(x, y) + m(y, z) – m(y, y).                                                               

Therefore, from Definition 3, ((N, *), m) is a NTPMS. 

Theorem 3: Let ((N, *), m) be a NTmMS. If m(x, x) = 0, for all x ∊ N, then ((N, *), m) is a NTMS.  

Proof: We suppose that (N,*) is a NTS and ((N, *), m) is a NTmMS.  

a) Since ((N, *), m) is a NTmMS, for all x, y ∈ N; x*y ∈ N;  

b)Since m(x, x) = 0, for all x ∊ N, we can write that if x = y, then m(x, y) = 0.  

c) From Definition 8, we can take, mxy = min{ m(x, x), m(y, y)}≤ m(x, y). Thus, mxy = 0 ≤ m(x, y). 

d) From Definition 8, m(x, y) = m(y, x); 

e) From Definition 8, we suppose that there is at least an element y∊N for each x, z ∊N pair of element such 

that m(x, z) ≤ m(x, z*neut(y)), then 

m(x, z*neut(y)) - mxz  ≤ m(x, y) - mxy+ m(y, z) – myz.                                                                                  (5) 

Where, mxz =  mxy =  myz = 0. Thus, from  (5), we can write                                  

 m(x, z*neut(y)) ≤ m(x, y) + m(y, z) .                

Therefore, from Definition 2, ((N, *), m) is a NTMS. 

Definition 9: Let ((N, *), m) be a NTmMS and {xn} be a sequence in this space. For all ℇ>0,  m(xn, x)−mxn,x < ℇ  if and only if {xn} is called  neutrosophic triplet m - convergent to x ∊ N. It is shown by limn→∞ xn= x or xn→ x. 
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Definition 10: Let ((N, *), m) be a NTmMS and {xn } be a sequence in this space. {xn } is called

neutrosophic triplet m-Cauchy sequence, if for all ℇ>0, m(xn, xm)−mxn,xm< ℇ and Mxn,xm  - mxn,xm< ℇ.

Definition 11: Let ((N,*), m) be a NTmMS. If every neutrosophic triplet m-Cauchy sequence is convergent 
in this space, then ((N,*), m) is called m- complete NTmMS.    

Theorem 4: Let ((N,*),m) be a NTmMS and {xn} be a neutrosophic triplet m - convergent sequence in this

space. If there is at least an element x∊N for eachxn, xm∊N pair of element such thatm(xn,xm) ≤ m(xn, xm*neut(x)), then {xn} is a neutrosophic triplet m – Cauchy sequence.

Proof: Since {xn} is a neutrosophic triplet m – convergent sequence, we can take    m(x, xn) -mx,xn   < ε/2.
Also, from Definition 8, If there is at least an element x∊N for each xn, xm∊N pair of element such thatm(xn,xm) ≤ m(xn, xm*neut(x)), thenm(xn, xm*neut(x))−mxn,xm ≤  m(x, xn) - mx,xn + m(x, xm) - mx, xm. Thus,m(xn, xm*neut(x))−mxn, xm ≤ ε/2 + ε/2 = ε.

Also, since {xn} is a neutrosophic triplet m – convergent sequence, it is clear that and Mxn, xm - mxn, xm< ℇ.

Therefore, xn} is a neutrosophic triplet m – Cauchy sequence.

Conclusions 

In this study, we firstly obtain NTmMS. We show that NTmMS is different from mMS, NTMS and NTPMS. 
Also, we show that a NTmMS will provide the properties of a NTMS and NTPMS under which conditions 

are met. Thus, we have added a new structure to neutrosophic triplet structures. Also, thanks to NTmMS, we 
can obtain new theory for fixed point theory, we can define NT m – normed space and we can obtain their 

properties.  

Abbreviations 

mMS: m – metric space 

NT: Neutrosophic triplet 

NTS: Neutrosophic triplet set 

NTMS: Neutrosophic triplet metric space 

NTPMS: Neutrosophic triplet partial metric space 

NTmMS: Neutrosophic triplet m - metric space 
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ABSTRACT 

  The neutrosophic set is a set consists of three independent objects called truth-membership, 
indeterminacy-membership and falsity-membership to deal the concepts of uncertainty, incomplete and 

inconsistency. The 𝑁-neutrosophic supra topological space is a set equipped with 𝑁-neutrosophic supra 

topologies. The main focus of this chapter is to define regular-open sets in 𝑁-neutrosophic supra topological 

spaces and prove the collection of all 𝑁-neutrosophic supra topological regular-open sets need not forms a 𝑁 -neutrosophic supra topology. Further some new 𝑁 -neutrosophic supra topological operators with its 

properties are discussed. 

Keywords:  𝑁𝜏𝑛∗-open sets, 𝑁𝜏𝑛∗regular-open sets,  𝑁𝜏𝑛∗𝑘-open sets, 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴), 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴).
INTRODUCTION

The fuzzy set theory was developed by A. Zadeh [1] to analyze with imprecise, vagueness, ambiguity 

information. This theory [2, 3, 4, 5] has been used in the fields of medical diagnosis, artificial intelligence, 
biology, control systems, probability and economics. C. L. Chang [6] was the first one to introduce the 

concept of fuzzy topological space. R. Lowen [7] further developed the properties of compactness in fuzzy 
topological spaces. Fuzzy supra topological spaces and its continuous functions were defined by Abd El-

monsef and Ramadan [8]. K. Atanassov [9] introduced intuitionistic fuzzy sets by considering both the 
degree of membership and the degree of non-membership at the same time. Several researchers [10, 11, 12, 
13] turned their attentions to the applications of intuitionistic fuzzy sets in medical diagnosis. J. Srikiruthika

and A. Kalaichelvi [14] were introduced a kind of fuzzy supra topological open set namely fuzzy supra
regular-open set. Dogan Coker [15] extended the concept of fuzzy topological spaces into intuitionistic fuzzy

topological spaces and derived its properties. In intuitionistic fuzzy supra topological spaces, intuitionistic
fuzzy supra regular-open sets was defined by N.Turnal [16]. Neutrosophic set is the generalization of fuzzy
set and intuitionistic fuzzy set which is developed by Florentin Samarandache [17, 18, 19] which is a set

considering the degree of membership, the degree of indeterminacy-membership and the degree of falsity-
membership whose values are real standard or non-standard subset of unit interval ] 0- ; 1+[. Recently many

researchers [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] introduced
several similarity measures, single-valued neutrosophic sets,  neutrosophic numbers, neutrosophic multi-sets
and neutrosophic soft sets in data analysis, pattern recognition, medical diagnosis. Salama et al. [41, 42]

defined the neutrosophic crisp set and neutrosophic topological space. In 1963, Norman Levine [43]
introduced semi-open sets and semi-continuous functions in classical topological spaces. O.Njastad [44]
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introduced the 𝛼-open sets which form a topology. Mashhour et al. [45] investigated the properties of pre-

open sets. Andrijevic [46] discussed the behavior of 𝛽-open sets in classical topology. Mashhour et al. [47]

initiated the concept of supra topological spaces by removing one topological condition and apart from this, 
they discussed the basic properties of the supra semi open set and supra semi continuous function. Devi et al. 

[48] introduced the properties of 𝛼-open sets and 𝛼-continuous functions in supra topological spaces. Supra

topological pre-open sets and its continuous functions are defined by O.R.Sayed [49]. Saeid Jafari et al. [50]

investigated the properties of supra 𝛽 -open sets and its continuity. In 2016, Lellis Thivagar et al. [51]

developed the concept of 𝑁-topological space and its open sets namely 𝑁𝜏-open sets. After this, Lellis

Thivagar  and  Arockia Dasan  [52]  derived  some  new  𝑁-topologies  by  the  help  of  weak  open  sets

and  mappings  in 𝑁-topological spaces. Recently, G. Jayaparthasarathy et al. [53] introduced the concept of

neutrosophic supra topological space and proposed a numerical method to solve medical diagnosis problems 
by using single valued neutrosophic score function. Moreover, G. Jayaparthasarathy et al. [54] extended the 

neutrosophic supra topological space to 𝑁-neutrosophic supra topological space and established the behavior

of some weak open sets in 𝑁-neutrosophic supra topological space.

The second section of this chapter deals some basic properties of 𝑁 -neutrosophic supra

topological spaces. The third section introduces new open sets in 𝑁-neutrosophic supra topological space

called regular-open sets and establish the relations between them. In the fourth section, we discuss some 𝑁-

neutrosophic supra topological weak operators and their properties. At last some of the future work of the 
present chapter is stated in the conclusion section. 

BACKGROUND 
Definition 1. [17] Let 𝑋 be a non empty set. A neutrosophic set 𝐴 having the form 𝐴 = {(𝑥, 𝜇𝐴(𝑥),𝜎𝐴(𝑥), 𝛾𝐴(𝑥)) ∶ 𝑥 ∈ 𝑋} , where 𝜇𝐴(𝑥), 𝜎𝐴(𝑥)  and 𝛾𝐴(𝑥) ∈ ]0−, 1+[  represent the degree of

membership (namely 𝜇𝐴(𝑥)) , the degree of indeterminacy (namely 𝜎𝐴(𝑥)) and the degree of non

membership (namely 𝛾𝐴(𝑥) ) respectively for each 𝑥 ∈ 𝑋  to the set 𝐴  such that   0− ≤ 𝜇𝐴(𝑥) +𝜎𝐴(𝑥) + 𝛾𝐴(𝑥) ≤ 3+  for all  𝑥 ∈ 𝑋 . For a non empty set 𝑋, 𝑁(𝑋)  denotes the collection of all

neutrosophic sets of 𝑋. 

Definition 2. [18] The following statements are true for neutrosophic sets 𝐴 and 𝐵 on 𝑋: 

(1) 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥),  𝜎𝐴(𝑥) ≤  𝜎𝐵(𝑥) and  𝛾𝐴(𝑥) ≥ 𝛾𝐵(𝑥) for all 𝑥 ∈ 𝑋 if and only if 𝐴 ⊆ 𝐵.

(2) 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 if and only if 𝐴 = 𝐵.

(3) 𝐴 ∩ 𝐵 = {(𝑥,𝑚𝑖𝑛{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)},𝑚𝑖𝑛{𝜎𝐴(𝑥), 𝜎𝐵(𝑥)},𝑚𝑎𝑥{𝛾𝐴(𝑥), 𝛾𝐵(𝑥)}) ∶ 𝑥 ∈ 𝑋}.
(4) 𝐴 ∪ 𝐵 = {(𝑥,𝑚𝑎𝑥{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)},𝑚𝑎𝑥{𝜎𝐴(𝑥), 𝜎𝐵(𝑥)},𝑚𝑖𝑛{𝛾𝐴(𝑥), 𝛾𝐵(𝑥)}) ∶ 𝑥 ∈ 𝑋}.
More generally, the intersection and the union of a collection of neutrosophic sets {𝐴𝑖}𝑖∈Λ , are defined

by ⋂𝑖∈𝛬𝐴𝑖 = {(𝑥, 𝑖𝑛𝑓𝑖∈Λ{𝜇𝐴𝑖(𝑥)},  𝑖𝑛𝑓𝑖∈Λ{𝜎𝐴𝑖(𝑥)}, 𝑠𝑢𝑝𝑖∈Λ{𝛾𝐴𝑖(𝑥)}): 𝑥 ∈ 𝑋}  and ⋃ 𝐴𝑖𝑖∈Λ ={(𝑥, 𝑠𝑢𝑝𝑖∈Λ{𝜇𝐴𝑖(𝑥)}, 𝑠𝑢𝑝𝑖∈Λ𝜎𝐴𝑖{(𝑥)}, 𝑖𝑛𝑓𝑖∈Λ{𝛾𝐴𝑖(𝑥)}): 𝑥 ∈ 𝑋}.
Definition 3. [53] Let 𝐴, 𝐵 be two neutrosophic sets of  𝑋 , then the difference of 𝐴  and 𝐵  is a 

neutrosophic set on 𝑋 , defined as 𝐴 ∖ 𝐵 = { ( 𝑥, |𝜇𝐴(𝑥) − 𝜇𝐵(𝑥)| , |𝜎𝐴(𝑥) − 𝜎𝐵(𝑥)| , 1 −|𝛾𝐴(𝑥) − 𝛾𝐵(𝑥)|):𝑥 ∈ 𝑋}.  Clearly 𝑋𝑐 = 𝑋 ∖ 𝑋 = (𝑥, 0,0,1) = ∅ and ∅𝑐 = 𝑋  \∅ = (𝑥, 1,1,0) =𝑋. 
Notation [53]: Let 𝑋 be a non empty set. We consider the neutrosophic empty set as ∅ = {(𝑥, 0, 0, 1): 𝑥 ∈𝑋} and the neutrosophic whole set as 𝑋 = {(𝑥, 1, 1, 0): 𝑥 ∈ 𝑋}.
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Definition 4. [41] Let 𝑋 be a non empty set. A subfamily 𝜏𝑛  of 𝑁(𝑋) is said to be a neutrosophic

topology on 𝑋 if the neutrosophic sets 𝑋 and ∅ belong to 𝜏𝑛, 𝜏𝑛 is closed under arbitrary union and 𝜏𝑛 is

closed under finite intersection. Then (𝑋, 𝜏𝑛) is called neutrosophic topological space (for short nts),

members of 𝜏𝑛 are known as neutrosophic open sets and their complements are neutrosophic closed sets.

For a neutrosophic set 𝐴 of 𝑋, the interior and closure of 𝐴 are respectively defined as 𝑖𝑛𝑡𝜏𝑛(𝐴) =∪{𝐺 ∶  𝐺 ⊆ 𝐴, 𝐺 ∈  𝜏𝑛} and 𝑐𝑙𝜏𝑛(𝐴) = ∩ {𝐹 ∶ 𝐴 ⊆ 𝐹, 𝐹𝑐 ∈ 𝜏𝑛}.
Definition 5. [53] Let 𝑋 be a non empty set. A sub collection 𝜏𝑛∗ ⊆ 𝑁(𝑋) is said to be a neutrosophic

supra topology on 𝑋 if the sets ∅,𝑋 ∈ 𝜏𝑛∗ and 𝜏𝑛∗ is closed under arbitrary union. Then the ordered pair(𝑋, 𝜏𝑛∗) is called neutrosophic supra topological space on 𝑋 (for short nsts). The elements of 𝜏𝑛∗ are

known as neutrosophic supra open sets and its complement is called neutrosophic supra closed. Every 

neutrosophic topology on 𝑋 is neutrosophic supra topology on 𝑋. 
Definition 6. [53] Let 𝐴 be a neutrosophic set on nsts  (𝑋, 𝜏𝑛∗ ), then 𝑖𝑛𝑡𝜏𝑛∗(𝐴)  and 𝑐𝑙𝜏𝑛∗(𝐴)  are

respectively defined as: 𝑖𝑛𝑡𝜏𝑛∗(𝐴) = ∪ {𝐺 ∶  𝐺 ⊆ 𝐴 and 𝐺 ∈ 𝜏𝑛∗}  and 𝑐𝑙𝜏𝑛∗(𝐴)  = ∩ {𝐹 ∶  𝐴 ⊆𝐹 and 𝐹𝑐 ∈ 𝜏𝑛∗}.
Definition 7. [54] Let 𝑋 be a non empty set   𝜏𝑛1∗, 𝜏𝑛2∗, … , 𝜏𝑛𝑁∗  be 𝑁 -arbitrary neutrosophic supra

topologies defined on 𝑋. Then the collection 𝑁𝜏𝑛∗ = {𝑆 ∈ 𝑁(𝑋) ∶  𝑆 = ⋃ 𝐴𝑖𝑁𝑖=1 , 𝐴𝑖 ∈ 𝜏𝑛𝑖∗} is said to

be a 𝑁-neutrosophic supra topology on 𝑋 if this collection satisfies the following axioms: 

(1) 𝑋, ∅ ∈ 𝑁𝜏𝑛∗
(2) ⋃ 𝑆𝑖∞𝑖=1 ∈ 𝑁𝜏𝑛∗ for all 𝑆𝑖 ∈ 𝑁𝜏𝑛∗

Then the 𝑁-neutrosophic supra topological space is the non empty set 𝑋 together with the collection 𝑁𝜏𝑛∗,
denoted by (𝑋,𝑁𝜏𝑛∗) and its elements are known as 𝑁𝜏𝑛∗-open sets on 𝑋. A neutrosophic subset 𝐴 of 𝑋 is
said to be 𝑁𝜏𝑛∗-closed on 𝑋 if 𝑋 \ 𝐴 is 𝑁𝜏𝑛∗-open on 𝑋. The set of all 𝑁𝜏𝑛∗-open sets on 𝑋 and the set of

all 𝑁𝜏𝑛∗-closed sets on 𝑋are respectively denoted by 𝑁𝜏𝑛∗𝑂(𝑋) and 𝑁𝜏𝑛∗𝐶(𝑋).
Definition 8. [54] Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁-neutrosophic supra topological space and 𝐴 be a neutrosophic set

of 𝑋. Then 

(1) the 𝑁𝜏𝑛∗-interior of 𝐴 is defined by 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = ∪ {𝐺 ∶  𝐺 ⊆ 𝐴 and 𝐺 is 𝑁𝜏𝑛∗-open}.
(2) the 𝑁𝜏𝑛∗-closure of 𝐴 is defined by 𝑐𝑙𝑁𝜏𝑛∗(𝐴) = ∩ {𝐹 ∶  𝐴 ⊆ 𝐹 and 𝐹 is 𝑁𝜏𝑛∗-closed}.
Definition 9. [54] A neutrosophic set 𝐴 of a 𝑁-neutrosophic supra topological space (𝑋, 𝑁𝜏𝑛∗) is called

(1) 𝑁-neutrosophic supra 𝛼-open set if 𝐴 ⊆ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))).
(2) 𝑁-neutrosophic supra semi-open set if 𝐴 ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)).
(3) 𝑁-neutrosophic supra pre-open set if 𝐴 ⊆ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)).
(4) 𝑁-neutrosophic supra 𝛽-open set if 𝐴 ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))).

The set of all 𝑁-neutrosophic supra 𝛼-open (resp. 𝑁-neutrosophic supra semi-open, 𝑁-neutrosophic supra 

pre-open and  𝑁 -neutrosophic supra  𝛽 -open) sets of  (𝑋, 𝑁𝜏𝑛∗)  is denoted by 𝑁𝜏𝑛∗𝛼𝑂(𝑋)  (resp.𝑁𝜏𝑛∗𝑆𝑂(𝑋), 𝑁𝜏𝑛∗𝑃𝑂(𝑋) and 𝑁𝜏𝑛∗𝛽𝑂(𝑋)). The complement of  set of all 𝑁-neutrosophic supra 𝛼-open

(resp. 𝑁-neutrosophic supra semi-open, 𝑁-neutrosophic supra pre-open and 𝑁-neutrosophic supra 𝛽-open) 

sets of  (𝑋, 𝑁𝜏𝑛∗) is called 𝑁 -neutrosophic supra 𝛼 -closed(resp. 𝑁 -neutrosophic supra semi-closed, 𝑁 -
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neutrosophic supra pre-closed and  𝑁 -neutrosophic supra  𝛽 -closed)sets, denoted by 𝑁𝜏𝑛∗𝛼𝐶(𝑋)  (resp. 𝑁𝜏𝑛∗𝑆𝐶(𝑋), 𝑁𝜏𝑛∗𝑃𝐶(𝑋) and 𝑁𝜏𝑛∗𝛽𝐶(𝑋)). 
Definition 10. [14] A fuzzy set 𝐴 of a fuzzy supra topological space (𝑋, 𝜏𝑓∗) is called a fuzzy supra regular-

open if  𝑖𝑛𝑡𝜏𝑓∗(𝑐𝑙𝜏𝑓∗(𝐴)) = 𝐴. The complement of fuzzy supra regular-open set is called fuzzy supra 

regular-closed. 

Definition 11. [16] An intuitionistic fuzzy set 𝐴 of a intuitionistic fuzzy supra topological space (𝑋, 𝜏𝑖∗) is 

called intuitionistic fuzzy supra regular-open if  𝑖𝑛𝑡𝜏𝑖∗(𝑐𝑙𝜏𝑖∗(𝐴)) = 𝐴. The complement of intuitionistic 

fuzzy supra regular-open set is called intuitionistic fuzzy supra regular-closed. 

REGULAR-OPEN SETS IN 𝑵 -NEUTROSOPHIC SUPRA 

TOPOLOGICAL SPACES 

Definition 12. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁-neutrosophic supra topological space. Then a neutrosophic set 𝐴 is said 
to be 

(1) 𝑁-neutrosophic supra regular-open (shortly 𝑁𝜏𝑛∗𝑟-open) if 𝐴 = 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)). 
(2) 𝑁-neutrosophic supra regular-closed (shortly 𝑁𝜏𝑛∗𝑟-closed) if 𝐴 = 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)). 
The set of all 𝑁-neutrosophic supra regular-open sets is denoted by 𝑁𝜏𝑛∗𝑟𝑂(𝑋) and the set of all 𝑁-

neutrosophic supra regular-closed sets is denoted by 𝑁𝜏𝑛∗𝑟𝐶(𝑋). 
Theorem 13. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁-neutrosophic supra topological space and 𝐴 ⊆ 𝑋. Then 𝐴 is  𝑁𝜏𝑛∗𝑟-

open set if and only if 𝐴𝑐 is 𝑁𝜏𝑛∗𝑟 -closed. 

Proof: Let 𝐴 be a 𝑁𝜏𝑛∗𝑟-open set, then 𝐴 = 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)), 𝐴𝑐 = (𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)))𝑐 = 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴𝑐)). Therefore 𝐴𝑐  is 𝑁𝜏𝑛∗𝑟-closed. Conversely, assume that 𝐴𝑐  is 𝑁𝜏𝑛∗𝑟-closed. 

The𝐴𝑐 = 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴𝑐)) , (𝐴𝑐)𝑐 = (𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴𝑐)))𝑐 = 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)).  Therefore 𝐴 = 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)) and 𝐴 is 𝑁𝜏𝑛∗𝑟-open. 

Theorem 14. Every 𝑁𝜏𝑛∗𝑟-open set is 𝑁𝜏𝑛∗-open. 

Proof: Assume that 𝐴 is 𝑁𝜏𝑛∗𝑟-open, then 𝐴 = 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))  which is a 𝑁𝜏𝑛∗-open set contained in 𝑐𝑙𝑁𝜏𝑛∗(𝐴). 
Example 15: The converse of the above theorem need not be true: Let 𝑋 = {𝑎, 𝑏}, for    𝑁 = 6, consider 

the neutrosophic supra topologies 𝜏𝑛1∗𝑂(𝑋) = {∅,𝑋, ((0.5, 0.6), (0.5, 0.6), (0.6, 0.5))}  and  𝜏𝑛2∗𝑂(𝑋) = {∅, 𝑋, ((0.7, 0.7), (0.8, 0.7), (0.9,0.3))},  𝜏𝑛3∗𝑂(𝑋) = {∅,𝑋, ((0.6, 0.3), (0.5, 0.2), (0.4, 0))},    𝜏𝑛4∗𝑂(𝑋) = {∅,𝑋, ((0.7, 0.7), (0.8, 0.7), (0.6 , 0.3))}, 𝜏𝑛5∗𝑂(𝑋) =  {∅, 𝑋, ((0.7, 0.7), (0.8, 0.7), (0.4, 0))}, 𝜏𝑛6∗𝑂(𝑋) = {∅,𝑋, ((0.6, 0.6), (0.6, 0.6), (0.4, 0))}. Then the 6-neutrosophic supra topological open sets are  6𝜏𝑛∗𝑂(𝑋) = {∅,𝑋, ((0.5, 0.6), (0.5, 0.6), (0.6, 0.5)), ((0.7, 0.7), (0.8, 0.7), (0.9,0.3)), ((0.6, 0.3), (0.5, 0.2), (0.4, 0)), ((0.7, 0.7), (0.8, 0.7), (0.6 , 0.3)), ((0.7, 0.7), (0.8, 0.7), (0.4, 0)), ((0.6, 0.6), (0.6, 0.6), (0.4, 0))},  the 6-neutrosophic supra 

topological closed sets are 6𝜏𝑛∗𝐶(𝑋) = {∅,𝑋, ((0.5, 0.4), (0.5, 0.4), (0.4, 0.5)), ((0.3, 0.3), (0.2, 0.3), (0.1,0.7)), ((0.4, 0.7), (0.5, 0.8), (0.6, 1)), ((0.3, 0.3), (0.2, 0.3), (0.4 , 0.7)), ((0.3, 0.3), (0.2, 0.3), (0.6, 1)), ((0.4, 0.4), (0.4, 0.4), (0.6, 1))}.  Here the neutrosophic set 𝐴 = ((0.6, 0.6), (0.6, 0.6), (0.4, 0)) is 6𝜏𝑛∗- open in (𝑋, 6𝜏𝑛∗), but it is not 6𝜏𝑛∗𝑟-open. 
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Theorem 16. Every 𝑁𝜏𝑛∗𝑟-closed set is 𝑁𝜏𝑛∗-closed.

Proof: Assume that 𝐴 is 𝑁𝜏𝑛∗𝑟-closed, then 𝐴 = 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)) which is a 𝑁𝜏𝑛∗-closed set containing𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴).
Example 17: The converse of the above theorem need not be true: Consider the example 15, here the 
neutrosophic set 𝐴 = ((0.4, 0.4), (0.4, 0.4), (0.6, 1)) is -closed in (𝑋, 6𝜏𝑛∗), but it is not 6𝜏𝑛∗𝑟-closed.

Theorem 18. Let (𝑋, 𝑁𝜏𝑛∗) be a 𝑁-neutrosophic supra topological space and 𝐴 be a neutrosophic subset of𝑋. Then the following statements are true: 
(1) 𝑁𝜏𝑛∗𝑟-open set is 𝑁𝜏𝑛∗𝛼-open.
(2) 𝑁𝜏𝑛∗𝑟-open set is 𝑁𝜏𝑛∗ semi-open.
(3) 𝑁𝜏𝑛∗𝑟-open set is 𝑁𝜏𝑛∗ pre-open.
(4) 𝑁𝜏𝑛∗𝑟-open set is 𝑁𝜏𝑛∗𝛽-open.

Proof: The proof follows from the fact that every 𝑁𝜏𝑛∗𝑟-open set is 𝑁𝜏𝑛∗-open, every 𝑁𝜏𝑛∗-open set is𝑁𝜏𝑛∗𝛼-open, 𝑁𝜏𝑛∗semi-open, 𝑁𝜏𝑛∗pre-open and 𝑁𝜏𝑛∗𝛽-open.

Example 19: The converse of the above theorem need not be true: For example, let 𝑋 = {𝑎, 𝑏}, 𝑁 = 4, 
consider the neutrosophic supra topologies are 𝜏𝑛1∗𝑂(𝑋) = {∅, 𝑋} ,𝜏𝑛2∗𝑂(𝑋) = {∅, 𝑋, ((0.7, 0.3), (0.4, 0.4), (0.2, 0))}, 𝜏𝑛3∗𝑂(𝑋) = {∅, 𝑋, ((0, 0.2), (0, 0), (1, 1))},𝜏𝑛4∗𝑂(𝑋) = {∅, 𝑋, ((0.5, 0.5), (0.2, 0.2), (0.1, 0.1))}. Then the quad-neutrosophic supra topological open sets

are 4𝜏𝑛∗𝑂(𝑋) = {∅, 𝑋, ((0.7, 0.3), (0.4, 0.4), (0.2, 0)), ((0, 0.2), (0, 0), (1, 1)), ((0.5, 0.5), (0.2, 0.2), (0.1, 0.1)),((0.7, 0.5), (0.4, 0.4), (0, 0))}.  Here the neutrosophic set 𝐴 = ((0.5, 0.5), (0.2, 0.2), (0.1, 0.1))  is 4𝜏𝑛∗𝛼 -
open, 4𝜏𝑛∗semi-open, 4𝜏𝑛∗pre-open, 4𝜏𝑛∗𝛽-open but not 4𝜏𝑛∗𝑟-open.

Remark: The following diagram shows the relationship between the 𝑁-neutrosophic supra topological open 
sets. 

 

 

 

Theorem 20. Let (𝑋, 𝑁𝜏𝑛∗) be a 𝑁-neutrosophic supra topological space and 𝐴 be a neutrosophic subset
of 𝑋. Then 

𝑁𝜏𝑛∗-open

𝑁𝜏𝑛∗pre-open 𝑁𝜏𝑛∗𝛼-open

𝑁𝜏𝑛∗𝛽-open

𝑁𝜏𝑛∗𝑟-open

𝑁𝜏𝑛∗semi-open
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(1) The 𝑁-neutrosophic supra closure of a 𝑁-neutrosophic supra-open set is a 𝑁-neutrosophic supra
regular-closed set.

(2) The 𝑁-neutrosophic supra interior of a 𝑁-neutrosophic supra-closed set is a 𝑁-neutrosophic supra
regular-open set.

Proof: 
(1) Assume that the neutrosophic set 𝐴   is neutrosophic supra-open set and 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)) ⊆𝑐𝑙𝑁𝜏𝑛∗(𝐴) . Then 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))) ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝐴) . Since 𝐴 ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝐴) ,𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)) ⊇ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)  and 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))) ⊇ 𝑐𝑙𝑁𝜏𝑛∗(𝐴) . Thus𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))) = 𝑐𝑙𝑁𝜏𝑛∗(𝐴) . Therefore 𝑁 -neutrosophic supra closure of a 𝑁 -

neutrosophic supra-open set is a 𝑁-neutrosophic supra regular-closed set. 
(2) Assume that the neutrosophic set 𝐴  is neutrosophic supra-closed set and 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)) ⊇𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) .Then 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))) ⊇ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) . Since 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ,𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)) ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝐴) . Then 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))) ⊆ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) . Thus𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))) = 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) . Therefore 𝑁 -neutrosophic supra interior of a 𝑁 -

neutrosophic supra-closed set is a 𝑁-neutrosophic supra regular-open set.

Remark: Union of two 𝑁 -neutrosophic supra regular-open set is need not be a 𝑁 -neutrosophic supra 
regular-open set. 

Example 21: Let 𝑋 = {𝑎, 𝑏}. For 𝑁 = 3, consider 𝜏𝑛1∗𝑂(𝑋) = {∅,𝑋, ((0.3, 0.2), (0.4, 0.3),(0.6, 0))},  𝜏𝑛2∗𝑂(𝑋) = {∅,𝑋, ((0.7, 0.8), (0.6, 0.7), (0.4, 1))} and  𝜏𝑛3∗𝑂(𝑋) ={∅,𝑋, ((0.7, 0.8), (0.6, 0.7), (0.4, 0))} . Then we have 3𝜏𝑛∗𝑂(𝑋) = {∅, 𝑋, ((0.3, 0.2),(0.4, 0.3), (0.6, 0)), ((0.7, 0.8), (0.6, 0.7), (0.4, 1)), ((0.7, 0.8), (0.6, 0.7), (0.4, 0))}.  Here the

neutrosophic sets 𝐴 = ((0.3, 0.2), (0.4, 0.3), (0.6, 0)) and 𝐵 = ((0.7, 0.8), (0.6, 0.7), (0.4, 1)) are 3𝜏𝑛∗𝑟-

open sets on (𝑋, 3𝜏𝑛∗), but 𝐴 ∪ 𝐵 is not 3𝜏𝑛∗𝑟-open set.

Observation: The collection of all 𝑁-neutrosphic 𝛼-open (resp. 𝑁-neutrosphic semi-open, 𝑁-neutrosphic 

pre-open, 𝑁-neutrosphic 𝛽-open) sets forms a 𝑁-neutrosphic supra topology on 𝑋, but the collection of all 𝑁-neutrosophic supra regular-open set need not form a 𝑁 -neutrosophic supra topology, that is, 𝑁𝜏𝑛∗𝑟𝑂(𝑋)
need not be a  𝑁-neutrosophic supra topology on 𝑋.  

SOME OPERATORS IN 𝑵-NEUTROSOPHIC SUPRA TOPOLOGY 

Definition 22. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁-Neutrosophic supra topological space and 𝐴 be a neutrosophic

subset of 𝑋. 
(1) The 𝑁𝜏𝑛∗-𝛼 closure of 𝐴, denoted by 𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴), and defined by𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴) =∩ {𝐹 ∶ 𝐴 ⊆ 𝐹 and 𝐹 ∈ 𝑁𝜏𝑛∗𝛼𝐶(𝑋)}.
(2) The 𝑁𝜏𝑛∗-semi closure of 𝐴, denoted by 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴), and defined by𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴) =∩ {𝐹 ∶ 𝐴 ⊆ 𝐹 and 𝐹 ∈ 𝑁𝜏𝑛∗𝑆𝐶(𝑋)}.
(3) The 𝑁𝜏𝑛∗ -pre closure of 𝐴, denoted by 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴), and defined by𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴) =∩ {𝐹 ∶ 𝐴 ⊆ 𝐹 and 𝐹 ∈ 𝑁𝜏𝑛∗𝑃𝐶(𝑋)}.
(4) The 𝑁𝜏𝑛∗-𝛽closure of 𝐴, denoted by 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴), and defined by𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴) =∩ {𝐹 ∶ 𝐴 ⊆ 𝐹 and 𝐹 ∈ 𝑁𝜏𝑛∗𝛽𝐶(𝑋)}.
(5) The 𝑁𝜏𝑛∗regular closure of 𝐴 is defined by𝑟𝑐𝑙𝑁𝜏𝑛∗(𝐴) = ∩ {𝐹 ∶  𝐴 ⊆ 𝐹 and 𝐹 is 𝑁𝜏𝑛∗𝑟- closed}.

Notation: 𝑁-neutrosophic supra 𝑘-closed set (shortly 𝑁𝜏𝑛∗𝑘-closed) is can be any one of the following:𝑁𝜏𝑛∗𝛼-closed set, 𝑁𝜏𝑛∗semi-closed set, 𝑁𝜏𝑛∗pre-closed set, 𝑁𝜏𝑛∗𝛽-closed set and 𝑁𝜏𝑛∗𝑟 -closed set.

Theorem 23. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁𝜏𝑛∗-topological space on 𝑋 and let 𝐴, 𝐵 ∈ 𝑁(𝑋). Let 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) is
the intersection of all 𝑁𝜏𝑛∗𝑘-closed sets containing 𝐴. Then

(1) 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) is the smallest 𝑁𝜏𝑛∗𝑘-closed set which containing 𝐴.
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(2) 𝐴 is 𝑁𝜏𝑛∗𝑘-closed if and only if 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) = 𝐴.
In particular, 𝑘𝑐𝑙𝑁𝜏𝑛∗(∅) = ∅  and 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝑋) = 𝑋.

(3) 𝐴 ⊆ 𝐵 ⇒ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵).
(4) 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴 ∪ 𝐵) ⊇ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ∪ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵).
(5) 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴 ∩ 𝐵) ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ∩ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵).
(6) 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴)) = 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴).

Proof: 

(1) Since the intersection of any collection of 𝑁𝜏𝑛∗𝑘 -closed set is also 𝑁𝜏𝑛∗𝑘 -closed, then𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) is a 𝑁𝜏𝑛∗𝑘  -closed set. By definition 22, 𝐴 ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴).  Now let 𝐵  be any𝑁𝜏𝑛∗𝑘 -closed set containing 𝐴.  Then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) =∩ {𝐹 ∶ 𝐴 ⊆ 𝐹  and 𝐹  is 𝑁𝜏𝑛∗𝑘 -

closed} ⊆ 𝐵. Therefore, 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) is the smallest 𝑁𝜏𝑛∗𝑘 -closed set containing 𝐴.
(2) Assume 𝐴 is 𝑁𝜏𝑛∗𝑘-closed, then 𝐴 is the only smallest 𝑁𝜏𝑛∗𝑘 -closed set containing itself and

therefore, 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) = 𝐴.  Conversely, assume 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) = 𝐴.  Then 𝐴  is the smallest𝑁𝜏𝑛∗𝑘-closed set containing itself. Therefore, 𝐴 is 𝑁𝜏𝑛∗𝑘-closed. In particular, since ∅ and 𝑋
are 𝑁𝜏𝑛∗𝑘-closed sets, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(∅) = ∅ and 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝑋) = 𝑋.

(3) Assume 𝐴 ⊆ 𝐵, and since 𝐵 ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵), then 𝐴 ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵). Since 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) is the

smallest 𝑁𝜏𝑛∗𝑘-closed set containing 𝐴. Therefore, 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵).
(4) Since 𝐴 ⊆ 𝐴 ∪ 𝐵  and 𝐵 ⊆ 𝐴 ∪ 𝐵.  Then by (3), we have 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ∪ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵) ⊆𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴 ∪ 𝐵).
(5) Since 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴 ∩ 𝐵) ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ∩ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐵).
(6) Since 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) is a 𝑁𝜏𝑛∗𝑘-closed set, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴)) = 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴).

Remark: The first two conditions of the above theorem need not be true for 𝑟𝑐𝑙𝑁𝜏𝑛∗(𝐴) because

intersection of two 𝑁𝜏𝑛∗𝑟-closed sets need not be a 𝑁𝜏𝑛∗𝑟 -closed. The equalities (4) and (5) of the

above theorem are not true in 𝑁 -neutrosophic supra topological spaces as shown in the following 

examples. 

Example 24: Let 𝑋 = {𝑎, 𝑏}, 𝑁 = 2, 𝜏𝑛1∗𝑂(𝑋) = {∅, 𝑋, ((0.3, 0.4), (0.3, 0.4), (0.4, 0.5))} and𝜏𝑛2∗𝑂(𝑋) = {∅, 𝑋, ((0.4, 0.2), (0.4, 0.2), (0.5, 0.4))}. Then the bi-neutrosophic supra topology is2𝜏𝑛∗𝑂(𝑋) = {∅,𝑋, ((0.3, 0.4), (0.3, 0.4), (0.4, 0.5)), ((0.4, 0.2), (0.4, 0.2), (0.5, 0.4)) , ((0.4, 0.4), (0.4, 0.4), (0.4, 0.4))} , 2𝜏𝑛∗𝐶(𝑋) = {∅,𝑋, ((0.7, 0.6), (0.7, 0.6), (0.6, 0.5)) ,((0.6, 0.8), (0.6, 0.8), (0.5, 0.6)), ((0.6, 0.6), (0.6, 0.6), (0.6, 0.6))}. Let   𝐴 =((0.6, 0.4), (0.6, 0.4), (0.7, 0.4))  and   𝐵 = ((0.6, 0.4), (0.6, 0.4), (0.3, 0.6))  be two neutrosophic

sets on 𝑋, then 𝑠𝑐𝑙 2𝜏𝑛∗(𝐴 ∩ 𝐵) = ((0.6, 0.4), (0.6, 0.4), (0.7, 0.6)) = 𝛼𝑐𝑙 2𝜏𝑛∗(𝐴 ∩ 𝐵)
and 𝑠𝑐𝑙 2𝜏𝑛∗(𝐴) ∩ 𝑠𝑐𝑙 2𝜏𝑛∗(𝐵) = 𝑋 = 𝛼𝑐𝑙 2𝜏𝑛∗(𝐴) ∩ 𝛼𝑐𝑙 2𝜏𝑛∗(𝐵). Therefore 𝑠𝑐𝑙 2𝜏𝑛∗(𝐴 ∩ 𝐵) ≠𝑠𝑐𝑙 2𝜏𝑛∗(𝐴) ∩ 𝑠𝑐𝑙 2𝜏𝑛∗(𝐵)  and 𝛼𝑐𝑙 2𝜏𝑛∗(𝐴 ∩ 𝐵) ≠ 𝛼𝑐𝑙 2𝜏𝑛∗(𝐴) ∩ 𝛼𝑐𝑙 2𝜏𝑛∗(𝐵).  Also  𝑝𝑐𝑙 2𝜏𝑛∗(𝐴 ∪𝐵) = 𝑋 = 𝛽𝑐𝑙 2𝜏𝑛∗(𝐴 ∪ 𝐵) and  𝑝𝑐𝑙 2𝜏𝑛∗(𝐴) ∪ 𝑝𝑐𝑙 2𝜏𝑛∗(𝐵)  = ((0.6, 0.4), (0.6, 0.4), (0.3, 0.4)) =𝛽𝑐𝑙 2𝜏𝑛∗(𝐴) ∪ 𝛽𝑐𝑙 2𝜏𝑛∗(𝐵) . Therefore 𝑝𝑐𝑙 2𝜏𝑛∗(𝐴 ∪ 𝐵) ≠ 𝑝𝑐𝑙 2𝜏𝑛∗(𝐴) ∪ 𝑝𝑐𝑙 2𝜏𝑛∗(𝐵)  and𝛽𝑐𝑙 2𝜏𝑛∗(𝐴 ∪ 𝐵) ≠ 𝛽𝑐𝑙 2𝜏𝑛∗(𝐴) ∪ 𝛽𝑐𝑙 2𝜏𝑛∗(𝐵).
Example 25: Consider the example 24, if we take the neutrosophic 

sets 𝐶 = ((0.6, 0.5), ( 0.7, 0.4), (0.3, 0.5)) and 𝐷 = ((0.7, 0.4), (0.6, 0.5), (0.3, 0.6)), then 𝑝𝑐𝑙 2𝜏𝑛∗(𝐶 ∩ 𝐷) = ((0.6, 0.4), (0.6, 0.4), (0.3, 0.6)) = 𝛽𝑐𝑙 2𝜏𝑛∗(𝐶 ∩ 𝐷) and 𝑝𝑐𝑙 2𝜏𝑛∗(𝐶) ∩𝑝𝑐𝑙 2𝜏𝑛∗(𝐷) = ((0.7, 0.4), (0.6, 0.5), (0.3, 0.6)) = 𝛽𝑐𝑙 2𝜏𝑛∗(𝐶) ∩ 𝛽𝑐𝑙 2𝜏𝑛∗(𝐷).
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Therefore   𝑝𝑐𝑙 2𝜏𝑛∗(𝐶 ∩ 𝐷) ≠ 𝑝𝑐𝑙 2𝜏𝑛∗(𝐶) ∩ 𝑝𝑐𝑙 2𝜏𝑛∗(𝐷) and  𝛽𝑐𝑙 2𝜏𝑛∗(𝐶 ∩ 𝐷) ≠ 𝛽𝑐𝑙 2𝜏𝑛∗(𝐶) ∩ 𝛽𝑐𝑙 2𝜏𝑛∗(𝐷). 
Example 26: Consider the example 24, let 𝐸 = ((0.7, 0.6), (0.7, 0.6), (0.6, 0.5)) and  𝐹   = 

 ((0.6, 0.8), (0.6, 0.8), (0.5, 0.6))  be neutrosophic sets on 𝑋 , then 𝑠𝑐𝑙 2𝜏𝑛∗(𝐸 ∪ 𝐹) = 𝑋 = 𝛼𝑐𝑙 2𝜏𝑛∗(𝐸 ∪ 𝐹)  and  𝑠𝑐𝑙 2𝜏𝑛∗(𝐸) ∪ 𝑠𝑐𝑙 2𝜏𝑛∗(𝐹) = ((0.7, 0.8), (0.7, 0.8), (0.5, 0.5))  =𝛼𝑐𝑙 2𝜏𝑛∗(𝐸) ∪  𝛼𝑐𝑙 2𝜏𝑛∗(𝐹).  Therefore 𝑠𝑐𝑙 2𝜏𝑛∗(𝐸 ∪ 𝐹) ≠ 𝑠𝑐𝑙 2𝜏𝑛∗(𝐸) ∪ 𝑠𝑐𝑙 2𝜏𝑛∗(𝐹)  and 𝛼𝑐𝑙 2𝜏𝑛∗(𝐸 ∪ 𝐹)  ≠ 𝛼𝑐𝑙 2𝜏𝑛∗(𝐸) ∪ 𝛼𝑐𝑙 2𝜏𝑛∗(𝐹). 
Example 27: Let 𝑋  = {𝑎, 𝑏}, 𝑁 = 3, 𝜏𝑛1∗𝑂(𝑋) = {∅, 𝑋, ((0.3, 0.2), (0.4, 0.3), (0.6, 0))},  𝜏𝑛2∗𝑂(𝑋) = {∅, 𝑋, ((0.7, 0.8), (0.6, 0.7), (0.4, 1))} , and 𝜏𝑛3∗𝑂(𝑋) = {∅, 𝑋, ((0.7, 0.8), (0.6, 0.7), (0.4, 0))}. 
Then the tri-neutrosophic supra topology is 3𝜏𝑛∗𝑂(𝑋) = {∅,𝑋, ((0.3, 0.2), (0.4, 0.3), (0.6, 0) ) , ((0.7, 0.8), (0.6, 0.7), (0.4, 1)), ((0.7, 0.8), (0.6, 0.7), (0.4, 0))}, 3𝜏𝑛∗𝐶(𝑋) = {∅, 𝑋, ((0.7, 0.8), (0.6, 0.7), (0.4, 1)), ((0.3, 0.2), (0.4, 0.3), (0.6, 0)), ((0.3, 0.2), (0.4, 0.3), (0.6, 1))}.  Let  𝐴 = ((0.3, 0.2), (0.4, 0.3), (0.6, 0)) and 𝐵 = ((0.7, 0.8), (0.6, 0.7), (0.4, 1)) be two neutrosophic sets on 𝑋.  Then 𝑟𝑐𝑙 3𝜏𝑛∗(𝐴 ∪ 𝐵) = 𝑋  and 𝑟𝑐𝑙 3𝜏𝑛∗(𝐴) ∪ 𝑟𝑐𝑙 3𝜏𝑛∗(𝐵) =  ((0.7, 0.8), (0.6, 0.7), (0.4, 0)). 
Therefore 𝑟𝑐𝑙 3𝜏𝑛∗(𝐴 ∪ 𝐵) ≠ 𝑟𝑐𝑙 3𝜏𝑛∗(𝐴) ∪ 𝑟𝑐𝑙 3𝜏𝑛∗(𝐵). 
Example 28: Consider the example 27, let 𝐶 = ((0.9, 0.8), (0.6, 0.8), (0.4, 1)) and 𝐷 =  ((0.7, 0.9), (0.7,0.7), (0.4, 1)).  Then 𝑟𝑐𝑙 3𝜏𝑛∗(𝐶 ∩ 𝐷) = ((0.7, 0.8), (0.6, 0.7), (0.4, 1))  and 𝑟𝑐𝑙 3𝜏𝑛∗(𝐶) ∩  𝑟𝑐𝑙 3𝜏𝑛∗(𝐵) = 𝑋. Therefore 𝑟𝑐𝑙 3𝜏𝑛∗(𝐶 ∩ 𝐷) ≠ 𝑟𝑐𝑙 3𝜏𝑛∗(𝐶) ∩ 𝑟𝑐𝑙 3𝜏𝑛∗(𝐷). 
Theorem 29. Let (𝑋,𝑁𝜏𝑛∗)  be a 𝑁 -neutrosophic supra topological space on 𝑋  and let 𝐴  be a 

neutrosophic subset of 𝑋. Then 𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊇ 𝐴 ∪ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))). 
Proof: Since   𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴)  is 𝑁𝜏𝑛∗𝛼 -closed, , then 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)))  )) ⊆𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗  (𝑐𝑙𝑁𝜏𝑛∗(𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴)))) ⊆ 𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴). Therefore  𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊇ 𝐴 ∪ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))). 
Theorem 30. Let (𝑋, 𝑁𝜏𝑛∗) be a 𝑁-neutrosophic supra topological space on 𝑋 and let 𝐴 be a neutrosophic 

subset of 𝑋. Then 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊇ 𝐴 ∪ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)).. 
Proof: Since  𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴) is 𝑁𝜏𝑛∗semi-closed, then  𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)) ⊆ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗ (𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴))) ⊆ 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴). Therefore 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊇ 𝐴 ∪ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)). 
Theorem 31. Let (𝑋,𝑁𝜏𝑛∗)  be a 𝑁  -neutrosophic supra topological space on 𝑋  and let 𝐴  be a 

neutrosophic subset of 𝑋. Then 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊇ 𝐴 ∪ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)). 
Proof: Since  𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴) is 𝑁𝜏𝑛∗ pre-closed, then 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)) ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗( 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴))) ⊆ 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴) and hence  𝐴 ∪ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)) ⊆ 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴). 
Theorem 32. Let (𝑋,𝑁𝜏𝑛∗)  be a 𝑁 -neutrosophic supra topological space on 𝑋  and let 𝐴 be a 

neutrosophic subset of 𝑋. Then 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊇ 𝐴 ∪ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))). 
Proof: Since   𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴)  is 𝑁𝜏𝑛∗𝛽  -closed,  𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))) ⊆ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗ (𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴)))) ⊆ 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴) and hence 𝐴 ∪ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))) ⊆ 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴). 
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Definition 33. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁-Neutrosophic supra topological space and 𝐴 be a neutrosophic set 

of 𝑋. 
(1) The 𝑁𝜏𝑛∗𝛼 interior of 𝐴, is defined by 𝛼 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = ∪ {𝐺 ∶ 𝐺 ⊆ 𝐴 and 𝐺 ∈ 𝑁𝜏𝑛∗𝛼𝑂(𝑋)}. 
(2) The 𝑁𝜏𝑛∗semi interior of 𝐴, is defined by 𝑠𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = ∪ {𝐺 ∶ 𝐺 ⊆ 𝐴 and 𝐺 ∈ 𝑁𝜏𝑛∗𝑆𝑂(𝑋)}. 
(3) The 𝑁𝜏𝑛∗pre interior of 𝐴, is defined by 𝑝𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = ∪ {𝐺 ∶ 𝐺 ⊆ 𝐴 and 𝐺 ∈ 𝑁𝜏𝑛∗𝑃𝑂(𝑋)}. 
(4) The 𝑁𝜏𝑛∗𝛽 interior of 𝐴, is defined by 𝛽𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = ∪ {𝐺: 𝐺 ⊆ 𝐴 and 𝐺 ∈ 𝑁𝜏𝑛∗𝛽𝑂(𝑋)}. 
(5) The 𝑁𝜏𝑛∗ regular interior of 𝐴 is defined by 𝑟𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = ∪ {𝐺 ∶  𝐺 ⊆ 𝐴 and 𝐺 is 𝑁𝜏𝑛∗𝑟 -open}. 

Notation: 𝑁 -neutrosophic supra  𝑘 -open set (shortly 𝑁𝜏𝑛∗𝑘 -open) is can be any one of the 

following: 𝑁𝜏𝑛∗𝛼-open set, 𝑁𝜏𝑛∗semi-open set, 𝑁𝜏𝑛∗pre-open set, 𝑁𝜏𝑛∗𝛽-open set and 𝑁𝜏𝑛∗𝑟-open set. 

Theorem 34. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁𝜏𝑛∗-topological space on 𝑋 and let 𝐴, 𝐵 ∈ 𝑁(𝑋). Let 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) 
is the union of all 𝑁𝜏𝑛∗𝑘-open sets contained in 𝐴. Then 

(1) 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) is the largest 𝑁𝜏𝑛∗𝑘-open set which contained in 𝐴. 
(2) 𝐴  is 𝑁𝜏𝑛∗𝑘 -open if and only if 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = 𝐴.  In particular, 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(∅) = ∅  and 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋) = 𝑋. 
(3) 𝐴 ⊆ 𝐵 ⇒ 𝑁𝜏𝑛∗-𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝑁𝜏𝑛∗-𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵). 
(4) 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴 ∪ 𝐵) ⊇ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ∪ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵). 
(5) 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴 ∩ 𝐵) ⊆ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ∩ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵). 
(6) 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)) = 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴). 

Proof: 

(1) Since the union of any collection of 𝑁𝜏𝑛∗𝑘-open set is also 𝑁𝜏𝑛∗𝑘-open, then 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) is a 𝑁𝜏𝑛∗𝑘 -open set. By definition 33, 𝐴 ⊇ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴).  Now let 𝐵 be any 𝑁𝜏𝑛∗𝑘 -open set 

contained in 𝐴.  Then 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) =∪ {𝐺 ∶ 𝐺 ⊆ 𝐴  and 𝐺  is 𝑁𝜏𝑛∗𝑘 -open} ⊇ 𝐵.  Therefore, 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) is the largest 𝑁𝜏𝑛∗𝑘-open set contained in 𝐴. 
(2) Assume 𝐴 is 𝑁𝜏𝑛∗𝑘-open, then 𝐴 is the only largest 𝑁𝜏𝑛∗𝑘-open set contained in itself and 

therefore, 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = 𝐴.  Conversely, assume 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = 𝐴.  Then 𝐴  is the largest 𝑁𝜏𝑛∗𝑘 -open set contained in itself. Therefore, 𝐴 is 𝑁𝜏𝑛∗𝑘-open. In particular, since ∅ and 𝑋 

are 𝑁𝜏𝑛∗𝑘 -open sets, then 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(∅) = ∅ and 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋) = 𝑋. 
(3) Assume 𝐴 ⊆ 𝐵 and since 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵) ⊆ 𝐵,  then 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴.  Since 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵)  is 

the largest 𝑁𝜏𝑛∗𝑘-open set contained in 𝐵. Therefore, 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵). 
(4) Since 𝐴 ⊆ 𝐴 ∪ 𝐵 and 𝐵 ⊆ 𝐴 ∪ 𝐵. Then 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ∪ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵) ⊆ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴 ∪ 𝐵). 
(5) Since 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵, then 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴 ∩ 𝐵) ⊆ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ∩ 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐵). 
(6) Since 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) is a 𝑁𝜏𝑛∗𝑘-open set, then 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)) = 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴). 

Remark: The first two conditions of the above theorem need not be true for 𝑟𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴), because union 

of two 𝑁𝜏𝑛∗𝑟-open sets need not be a 𝑁𝜏𝑛∗𝑟-open. The following examples shows the equalities (4) and 

(5) of the above theorem are not true in 𝑁 -neutrosophic supra topological spaces. 

Example 35: Let 𝑋 = {𝑎, 𝑏},𝑁 = 3, 𝜏𝑛1∗𝑂(𝑋) = {∅,𝑋, ((0.3, 0.4), (0.3, 0.4), (0.4, 0.5))}, 𝜏𝑛2∗𝑂(𝑋) = {∅,𝑋, ((0.4, 0.2), (0.4, 0.2), 0.5, 0.4))} and 𝜏𝑛3∗𝑂(𝑋) =  
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{∅, 𝑋, ((0.4, 0.4), (0.4, 0.4), (0.4, 0.4))}. Then tri-neutrosophic supra topology 3𝜏𝑛∗𝑂(𝑋) = {∅, 𝑋, ((0.3, 0.4), (0.3, 0.4), (0.4, 0.5)), ((0.4, 0.2), (0.4, 0.2), (0.5, 0.4)), ((0.4, 0.4), (0.4, 0.4), (0.4, 0.4))}3𝜏𝑛∗𝐶(𝑋)= {∅,𝑋, ((0.7, 0.6), (0.7, 0.6), (0.6, 0.5)), ((0.6, 0.8), (0.6, 0.8), (0.5, 0.6)), ((0.6, 0.6), (0.6, 0.6), (0.6, 0.6))}.  Let 𝐴 = ((0.4, 0.6), (0.4, 0.6), (0.3, 0.6)) and 𝐵 = ((0.4, 0.6), (0.4, 0.6), (0.7, 0.4)) be two neutrosophic sets on 𝑋. Then 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∪ 𝐵) =  

 ((0.4, 0.6), (0.4, 0.6), (0.3, 0.4)) = 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∪ 𝐵) and 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∪ 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐵) = ∅ = 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∪ 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐵). Therefore 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∪ 𝐵) ≠ 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∪  𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐵) and  𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∪ 𝐵) ≠ 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∪ 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐵) . We also have 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∩ 𝐵) = ∅ = 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∩ 𝐵) and  𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∩ 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐵) = ((0.4, 0.6), (0.4,0.6), (0.7, 0.6)) = 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∩ 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐵). Therefore 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∩ 𝐵) ≠ 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∩ 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐵) and  𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∩ 𝐵) ≠ 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∩ 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐵). 
Example 36: Consider the example 35, let 𝐶 = ((0.4, 0.5), (0.3, 0.6), (0.7, 0.5)) and 𝐷 = ((0.3, 0.6), (0.4, 0.5), (0.7, 0.4)) be two neutrosophic sets on 𝑋. Then 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐶 ∪ 𝐷) = ((0.4, 0.6), (0.4, 0.6), (0.7, 0.4)) = 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐶 ∪ 𝐷) and 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐶) ∪ 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐷) =  ((0.3, 0.6), (0.4, 0.5), (0.7, 0.4)) = 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐶) ∪ 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐷). Therefore 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐶 ∪ 𝐷) ≠ 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐶) ∪ 𝑝𝑖𝑛𝑡 3𝜏𝑛∗(𝐷) and 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐶 ∪ 𝐷) ≠ 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐶) ∪ 𝛽𝑖𝑛𝑡 3𝜏𝑛∗(𝐷). 
Example 37: Consider the example 35, let 𝐸 = ((0.3, 0.4), (0.3, 0.4), (0.4, 0.5)) and 𝐹 = ((0.4, 0.2), (0.4, 0.2), (0.5, 0.4)) be two neutrosophic sets on 𝑋. Then  𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐸 ∩ 𝐹) = ∅ = 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐸 ∩ 𝐹) and 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐸) ∩ 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐹) = ((0.3, 0.2), (0.3, 0.2), (0.5, 0.5)) =  𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐸) ∩ 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐹). Therefore 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐸 ∩ 𝐹) ≠ 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐸) ∩ 𝑠𝑖𝑛𝑡 3𝜏𝑛∗(𝐹) and  𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐸 ∩ 𝐹) ≠ 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐸) ∩ 𝛼𝑖𝑛𝑡 3𝜏𝑛∗(𝐹). 
Example 38:  Consider the example 35, 𝑟𝑖𝑛𝑡 3𝜏𝑛∗(𝐴 ∩ 𝐵) = ∅ ≠ 𝑟𝑖𝑛𝑡 3𝜏𝑛∗(𝐴) ∩ 𝑟𝑖𝑛𝑡 3𝜏𝑛∗(𝐵) = ((0.3, 0.2), (0.4, 0.3), (0.6, 1). 
Example 39: Consider the example 35, let 𝐸 = ((0.3, 0.1), (0.3, 0.3), (0.6, 0))  and 𝐹 =((0.2, 0.2), (0.4, 0.2), (0.6, 0)) be a neutrosophic set on 𝑋. Then 𝑟𝑖𝑛𝑡 3𝜏𝑛∗(𝐸 ∪ 𝐹) =  ((0.3, 0.2), (0.4, 0.3), (0.6, 0)) ≠ 𝑟𝑖𝑛𝑡 3𝜏𝑛∗(𝐸) ∪ 𝑟𝑖𝑛𝑡 3𝜏𝑛∗(𝐹) = ∅.  
Theorem 40. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁 -neutrosophic supra topological space on  𝑋  and let 𝐴  be a 

neutrosophic subset of 𝑋. Then 

(1) 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋 − 𝐴) = 𝑋 − 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴). 
(2) 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴) = 𝑋 − 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴). 

 

Proof: (1). We know that 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) =∩ {𝐺 ∶ 𝐺𝑐 ∈ 𝑁𝜏𝑛∗𝑘𝑂(𝑋), 𝐺 ⊇ 𝐴} , (𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴))𝑐  =∪{𝐺𝑐 ∶ 𝐺𝑐 is a 𝑁-neutrosophic supra 𝑘-open in 𝑋 and 𝐺𝑐 ⊆ 𝐴𝑐} = 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴𝑐). Thus, (𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴))𝑐 = 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴𝑐). 
(2). We also know that 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) =∪ {𝐺 ∶  𝐺 ∈ 𝑁𝜏𝑛∗𝑘𝑂(𝑋), 𝐺 ⊆ 𝐴}, (𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))𝑐 =∩ {𝐺𝑐 ∶ 𝐺𝑐  is a 𝑁-neutrosophic supra 𝑘-closed in 𝑋 and 𝐺𝑐 ⊇ 𝐴𝑐} = 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴𝑐).  Thus, (𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))𝑐 = 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴𝑐). 
Remark:  If we take the complement of either side of part (1) and part (2) of the previous theorems, we 

get 
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(1) 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) = 𝑋 − 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴). 
(2) 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) = 𝑋 − 𝑘𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋 − 𝐴). 

 

Theorem 41. Let (𝑋,𝑁𝜏𝑛∗)  be a 𝑁 -neutrosophic supra topological space on 𝑋  and let 𝐴  be a 

neutrosophic subset of 𝑋. Then 𝛼𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴))). 
Proof: 𝛼𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴) ⊇ (𝑋 − 𝐴) ∪ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴))),  then 𝑋 − 𝛼𝑐𝑙𝑁𝜏𝑛∗(𝑋 −𝐴) ⊆ ⊆ (𝑋 − (𝑋 − 𝐴)) ∩ (𝑋 − 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴)))).  Hence  𝛼𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)). 
Theorem 42. Let (𝑋,𝑁𝜏𝑛∗)  be a 𝑁 -neutrosophic supra topological space on 𝑋  and let 𝐴  be a 

neutrosophic subset of 𝑋. Then 𝑠𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)). 
Proof: 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴) ⊇ (𝑋 − 𝐴) ∪ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴)), then 𝑋 − 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴) ⊆ (𝑋 − 

 (𝑋 − 𝐴)) ∩ (𝑋 − 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴))).  Hence 𝑠𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑐𝑙𝑁𝜏𝑛∗ (𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴)). 
Theorem 43. Let (𝑋,𝑁𝜏𝑛∗)  be a 𝑁 -neutrosophic supra topological space on 𝑋  and let 𝐴 be a 

neutrosophic subset of 𝑋. Then 𝑝𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)). 
Proof: 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴) ⊇ (𝑋 − 𝐴) ∪ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋 − 𝐴)), then 𝑋 − 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴) ⊆ (𝑋 −  (𝑋 − 𝐴)) ∩ (𝑋 − 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋 − 𝐴))).  Hence 𝑝𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)). 
Theorem 44. Let (𝑋,𝑁𝜏𝑛∗)  be a 𝑁 -neutrosophic supra topological space on 𝑋  and let 𝐴  be a 

neutrosophic subset of 𝑋. Then 𝛽𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴))). 
Proof: 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝑋 − 𝐴) ⊇ (𝑋 − 𝐴) ∪ 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋 − 𝐴))), then  𝑋 − 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝑋 −𝐴) ⊆ (𝑋 − (𝑋 − 𝐴)) ∩ (𝑋 − 𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑋 − 𝐴)))).  Hence 𝛽𝑖𝑛𝑡𝑁𝜏𝑛∗(𝐴) ⊆ 𝐴 ∩ 𝑐𝑙𝑁𝜏𝑛∗(𝑖𝑛𝑡𝑁𝜏𝑛∗(𝑐𝑙𝑁𝜏𝑛∗(𝐴)). 
Theorem 45. Let (𝑋,𝑁𝜏𝑛∗) be a 𝑁 -Neutrosophic supra topological space on  𝑋  and let 𝐴 be a 

neutrosophic subset of 𝑋. Then  

(1) 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑟𝑐𝑙𝑁𝜏𝑛∗(𝐴). 
(2) 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑟𝑐𝑙𝑁𝜏𝑛∗(𝐴). 

Proof: The proof follows from the fact that every 𝑁𝜏𝑛∗𝑟-closed set is 𝑁𝜏𝑛∗-closed, every 𝑁𝜏𝑛∗-closed 

set is 𝑁𝜏𝑛∗𝛼-closed, every 𝑁𝜏𝑛∗𝛼-closed set is 𝑁𝜏𝑛∗semi-closed as well as every 𝑁𝜏𝑛∗pre-closed, 

every 𝑁𝜏𝑛∗semi-closed set is 𝑁𝜏𝑛∗𝛽-closed and every 𝑁𝜏𝑛∗pre-closed set is 𝑁𝜏𝑛∗𝛽-closed. 

Theorem 46. Let 𝐴 be a 𝑁𝜏𝑛∗𝑘-closed set of (𝑋,𝑁𝜏𝑛∗). Then 𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 does not contain any 

non-empty 𝑁𝜏𝑛∗-closed set. 

Proof: Assume that 𝐹 ∈ 𝑁𝜏𝑛∗𝐶(𝑋)  such that 𝐹 ⊆ 𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴.  Since 𝑋 − 𝐹  is 𝑁𝜏𝑛∗ -open, 𝐴 ⊆ 𝑋 − 𝐹  and 𝐴  is 𝑁𝜏𝑛∗𝑘 -closed set, then 𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑋 − 𝐹  and so 𝐹 ⊆ 𝑋 − 𝑐𝑙𝑁𝜏𝑛∗(𝐴). This 

implies that 𝐹 ⊆ (𝑋 − 𝑐𝑙𝑁𝜏𝑛∗(𝐴)) ∩ (𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴) = ∅ and hence 𝐹 = ∅. 
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Corollary 47. Let 𝐴  be a  𝑁𝜏𝑛∗𝑘 -closed set of (𝑋,𝑁𝜏𝑛∗), then  𝐴  is 𝑁𝜏𝑛∗ -closed if and only if 𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 is 𝑁𝜏𝑛∗-closed. 

Proof: Let 𝐴 be 𝑁𝜏𝑛∗𝑘-closed set and assume that 𝐴 is 𝑁𝜏𝑛∗-closed, then 𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 = ∅ which 

is 𝑁𝜏𝑛∗ -closed. Conversely, assume that 𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴  is 𝑁𝜏𝑛∗ -closed. Then by the theorem 46, 𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 does not contain any non-empty 𝑁𝜏𝑛∗-closed set and implies 𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 = ∅ and 

so 𝐴 is 𝑁𝜏𝑛∗-closed. 

Theorem 48. Let 𝐴 be a 𝑁𝜏𝑛∗𝑘-closed set of (𝑋, 𝑁𝜏𝑛∗). Then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 does not contain any 

non-empty 𝑁𝜏𝑛∗ -closed set.  

Proof: Assume that 𝐹 ∈ 𝑁𝜏𝑛∗𝐶(𝑋)  such that 𝐹 ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴.  Since 𝑋 − 𝐹  is 𝑁𝜏𝑛∗ -open, 𝐴 ⊆ 𝑋 − 𝐹 and 𝐴 is 𝑁𝜏𝑛∗𝑘-closed set, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑋 − 𝐹 and so 𝐹 ⊆ 𝑋 − 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴). This 

implies that 𝐹 ⊆ (𝑋 − 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴)) ∩ (𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴) = ∅ and hence 𝐹 = ∅. 
Corollary 49. A neutrosophic set 𝐴 of (𝑋,𝑁𝜏𝑛∗) is 𝑁𝜏𝑛∗𝑘-closed if and only if 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 is 𝑁𝜏𝑛∗-closed.  

Proof: Assume that 𝐴 is 𝑁𝜏𝑛∗𝑘-closed, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 = ∅ which is 𝑁𝜏𝑛∗-closed. Conversely, 

assume that 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴  is 𝑁𝜏𝑛∗ -closed. Then by the theorem 48,  𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴  does not 

contain any non-empty 𝑁𝜏𝑛∗-closed set and implies 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 = ∅ and so 𝐴 is 𝑁𝜏𝑛∗𝑘-closed. 

Theorem 50. Let 𝐴 be a 𝑁𝜏𝑛∗𝑘-closed set of (𝑋,𝑁𝜏𝑛∗). Then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 does not contain any 

non-empty 𝑁𝜏𝑛∗𝑘-closed set.  

Proof: Assume that 𝐹 ∈ 𝑁𝜏𝑛∗𝑘𝐶(𝑋) such that 𝐹 ⊆ 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴. Since 𝑋 − 𝐹  is 𝑁𝜏𝑛∗𝑘-open, 𝐴 ⊆ 𝑋 − 𝐹 and 𝐴 is 𝑁𝜏𝑛∗𝑘-closed set, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) ⊆ 𝑋 − 𝐹 and so 𝐹 ⊆ 𝑋 − 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴). This 

implies that 𝐹 ⊆ (𝑋 − 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴)) ∩ (𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴) = ∅ and hence 𝐹 = ∅. 
Theorem 51. A neutrosophic set 𝐴 of (𝑋,𝑁𝜏𝑛∗) is  𝑁𝜏𝑛∗𝑘-closed, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 is 𝑁𝜏𝑛∗𝑘-

closed but converse need not be true. 

Proof: Let 𝐴 be a 𝑁𝜏𝑛∗𝑘-closed set, then 𝑘𝑐𝑙𝑁𝜏𝑛∗(𝐴) − 𝐴 = ∅ which is 𝑁𝜏𝑛∗𝑘-closed. 

Example 52: Consider the example 24, if 𝐴 = ((0.4, 0.2), (0.4, 0.2), (0.3, 0.4)) then 𝑠𝑐𝑙 2𝜏𝑛∗(𝐴) −𝐴 = ((0.6, 0.8), (0.6, 0.8), (0.7, 0.6)) = 𝛼𝑐𝑙 2𝜏𝑛∗(𝐴) − 𝐴 is  2𝜏𝑛∗ semi-closed and  2𝜏𝑛∗𝛼 -closed. But 𝐴  is not  2𝜏𝑛∗ semi-closed and not  2𝜏𝑛∗𝛼 -closed. Let 𝐵 = ((0.6, 0.5), (0.7, 0.4), (0.3, 0.5)) the 𝑝𝑐𝑙 2𝜏𝑛∗(𝐵) − 𝐵 = ((0.4, 0.5), (0.3, 0.6), (0.7, 0.5) = 𝛽𝑐𝑙 2𝜏𝑛∗(𝐵) − 𝐵 is 2𝜏𝑛∗pre-closed and  2𝜏𝑛∗𝛽-closed. But 𝐵 is not  2𝜏𝑛∗ pre-closed and not  2𝜏𝑛∗𝛽-

closed. 

Conclusions 

This chapter introduced a new kind of open sets in a 𝑁-neutrosophic supra topological spaces called a 𝑁-

neutrosophic supra regular-open set. Furthermore, we derived some of the properties of 𝑁-neutrosophic 

supra topological weak closure operator such as  𝛼𝑐𝑙𝑁𝜏𝑛∗(𝐴), 𝑠𝑐𝑙𝑁𝜏𝑛∗(𝐴), 𝑝𝑐𝑙𝑁𝜏𝑛∗(𝐴), 𝛽𝑐𝑙𝑁𝜏𝑛∗(𝐴), and 𝑟𝑐𝑙𝑁𝜏𝑛∗(𝐴). In addition to this, the relations between these and other existing sets are discussed with 

suitable examples. 
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Future Research Directions   
The literal meaning of topology is the study of position which grew out of geometry, expanding and 

loosening some of the ideas and structures appearing therein. It is often described as rubber-sheet geometry. 

The theory of  𝑁-neutrosophic supra topological open sets and operators can be use to other applicable 

research areas such as Data mining process, Medical diagnosis,  Rough topology, Fuzzy topology, 

intuitionistic topology, Digital topology and so on. 
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ABSTRACT 

In this research, we present neutrosophic decision-making, which is an extension of the classical decision-
making process by expanding the data to cover the non-specific cases ignored by the classical logic which, in 
fact, supports the decision-making problem. The lack of information besides its inaccuracy is an important 
constraint that affects the effectiveness of the decision-making process, and we will rely on the decision tree 
model, which is one of the most powerful mathematical methods used to analyze many decision-making 
problems where we extend it according to the neutrosophic logic by adding some indeterminate data (in the 
absence of probability) or by substituting the classical probabilities with the neutrosophic probabilities (in 
case of probability). We call this extended model the neutrosophic decision tree, which results in reaching the 
best decision among the available alternatives because it is based on data that is more general and accurate 
than the classical model. 

Keywords: Decision-making process, Neutrosophic logic, Neutrosophic Decision-making, Neutrosophic 
Expected Monetary Value (NEMV). 

1. Introduction 

        In our life, there are three kinds of logic. The first is a classical logic which gives the form "true or false, 
0 or 1" to the values. The second is fuzzy logic was first advanced by Zadeh in 1960 [1]. It recognizes more 
than true and false values, which are considered simple. With fuzzy logic, propositions can be represented 
with degrees of truth and falseness. And the third is neutrosophic logic, which is an extension fuzzy logic in 

which indeterminacy is included I  . Since the world is full of indeterminacy, the Neutrosophic found their 
place into contemporary research. Neutrosophic Science means development and applications of 
Neutrosophic Logic / Set / Measure / Integral / Probability etc. And their applications in any field. It is 
possible to define the Neutrosophic Measure and consequently the Neutrosophic Integral and Neutrosophic 
Probability in many ways, because there are various types of indeterminacies, depending on the problem we 
need to solve. Indeterminacy is different from randomness. Indeterminacy can be caused by physical space, 
materials and type of construction, by items involved in the space, or by other factors. 

Florentin smarandanche introduced the notion of neutrosophy as a new branch of philosophy in 1995 . After 
he introduced the concept of neutrosophic logic and neutrosophic set where each proposition in neutrosophic 
logic is approximated  to have the percentage of truth in a subset T, the percentage of indeterminacy in subset 

I  and the percentage of falsity in a subset F where T, I, F are a subset of 0 ,1    [2]  so that this 

neutrosophic logic is called an extension of fuzzy logic especially to intuitionistic fuzzy logic. 

For more explanation, we can give these simple examples: 

mailto:olgun@gantep.edu.tr
mailto:kollnaar5@gmail.com
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If there are two candidates A and B for the presidency, and the probability that A wins are 0.46, it does not 
mean that the probability that B wins is 0.54, since there may be blank votes (from the voters not choosing 
any candidate) or black votes (from the voters that reject both candidates). For example, the probability that 
B wins could be 0.45, while the difference 1- 0.46 - 0.45 = 0.09   would be the probability of blank and black 
votes together. Therefore, we have a neutrosophic probability: NP (A) = (0.46,0.09,0,45). 

If a meteorology center reports that the chance of rain tomorrow is 60%, it does not mean that the chance of 
not raining is 40%, since there might be hidden parameters (weather factors) that the meteorology center is 
not aware of.   There might be an unclear weather, for example, cloudy and humid day, that some people can 
interpret as rainy day and others as non-rainy day. The ambiguity arouses indeterminacy. 

Probability in a soccer game. Classical probability is incomplete, because it computes for a team the chance 
of winning, or the chance of not winning, nut not all three chances as in neutrosophic probability: winning, 
having tie game, or losing. 

An urn with two types of votes: A-ballots and     B-ballots, but some votes are deteriorating, and we can’t 
determine if it’s written A or B. Therefore, we have indeterminate votes. In many practical applications, we 
may not even know the exact number of indeterminate votes, of A-ballots, or of B-ballots. Therefore, the 
indeterminacy is even bigger. 

In fact neutrosophic sets are the generalization of classical sets, neutrosophic groups, neutrosophic ring, 
neutrosophic fields, neutrosophic vector spaces… etc [3] [5] [6] [7][8] [9] [10] [14] [15] [17] [18] . 

 Using the idea of neutrosophic theory, Vasantha Kanadasamy and Florentin Samarandanche studied 

neutrosophic algebraic structures in by inserting an indeterminate element I  in the algebraic structure and 

then combine I with each element of the structure with respect to the corresponding binary operation [10].  

The indeterminate element I  is such that if,rdinary multiplication 2* , * *...* nI I I I I I I I I     

, 
1I 

 the inverse of I  is not defined and hence does not exist. Moreover, if * is ordinary addition, then

* *...*I I I nI   for n N  [4]. They call it neutrosophic element and the generated algebraic structure. 
Is then termed as neutrosophic algebraic structure. 

Both M Shain and N Olgun also contributed to the definition of Isomorphism theorems for soft G-modules , 
neutrosophic soft lattices and Direct and Semi-Direct Product Of Neutrosophic Extended Triplet 
Group[13] [14] [16]  [19] . 

 

Neutrosophic logic has wide applications in science, engineering, politics, economics, etc. Therefore, 
neutrosophic structures are very important and a broad area of study. 

.  

Classical Decision Tree 

We know from the definition of the Classical Decision Tree that it is a graphic in the form of a tree gives 

options and is used in choosing options in the case of one scale. Its root starts from the left and its branches 

spreads into the right showing the options and the possibilities of the natural causes (events). It is considered 

to be a suitable method to make a decision if one is not sure, and it is one of the strongest mathematical 

methods that is used to analyze many problems [11] [12]. 

To build the classical decision tree we can follow this step: 

i. Expected Monetary Value (EMV) 

ii. Calculate the future monetary value for each option  
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iii. Choose the option with the highest EMV.

2.1 Example 

You need to travel from one city to another to attend an important business meeting. Failure to attend the 

meeting will cost you 4000$ 

You can take either airline X or airline Y. 

Knowing the following information, which airline would you choose? 

1- Airline X costs 900$ and the give you a 90 % chance of arriving on time

2- Airline Y costs  300$ and the give you a 70 % chance of arriving on time

Graph (1) 

   1 0,1 4900 0,9 900 13$ 0$ $0EMV             

   2 0,7 300 0,3 4300 1500$ $ $EMV             

According to The graphic above, traveling in Airlines X  is the best option because it includes the highest 

Expected Monetary Value (EMV).  

Option: 

1- 

Airlines X 

2- 

Airlines Y

900 

300 

On 

Time 

Lite 

-400 $

On 

Time 

Lite 

-400 $

0 $ –  900$ 900$

4000$–  900$ 4900$ 

0$–  300$ 300$

4000$–  300$ 4300$ 

X

Y

90 % 

10 %

70 % 

30 
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The Neutrosophic Decisions Tree is the Classical Decision Tree with adding some indetermination to the 

data or by exchanging the classical probabilities with neutrosophical probabilities. 

Neutrosophic Decision Tree 

Building the neutrosophic tree of decisions without including the probabilities is considered to be a suitable 

option when the decision makers don’t have enough information that can make them estimate the probability 

of the events that built up the tree of decisions. It is also suitable at analyzing the best or the worst options 

away from probabilities. This theory agrees with the concept of the classical tree of decision. However, what 

the neutrosophic logic adds to the tree of decision without probabilities is that the expected benefits that 

matches each option, which is usually evaluated by the decision makers, according to their expertise or by 

related skills, will be evaluated more accurately and generally with less possible mistakes.  

From another side, we may see that the expected values of the benefits whether good or bad are 

agreed on by some experts but others disagree. Therefore, the best solution to face this problem that 

absolutely affects the quality of the taken decision is to take the expected benefits with adding and reducing a 

value interval between (0) and another determinate value, for example (a).  (0) which represents the 

minimum value in this interval means that there is no disagreement on the expected values among the experts 

or with the decision makers. (a) Which represents the maximum value in this interval means that there is a 

disagreement among the experts or between them and the decision makers about the expected values of 

benefits and (a) is the highest estimated value.  

Therefore, we will present the expected value of benefits with adding and reducing the interval [0,a] 

not forgetting that all the various opinions about the expected values will be contained in the [0,a]  interval. 

So that, the expected value of benefits will become an interval of values containing all the opinions.  

By doing this, we move from the classical form that gives a determinant  value of benefits in the 

neutrosophic form that doesn’t do that, but gives an interval of expected values of benefits [20] . 

For example, we can consider three options 1 2 3,   d d and d  by the best and the worst expectations 

as it is clarified in the following table(1): 

                            High turnout Low turnout 

1d
 

  

1A i
 2B i

 
  

 2d
 

3C i
 4D i

 
  

3d
 

5E i
 6F i

 
  

   
Table (1) 
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,  ,  ,  ,  ,  A B C D E F  Represents the determinate part of the expected values. 

1 2 3 4 5 6,  ,  ,  ,  ,  ,i i i i i i  Represents the indeterminate part of the expected values.  

 0, : 1,2,3,4,5,6k ki a k    

3.1 Numerical Example 

If the decision maker faces three options to invest in Education. These options are   Science Institute,   

Languages Institute and   Kindergarten. And for each option we have two natural causes (High turnout) and 

(Low turnout) depending on the following data, the benefits will change according to two variables (the 

options and the natural causes). 

The experts evaluated the benefits saying that the Science Institute in case of (High turnout) will give 

the benefits of (55000) with an indeterminate value of estimation interval between [0,4000], and in case of 

(Low turnout) it will give the benefits of (8000) with an indeterminate value of estimation interval between 

[0,2000]. They also say that the Languages Institute in case of (High turnout) will give the benefits of (5000) 

with an indeterminate value of estimation interval between [0,18000], and in case of (Low turnout) it will 

give the benefits of (20000) with an indeterminate value of estimation interval between [0,1000]. 

And the Kindergarten in case of (High turnout) will give the benefits of (40000)  with an 

indeterminate value of estimation interval between [0,3000], and in case of (Low turnout) it will give the 

benefits of (18000) with an indeterminate value of estimation interval between [0,2500]. 

                                                    High turnout Low turnout 

Science Institute 

  

 55000 0,4000   8000 0,2000  

        

 Languages Institute 
 50000 0,18000   20000 0,1000  

  

Kindergarten 
 40000 0,3000   18000 0,2500  

  
   

Table (2) 

                                                   High turnout Low turnout 

Science Institute 

  

 41000,61000   6000,10000  

        

 Languages Institute 
 32000,68000   19000,21000  

  

Kindergarten 
 37000,43000   12000,22000  
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Table (3) 

The studying of approaches: 

4.1 The Optimistic Approach 

We know that this approach depends on evaluating the options paving the way to choose the option that 

guarantee the best possible benefits under the optimistic natural cases without taking the pessimistic cases for 

this option into consideration. This case is referred to as (Max Max) as the first (Max) refers to the highest 

monetary value and the second (Max) the optimistic natural case. 

 

                                                                        Max Max  

Science Institute 

  

 max 41000,61000 61000
 

 

        

 Languages Institute 
 max 32000,68000 68000

 
 

  

Kindergarten 
 max 37000,43000 43000

 
 

  
   

Table (4) 

According to The Optimistic Approach, investing in Languages Institute is the best option because it 

includes the most possible benefit (680000).  

We notice that if we put 1 3 5 0 i i i    (in the table (2)) we returns to the classical case of the 

tree of decisions according to The Optimistic Approach and we notice the following:  

                                      High turnout 

Science Institute 

 

55000 
 

Languages Institute 
50000 

 

Kindergarten 
40000  

 
  

Table (5) 
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We notice that the highest monetary value in the classical optimistic case with high turnout is 

 55000 .  This leads us to take a decision that the investment in the Science Institute is the best option.  

Consequently, we notice that there is a differentiation in the taken decisions when we widen the data 

(that represents the expected values of benefits) netrosophically. Moreover, it is normal to see that the 

resulted decision that comes from the neutrosophic form is better for investing than the classical one, because 

it is built upon more data including all the opinions and then the resulted decision is highly agreed on. 

4.2 The pessimistic Approach 

 Know that this approach depends on adjusting the options paving the way to choose the option that 

guarantee the best possible benefits under the pessimistic normal cases without taking the optimistic cases for 

this option into consideration. This case is referred to as (Max, Min) as the first (Max) refers to the highest 

monetary value, but it is related to the second part (Min) which is the pessimistic natural case. 

 

                                                                                     Max Min 

Science Institute 

 

 max 6000,10000 10000  

 

 Languages Institute 
 max 19000,21000 21000  

 

Kindergarten 
 max 12000,22000 22000  

 
  

Table (6) 

According to The Pessimistic Approach, investing in the Kindergarten is the best option because it includes 

the most possible benefit (22000).  

We notice that if we put 2 4 6 0 i i i    (in the table (2)) we returns to the classical case of the 

tree of decisions according to The Pessimistic Approach and we notice the following: 

                                                                   Low turnout 

Science Institute 

 

8000  

 

 Languages Institute 
20000  
 

Kindergarten 
 

18000 
  

Table (7) 
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We notice that the highest monetary value in the natural pessimistic case with low turnout is  20000 .  This

leads us to take a decision that the investment in the Languages Institute is the best option.  

By comparing this classical form with neutrosophic form, we find that the decision of choosing an option is 

changed. According to the neutrosophic form, this approach leads us to invest in The Kindergarten, but 

according to the classical form, it leads us to invest in The Languages Institute. However, when the data are 

defined accurately, it will absolutely lead us to the correct and best option.  

4.3 The Caution  Approach 

This approach is not an optimistic nor a pessimistic one. It is a moderate approach that depends on adjusting 

the options too in order to choose the best option without losing any possible opportunity. 

And choosing the most suitable option according to this approach demands to build a new matrix as the 

following by exchanging the option that makes the highest monetary value of zero (after taking the high 

value of the interval) taking into consideration that there is no lost opportunities for this option: 

         High turnout Low turnout 

Science Institute 
 
 
32000,68000

41000,61000

  
 
12000,32000

6000,10000



 Languages Institute 

 
 
32000,680000

32000,680000

  
 
12000,32000

19000,21000



Kindergarten 

 
 

32000,68000

37000,43000
 
 
12000,32000

12000,32000



Table (8) 

 High turnout Low turnout 

Science Institute  9000,7000  6000,22000

 Languages Institute 
 0,0  7000,11000

Kindergarten 
 5000,25000  0,0



Editors: Florentin Smarandache, Memet Şahin, Vakkas Uluçay and Abdullah Kargın 

              

 

246 

 

Table (9) 

We reduced the highest monetary value in the High turnout case from the other available monetary values in 

this natural case. Also, we reduced the highest monetary value in the Low turnout case from the other 

available monetary values in this case. Now we make a concise matrix that includes the highest values of the 

lost opportunities for each option as the following: 

                                             Lost opportunities 

Science Institute 

 

 6000,22000  

 

 Languages Institute 
 7000,11000  

 

Kindergarten 
 5000,25000  

 
  

Table (10) 

Consequently, according to this approach, The Languages Institute is the best option because it leads to less 

lost opportunities.  

When working according to this approach in the case of the classic logic, we will come to the same decision 

that The Languages Institute is the best option, but this does not happen always.  

When 3 41 62 5 0 ii i ii i    we get the following table: 

                                             High turnout Low turnout 

Science Institute 

  

55000 8000  

        

 Languages Institute 
50000 20000  

  

Kindergarten 
40000  18000 

  
   

Table (11) 

We built up the Caution  matrix: 

                                             High turnout Low turnout 

Science Institute 

  

0 12000 

        

 Languages Institute 
5000 0 

  



Quadruple Neutrosophic Theory And Applications 

 Volume I 

247 

Kindergarten 
15000 2000 

Table (12) 

We take the (Max) and get: 

      Lost opportunities 

Science Institute 12000 

 Languages Institute 
5000 

Kindergarten 
15000 

Table (13) 

Taking into consideration that this approach has, the less lost opportunities, the most suitable option is The 

Languages Institute. 

We notice that the classical form may agree with the neutrosophic form in the taken decision, but this does 

not happen always. However, it is better to depend on the method that has accurate data that leads us to 

choose the best option. 

By studying the three approaches according the neutrosophic form we find that in most cases we get different 

options from the classical logic form.  

In addition, we get different options according to the approaches. We look to this positively because it 

enriches the decision-making process and it reflects the circumstances of the decision maker and the opinions 

that affects him.  

5. The Neutrosophic Decisions Tree in View of the Neutrosophic

Probabilities 

In the case of decision trees in view of the classical probabilities, the decision maker has the opportunity to 

evaluate the possibility of each event of the normal cases. Therefore, the monetary value approach EMV is 

used in order to choose the best options.  
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However, it is not logical to see that the possibility of the High Turnout of three options the same. For 

example, it is not possible to see that the probability of the Science Institute, the Languages Institute and the 

Kindergarten in the High Turnout to be 0.4 because that doesn’t agree with the logic that says that each 

option has conditions and cases that differs from the other options. 

We will discuss another method through the Neutrosophic Logic to discuss the decision tree in the review of 

probabilities depending on the Neutrosophic probabilities, and we will define another form of indeterminate 

data through this method.  

We will clarify it as the following: 

First, we will define the Neutrosophic expected monetary value and refer to it as (NEMV) depending on the 

expected Neutrosophic value as: 

In the natural case (n) and the indeterminate case (m) we write: 

         
1 1

, ,
n m

i j i j I i I
j I

NEMV d p s v d s p s v d s
 

       

 jP S  Refers to the probability of getting a high or low turnout 

 (S represents the natural cases) 

 IP S  Refers to the probability of getting the indeterminate case. (I represent the indeterminacy)  

 ,i jV d S  Represents the expected monetary value of the option   id   in the jS  case. 

 ,i IV d S  Represents the expected monetary value of the option   id in the IS  case. 

And in our dealt example, it becomes: 

             1 1 2 2 1 1, , ,i j i j j i j I i INEMV d p s v d s p s v d s p s v d s             

 1jP s   The probability of high turnout 

 2jP s   The probability of low turnout 

Assuming that the neutrosophic probability in case of the high turnout for the Educational Science Institute is 

 0.65,  0.05,  0.30NP  that means that there are three probabilities: 

 1   0.65jP S    The probability of high turnout for the Science Institute 
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 2   0.30jP S    The probability of low turnout for the Science Institute 

 1   0.05IP S    The probability of indeterminacy, which means that turnout for the Science Institute not 

high and not low but between the both. (We get these probabilities from research and expertise centers). 

The matrix will be: 

 

                                             High turnout Low turnout 
Indeterminate 
turnout 

Science Institute 

   

55000 8000 25000 

         

 Languages Institute 
50000 20000 27000 

   

Kindergarten 
40000 18000 22000 

   

    
Table (14) 

The values in the matrix are expected values of options by the experts. In this case, we recognized another 

form of indeterminacy, which is the turnout, is neither high nor low, but between the two possibilities and we 

called it indeterminate turnout (and the indeterminate turnout may be gradual). 

Now let us calculate the Neutrosophic expected monetary value of the first option 1d  the Science Institute 

as: 

             
        

1 1 1 1 2 1 2 1 1 1, , ,

0.65 55000 0.30 8000 0.05 25000 3

2   ,

9400

   1  

j j j j I INEMV d p s v d s p s v d s p s v d

n m

s          

   

 
 

Now let us calculate the neutrosophic expected monetary value of the Languages Institute 2d   

If we know that the neutrosophic probability of the high turnout of the Languages Institute are: 

 0.46,  0.09,  0.45NP   

 1   0.46jP S    the probability of high turnout for the Languages Institute  2   0.45jP S    the 

probability of low turnout for the Languages Institute  1   0.09IP S    the probability of indeterminacy 

which means that turnout for the Languages Institute not high and not low but between the both. 
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          2 0.46 50000 0.45 20000 0.09 27000 34430NEMV d       

Now let us calculate the neutrosophic expected monetary value of the Kindergarten 3d   

If we know that the neutrosophic probability of the high turnout of the Kindergarten are: 

 0.50,  0.08,  0.42NP   

 1   0.50jP S    The probability of high turnout for the Kindergarten 

 2   0.42jP S    The probability of low turnout for the Kindergarten 

 1   0.08IP S    The probability of indeterminacy, which means that turnout for the Kindergarten not 

high and not low but between the both. 

          3 0.50 40000 0.42 18000 0.08 22000 29320NEMV d      

By calculating the neutrosophic expected monetary value we see that the first option 1d  (the Science 

Institute) is the suitable opt. On because it presents. Highest monetary value  39400 . 
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Graph (2) 
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CONCLUSION 

1- Dealing with the samples of the decision making process according to the Neutrosophic logic provides us 
with a comprehensive and complete study for the problem that we are studying. So that, we don’t miss any 
data just because it is clearly indeterminate. This makes us to choose the best option . 

2- The existence of indeterminacy in the problem actually affects the process of taking the suitable decision. 
Therefore, the indeterminate values can’t be ignored while studying in order to get more accurate results that 
leads us to the best options. 

3- Nowadays, the classical logic is not sufficient to deal with all the data that we study. Therefore, we had to 
expand the data of the study and name it accurately to get more real possibilities and, therefore, make 
decision more accurate. And here appears the role of the Neutrosophic logic that generalizes the classical 
logic and gives us a wider horizon in interpreting the data in the study and expand it and then make correct 
decisions with the least possible mistakes. 
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ABSTRACT 

Smarandache introduce neutrosophic set in 1998 and neutrosophic quadruple sets in 2016. Şahin and 
Kargın obtain set valued neutrosophic quadruple set and number in 2019. In this chapter, we define combined 

classic - neutrosophic sets, double neutrosophic sets, set valued combined classic - neutrosophic sets and set 

valued double neutrosophic sets. These sets contain exact true value and exact false value, unlike 

neutrosophic set and neutrosophic quintet set. Also, these sets contain T, I, F, like neutrosophic set and 

neutrosophic quintet set. Thus, these sets are generalized of neutrosophic sets, neutrosophic quadruple sets 

and set valued neutrosophic quadruple sets. Furthermore, we give new definitions and new results for 

combined classic - neutrosophic sets, double neutrosophic sets, set valued combined classic - neutrosophic 

sets and set valued double neutrosophic sets.  

Keywords: neutrosophic quadruple set, set valued neutrosophic quadruple set, combined classic - 

neutrosophic sets, double neutrosophic sets  

INTRODUCTION 

Smarandache defined neutrosophic logic and neutrosophic set [1] in 1998. In neutrosophic logic and 
neutrosophic sets, there is T degree of membership, I degree of undeterminacy and F degree of non-

membership. These degrees are defined independently of each other. It has a neutrosophic value (T, I, F) 
form. Also, many researchers have made studies on this theory [2 - 27]. In fact, neutrosophic set is a 

generalized state of fuzzy set [28] and intuitionistic fuzzy set [29]. 

Furthermore, Smarandache introduced NQS and NQN [30]. The NQSs are generalized state of neutrosophic 

sets. A NQS is shown by {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. Where, x is called the known part and (yT, zI, 

tF) is called the unknown part and T, I, F have their usual neutrosophic logic means. Recently, researchers 
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studied NQS and NQN. Recently, Akinleye, Smarandache, Agboola studied NQ algebraic structures 
[31]; Jun, Song, Smarandache obtained NQ BCK/BCI-algebras [32]; Muhiuddin, Al-Kenani, Roh, Jun 

introduced implicative NQ BCK-algebras and ideals [33]; Li, Ma, Zhang, Zhang studied NT extended group 
based on NQNs [34]; Şahin and Kargın obtained SVNQN and NTG based on SVNQN [35]; Şahin and 
Kargın studied single valued NQ graphs [36]. 

In this chapter, in Section 2, we give definitions and properties for NQS and NQN [30], SVNQS and 

SVNQN [35]. In Section 3, we define combined classic - neutrosophic sets and numbers, set valued 
combined classic - neutrosophic sets and numbers. We give definitions, operations and results for combined 

classic - neutrosophic sets and number, set valued combined classic - neutrosophic sets and numbers. In 
combined classic - neutrosophic sets and number, similar to NQS and NQN, there are T, I, F values. Also, 

other components are real number or complex number. In set combined classic - neutrosophic sets and 
number, similar to SVNQS and SVNQN, there are T, I, F values. Also, other components are sets. In Section 
4, we define double neutrosophic set and number, set valued double neutrosophic set and number. Actually, 

in double neutrosophic set and number, set valued double neutrosophic set and number; there are two 
neutrosophic set and number. First neutrosophic set is known part and second neutrosophic set is unknown 

part. Also, we give definitions, operations and results for set valued neutrosophic quintet sets and number. In 
double neutrosophic sets and number, similar to NQS and NQN, there are T, I, F values. Also, other 
components are real number or complex number. In set valued double neutrosophic sets and number, similar 

to SVNQS and SVNQN, there are T, I, F values. Also, other components are sets. In Section 5, we give 
conclusions. 

BACKGROUND 

Definition 1: [30] A NQN is a number of the form (x, yT, zI, tF), where T, I, F have their usual neutrosophic 

logic means and x, y, z, t ∈ ℝ or ℂ. The NQS defined by 

NQ = {(x, yT, zI, tF): x, y, z, t ∈ ℝ or ℂ}. 

For a NQN (x, yT, zI, tF), representing any entity which may be a number, an idea, an object, etc., x is 

called the known part and (yT, zI, tF) is called the unknown part. 

Definition 2: [30] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) and b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ be NQNs. We define the

following: 

a + b = (𝑎1 +𝑏1, (𝑎2+𝑏2)T, (𝑎3+𝑏3)I, (𝑎4+𝑏4)F)

a - b = (𝑎1 - 𝑏1, (𝑎2 - 𝑏2)T, (𝑎3 - 𝑏3)I, (𝑎4 - 𝑏4)F)

Definition 3: [30] Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence order 
T>I>F. Then we have:

TI = IT = max{T, I} = T,

TF = FT = max{T, F} = T,

FI = IF = max{F, I} = I,

TT = 𝑇2 = T,

II = 𝐼2 = I,

FF = 𝐹2 = F.
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Analogously, suppose in a pessimistic way we consider the prevalence order T < I < F. Then we have: 

TI = IT = max{T, I} = I, 

TF = FT = max{T, F} = F, 

FI = IF = max{F, I} = F, 

TT = 𝑇2 = T, 

II = 𝐼2 = I, 

FF = 𝐹2 = F. 

Definition 4: [30] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ and T < I < F. Then 

a*b =  (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) * (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F)  

       = (𝑎1𝑏1, (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2)T, (𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1 + 𝑎3𝑏2 + 𝑎3𝑏3)I,  

           (𝑎1𝑏4 + 𝑎2𝑏4 + 𝑎3𝑏4 + 𝑎4𝑏1 + 𝑎4𝑏2 + 𝑎4𝑏3 + 𝑎4𝑏4)F) 

Definition 5: [30] Let a = (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F), b = (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F) ∈ NQ and T > I > F. Then 

a#b =  (𝑎1, 𝑎2T, 𝑎3I, 𝑎4F) # (𝑏1, 𝑏2T, 𝑏3I, 𝑏4F)  

       = (𝑎1𝑏1, (𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏2 + 𝑎4𝑏2 + 𝑎2𝑏3 + 𝑎2𝑏4)T, 

          (𝑎1𝑏3 + 𝑎3𝑏3 + 𝑎3𝑏4 + 𝑎4𝑏3)I, (𝑎1𝑏4 +  𝑎4𝑏1 + 𝑎4𝑏4)F) 

Definition 6: [35] Let N be a non – empty set and P(N) be power set of N. A SVNQN shown by the form          

(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F). Where, T, I and F are degree of membership, degree of undeterminacy, degree of non-

membership in neutrosophic theory, respectively. Also, 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N). Then, a SVNQS shown by  𝑁𝑞= {(𝐴1, 𝐴2T, 𝐴3I, 𝐴4F): 𝐴1, 𝐴2, 𝐴3, 𝐴4 ∈ P(N)}. 

Where, similar to NQS, 𝐴1 is called the known part and (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) is called the unknown part. 

Definition 7: [35] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) and B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. We define the 
following operations, well known operators in set theory, such that 

A ∪ B = (𝐴1 ∪ 𝐵1, (𝐴2 ∪ 𝐵2)T, (𝐴3 ∪ 𝐵3)I, (𝐴4 ∪ 𝐵4)F) 

A ∩ B = (𝐴1 ∩ 𝐵1, (𝐴2 ∩ 𝐵2)T, (𝐴3 ∩ 𝐵3)I, (𝐴4 ∩ 𝐵4)F) 

A \ B = (𝐴1 \  𝐵1, (𝐴2 \  𝐵2)T, (𝐴3 \  𝐵3)I, (𝐴4 \  𝐵4)F) 𝐴′ = (𝐴′1, 𝐴′2T, 𝐴′3I, 𝐴′4F)  

Now, we define specific operations for SVNQN. 

Definition 8: [35] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T < I < F. We 
define the following operations  

A*1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)  
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=(𝐴1 ∩ 𝐵1, ((𝐴1 ∩ 𝐵2) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2)∪ (𝐴3 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ ( 𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))F)

and 

A*2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) *2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)

=(𝐴1 ∪ 𝐵1, ((𝐴1 ∪ 𝐵2) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2)∩ (𝐴3 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ ( 𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵3) ∩ (𝐴4 ∪ 𝐵4))F).

Definition 9: [35] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs and T > I > F. We

define the following operations  

A #1B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #1 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)

=(𝐴1 ∩ 𝐵1 , ((𝐴1 ∩ 𝐵2 ) ∪  (𝐴2 ∩ 𝐵1)  ∪  (𝐴2 ∩ 𝐵2)  ∪  (𝐴3 ∩ 𝐵2)  ∪  (𝐴4 ∩ 𝐵2)  ∪  (𝐴2 ∩ 𝐵3)  ∪  (𝐴2 ∩𝐵4))T, ((𝐴1 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵3))I, ((𝐴1 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵4))F)

and 

A#2B = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F) #2 (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F)

=(𝐴1 ∪ 𝐵1 , ( (𝐴1 ∪ 𝐵2 ) ∩  (𝐴2 ∪ 𝐵1)  ∩  (𝐴2 ∪ 𝐵2) ∩  (𝐴3 ∪ 𝐵2)  ∩  (𝐴4 ∪ 𝐵2)  ∩  (𝐴2 ∪ 𝐵3)  ∩  (𝐴2 ∪𝐵4))T, ((𝐴1 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵3))I, ((𝐴1 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵4))F).

Definition 10: [35] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs. If 𝐴1⊂ 𝐵1, 𝐴2⊂ 𝐵2,𝐴3⊂ 𝐵3, 𝐴4⊂ 𝐵4, then it is called that A is subset of B. It is shown by A ⊂ B.

Definition 11: [35] Let A = (𝐴1, 𝐴2T, 𝐴3I, 𝐴4F), B = (𝐵1, 𝐵2T, 𝐵3I, 𝐵4F) be SVNQNs If A⊂ B and 𝐵⊂ 𝐴,

then it is called that A is equal to B. It is shown by A = B. 

COMBINED CLASSIC - NEUTROSOPHIC SETS AND NUMBERS 

Definition 12: A combined classical - neutrosophic number N is a number of the form ((a, b), cT, dI, eF), 

where T, I, F have their usual neutrosophic logic means and a, b, c, d, e ∈ ℝ or ℂ. The combined classical - 

neutrosophic set Q defined by 

Q = {((a, b), cT, dI, eF): a, b, c, d, e ∈ ℝ or ℂ}. 

For N, ((a, b), cT, dI, eF) representing any entity which may be a number, an idea, an object, etc., (a, b) is 

called the known part (classical set), a is exact true value and b is exact false value; (cT, dI, eF) is called the 

unknown part (neutrosophic set). 

Corollary 1: From Definition 12 and Definition 1, combined classical - neutrosophic set are generalized of 

neutrosophic sets and neutrosophic quadruple sets. 

Definition 13: Let Q = {((a, b), cT, dI, eF): a, b, c, d, e ∈ ℝ or ℂ} be a combined classical - neutrosophic set 

and A = ((𝑎1, 𝑎2), 𝑎3T, 𝑎4I, 𝑎5F) and B = ((𝑏1, 𝑏2), 𝑏3T, 𝑏4I, 𝑏5F) be combined classical - neutrosophic
numbers in Q. We define the +, –, . , \ operations for combined classical - neutrosophic numbers such that 

A + B = ((𝑎1 + 𝑏1, 𝑎2+ 𝑏2), (𝑎3+ 𝑏3)T, (𝑎4 + 𝑏4)I, (𝑎5 + 𝑏5)F).
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A - B = ((𝑎1 - 𝑏1, 𝑎2 - 𝑏2), (𝑎3 - 𝑏3)T, (𝑎4 - 𝑏4)I, (𝑎5 - 𝑏5)F). 

A . B = ((𝑎1 . 𝑏1, 𝑎2 . 𝑏2), (𝑎3 . 𝑏3)T, (𝑎4 . 𝑏4)I, (𝑎5 . 𝑏5)F). 

A \ B = ((𝑎1 \ 𝑏1, 𝑎2 \ 𝑏2), (𝑎3 \ 𝑏3)T, (𝑎4 \ 𝑏4)I, (𝑎5 \ 𝑏5)F), where; 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5 ≠ 0. 

Definition 14: Let Q = {((a, b), cT, dI, eF): a, b, c, d, e ∈ ℝ or ℂ} be a combined classical - neutrosophic set,       

T < I < F (in Definition 3, pessimistic way), A = ((𝑎1, 𝑎2), 𝑎3T, 𝑎4I, 𝑎5F) and B = ((𝑏1, 𝑏2), 𝑏3T, 𝑏4I, 𝑏5F) be 
combined classical - neutrosophic numbers in Q. We define the *1 operation for combined classical - 

neutrosophic numbers such that  

A *1 B = ((𝑎1, 𝑎2), 𝑎3T, 𝑎4I, 𝑎5F)  *1  ((𝑏1, 𝑏2), 𝑏3T, 𝑏4I, 𝑏5F)  

           = ((𝑎1𝑏1+ 𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2), (𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1 + 𝑎3𝑏2 + 𝑎3𝑏3)T, 

              (𝑎1𝑏4 + 𝑎2𝑏4 + 𝑎3𝑏4 + 𝑎4𝑏1 + 𝑎4𝑏2 + 𝑎4𝑏3+ 𝑎4𝑏4)I,  

               (𝑎1𝑏5 + 𝑎2𝑏5 + 𝑎3𝑏5 + 𝑎4𝑏5 + 𝑎5𝑏1 + 𝑎5𝑏2 + 𝑎5𝑏3 + 𝑎5𝑏4+ 𝑎5𝑏5 )F). 

Definition 15: Let Q = {((a, b), cT, dI, eF): a, b, c, d, e ∈ ℝ or ℂ} be a combined classical - neutrosophic set,      

T > I > F (in Definition 3, optimistic way), A = ((𝑎1, 𝑎2), 𝑎3T, 𝑎4I, 𝑎5F) and B = ((𝑏1, 𝑏2), 𝑏3T, 𝑏4I, 𝑏5F) be 
combined classical - neutrosophic numbers in Q. We define the *2 operation for combined classical - 

neutrosophic numbers such that  

A *2  B = ((𝑎1, 𝑎2), 𝑎3T, 𝑎4I, 𝑎5F) *2 ((𝑏1, 𝑏2), 𝑏3T, 𝑏4I, 𝑏5F)  

            = ((𝑎1𝑏1+ 𝑎1𝑏2 + 𝑎2𝑏1 + 𝑎2𝑏2), 

               (𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1 + 𝑎3𝑏2 + 𝑎3𝑏3+ 𝑎3𝑏4 + 𝑎3𝑏5 + 𝑎4𝑏3 + 𝑎5𝑏3)T, 

              (𝑎1𝑏4 + 𝑎2𝑏4 + 𝑎4𝑏4 + 𝑎4𝑏5 + 𝑎4𝑏1 + 𝑎4𝑏2 + 𝑎5𝑏4)I,  

              (𝑎1𝑏5 + 𝑎2𝑏5 + 𝑎5𝑏1 + 𝑎5𝑏2 + 𝑎5𝑏5 )F). 

SET VALUED COMBINED CLASSICAL - NEUTROSOPHIC SETS 

AND NUMBERS 

Definition 16: A set valued combined classical - neutrosophic number Ns is a number of the form ((A, B), 

CT, DI, EF), where T, I, F have their usual neutrosophic logic means and A, B, C, D, E ∈ P(Ns), P(Ns) is 
power set of Ns. The set valued combined classical - neutrosophic set Qs defined by 

Qs = {((A, B), CT, DI, EF): A, B, C, D, E ∈ P(Ns)}. 

For a Ns, ((A, B), CT, DI, EF) representing any entity which may be a number, an idea, an object, etc.,    

(A, B) is called the known part, A is exact true value and B is exact false value, (CT, DI, EF) is called the 

unknown part. 

Corollary 2: From Definition 16 and Definition 6, set valued combined classical - neutrosophic sets are 

generalized of neutrosophic sets and set valued neutrosophic quadruple sets. 

Definition 17: Let Qs = {((A, B), CT, DI, EF): A, B, C, D, E ∈ P(Ns)} be a set valued combined classical - 

neutrosophic set and As = ((𝐴1 , 𝐴2 ), 𝐴3T, 𝐴4 I, 𝐴5F) and Bs = ((𝐵1 , 𝐵2 ), 𝐵3T, 𝐵4 I, 𝐵5F) be set valued 

combined classical - neutrosophic numbers in Qs. If 𝐴1⊂ 𝐵1, 𝐴2⊂ 𝐵2, 𝐴3⊂ 𝐵3, 𝐴4⊂ 𝐵4, 𝐴5⊂ 𝐵5 then it is 

called that As is subset of Bs. It is shown by As⊂ Bs. 
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Definition 18: Let Qs = {((A, B), CT, DI, EF): A, B, C, D, E ∈ P(Ns)} be a set valued combined classical - 

neutrosophic set and As = ((𝐴1 , 𝐴2 ), 𝐴3T, 𝐴4 I, 𝐴5F) and Bs = ((𝐵1 , 𝐵2 ), 𝐵3T, 𝐵4 I, 𝐵5F) be set valued

combined classical - neutrosophic numbers in Qs. If As⊂ Bs and Bs⊂ As, then it is called that As is equal to Bs. 

It is shown by As = Bs. 

Definition 19: Let Qs = {((A, B), CT, DI, EF): A, B, C, D, E ∈ P(Ns)} be a set valued combined classical -

neutrosophic set and As = ((𝐴1 , 𝐴2 ), 𝐴3T, 𝐴4 I, 𝐴5F) and Bs = ((𝐵1 , 𝐵2 ), 𝐵3T, 𝐵4 I, 𝐵5F) be set valued

combined classical - neutrosophic numbers in Qs. We define the ∪, ∩, \ , ‘ operations for set valued combined 

classical - neutrosophic numbers such that 

As ∪ Bs = ((𝐴1 ∪ 𝐵1, 𝐴2 ∪ 𝐵2), (𝐴3 ∪ 𝐵3)T, (𝐴4  ∪  𝐵4)I, (𝐴5 ∪ 𝐵5)F).

As ∩ Bs = ((𝐴1 ∩ 𝐵1, 𝐴2 ∩ 𝐵2), (𝐴3 ∩ 𝐵3)T, (𝐴4  ∩  𝐵4)I, (𝐴5 ∩ 𝐵5)F).

As \ Bs = ((𝐴1 \ 𝐵1, 𝐴2\ 𝐵2), (𝐴3\ 𝐵3)T, (𝐴4 \ 𝐵4)I, (𝐴5 \ 𝐵5)F).

As‘ = ((𝐴1‘, 𝐴2‘), 𝐴3‘T, 𝐴4‘I, 𝐴5‘F)

Definition 20: Let Qs = {((A, B), CT, DI, EF): A, B, C, D, E ∈ P(Ns)} be a set valued combined classical -

neutrosophic set, As = ((𝐴1, 𝐴2), 𝐴3T, 𝐴4I, 𝐴5F), Bs = ((𝐵1 , 𝐵2), 𝐵3T, 𝐵4I, 𝐵5F) be set valued combined
classical - neutrosophic numbers in Qs and T < I < F (in Definition 3, pessimistic way). We define the #1 and 

#2 operations for set valued combined classical - neutrosophic numbers such that  

As #1 Bs = ((𝐴1, 𝐴2), 𝐴3T, 𝐴4I, 𝐴5F) #1 ((𝐵1, 𝐵2), 𝐵3T, 𝐵4I, 𝐵5F)

= (((𝐴1 ∪ 𝐵1) ∩ ( 𝐴1 ∪ 𝐵2) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2)),
((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩ (𝐴3 ∪ 𝐵3))T,

((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ (𝐴3 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴4 ∪ 𝐵3) ∩ (𝐴4 ∪ 𝐵4))I,

((𝐴1 ∪ 𝐵5) ∩ (𝐴2 ∪ 𝐵5) ∩ (𝐴3 ∪ 𝐵5) ∩ (𝐴4 ∪ 𝐵5) ∩ (𝐴5 ∪ 𝐵1) ∩ (𝐴5 ∪ 𝐵2) ∩ (𝐴5 ∪ 𝐵3) ∩
( 𝐴5 ∪ 𝐵4) ∩ (𝐴5 ∪ 𝐵5) )F).

As #2 Bs = ((𝐴1, 𝐴2), 𝐴3T, 𝐴4I, 𝐴5F) #2 ((𝐵1, 𝐵2), 𝐵3T, 𝐵4I, 𝐵5F)

= (((𝐴1 ∩ 𝐵1) ∪ ( 𝐴1 ∩ 𝐵2) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2)),
((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2) ∪ (𝐴3 ∩ 𝐵3))T,

((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ (𝐴3 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴4 ∩ 𝐵3) ∪ (𝐴4 ∩ 𝐵4))I,

((𝐴1 ∩ 𝐵5) ∪ (𝐴2 ∩ 𝐵5) ∪ (𝐴3 ∩ 𝐵5) ∪ (𝐴4 ∩ 𝐵5) ∪ (𝐴5 ∩ 𝐵1) ∪ (𝐴5 ∩ 𝐵2) ∪ (𝐴5 ∩ 𝐵3) ∪
( 𝐴5 ∩ 𝐵4) ∪ (𝐴5 ∩ 𝐵5) )F).

Definition 21: Let Qs = {((A, B), CT, DI, EF): A, B, C, D, E ∈ P(Ns)} be a set valued combined classical -

neutrosophic set, As = ((𝐴1, 𝐴2), 𝐴3T, 𝐴4I, 𝐴5F), Bs = ((𝐵1 , 𝐵2), 𝐵3T, 𝐵4I, 𝐵5F) be set valued combined

classical - neutrosophic numbers in Qs and T < I < F (in Definition 3, optimistic way). We define the #3 and 
#4 operations for set valued combined classical - neutrosophic numbers such that  

As #3 Bs =  ((𝐴1, 𝐴2), 𝐴3T, 𝐴4I, 𝐴5F) #3 ((𝐵1, 𝐵2), 𝐵3T, 𝐵4I, 𝐵5F)

=  (((𝐴1 ∪ 𝐵1) ∩ ( 𝐴1 ∪ 𝐵2) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2)),
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                  ((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩ (𝐴3 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵4) ∩ (𝐴3 ∪ 𝐵5) ∩  

                  ( 𝐴4 ∪ 𝐵3) ∩ (𝐴5 ∪ 𝐵3) )T, 

((𝐴1 ∪ 𝐵4) ∩ (𝐴2 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵5) ∩ (𝐴4 ∪ 𝐵1) ∩ (𝐴4 ∪ 𝐵2) ∩ (𝐴5 ∪ 𝐵4))I, 

((𝐴1 ∪ 𝐵5) ∩ (𝐴2 ∪ 𝐵5) ∩ (𝐴5 ∪ 𝐵1) ∩ (𝐴5 ∪ 𝐵2) ∩ (𝐴5 ∪ 𝐵5))F). 

As #4 Bs = ((𝐴1, 𝐴2), 𝐴3T, 𝐴4I, 𝐴5F) #4 ((𝐵1, 𝐵2), 𝐵3T, 𝐵4I, 𝐵5F)  

              = (((𝐴1  ∩  𝐵1) ∪ ( 𝐴1  ∩  𝐵2) ∪ (𝐴2 ∪ 𝐵1) ∪ (𝐴2 ∪ 𝐵2)), 
                  ((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2) ∪ (𝐴3 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵4) ∪ (𝐴3 ∩ 𝐵5) ∪  

                  ( 𝐴4 ∩ 𝐵3) ∪ (𝐴5 ∩ 𝐵3) )T, 

                  ((𝐴1 ∩ 𝐵4) ∪ (𝐴2 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵5) ∪ (𝐴4 ∩ 𝐵1) ∪ (𝐴4 ∩ 𝐵2) ∪ (𝐴5 ∩ 𝐵4))I, 

                  ((𝐴1 ∩ 𝐵5) ∪ (𝐴2 ∩ 𝐵5) ∪ (𝐴5 ∩ 𝐵1) ∪ (𝐴5 ∩ 𝐵2) ∪ (𝐴5 ∩ 𝐵5))F). 

DOUBLE NEUTROSOPHIC SETS AND NUMBERS 

Definition 22: A double neutrosophic number N is a number of the form (( aTk, bIk, cFk), (dTu, eIu, fFu)), 

where T, I, F have their usual neutrosophic logic means and a, b, c, d, e ∈ ℝ or ℂ. The double neutrosophic 

set Q defined by 

Q = {(( aTk, bIk, cFk), (dTu, eIu, fFu)): a, b, c, d, e, f ∈ ℝ or ℂ}. 

For N, (( aTk, bIk, cFk), (dTu, eIu, fFu)) representing any entity which may be a number, an idea, an object, 

etc., ( aTk, bIk, cFk) is called the known part, (dTu, eIu, fFu) is called the unknown part. 

Corollary 3: From Definition 22 and Definition 1, double neutrosophic sets are generalized of neutrosophic 

sets and neutrosophic quadruple sets. 

Definition 23: Let Q = {(( aTk, bIk, cFk), (dTu, eIu, fFu)): a, b, c, d, e, f ∈ ℝ or ℂ} be a double neutrosophic 

set and A = ((𝑎1Tk, 𝑎2Ik, 𝑎3Fk ), 𝑎4Tu, 𝑎5Iu, 𝑎6Fu) and B = ((𝑏1Tk, 𝑏2Ik, 𝑏3Fk ), 𝑏4Tu, 𝑏5Iu, 𝑏6Fu) be double 
neutrosophic numbers in Q. We define the +, –, . , \ operations for double neutrosophic numbers such that 

A + B = ((𝑎1+ 𝑏1)Tk, (𝑎2 + 𝑏2)Ik, (𝑎3 + 𝑏3)Fk ), (𝑎4+ 𝑏4)Tu, (𝑎5 + 𝑏5)Iu, (𝑎6 + 𝑏6)Fu)). 

A - B = ((𝑎1- 𝑏1)Tk, (𝑎2 - 𝑏2)Ik, (𝑎3 - 𝑏3)Fk ), (𝑎4- 𝑏4)Tu, (𝑎5 - 𝑏5)Iu, (𝑎6 - 𝑏6)Fu)). 

A . B = ((𝑎1. 𝑏1)Tk, (𝑎2 . 𝑏2)Ik, (𝑎3 . 𝑏3)Fk ), (𝑎4. 𝑏4)Tu, (𝑎5 . 𝑏5)Iu, (𝑎6 . 𝑏6)Fu)). 

A \ B = ((𝑎1\ 𝑏1)Tk, (𝑎2 \ 𝑏2)Ik, (𝑎3 \ 𝑏3)Fk ), (𝑎4\ 𝑏4)Tu, (𝑎5 \ 𝑏5)Iu, (𝑎6 \ 𝑏6)Fu)), where; 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6 ≠ 0. 

Definition 24: Let Q = {(( aTk, bIk, cFk), (dTu, eIu, fFu)): a, b, c, d, e, f ∈ ℝ or ℂ} be a double neutrosophic 

set,     Tk < Ik < Fk, Tu < Iu < Fu (in Definition 3, pessimistic way) A = ((𝑎1Tk, 𝑎2Ik, 𝑎3Fk ), 𝑎4Tu, 𝑎5Iu, 𝑎6Fu) 

and B = ((𝑏1Tk, 𝑏2Ik, 𝑏3Fk ), 𝑏4Tu, 𝑏5Iu, 𝑏6Fu) be double neutrosophic numbers in Q. We define the *1 
operation for double neutrosophic numbers such that  

A *1 B = ((𝑎1Tk, 𝑎2Ik, 𝑎3Fk ), 𝑎4Tu, 𝑎5Iu, 𝑎6Fu)*1 ((𝑏1Tk, 𝑏2Ik, 𝑏3Fk ), 𝑏4Tu, 𝑏5Iu, 𝑏6Fu)  

            =  (𝑎1𝑏1)Tk,(𝑎1𝑏2+𝑎2𝑏1 + 𝑎2𝑏2 )Ik, (𝑎1𝑏3 + 𝑎2𝑏3 + 𝑎3𝑏1 + 𝑎3𝑏2 + 𝑎3𝑏3)Fk, 

                (𝑎4𝑏4)Tu, (𝑎4𝑏5+𝑎5𝑏4 + 𝑎5𝑏5 )Iu, (𝑎4𝑏6 + 𝑎5𝑏6 + 𝑎6𝑏4 + 𝑎6𝑏5 + 𝑎6𝑏6)Fu) 
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Definition 25: Let Q = {(( aTk, bIk, cFk), (dTu, eIu, fFu)): a, b, c, d, e, f ∈ ℝ or ℂ} be a double neutrosophic 

set,     Tk > Ik > Fk, Tu > Iu > Fu (in Definition 3, optimistic way) A = ((𝑎1Tk, 𝑎2Ik, 𝑎3Fk ), 𝑎4Tu, 𝑎5Iu, 𝑎6Fu) 

and B = ((𝑏1Tk, 𝑏2Ik, 𝑏3Fk ), 𝑏4Tu, 𝑏5Iu, 𝑏6Fu) be double neutrosophic numbers in Q. We define the *2 
operation for double neutrosophic numbers such that  

A *2 B = ((𝑎1Tk, 𝑎2Ik, 𝑎3Fk ), 𝑎4Tu, 𝑎5Iu, 𝑎6Fu) *2 ((𝑏1Tk, 𝑏2Ik, 𝑏3Fk ), 𝑏4Tu, 𝑏5Iu, 𝑏6Fu)  

            = (𝑎1𝑏1 + 𝑎1𝑏2 + 𝑎1𝑏3 + 𝑎2𝑏1 + 𝑎3𝑏1)Tk, (𝑎2𝑏2+𝑎2𝑏3 + 𝑎3𝑏2 )Ik, (𝑎3𝑏3)Fk, 

               (𝑎4𝑏4 + 𝑎4𝑏5 + 𝑎4𝑏6 + 𝑎5𝑏4 + 𝑎6𝑏4)Tu, (𝑎5𝑏5+𝑎5𝑏6 + 𝑎6𝑏5 )Iu, (𝑎6𝑏6)Fu). 

SET VALUED COMBINED CLASSICAL - NEUTROSOPHIC SETS 

AND NUMBERS 

Definition 26: A set valued double neutrosophic number Ns is a number of the form                                    
((ATk, BIk, CFk), (DTu, EIu, FFu)), where T, I, F have their usual neutrosophic logic means and                           

A, B, C, D, E, F ∈ P(Ns), P(Ns) is power set of Ns. The set valued double neutrosophic set Qs defined by 

Qs = {((ATk, BIk, CFk), (DTu, EIu, FFu)): A, B, C, D, E, F ∈ P(Ns)}. 

For Ns, ((ATk, BIk, CFk), (DTu, EIu, FFu)) representing any entity which may be a number, an idea, an 

object, etc., ((ATk, BIk, CFk) is called the known part, (DTu, EIu, FFu) is called the unknown part. 

Corollary 4: From Definition 26 and Definition 6, set valued double neutrosophic sets are generalized of 

neutrosophic sets and set valued neutrosophic quadruple sets. 

Definition 27: Let Qs = {((ATk, BIk, CFk), (DTu, EIu, FFu)): A, B, C, D, E, F ∈ P(Ns)} be a set valued double 

neutrosophic set and As = (( 𝐴1 Tk, 𝐴2 Ik, 𝐴3 Fk), ( 𝐴4 Tu, 𝐴5 Iu, 𝐴6 Fu)) and                                    

Bs = ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu))) be set valued double neutrosophic numbers in Qs. If 𝐴1⊂ 𝐵1,       𝐴2⊂ 𝐵2, 𝐴3⊂ 𝐵3, 𝐴4⊂ 𝐵4, 𝐴5⊂ 𝐵5, 𝐴6⊂ 𝐵6  then it is called that As is subset of Bs. It is shown by As⊂ Bs. 

Definition 28: Let Qs = {((ATk, BIk, CFk), (DTu, EIu, FFu)): A, B, C, D, E, F ∈ P(Ns)} be a set valued double 

neutrosophic set and As = (( 𝐴1 Tk, 𝐴2 Ik, 𝐴3 Fk), ( 𝐴4 Tu, 𝐴5 Iu, 𝐴6 Fu)) and                                    

Bs = ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu))) be set valued double neutrosophic numbers in Qs. If As⊂ Bs and 

Bs⊂ As, then it is called that As is equal to Bs. It is shown by As = Bs. 

Definition 29: Let Qs = {((ATk, BIk, CFk), (DTu, EIu, FFu)): A, B, C, D, E, F ∈ P(Ns)} be a set valued double 

neutrosophic set and As = (( 𝐴1 Tk, 𝐴2 Ik, 𝐴3 Fk), ( 𝐴4 Tu, 𝐴5 Iu, 𝐴6 Fu)) and                                    

Bs = ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu))) be set valued double neutrosophic numbers in Qs. We define 

the ∪, ∩, \ , ‘ operations for set valued double neutrosophic numbers such that 

As ∪ Bs = ((𝐴1 ∪ 𝐵1)Tk, (𝐴2  ∪  𝐵2)Ik, (𝐴3 ∪ 𝐵3)Fk), (𝐴4 ∪ 𝐵4)Tu, (𝐴5  ∪  𝐵5)Iu, (𝐴6 ∪ 𝐵6)Fu). 

As ∩ Bs = ((𝐴1 ∩ 𝐵1)Tk, (𝐴2  ∩  𝐵2)Ik, (𝐴3 ∩ 𝐵3)Fk), (𝐴4 ∩ 𝐵4)Tu, (𝐴5  ∩  𝐵5)Iu, (𝐴6 ∩ 𝐵6)Fu). 

As \ Bs = ((𝐴1\ 𝐵1)Tk, (𝐴2 \ 𝐵2)Ik, (𝐴3 \ 𝐵3)Fk), (𝐴4\ 𝐵4)Tu, (𝐴5 \ 𝐵5)Iu, (𝐴6 \ 𝐵6)Fu). 

As‘ = ((𝐴1‘Tk, 𝐴2‘Ik, 𝐴3‘Fk), (𝐴4‘Tu, 𝐴5‘Iu, 𝐴6‘Fu)) 

Definition 30: Let Qs = {((ATk, BIk, CFk), (DTu, EIu, FFu)): A, B, C, D, E, F ∈ P(Ns)} be a set valued double 

neutrosophic set and As = (( 𝐴1 Tk, 𝐴2 Ik, 𝐴3 Fk), ( 𝐴4 Tu, 𝐴5 Iu, 𝐴6 Fu)) and                                    
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Bs = ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu))) be set valued double neutrosophic numbers in Qs; Tk < Ik < Fk,      
Tu < Iu < Fu (in Definition 3, pessimistic way). We define the #1 and #2 operations for set valued double 

neutrosophic numbers such that  

As #1 Bs = ((𝐴1Tk, 𝐴2Ik, 𝐴3Fk), (𝐴4Tu, 𝐴5Iu, 𝐴6Fu)) #1 ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu))) 

              = (𝐴1 ∪ 𝐵1)Tk, ((𝐴1 ∪ 𝐵2)∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴2 ∪ 𝐵2) )Ik,  

                 ((𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵2) ∩ (𝐴3 ∪ 𝐵3))Fk, 

                  (𝐴4 ∪ 𝐵4)Tu, ((𝐴4 ∪ 𝐵5) ∩ (𝐴5 ∪ 𝐵4) ∩ (𝐴5 ∪ 𝐵5) )Iu,  

                 ((𝐴4 ∪ 𝐵6) ∩ (𝐴5 ∪ 𝐵6) ∩ 𝐴6 ∪ 𝐵4 ) ∩ (𝐴6 ∪ 𝐵5) ∩ (𝐴6 ∪ 𝐵6))Fu). 

As #2 Bs = ((𝐴1Tk, 𝐴2Ik, 𝐴3Fk), (𝐴4Tu, 𝐴5Iu, 𝐴6Fu)) #2 ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu)))  

              = (𝐴1 ∩ 𝐵1)Tk, ((𝐴1 ∩ 𝐵2)∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴2 ∩ 𝐵2) )Ik,  

                 ((𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵2) ∪ (𝐴3 ∩ 𝐵3))Fk, 

                  (𝐴4 ∩ 𝐵4)Tu, ((𝐴4 ∩ 𝐵5) ∪ (𝐴5 ∩ 𝐵4) ∪ (𝐴5 ∩ 𝐵5) )Iu,  

                  ((𝐴4 ∩ 𝐵6) ∪ (𝐴5 ∩ 𝐵6) ∪ (𝐴6 ∩ 𝐵4 ) ∪ (𝐴6 ∩ 𝐵5) ∪ (𝐴6 ∩ 𝐵6))Fu). 

Definition 31: Let Qs = {((ATk, BIk, CFk), (DTu, EIu, FFu)): A, B, C, D, E, F ∈ P(Ns)} be a set valued double 

neutrosophic set and As = (( 𝐴1 Tk, 𝐴2 Ik, 𝐴3 Fk), ( 𝐴4 Tu, 𝐴5 Iu, 𝐴6 Fu)) and                                    

Bs = ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu))) be set valued double neutrosophic numbers in Qs; Tk < Ik < Fk,      
Tu < Iu < Fu (in Definition 3, pessimistic way). We define the #3 and #4 operations for set valued double 

neutrosophic numbers such that  

As #3 Bs = ((𝐴1Tk, 𝐴2Ik, 𝐴3Fk), (𝐴4Tu, 𝐴5Iu, 𝐴6Fu)) #4 ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu)))  

              = ((𝐴1 ∪ 𝐵1) ∩ (𝐴1 ∪ 𝐵2) ∩ (𝐴1 ∪ 𝐵3) ∩ (𝐴2 ∪ 𝐵1) ∩ (𝐴3 ∪ 𝐵1))Tk, 

                  ((𝐴2 ∪ 𝐵2)∩ (𝐴2 ∪ 𝐵3) ∩ (𝐴3 ∪ 𝐵2) )Ik,  (𝐴3 ∪ 𝐵3)Fk, 

                  ((𝐴4 ∪ 𝐵4) ∩ (𝐴4 ∪ 𝐵5) ∩ (𝐴4 ∪ 𝐵6) ∩ (𝐴5 ∪ 𝐵4) ∩ (𝐴6 ∪ 𝐵4))Tu, 

                  ((𝐴5 ∪ 𝐵5)∩ (𝐴5 ∪ 𝐵6) ∩ (𝐴6 ∪ 𝐵5) )Iu, (𝐴6 ∪ 𝐵6)Fu). 

As #4 Bs = ((𝐴1Tk, 𝐴2Ik, 𝐴3Fk), (𝐴4Tu, 𝐴5Iu, 𝐴6Fu)) #4 ((𝐵1Tk, 𝐵2Ik, 𝐵3Fk), (𝐵4Tu, 𝐵5Iu, 𝐵6Fu)))  

              = (((𝐴1 ∩ 𝐵1) ∪ (𝐴1 ∩ 𝐵2) ∪ (𝐴1 ∩ 𝐵3) ∪ (𝐴2 ∩ 𝐵1) ∪ (𝐴3 ∩ 𝐵1))Tk, 

                ((𝐴2 ∩ 𝐵2)∪ (𝐴2 ∩ 𝐵3) ∪ (𝐴3 ∩ 𝐵2) )Ik, (𝐴3 ∩ 𝐵3)Fk, 

                 ((𝐴4 ∩ 𝐵4) ∪ (𝐴4 ∩ 𝐵5) ∪ (𝐴4 ∩ 𝐵6) ∪ (𝐴5 ∩ 𝐵4) ∪ (𝐴6 ∩ 𝐵4))Tu, 

                 ((𝐴5 ∩ 𝐵5)∪ (𝐴5 ∩ 𝐵6) ∪ (𝐴6 ∩ 𝐵5) )Iu, (𝐴6 ∩ 𝐵6)Fu). 

Conclusions 

In this chapter, we define combined classic - neutrosophic sets, double neutrosophic sets, set valued 

combined classic - neutrosophic sets and set valued double neutrosophic sets.  

Combined classic - neutrosophic sets and set valued combined classic - neutrosophic sets contain 

exact true value and exact false value, unlike neutrosophic set and neutrosophic quintet set. Also, these sets 
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contain T, I, F, like neutrosophic set and neutrosophic quintet set. Thus, these sets are generalized of 

neutrosophic sets, neutrosophic quadruple sets and set valued neutrosophic quadruple sets. Furthermore, 

researchers obtain neutrosophic quintet algebraic structures and set valued neutrosophic quintet algebraic 

structures. Thus, researchers can obtain new structures thanks to neutrosophic quintet sets and set valued 

neutrosophic quintet sets. 

Double neutrosophic sets and set valued double neutrosophic sets contain two neutrosophic set. First 

neutrosophic set is known part and second neutrosophic set is unknown part. Hence, there are six 

components. Thus, these sets are generalized of neutrosophic sets, neutrosophic quadruple sets and set valued 

neutrosophic quadruple sets. Furthermore, researchers obtain double neutrosophic algebraic structures and set 

valued double neutrosophic algebraic structures. Thus, researchers can obtain new structures thanks to double 

neutrosophic sets and set valued double neutrosophic sets. 

In combined classic - neutrosophic sets, double neutrosophic sets, set valued combined classic - 

neutrosophic sets and set valued double neutrosophic sets; the values T, I and F are same for each element. If 

we define new operations according to the different T, I and F values for combined classic - neutrosophic 

sets, double neutrosophic sets, set valued combined classic - neutrosophic sets and set valued double 

neutrosophic sets, then combined classic - neutrosophic sets, double neutrosophic sets, set valued combined 

classic - neutrosophic sets and set valued double neutrosophic sets can be used decision making problems. 

Also, neutrosophic quintet sets and set valued neutrosophic quintet sets can be useful according to other sets. 

Abbreviations 

NQ: Neutrosophic quadruple 

NQS: Neutrosophic quadruple set 

NQN: Neutrosophic quadruple number 

SVNQS: Set valued neutrosophic quadruple set 

SVNQN: Set valued neutrosophic quadruple number 
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Chapter Nineteen 

Bipolar Spherical Fuzzy Neutrosophic Cubic Graph and 

its Application 
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ABSTRACT 

Compared to fuzzy set and all other versions of fuzzy set, neutrosophic sets can handle imprecise information 

in a more effective way.  Neutrosophic cubic sets, which is the generalization of neutrosophic set are more 

flexibile as well as compatible to the system compared to other existing fuzzy models.  On other hand, graph 

is a very easy way to understand and handle a problem physically in the form of diagrams.  We introduce 

spherical fuzzy neutrosophic cubic graph and single-valued neutrosophic spherical cubic graphs in bipolar 

setting and discuss some of their properties such as Cartesian product, composition, m-join, n-join, m-union, 

n-union. We also present a numerical example of the defined model which depicts the advantage of the same.

Finally, we define a score function and minimum spanning tree algorithm of an undirected bipolar single-

valued neutrosophic spherical cubic graph with a numerical example. 

Keywords: Neutrosophic Cubic Sets, Bipolar Spherical Fuzzy Neutrosophic Cubic Graph, single-valued 

neutrosophic spherical cubic graphs, Minimum Spanning Tree 

INTRODUCTION 

The idea of fuzzy set theory, proposed by Zadeh [76], plays a significant role as it handles uncertain or vague 

information in decision making, characterized by a membership function which assigns a membership value 

ranging between zero and one. However, in some actual environment, the fuzzy set theory has some 

limitations when the decision maker deals with some uncertain information or vagueness.  Intuitionistic 

Fuzzy Set (IFS), proposed by Atanassov [10], is characterized by a membership and non-membership 

function satisfies the condition that the sum of membership and non-membership is less than or equal to one.  

mailto:akalyadevi91@gmail.com
mailto:riosweety@gmail.com
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Yager [71,72] proposed a brand-new extension of fuzzy set called Pythagorean fuzzy set (PFS), which has 

been successfully applied in many fields for decision making procedures. PFS is characterized by a 

membership and non-membership function satisfies the condition that the square sum of membership and 

non-membership is less than of equal to one. It is noted that not all Pythagorean fuzzy set are intuitionistic 

fuzzy set but an intuitionistic fuzzy set must be a Pythagorean fuzzy set.  

Spherical fuzzy set is a generalization of picture fuzzy set and Pythagorean fuzzy set.  There is a need of 

spherical fuzzy set to tackle an interesting scenario emerge when picture fuzzy sets and Pythagorean fuzzy 

sets both failed to handle.  We can study the neutral degree in spherical fuzzy set where as in Pythagorean 

fuzzy sets and picture fuzzy sets it doesn’t.  In spherical fuzzy set, membership degrees are gratifying the 

condition .1)()()(0 222  xNxIxP  [9,37,38].  

 The idea of neutrosophic set is introduced by Smarandache [28,32,33,55,56], which is a 

generalization of the fuzzy set, intuitionistic fuzzy set.  The neutrosophic sets are characterized by a truth 

function (T), an indeterminate function (I) and a false function (F) independently.  Smarandache [63] 

introduced the new concepts of neutrosophic perspectives: Triplets, Duplets, Multisets, Hybrid Operators, 

Modal Logic, Hedge Algebras. And Applications. The neutrosophic set and its extensions plays a vital role to 

deal with incomplete and inconsistent information that exist in real world.  Smarandache introduced 

neutrosophic quadruple sets and neutrosophic quadruple numbers.  Furthermore special operations for set 

valued neutrosophic quadruple numbers other triplet structures also defined and also applied in the medical 

field [46-49]. 

 The concept of cubic set is characterized by fuzzy set and interval valued fuzzy set, which is an 

important tool to deal with uncertainty and vagueness.  The hybrid platform of cubic set contains more 

information than a fuzzy set.  Neutrosophic set combined with cubic sets gave the new concept of 

neutrosophic cubic set introduced by Jun et.al [32-34].  Further Smarandache et.al [60-63] introduced the 

new idea of neutrosophic cubic graphs and their fundamental operations such as Cartesian product, union and 

join of neutrosophic cubic graphs, composition, degree and order of neutrosophic cubic graphs and some 

results. Recently, the new concept of bipolar neutrosophic cubic graphs and single-valued bipolar 

neutrosophic cubic graphs is introduced and discuss some of their algebraic properties and present minimum 

spanning tree algorithm with numerical example [8].   

Bipolar fuzzy sets is an extension of fuzzy sets, in which positive information represents the possible and 

negative information represents the impossible or surely false [77].  In bipolar fuzzy sets, the elements are 

irrelevant are indicated by membership degree zero, the elements are satisfy the corresponding property by 

(0,1] and the elements are satisfy implicit counter property by [-1,0).  On the other hand graphical 

representation is a convenient way of representing the data in which the objects are vertices and their 

relations are edges.  Fuzzy graph models were developed to describe the uncertain elements but their 

extension fails if the relation between the nodes in the problem is indeterminate [12-22].  The neutrosophic 

graphs were designed to overcome this failure.  .   In the book of neutrosophic graphs Kandasamy et.al [35] 
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introduced the concept of neutrosophic graphs. The different aspects of neutrosophic graphs is discussed by 

Akram and others [1-7] 

Recently, neutrosophic methods is used to find minimum spanning tree of a graph, introduced by Ye 

[73], where nodes are represented by single valued neutrosophic set and distance between two nodes 

represents the dissimilarity between the corresponding samples has been derived.  A double-valued 

neutrosophic minimum spanning tree clustering algorithm is used to cluster double-valued neutrosophic 

information is introduced by Kandasamy [36]. 

In this paper, we propose the idea of spherical fuzzy neutrosophic cubic graph in bipolar setting and discuss 

some of its properties.  We also test its applicability of the same based on present and future time prediction. 

We also define minimum cost spanning tree of bipolar spherical fuzzy neutrosophic cubic graph. 

BACKGROUND

In this section, we study some basic definitions required to define bipolar spherical fuzzy neutrosophic cubic 

graph.   

Definition 1. [10] Intuitionistic Fuzzy Set 

Let P be an IFS in the universe of discourse X, shown as follows: 

},|)(),(,{ XxxxxP PP  

where ]1,0[:)( XxP and ]1,0[:)( XxP satisfy 1)()(0  xx PP  for all ,Xx )(xP and

)(xP denote the membership degree and non-membership degree of element x belonging to the IFS P, 

respectively.  Moreover, )()(1)( xxx PPP   is called the hesitancy degree of element x belonging to

the IFS P. 

Definition 2. [71] Pythagorean Fuzzy Set 

Let P be an PFS in the universe of discourse X, shown as follows: 

},|)(),(,{ XxxxxP PP  

where ]1,0[:)( XxP  and ]1,0[:)( XxP satisfy     1)()(0 22  xx PP  for all ,Xx )(xp and

)(xP denote the membership degree and non-membership degree of element x belonging to the PFS P, 

respectively.  Moreover, )()(1)( 22 xxx PPP   is called the hesitancy degree of element x belonging to 

the PFS P.  For convenience, we introduce a Pythagorean fuzzy number denoted by ),,(   P  where

]1,0[,    and     10 22    .
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Definition 3. [55] Neutrosophic Set 

 

Let X be a universe.  A neutrosophic set A over X is defined by 

},|))(),(),((,{ XxxFxIxTxP PPP 
 

where )(),( xIxT PP and )(xFP  are called truth-membership function, indeterminacy membership function 

and falsity-membership function, respectively.  They are, respectively, defined by ]1,0[:)( XxTP , 

]1,0[:)( XxIP , ]1,0[:)( XxFP  such that    3)()()(0 xFxIxT PPP . 

 

Definition 4. [70] Single Valued Neutrosophic Set 

 

Let X be a universe.  A single-valued neutrosophic set A over X is defined by 

},|))(),(),((,{ XxxFxIxTxP PPP 
 

where )(),( xIxT PP and )(xFP  are called truth-membership function, indeterminacy membership function 

and falsity-membership function, respectively.  They are, respectively, defined by ]1,0[:)( XxTP , 

]1,0[:)( XxIP , ]1,0[:)( XxFP  such that  3)()()(0  xFxIxT PPP . 

 

Definition 5. [28] Bipolar Neutrosophic Set 

 

A bipolar neutrosophic set A in X is defined as an object of the form  

},|)(),(),(),(),(),(,{ XxxFxIxTxFxIxTxP PPPPPP  
 

where ]1,0[:,,  XFIT PPP , ].1,0[:,,  XFIT PPP  

 

Definition 6. [32] Neutrosophic Cubic Set 

 

Let X be a non-empty set.  A neutrosophic cubic set in X is a pair ),( PAA  where 

}|)(),(),(,{ XxxAxAxAxA FIT  is an interval neutrosophic set in X and 

}|)(),(),(,{ XxxxxxP FIT    is a neutrosophic set in X. 

 

Definition 7. [37] Spherical Fuzzy Set 

 

Let X be a universe.  Then the set 

},|))(),(),((,{ XxxFxIxTxP PPP 
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is said to be spherical fuzzy set, where ]1,0[:)( XxTP , ]1,0[:)( XxIP  and ]1,0[:)( XxFP  are said 

to be degree of positive-membership function of x in X, degree of neutral-membership function of x in X and 

degree of negative-membership function of x in X, respectively.  Also PT , PI  and PF  satisfy the following 

condition:   

)1))(())(())((0()( 222  xFxIxTXx PPP . 

 

Definition 8. [8] Neutrosophic Cubic Graph 

 

Let ),( EVG*   be a graph.  By neutrosophic cubic graph of ,*G  we mean a pair ),( NMG  where 

))F,F(),I,I(),T,T((B)(A,M B

~

AB

~

AB

~

A  is the neutrosophic cubic set representation of vertex set V and 

))F,F(),I,I(),T,T((D)(C,N D

~

CD

~

CD

~

C  is the neutrosophic cubic set representation of edges set E such 

that: 

)}),(),(max{)},(),(min{)( iBiBiiDi

~

Ai

~

Aii

~

C vTuT)v(uTvTuTrv(uT(i)   

)}),(),(max{)},(),(min{)( iBiBiiDi

~

Ai

~

Aii

~

C vIuI)v(uIvIuIrv(uI(ii)   

)}).(),(min{)},(),(max{)( iBiBiiDi

~

Ai

~

Aii

~

C vFuF)v(uFvFuFrv(uF(iii)   

Bipolar Spherical Fuzzy Neutrosophic Cubic Graph 

In this section, we develop bipolar spherical fuzzy neutrosophic cubic graph and its algebraic operations such 

as degree, order, union, join, composition and some other results related with bipolar spherical fuzzy 

neutrosophic cubic graph with examples.  

Definition 9. 

Let X be a non-empty set.  A Bipolar Spherical Fuzzy Neutrosophic Cubic Set (BSFNCS) 

X}x|λ),F,I,(T),F,I,(Tx,{A A
P
A

P
A

P
A

P
A

P
A

P
A    

where  [0,1] X:F,I,T P
A

P
A

P
A , ]0,1[ X:)F,I,(T P

A
P
A

P
A , ]1,0[X:λA  are the mappings such 

that 3))(F)(I)((T0 2P
A

2P
A

2P
A    and 3))(F)(I)((T0 2P

A
2P

A
2P
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denote the positive falsity membership function, P
AT  denote the negative truth membership function, P
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Definition 10. 

Let ),(* EVG   be a graph and ),( QPG  is a Bipolar Spherical Fuzzy Neutrosophic Cubic Graph (BSFNCG) 

of ,*G  if  
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Let ),(* EVG   be a graph and ),( QPG  is a Bipolar Spherical Fuzzy Neutrosophic Cubic Graph (BSFNCG) 

of ,*G  if  
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is the BSFNCG representation of vertex set V and  
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is the BSFNCG representation of edge set E and   and  are bipolar spherical fuzzy neutrosophic cubic 

sets. 

 

 

 

Example 11. 

Let ),(* EVG   be a graph where },,,{ dcbaV   and },,,,,{ cdbdbcadacabE   where P and Q are as 

follows: 
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Figure 1. The vertex set in P and the edge set in Q are represented for the graph G*=(V,E)  

                                    

Remark 

1. If  3n  in the vertex set and 3n  in the set of edges then the graphs is a bipolar neutrosophic 

cubic polygon only when we join each vertex to the corresponding vertex through an edge. 

2. If we have infinite elements in the vertex set and by joining the edge and every edge with each other 

we get a bipolar neutrosophic cubic curve. 

 

Definition 12. 

Let ),( QPG  be a bipolar spherical fuzzy neutrosophic cubic graph. The order of bipolar spherical fuzzy 

neutrosophic cubic graph is defined by 


 
















Vu

PP
A

PP
A

PP
A

PP
A

PP
A

PP
A

uFFuIIuTT

uFFuIIuTT
GO

))(,(),)(,(),)(,(

),)(,(),)(,(),)(,(
)(




 

and the degree of a vertex u and G is defined by 


 
















Euv

PP
B

PP
B

PP
B

PP
B

PP
B

PP
B

uvFFuvIIuvTT

uvFFuvIIuvTT
u

))(,(),)(,(),)(,(

),)(,(),)(,(),)(,(
)deg(




 

 



                               

Quadruple Neutrosophic Theory And Applications   

 Volume I 

 

273 

 

Example 13. 

 In the above example, the order of a bipolar spherical fuzzy neutrosophic cubic graph is  
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Definition 14. 

Let ),( 111 QPG   
be a bipolar spherical fuzzy neutrosophic cubic graph of  ),( 111 EVG   and ),( 222 QPG   

be a bipolar spherical fuzzy neutrosophic cubic graph of ),( 222 EVG  . Then Cartesian product of 
1G  and 

2G  is denoted by 
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and is defined as follows: 
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Example 15. 

 Let  111 ,QPG   be a bipolar spherical fuzzy neutrosophic cubic graph of ),( 11
*
1 EVG   as 

shown in figure 2 , Where  cbaV ,,1  ,  acbcabE ,,1  . 
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Figure 2: The vertex set in P1 and the edge set in Q1 are represented for the graph G1=(P1,Q1) 

                            

Figure 3: The vertex set in P2 and the edge set in Q2 are represented for the graph G2=(P2,Q2)  

                          

 

Proposition 16. 

The Cartesian product of two bipolar spherical fuzzy neutrosophic cubic graphs is again a bipolar spherical 

fuzzy neutrosophic cubic graph. 

Proof: 
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Definition 18.  
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Example 19. 

Let ),( 11
*
1 EVG  and ),( 22

*
2 EVG  be two bipolar spherical fuzzy neutrosophic cubic graphs, where 

),(1 baV   
and ),(2 dcV  . Suppose 1P  and 2P  be the bipolar spherical fuzzy neutrosophic cubic set 

representations of 1V  and 2V . Also 1Q  and 2Q be the bipolar spherical fuzzy neutrosophic cubic set 

representations of 1E  and 2E defined as follows: 
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Figure 4: For the two bipolar spherical fuzzy neutrosophic cubic graphs ),( 11
*
1 EVG   and ),( 22

*
2 EVG   the 

vertex sets ),(1 baV  and ),(2 dcV   and the edge sets 1E  and 2E  are represented 

                                    

The composition of two bipolar spherical fuzzy neutrosophic cubic graphs 1G  and 2G  is again a bipolar 

spherical fuzzy neutrosophic cubic graph, where 
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Figure 5. The composition of two bipolar spherical fuzzy neutrosophic cubic graphs G1 and G2. 

                          

Definition 20. 

Let ),( 111 QPG   and ),( 222 QPG   be two bipolar spherical fuzzy neutrosophic cubic graphs of the graph 

*
1G  and *

2G  respectively. Then M- union is denoted by 21 GG M   and is defined as  
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Example 21. 

Let us consider the two bipolar spherical fuzzy neutrosophic cubic graphs as ),( 111 QPG   and ),( 222 QPG   
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Proposition 22. 

The M-union of the two bipolar spherical fuzzy neutrosophic cubic graphs is again a bipolar spherical fuzzy 

neutrosophic cubic graph. 
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Definition 23. 

Let ),( 111 QPG   and ),( 222 QPG   be two bipolar spherical fuzzy neutrosophic cubic graphs of the graphs 

*
1G  and *

2G  respectively, then M-join is denoted by 21 GG M   and is defined as follows: 
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Definition 24. 
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Proposition 25. 

The M-join and N-join of two bipolar spherical fuzzy neutrosophic cubic graphs is again a bipolar spherical 

fuzzy neutrosophic cubic graph. 

 

APPLICATIONS OF BIOPOLAR SPHERICAL FUZZY 

NEUTROSOPHIC CUBIC GRAPHS 

In this section, we present the real life applications of bipolar spherical fuzzy neutrosophic cubic graph. 

 

Numerical Example 26. 

Let us consider three factors that influence the e-learning effectiveness represented by the vertex set 

 ZYXV ,, . And let the truth-value denotes the e-learning material, the indeterminacy-value denotes the 

quality of web learning platform, the false-value denotes the e-learning course flexibility. 

Let the vertex is given as follows: 

 

































)5.0],2.0,7.0[(),7.0],3.0,4.0[(),2.0],4.0,8.0[(

),4.0],3.0,9.0[(),2.0],7.0,5.0[(),4.0],8.0,1.0[(,

)3.0],5.0,6.0[(),2.0],6.0,4.0[(),4.0],7.0,2.0[(

),7.0],6.0,5.0[(),8.0],1.0,9.0[(),6.0],1.0,7.0[(,

)7.0],1.0,5.0[(),1.0],4.0,8.0[(),2.0],9.0,4.0[(

),6.0],5.0,7.0[(),4.0],3.0,5.0[(),3.0],2.0,8.0[(,

Z

Y

X

P   

 

where the interval-valued membership indicates the effectiveness of an e-learning system at present and the 

fixed single-valued membership indicates the possibility of effectiveness of an e-learning system.  So on the 

basis of the vertex set P we get the edge set Q defined as follows:  
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

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






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








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









)3.0],5.0,7.0[(),7.0],3.0,4.0[(),4.0],4.0,2.0[(

),4.0],6.0,9.0[(),8.0],1.0,5.0[(),6.0],1.0,1.0[(,

)5.0],2.0,7.0[(),7.0],3.0,4.0[(),2.0],4.0,4.0[(

),4.0],5.0,9.0[(),4.0],3.0,5.0[(),4.0],2.0,1.0[(,

)3.0],5.0,6.0[(),2.0],4.0,4.0[(),4.0],7.0,2.0[(

),6.0],6.0,7.0[(),8.0],1.0,5.0[(),6.0],1.0,7.0[(,

YZ

XZ

XY

Q  

 

Finally, we see that the effectiveness of an e-learning with other factors. 
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

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

)5.1],8.0,8.1[(),0.1],3.1,6.1[(),8.0],0.2,4.1[(

),7.1],4.1,1.2[(),4.1],1.1,9.1[(),3.1],1.1,6.1[(
)(Gorder  
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

)3.0],2,5.2[(),1.1],6.0,5.1[(),5.1],3.1,7.1[(

),3.0],1.2,5.1[(),8.1],7.1,2.1[(),2.2],3.0,7.0[(
)deg(X  

 


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


)7.0],2,5.2[(),1.1],8.0,7.1[(),9.0],1.1,4.1[(

),9.0],2,6.1[(),1.2],5.1,1[(),4.2],9.0,7.0[(
)deg(Y  

 


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








)8.0],2,7.2[(),2.1],8.0,7.1[(),9.0],3.1,7.1[(

),1],1.2,8.1[(),9.1],9.0,6.0[(),2],7.0,3.0[(
)deg(Z  

The order of G represents the overall effectiveness of an e-learning.  Degree of X represents the combination 

of the e-learning material and quality of web learning platform, degree of Y represents the e-learning material 

and e-learning course flexibility and degree of Z represents the quality of web learning platform and e-

learning course flexibility.  

 

Figure 6: The vertex set in P and the edge set in Q are represented for the graph G=(P,Q) 

                                                 

 

Numerical Example 27. 

Let us consider the construction company and we evaluate the overall performance of the company.  The 

important criteria considered are strong structure, having own skilled crew, innovative designs, high-quality 
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materials, competitive pricing.  The above said criteria are taken in the form of single-valued to represent 

present type and in the form of interval-valued on future. 
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)3.0],5.0,9.0[(),4.0],6.0,8.0[(),8.0],7.0,6.0[(

),4.0],7.0,6.0[(),6.0],7.0,6.0[(),5.0],4.0,8.0[(,

)5.0],5.0,4.0[(),7.0],8.0,7.0[(),2.0],5.0,9.0[(

),9.0],8.0,3.0[(),4.0],9.0,5.0[(),3.0],7.0,6.0[(,

)9.0],8.0,5.0[(),9.0],4.0,7.0[(),9.0],7.0,5.0[(

),9.0],5.0,2.0[(),1.0],8.0,7.0[(),6.0],7.0,1.0[(,

)8.0],6.0,2.0[(),7.0],6.0,5.0[(),1.0],6.0,8.0[(

),7.0],3.0,9.0[(),3.0],5.0,7.0[(),7.0],5.0,6.0[(,
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

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



)3.0],5.0,9.0[(),7.0],6.0,7.0[(),8.0],5.0,6.0[(

),4.0],8.0,6.0[(),6.0],7.0,5.0[(),5.0],4.0,6.0[(,

)3.0],8.0,9.0[(),9.0],4.0,7.0[(),9.0],7.0,5.0[(

),4.0],7.0,6.0[(),6.0],7.0,6.0[(),6.0],4.0,1.0[(,

)5.0],8.0,5.0[(),9.0],4.0,7.0[(),9.0],5.0,5.0[(

),9.0],8.0,3.0[(),4.0],8.0,5.0[(),6.0],7.0,1.0[(,

)3.0],6.0,9.0[(),7.0],6.0,5.0[(),8.0],6.0,6.0[(

),4.0],7.0,9.0[(),6.0],5.0,6.0[(),7.0],4.0,6.0[(,

)5.0],6.0,4.0[(),7.0],6.0,5.0[(),2.0],5.0,8.0[(

),7.0],8.0,9.0[(),4.0],5.0,5.0[(),7.0],5.0,6.0[(,

)8.0],8.0,5.0[(),9.0],4.0,5.0[(),9.0],6.0,5.0[(

),7.0],5.0,9.0[(),3.0],5.0,7.0[(),7.0],5.0,1.0[(,

)1.0],9.0,9.0[(),4.0],6.0,8.0[(),8.0],7.0,4.0[(

),4.0],8.0,7.0[(),8.0],5.0,6.0[(),5.0],4.0,7.0[(,

)1.0],9.0,5.0[(),7.0],7.0,7.0[(),2.0],5.0,4.0[(

),6.0],8.0,7.0[(),8.0],5.0,5.0[(),4.0],6.0,6.0[(,

)1.0],9.0,5.0[(),9.0],4.0,7.0[(),9.0],7.0,4.0[(

),6.0],8.0,7.0[(),8.0],5.0,7.0[(),6.0],6.0,1.0[(,

)1.0],9.0,5.0[(),7.0],6.0,5.0[(),2.0],6.0,4.0[(

),6.0],8.0,9.0[(),8.0],5.0,7.0[(),7.0],5.0,6.0[(,
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where the edge 








 )1.0],9.0,5.0[(),7.0],6.0,5.0[(),2.0],6.0,4.0[(

),6.0],8.0,9.0[(),8.0],5.0,7.0[(),7.0],5.0,6.0[(,AB
 denotes the combined effect of 

strong structure and company having own skilled crew. 
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Figure 7: Indicates the construction company and the overall performance of the company.  The vertex set in 

P and the edge set in Q are represented for the graph G=(P,Q) 

                    

 

Bipolar Spherical Fuzzy Neutrosophic Cubic Graph and Minimum 

Spanning Tree Algorithm 

In this section, we define score function of bipolar single-valued spherical fuzzy neutrosophic cubic set and 

present a minimum spanning tree problem and discuss it on a graph. 

 

Definition 28. 

 Let A be a bipolar single-valued spherical fuzzy neutrosophic cubic set, we define a new score function as 

follows: 
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In the following, we propose Bipolar Spherical Fuzzy Neutrosophic Cubic Minimum Spanning Tree 

algorithm [BSFNCMST] 

Step (1): Input bipolar spherical fuzzy neutrosophic cubic adjacency matrix A. 

Step (2): Interpret the bipolar spherical fuzzy neutrosophic cubic matrix into score matrix ijS  by using score. 

Step (3): Redo Step (4) & Step (5) until all (n-1) entries of the matrix of S(A) are either marked to zero or all 

the non-zero entries are marked. 

 Step (4): Find the score matrix S(A) either row-wise or column-wise to find the cost of the corresponding 

edge ije  in S(A) that is the minimum entries in ijS . 

Step (5): Set 0ijS  if the edge ije  of selected ijS  construct a cycle with the previous marked elements of 

the score matrix S(A) else mark ijS . 

Step (6): Compute minimum cost spanning tree of the graph G by construct the tree T including only the 

marked elements from the score matrix S(A). 

Step (7): End 

 

Numerical Example 29. 

 Assume the graph G=(V,E) where V be the vertices and E be the edge of the graph.  Here we have 5 

vertices and 7 edges.  Erection of the minimum cost spanning tree are discussed as follows 

 

Figure (8): Undirected Graph G=(V,E) with 5 vertices and 7 edges 

                                              

e Edge length 
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e13 









 )3.0],5.0,4.0[(),5.0],6.0,2.0[(),8.0],3.0,7.0[(
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),5.0],2.0,4.0[(),9.0],2.0,7.0[(),3.0],5.0,9.0[(
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The bipolar spherical fuzzy neutrosophic cubic adjacency matrix A is given below 
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Thus, the score matrix using the score function  

Figure (9): Score Matrix 

 

0 0.25 0.222 0 0 

0.25 0 0.311 0.211 0 

0.222 0.311 0 0.272 0.178 

0 0.211 0.272 0 0.283 

0 0 0.178 0.283 0 

 

Figure (10): The selected edge (3,5) in G 

                                  

In the score matrix, the minimum entry is 0.178 is selected and the corresponding edge (3,5) is highlighted in 

Figure (9). 

S(A) = 
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0.211 

Figure (10) represents the bipolar spherical fuzzy neutrosophic cubic graph where the edge (3,5) is 

highlighted. 

 

Figure (11): The next minimum entry 0.211 in score matrix 

 

0 0.25 0.222 0 0 

0.25 0 0.311 0.211 0 

0.222 0.311 0 0.272 0.178 

0 0.211 0.272 0 0.283 

0 0 0.178 0.283 0 

 

Figure (12): The selected edge (2,4) in G 

 

According to the Figure (11) & Figure (12), the next non-zero minimum entry is 0.211 is selected and the 

corresponding edge (2,4) is highlighted. 

 

Figure (13): The next minimum entry 0.222 in score matrix 

 

0 0.25 0.222 0 0 

0.25 0 0.311 0.211 0 

0.222 0.311 0 0.272 0.178 

0 0.211 0.272 0 0.283 

0 0 0.178 0.283 0 

 

Figure (14): The selected edge (1,3) in G 

S(A) = 

S(A) = 
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According to the Figure (13) & Figure (14), the next non-zero minimum entry is 0.222 is selected and the 

corresponding edge (1,3) is highlighted. 

Figure (15): The next minimum entry 0.25 in score matrix 

 

0 0.25 0.222 0 0 

0.25 0 0.311 0.211 0 

0.222 0.311 0 0.272 0.178 

0 0.211 0.272 0 0.283 

0 0 0.178 0.283 0 

 

 

Figure (16): The selected edge (1,2) in G 

 

 

The final minimum non-zero entry is 0.25 is selected and the corresponding edge (1,2) is highlighted in the 

Figure (15) & Figure (16) 

Figure (17): The final path of minimum spanning tree is represented   

                                       

S(A) = 
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Using the above steps, the crisp minimum cost spanning tree is 0.861 and the final path of minimum 

spanning tree is }2,4{ , }1,2{ , }3,1{ , }5,3{ . 

Conclusions 

Neutrosophic sets are a suitable mathematical tool to handle the uncertainty along with the bipolarity 

ie the positivity and negativity of the information.  The concept of bipolar fuzzy sets is a generalization of 

fuzzy set to deal with vagueness and uncertainty.  Graph theory concepts are widely used to study various 

applications in different areas.  Minimum spanning tree have direct applications in the design of networks, 

other practical applications include taxonomy, cluster analysis, circuit design.  In this article, neutrosophic 

cubic graph is extended to bipolar environment and combined with spherical fuzzy set to develop a 

theoretical study, bipolar spherical fuzzy neutrosophic cubic graph.  We also discussed some operations on 

bipolar spherical fuzzy neutrosophic cubic graph.  Finally, application of bipolar spherical fuzzy 

neutrosophic cubic graph in decision making problem and minimum spanning tree problem are presented. 

This method is very effective in the field of computer science and medical science.  In the future, we will 

focus on bipolar spherical fuzzy graphs in different areas where there are factors of decision making exists. 
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In 2015, Smarandache introduced the concept of neutrosophic quadruple numbers and 

presented some basic operations on the set of neutrosophic quadruple numbers such as, 

addition, subtraction, multiplication, and scalar multiplication. 

http://fs.unm.edu/NSS/NSS-10-2015.pdf 

Let’s consider an entity (i.e. a number, an idea, an object, etc.) which is represented by a 

known part (a) and an  unknown part (𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹). 

Numbers of the form:  𝑁𝑄 = 𝑎 + 𝑏𝑇 + 𝑐𝐼 + 𝑑𝐹, (1) 

where a, b, c, d are real (or complex) numbers (or intervals 

or in general subsets), and 

T = truth / membership / probability, 

I = indeterminacy, 

F = false / membership / improbability, 

are called Neutrosophic Quadruple (Real respectively Complex) Numbers (or Intervals, or in 

general Subsets). “a” is called the known part of NQ, while “𝑏𝑇 + 𝑐𝐼 +𝑑𝐹” is called the 

unknown part of NQ. 

http://fs.unm.edu/NSS/NSS-10-2015.pdf

	Quadruple Neutrosophic Theory And Applications Volume I
	Recommended Citation

	Quadruple Neutrosophic Theory And Applications Volume I

