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Quadruply resonant optical parametric oscillation in
a monolithic total-internal-reflection resonator
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Monolithic total-internal-reflection resonators are low-loss broadband devices that permit variable input-output
coupling. They are ideally suited as resonators for high-efficiency low-threshold widely tunable continuous-
wave optical parametric oscillation. We demonstrate a continuous-wave quadruply resonant MgO:LiNbO3 opti-
cal parametric oscillator in which doubly resonant second-harmonic generation and doubly resonant optical
parametric oscillation occur simultaneously. The threshold subharmonic power at 1.06 ,gm for oscillation near
1.06 Aum is 0.4 mW. Stable single-frequency operation is achieved, and the tuning curve is measured.

1. INTRODUCTION

Significant improvements in the performance of cw optical
parametric oscillators (OPO's) have taken place in the past
few years, partly because of the use of single-frequency
low-amplitude-noise pump lasers and novel OPO cavity de-
signs and partly because of improved nonlinear crystals.
The combination of a monolithic design for OPO cavities,'
which are inherently mechanically stable and low loss be-
cause of the absence of intracavity interfaces, and diode-
laser-pumped solid-state lasers has led to doubly resonant
OPO's (DRO's) with thresholds of the order of 10 mW,
whose output is stable in frequency and power.2

We describe here what is to our knowledge the first ap-
plication of a novel type of optical resonator, the mono-
lithic total-internal-reflection resonator (MOTIRR), to
nonlinear optics, demonstrating simultaneous second-
harmonic generation (SHG) and parametric oscillation.

In a MOTIRR the modes are confined by total internal
reflection (TIR), and input-output coupling is achieved by
frustrated TIR (FTIR) at one of the facets of the resona-
tor. The elimination of dielectric coatings and the use of
easily variable input-output coupling offer significant ad-
vantages compared with previous monolithic resonators.
These advantages are as follows:

(1) Resonator losses that are due to reflection losses are
minimized, since a well-polished and clean TIR face has
near-unity reflectivity, which is ultimately limited by the
surface roughness.4 A rms roughness of <5 nm yields a
TIR scatter loss of <0.1% for a wavelength of 1 ,um or
longer. Such smoothness can be readily achieved. A
LiNbO3 MOTIRR, described below, exhibited a total (bulk
plus surface) loss of 0.2% at 1 tm. This represents the
lowest value in a bulk nonlinear resonator demonstrated
to date.

(2) MOTIRR's are broadband and are therefore ideally
suited for applications that require simultaneous reso-

nance of widely different wavelengths. Examples are
doubly resonant (DR) SHG, in which the subharmonic and
harmonic waves are both resonant with cavity modes, and
nondegenerate DR parametric oscillation.

(3) The permitted temperature operating range is not
limited by potential damage to coatings. With the appro-
priate crystals, phase matching over an extended wave-
length range by temperature-tuned noncritical phase
matching is possible. SHG with tunable sources and
widely tunable parametric oscillation with fixed-wave-
length pumps become possible by use of MOTIRR devices.

(4) Optimizable input coupling permits maximally effi-
cient frequency conversion at any power level. The effi-
ciencies of frequency-conversion processes depend on
cavity loss and input mirror transmission of the external
pump wave. Typically, the efficiency can be maximized
with respect to the input mirror transmission. For singly
resonant (SR) and DR SHG, this procedure is equivalent to
impedance matching, i.e., the equalization of input coupler
transmission and internal pump losses (absorption, scat-
ter, and conversion). In MOTIRR's one can manually find
optimum coupling values easily and quickly at an arbi-
trary power level by changing the strength of FTIR,
whereas conventional resonators require that one have
prior knowledge of losses and single-pass conversion effi-
ciency to determine optimum coating reflectivities for a
single input power value. Individual FTIR coupling
control for different wavelengths is possible if a respective
number of coupling prisms of birefringent and/or disper-
sive materials is used to provide polarization and/or
wavelength-selective FTIR transmissions.6'7

Relatively few experimental realizations of cw fre-
quency conversion in cavities resonant at widely different
wavelengths have been reported in spite of the fundamen-
tal importance of such processes. DR SHG, for example,
represents a paradigm of physics, a system of two har-
monic oscillators coupled by a nonlinear interaction and
driven by an external force, and has been predicted to ex-
hibit rich nonlinear dynamics.8 9 In addition, DR SHG
can generate nonclassical light.10-14 Practical applications
of DR SHG for spectroscopic uses'5 6 stem from the fact

that it is more efficient than SHG in which either the sub-
harmonic or the harmonic wave is resonated.

The potential of lowering the OPO threshold by resonat-
ing not only signal and idler but also the pump wave in a
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triply resonant OPO (TRO) was theoretically analyzed
early on.'7 KTP' 8 and lithium borate'9 TRO's with pump-
frequency finesses of 25 and 6, respectively, were recently
operated. In this paper we show that, near degeneracy,
the subharmonic power required for reaching threshold of
a quadruply resonant OPO QRO), in which the subhar-
monic of the (resonant) pump wave is also resonated, is
approximately twice as large as the threshold of a TRO at
the harmonic frequency. The QRO threshold is 2a2 times
smaller than the DRO threshold, where a2 is the cavity
loss at the harmonic frequency. Since DRO thresholds of
the order of 10 mW have been demonstrated, 2 TRO's or

QRO's can reduce thresholds below the milliwatt level.
We reached this level in the present study by using a
monolithic ring resonator whose losses (harmonic finesse
-200, subharmonic finesse -750) are lower than those of
any previously described multiply resonant device.

This paper is structured as follows. The theory of DR
SHG is summarized in Section 2. DR SHG requires that
the laser frequency and its harmonic lie within the band-
width of cavity resonances. The use of laser frequency
and MOTIRR temperature as tuning parameters is dis-
cussed in Subsection 2.A. The formulas for the calcula-
tion of intracavity subharmonic and harmonic powers are
given in Subsection 2.B. A generalization of the Boyd-
Kleinman focusing factor is presented in Subsection 2.C,
which takes into account astigmatism and SHG interfer-
ence effects. The threshold for quadruply resonant para-
metric oscillation and the structure of the output spec-
trum are derived in Subsections 3.A and 3.B, respectively.
In Subsection 4.A we describe two LiNbO3 MOTIRR's and
some details of the setup. MOTIRR characterization pro-
cedures are discussed in Subsection 4.B. Parametric
oscillation results are given in Subsection 4.C.

2. DOUBLY RESONANT
SECOND-HARMONIC GENERATION

A. Tuning

We consider a LiNbO3 monolithic ring resonator with the
crystal c axis normal to the ring plane, as depicted in
Fig. 1. In a uniaxial crystal this orientation avoids bi-
reflection effects and leads to identical wavelength-
independent ring paths for both the ordinary and the
extraordinary polarizations. Type-I noncritically phase-
matched SHG, with a p-polarized (ordinary) subharmonic
wave and an s-polarized (extraordinary) harmonic wave,
can thus occur along the whole ring. Mode overlap is
complete for TEMoo subharmonic and harmonic waves.

Double-resonance of subharmonic and harmonic waves
is achieved when the following conditions for the round-
trip phase changes are simultaneously satisfied:

n. os) & L, _ 'O-Xb +I ww( = 2M,

C j=l

n(2Wij)2cOjLrt N
_____ --X + >y = 27rM2.c =

teger mode numbers; Ox, 0 are the mode-dependent Guoy
phase shifts20 ; and n and ne are the ordinary and the ex-
traordinary indices of refraction, respectively. In an as-
tigmatic resonator, which is the case for a MOTIRR with a
single spherically polished facet, the TEMoo mode has an
elliptical cross section, with in-plane (tangential) and out-
of-plane (sagittal) waists given, respectively, by

2= AoLt (2R cos 0 1)/2

AoLrt 2R 12

Y= 2Trn Lrt cos 0 - (3)

where AO is the vacuum wavelength of the mode, 0 is the
angle of incidence onto the curved face, and n = n(AO) is
the resonator index. Introducing the ellipticity parame-
ter a = w.,wy, and the Rayleigh range zr kwlwy/2
(ki are the wave numbers), we can express the Guoy phase
shifts for TEMoo modes by the equations

0, = arctan r ) I
~2az I

ky = arctan( j-a). (4)

Experimentally, the subharmonic resonance condition
[Eq. (1)] is readily satisfied when one uses a servo system
to control the laser frequency. In this situation the reso-
nance condition for the harmonic wave can be rewritten as

N

AkLrt + ( + (P + >- y(i) - 2y(j' = 2rm,
j=l

(5)

where Ak = k2 - 2k, is the wave-vector mismatch and m
is an integer. Subsequent double resonances (implying a
change in mode number M 2 of the harmonic by 1 if the
subharmonic is kept frequency locked to a particular
mode number) require a change in the round-trip wave-
vector mismatch AkLrt by 27r.

Tuning to obtain double resonance thus requires an ex-
ternal agent that modifies the value of AkLrt. Since, for
efficient phase matching and conversion, the resonator
must be operated at values of AkLrt of the order of unity,
changes in round-trip length Lrt of the order of microme-
ters do not contribute significantly to a change in AkLrt.

rm

532 nm

(1)

(2)

Here Lrt is the ring length; the sum is over all N reflec-
tions of the ring cavity; ysJ), y1') are TIR phase shifts for
the s-polarized harmonic and the p-polarized subharmonic
waves, respectively, at facej, defined in Ref. 3; Mi are in-

Fig. 1. Geometries of LiNbO3 MOTIRR's. The beam waists are
located opposite the curved face. The short flat face of the trian-
gular MOTIRR is polished for alignment and for gap-monitoring
purposes. SF-6, BK-7, coupling prism materials.
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The wave-vector mismatch Ak can be tuned by tempera-
ture, electric field,2" or strain,'4 through the thermal sen-
sitivity of the birefringence, the electro-optic effect, or the
elasto-optic effect, respectively. An electric field is the
most practical tuning parameter, being simple to imple-
ment and fast. However, we elected to use temperature
tuning, since strong shielding effects that are due to
charge migration have been observed when static electric
fields were applied to the MOTIRR.

For operation near Ak = 0, the variation of the wave-
vector mismatch with temperature is given by

8(A kLrt) = -A LrtT, (6)
aT Ak-0

where ak/aT = 7.5/(cm K) at the phase-matching tem-
perature of 107 'C for noncritical harmonic generation of
1064 nm in MgO:LiNbO3. When the tuning parameters
are adjusted, the optical-path length of the subharmonic is
changed as well. The change in laser frequency vi neces-
sary to compensate for a change in resonator temperature
is

=V 1 n -(- + aST, (7)
no AT /

where a is the thermal-expansion coefficient. At 1.06 ,Lm,
Sv1/ST -5.4 GHz/k. When one combines Eqs. (6) and
(7) the laser-frequency change required for tuning from
one double resonance to the next is

Av, 2irn, 1 an0, M\ak "y'
'FSR Ao \no OT /\aT/ (8)

where VFSR denotes the free spectral range of the resona-
tor. Here Avil = 4.5 GHz cm/Lr, and FSR denotes free
spectral ranges.

B. Internal Powers in Doubly Resonant

Second-Harmonic Generation

Expressions for circulating subharmonic and harmonic
powers as functions of the input power have been given
by a number of authors.8"2"5 A detailed derivation is

available. 6

Consider a ring cavity with subharmonic power Pin
incident upon the (here FTIR) mirror N. Under double-
resonance conditions, the intracavity subharmonic power
P, and the harmonic power P2 are22

1 - [rN()]
2

(rlconvr tot)2

[r(N (1 - rconvrltot)
2

f

r2 tt p 2
P2 = ysHGLrt G r_ ) P, . (9)

Here r denotes various amplitude reflection coefficients:
riN) is the input mirror reflection coefficient; r~t are the
round-trip reflection coefficients resulting from cavity
losses (power loss coefficients ai) and output couplings, or
imperfect reflectivities of the mirrors [reflection coeffi-
cients rVT

N

ri tot = exp(-ai L,,/2) r ).
j-l

(10)

The effective reflection coefficient rlconv describes the
amplitude losses experienced by the subharmonic wave

because of conversion losses:

(11)ri" = 1- ysHGLrtG l _ tP' .

The product ysHGLrt GP, is the single-pass conversion ef-
ficiency, with the focusing factor G defined below in
Eq. (17), and

2 Wt l
3
deff

2

YSHG =- 2 -
ii n 0

(12)

For LiNbO3 and a subharmonic wavelength of 1.06 Am,
deff = 4.7 pm/V,23 and 'YSHG = 0.22/Wm. To make the
connection to SHG in which only the subharmonic wave is
resonated,24 one must replace the enhancement term
r2 tot/(- r2tot) with unity in Eqs. (9) and with 1/2 in
Eq. (11).

In the present study the following limiting cases are sat-
isfied: small conversion losses, 1 - rlConv << 1; small
subharmonic input-output coupling, 1 - r(N) << 1; and
small linear losses, 1 - ritot << 1. One can then approxi-
mate Eqs. (9) as

(1 + ysHGLrtG9 9;2pl)(pl)l12 = ±(T pi.) /2

p =YsHGLrt Ggi2 p 2 (13)

We defined the power transmission coefficient T, for the
subharmonic and the finesses as

(14)T = 1 - [rN)]2, 9J~ tI , 9;i= 1- tt 

respectively. In a MOTIRR the input mirror transmission
T = Tl(x) and finesse 91 = 5;1(x) are set by the distance
x between the coupling prism and the resonator. The
explicit dependencies of T and 9; on x are given in Ref. 6.
Here it suffices to establish the relation between the sub-
harmonic finesse and the input mirror transmission co-
efficient by defining the naked (large-gap) finesse
9;1(x -) = ,;1[rIN) = 1], whereby

Tl(x) = 2i ) (- (15)

Returning to Eqs. (13) for the circulating powers, we
note that the second term in parentheses represents the
effect of conversion loss, which causes the circulating sub-
harmonic power to change from a linear dependence on
the input power to a slower P, x Pin"

3 dependence (for con-
stant TD). The crossover point, when conversion losses
start to dominate linear losses, occurs when the circulat-
ing subharmonic power reaches the value

72

PiY*(= 6
'YSHG LtGS;1 9i2

This value is also the threshold for DR near-degenerate
parametric oscillation [P2(P,*) = p 2 th; see Eq. (20) below].

C. Focusing Factor

In a MOTIRR cut as shown in Fig. 1, harmonic generation
occurs on each of the ring legs. When the harmonic wave
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generated on a leg propagates to the next leg, it will gener-
ally not be in phase with the harmonic wave generated
there, since the TIR phase jump exp(iy8 ) experienced by
the harmonic electric field is generally not equal to the
phase jump exp(2iyp) of the square of the subharmonic
electric field, which is the driving force for SHG. For ex-
ample, in LiNbO3 and 450 incidence, the relative phase
jump is y2 - 2y, = 226°. The individual harmonic waves
generated on each leg will thus interfere, resulting in the
focusing factor'

G = g [I ", z(H, Ak] rl exp{i [2y) -

(17)

The individual leg lengths are denoted by l", and g indi-
cates the respective focusing factors. The latter are
given, with the resonator's astigmatism taken into ac-
count, by

g(l, z, k) =
(Z 1/2 (Zo+)/zr exp(-iAkzT)dT

X21/ Jzo/Zr [(1 + ia)(1 + iTa)]1/2

Here z0 is the distance from the beginning of the leg to the
mode's waist location at z = 0. The beam propagates in
the +z direction (see Fig. 1). In the absence of astigma-
tism (a = 1), gJ2 reduces to the Boyd-Kleinman focusing
factor h.25 The focusing factor G was numerically calcu-
lated in Ref. 6. Interference effects in a standing-wave
cavity were studied in Ref. 26.

3. OPTICAL PARAMETRIC OSCILLATION

A. Threshold for Oscillation
As the subharmonic input power is increased, the circu-
lating harmonic power attains substantial levels, exceed-
ing the input power by more than an order of magnitude
for input powers >1 mW in this study. The question
whether the stationary DR state will undergo any qualita-
tive changes as the input power continues to grow arises.
It was predicted 8 that a Hopf bifurcation to a time-
dependent state occurs above an internal threshold power:

== HGLrt G I2 (+ i) (19)

The intracavity fields exhibit regular periodic pulsations
at powers that exceed, but that are close to, this threshold.

The circulating harmonic can also act as a pump for in-
ternal parametric oscillation with nondegenerate signal
and idler modes resonant with the cavity. The simul-
taneous occurrence of DR SHG and DR parametric os-
cillation may be called quadruply resonant parametric
oscillation (QRO). A lower limit for the threshold is given
by the expression for the degenerate DR025 :

Pth .2 (20)
YsHGLrt G;1(

2

Note that the parametric gain is equal to the gain for SHG
in type-I noncritical phase matching. Comparing Eqs. (19)
and (20), we conclude that the parametric oscillation
threshold is always lower than the self-pulsing threshold,

(18)

regardless of the relative values of the finesses. Equa-
tion (20) for the DRO threshold assumes that signal and
idler are perfectly resonant with cavity-mode frequencies.
If such frequencies exist, DR SHG will preferentially lead
to DRO rather than to self-pulsing. Self-pulsing is pos-
sible, however, if one chooses operating conditions (crystal
temperature, electric field) such that all possible signal
and idler pairs are sufficiently detuned to raise their os-
cillation thresholds above the self-pulsing threshold.

Inserting Eq. (20) into Eqs. (13) yields the correspond-
ing input threshold power:

Pin =VHG Lrt G139 2 T(2

In a MOTIRR this power still depends on the gap x, which
controls the frustration of TIR, so that S = 5I;(x) and
T = Tl(x). Minimizing Pinth with respect to x and using
Eq. (15), we find that the minimum threshold occurs when
the resonator is slightly undercoupled off double reso-
nance, at T (xOpt) = 7r/SI;(o):

thl 27 7r3
PIn min 2 YSHG Lrt Gi1 (-)292 (-) (QRO). (22)

Since the outcoupling of the harmonic at x = xopt is much
smaller than the internal harmonic losses for the present
MOTIRR's, we used 9 2(x) S2() in proceeding from
Eq. (21) to Eq. (22). Experimentally, one can set T by
measuring the subharmonic power Pr reflected from the
MOTIRR off double resonance. We define the SR cou-

pling coefficient cl for resonance of only the subharmonic:

Pi 2 [(X)]
2

I,,-C
1-- SR IT T,(x).

(23)

At xOpt the resonator is slightly undercoupled off double
resonance, with cl(x0 pt) = 8/g. In practice it is simpler to
impedance match the MOTIRR when it is detuned from
double resonance, cl = 1. In this case T = 2/5;1(-),

9;1(x) = 9i;(o)/2, and the numerical factor in Eq. (22) is
increased to 16.

Parametric oscillation in a QRO can occur only if the
resonator is undercoupled at double resonance. In par-
ticular, the oscillation threshold cannot be achieved if the
input coupling for the subharmonic is chosen to give maxi-
mum circulating harmonic power. P2 is maximized at im-
pedance match on double resonance, [CDR = 1 in Eq. (39)
below], which requires an input mirror transmissivity

OpI2 r 2;2 1/2

TI° = ; () + 1 + 3 YSHGLrt G[9l(X)]2Pinl()

(24)

which yields a circulating power Pi'Pt = PinT,'Pt. We as-
sumed in the derivation that the finesse and the output
coupling of the harmonic wave are independent of T,.
Comparing P1OPt with the threshold [Eq. (16)], we find that

p1opt T1OPt - 27r/5;1(c)

P*(TOPt) = T1OPt + 2/S;1(c) < 1.
(25)

It is interesting to compare the threshold input power of
a QRO at the subharmonic frequency with that of a TRO
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at the harmonic frequency. Consider Eqs. (13) together
with Eq. (15), which describe, in the absence of conversion,
YSHG = 0, the internal enhancement of a cold cavity. The
maximum enhancement of the pump is seen to occur for
impedance match

Topt =
92 (=)

p max _=; w 
P2" 5;2 0) P 2, in -

Using threshold Eq. (20) and assuming that the output
coupling of the signal and the idler is chosen for maximum
external power, 9;1(x) = 9;1(o)/2, we obtain

p2 th =

'YSHG Lt G9 (_)
2
92 (°)

This result is approximately one half of the minimum
threshold of a QRO, which is given by Eq. (22).

Note that, for operation of the QRO off degeneracy, the
parametric gain and the SHG gain differ and the external
threshold increases because of the decrease in the SHG
gain.

Once the internal harmonic power exceeds the oscilla-
tion threshold, one must modify Eqs. (13) for the DR SHG
intracavity powers to take into account the losses result-
ing from generation of signal and idler waves. This can
be accomplished by a straightforward analysis of the
steady-state solution of the four coupled amplitude equa-
tions that is similar to the analysis of the TRO.'7

B. Output Spectrum

The tuning behavior of the output wavelengths of an
OPO as a function of tuning parameters such as pump
frequency and resonator temperature was recently inves-
tigated in detail for type-I2 ' and for type-II2 7 phase match-
ing. Here we discuss tuning properties associated with
interference effects, operation below the phase-matching
temperature, and quadruple-resonance effects.

An OPO will preferentially oscillate at that signal-idler
pair whose threshold is minimum. The threshold depends
on, among other things, the detunings of signal and idler
frequencies from their respective cavity resonances and
on the parametric gain, all of which are functions of reso-
nator temperature and signal (or idler) wavelength. One
can explain the coarse-tuning properties of an OPO on
an angstrom scale by considering both the wavelength-
temperature relation (cluster curve) that describes average
zero signal-idler detuning and photon energy conservation,
and the wavelength-temperature values that yield large
parametric gain. In addition, a fine structure, deter-
mined by the modal spacing of the resonator, governs the
actual signal-idler mode hops.

Consider first a DRO. The operating conditions are de-
termined by three equations, namely, two resonance con-
ditions for signal and idler frequencies as given by Eq. (1)
and the energy conservation relation. Given an arbitrary
pump (harmonic) frequency &w2 = w3, + wi and signal and
idler mode numbers Mje, the three equations permit a
unique solution (T, co, C&). One can understand this solu-
tion as arising from the intersection of a so-called cluster

curve coL(T) associated with the value of Mi + M, and
the signal resonance curve wo,(T) associated with the
value of Ms. In this picture a DRO differs from a TRO in
that the pump frequency is arbitrary for the former but is,

(TRO). (27)

through the pump-frequency resonance condition, a func-
tion of temperature for the latter.

To find the cluster curves, we consider expansions of the
resonance equations for signal and idler waves for small
deviations of their frequencies and of the resonator tem-
perature from some arbitrarily chosen reference point oo,
To. Dispersion, thermo-optic effect, and thermal expan-
sion a result in resonator index and length changes, which
are given by

ano an, 1 a
2
n0 .

no(T, to) = no(To, o ) + -AT + Aco + - - 2

aT ato 2a 2 8)
(28)

Lt(T) = Lrt(To)I[1 + a(To)AT], (29)

with the deviations A = ,i - &co and AT = T - To.
From Eq. (1) we obtain

AAT + 2BA0,,i + CW,?2 = M - - 2D' (30)

where mO= wCO/COFSR, the MOTIRR-cavity free spectral
range is COFSR = 2c/nLt, CF is the sum of TIR and Guoy
phase shifts, and the coefficients are defined by

A = I n, + ),

1 (,) 0 a no

no(sFSR 2 a)
2

B = I (O
2acFSR no

anoA

aw)
(31)

For LiNbO3 (Ref. 21) and Ao = 1064 nm, To = 1070C,
Lrt = 3.2 cm (square MOTIRR), we find that A = 1.3 K-'
is dominated by the expansion coefficient a(To), B =

2.0 x 10`" s/rad is dominated by the inverse resonator
free spectral range, and C = 7.2 X 10-28 (s/rad)2 is domi-

nated by the first-order frequency derivative of the index.
Summing the signal and idler resonance frequency

equations [Eq. (30) for signal plus Eq. (30) for idler] and

using the photon energy conservation relation, we obtain
the cluster equation

AAT + C(AWOcL)
2

+ (B - CAW8CL)Aw2 + CA( 2
2

M + Mi c + i
- 2 -i- 41T

(32)

Here we have defined AwC2 = &)2 - 2 0. The inter-
sections of the cluster curves AcL(AT) defined by this
equation, along with the resonance equation (30) for Aco8,
define the operating frequencies for a DRO or a TRO.
Equation (32) was studied by Eckardt et al.2' for DRO's.
In their study the harmonic wave is provided by a sepa-
rately frequency-doubled laser with fixed frequency,
AC 2 = 0, and the cluster curves are parabolas that open
toward decreasing temperature.

In a TRO an additional resonance condition is imposed.
TRO's discussed in the literature 7" 9 are those in which
the pump frequency coincides with a cavity mode.

For the present discussion of the QRO it is convenient to

take the subharmonic (laser) resonance condition as the
third resonance condition and to impose the resonance
condition of the harmonic (OPO pump) later. Since the
subharmonic is an ordinary wave, the resonance condition

S. Schiller and R. L. Byer
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for the laser frequency when the laser is frequency locked
to the MOTIRR is the same as Eq. (30) for the signal and
the idler. Defining the previously introduced oo as the
resonant laser frequency xl when T = To, we obtain

2BAwo = M 1-m-- 1-AAT. (33)

Higher-order terms have been neglected, since in practice
the tuning range Ato 1 of the laser is small. When the
MOTIRR temperature is changed so much that a particu-
lar MOTIRR mode is forced outside the laser's tuning
range, the laser frequency must be reset to coincide with a
neighboring mode, Ml -> Ml ± 1.

Combining Eqs. (32) and (33) and using ( 2 = 2wol,
A&w2 = 2Awi yield

C(AsCL) 2 = °2 M M1 + 2Di _ 4+ (D (34)

The cluster curves for a QRO (but not a TRO) are tempera-
ture independent because the tuning coefficients of the
signal, idler, and subharmonic (laser) frequency are equal
near degeneracy. The first cluster curve, AwsCL = 0, and
the second cluster curve, given by a change of unity in
M, + Mi, are spaced by a signal-wavelength difference
8(Aw3 ) = 1/-, or 17 nm here.

Whereas both triple resonance and double resonance can
be satisfied for a set of temperatures and signal-frequency
values (T, co,) labeled by M, Mi, the fourth condition in
quadruple resonance overdetermines these, and in general
no solution is possible. To permit near-quadruple reso-
nance, we must permit slight detunings in the signal,
idler, and harmonic waves, which can be incorporated into
CD,, (Di, and CF2. Signal and idler detunings lead to an in-
crease in oscillation threshold, and harmonic detuning
leads to a reduction in harmonic power. As long as the
subharmonic power is sufficiently strong, the harmonic
power will be large enough for oscillation to occur.

A further factor in permitting quadruple resonance is
given by the freedom in the choice of signal and idler
transverse modes. A laser locked to a TEMoo sub-
harmonic resonator mode generates only a TEMoo har-
monic mode. However, a TEMoo harmonic mode can
couple to higher-order transverse TEMnm signal and idler
modes unm, since the modal overlap f(U2,00)*UsnmUinmdxdy

is nonzero for n, m =# 0. We verified the existence of
this coupling experimentally, after we misaligned the
MOTIRR, by the inverse process of generating the TEMoo
harmonic mode from a TEMo, subharmonic mode to which
the laser was frequency locked.

Finally, on double resonance, the absorption of the cir-
culating waves leads to local heating effects that require
modification of the above simple resonance equations
based on a homogeneous resonator temperature. Addi-
tional degrees of freedom in the temperature distribution
can permit quadruple resonance.

4. EXPERIMENTAL RESULTS

A. Experimental Setup

Two MOTIRRs were fabricated from a 5% MgO:LiNbO3
crystal (Fig. 1). The square MOTIRR has dimensions of
11 mm x 11 mm x 2 mm, yielding a ring length of Lrt =

3.2 cm, with three flat faces and one curved (R = 25 mm)
face. The second device, of the same thickness, has two
flat faces and one curved (R = 9 mm) face, yielding an
equilateral triangular ring with Lrt = 1 cm. The c axis of
the crystal is perpendicular to the ring plane in both
devices. Gold coatings were deposited onto the top and
bottom faces of the MOTIRR's. During alignment of the
resonator a high-voltage ramp can be applied for electro-
optic tuning over a free spectral range.

The experimental setup is shown in Fig. 2. The subhar-
monic laser is a 1.06-ptm Nd:YAG laser-diode-pumped non-
planar ring oscillator. The laser beam is expanded and
collimated, and two cylindrical lenses are used to match
the laser beam to the resonator TEMoo modes. Their
waists are given by Eqs. (3); for the square MOTIRR
w = 24 /.m and wy = 51 /.m; for the triangular MOTIRR
w = 24 /um and wy = 28 ,um. We determined the focal
lengths of the lenses by calculations that used the ABCD-
matrix formalism, in which we assumed that the interface
of prism, air gap, and MOTIRR acts as a spherical inter-
face between two dielectrics, LiNbO3 and the prism mate-
rial. We achieved as much as 95% mode matching.

The MOTIRR and the prism assembly are mounted on a
base plate, which is itself mounted on a compact stage that
permits fine control of all six degrees of freedom of the
MOTIRR setup relative to the laser beam. The align-
ment is greatly facilitated by a visible alignment laser
diode mounted on the base plate and used for both orient-
ing the prism with respect to the MOTIRR and producing
a scatter spot on the prism coupling face at the input
point. The setup is displaced until the laser beam and
the scatter spot overlap.

The SF-6 coupling prism is mounted on a translation
stage. Coarse control of gap distance is obtained by a mi-
crometer screw, and fine control by a piezoelectric trans-
ducer with 20-Am throw. We monitor the gap distance by
observing Newton's fringes produced by the alignment
laser. The intensity of the central fringe can be employed
as an error signal for active gap stabilization by use of a
feedback loop, but this was not necessary in the present
experiment.

Both the MOTIRR and the prism are heated. The
MOTIRR oven consists of two copper blocks between

a harmonic
alignment laser detector

532 nm

Fig. 2. Experimental setup for DR SHG and QRO in a
MgO:LiNbO3 MOTIRR. EOM, electro-optic modulator; PZT,
piezoelectric transducer; RF, 12-MHz quartz oscillator.
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which the resonator is placed. The copper blocks also
serve as contact electrodes for electro-optic tuning. The
temperature sensor for the MOTIRR oven is inserted into
the lower copper block. The relative heater powers are
optimized to yield the narrowest possible phase-matching
curve for the single-pass SHG of a subharmonic wave

traversing the MOTIRR normal to the two opposing flat
faces. The coupling prism is heated by an independent
heater, driven by a constant current source, without ac-
tive temperature control. Good passive isolation from air
currents and partial isolation from acoustic noise is pro-
vided by an acrylic plastic housing enclosing MOTIRR,
ovens, prism, prism holder, and prism translation stage.
After optimization of oven feedback control parameters,
good frequency stability of the MOTIRR is obtained, with
drifts of <10 MHz/min.

Frequency lock of the laser to the MOTIRR is accom-

plished by use of the frequency-modulation technique,28

which yields an error signal that is fed back to a slow and
a fast frequency-control actuator on the laser. The laser
beam is phase modulated at 12 MHz by an electro-optic
modulator, and the beam reflected from the resonator is
detected and amplified by a low-noise photodetector. The
ac signal and an appropriately phase-shifted local oscilla-
tor are fed into a mixer. The baseband output of the
mixer is amplified by a variable-gain servo amplifier with
a -3-dB frequency of 10 Hz and is fed into the fast laser
frequency actuator, a piezoelectric transducer attached to
the laser resonator. The error signal is also input into an
integrator whose output controls the temperature of the
laser crystal.

The subharmonic output of the MOTIRR (reflected
input power and signal and idler waves) is analyzed spec-
trally with a Fabry-Perot cavity and with a grating spec-
trometer and temporally with a fast photodetector.

A detector insensitive to infrared light is placed close to

the MOTIRR to detect a fraction of the light scattered
from the circulating harmonic wave.

B. Characterization of the Monolithic

Total-Internal-Reflection Resonator

Resonator Losses and Tuning Coefficients

We determined the parameters used in Eqs. (13) experi-
mentally. We measured the finesse at the subharmonic
frequency in the usual manner by phase modulating the
laser beam and performing a frequency scan of the laser
across the MOTIRR resonance while recording the power
reflected from the cavity. In the spectrum the compari-

son of FWHM of the carrier resonance and the spacing of
the phase-modulation sidebands yields the linewidth. In
the limit of a large gap, when the finesse is determined by
the resonator losses only, ;(cc) = 1.5 x 102 for the p-
polarized (ordinary) wave, implying round-trip resonator
loss of 0.4% at 1.06 /-tm for the Lt = 3.2-cm-long
ring. The finesse of the extraordinary wave was higher:
9; 1(-°) = 2.1 x 102. For the MOTIRR with the 1-cm
round-trip ring length, the o finesse is 3.0 x 102, implying

a 0.2% loss. The absorption loss of LiNbO 3 of the same

origin was measured by laser absorption calorimetry to be
0.14%/cm,29 which accounts for most of the losses. Below

we discuss only the square MOTIRR.
In the absence of a laser source at the harmonic fre-

quency, one can indirectly determine the finesse 9;2 by
measuring the variation of intracavity harmonic power
while the laser is locked to the MOTIRR and the tempera-
ture is slowly ramped through a double resonance. 6 "'
Such a scan is shown in Fig. 3. The circulating harmonic
power as a function of detuning from double resonance

can be written as an Airy function:

P2 = HG L, G Pri2 i 2
2 -

2 rr 2 1 + (2 92 /,7)2 sin 2 (arg rtt2 (35)

Here the phase of the round-trip reflection coefficient,
arg r2

t' t, is given by the left-hand side of Eq. (2). When
the subharmonic is frequency locked to the MOTIRR
Eq. (1) is satisfied, and Eq. (35) reduces to

p 1
2

2 (T) 1 + (2 0;2/lr)2 sin
2{[AkLt(T) + CF]/2}

(36)

where CF contains essentially temperature-independent
Guoy and TIR phase shifts. In the very-low-power
(Pin - W) limit, the circulating subharmonic power Pi in
relation (36) is approximately independent of the reso-
nance of the harmonic. Thus the harmonic power has a
Lorentzian line shape as a function of temperature (the
focusing factor varies slowly with temperature), with a
FWHM in temperature given by

27 (aAkLt 1
ATFWHM = - /~ (37)

The finesse of the double resonance in temperature space
is thus identical to the finesse in frequency space: 5;2 =

ATDR/ATFWHM. In this way we determine a finesse of
-200 (3% loss) at 532 nm for the square MOTIRR.

We measured the tuning coefficients derived in Sub-
section 2.A by applying a known temperature change to
the MOTIRR and by measuring, with a 300-MHz Fabry-
Perot cavity, the required laser-frequency change that
compensates for the mode-frequency shift. The measured
temperature-tuning coefficient is 5v1 /8T = 5.8 GHz/K, in
good agreement with the predicted value. It is also pos-
sible to measure a particular combination of tuning pa-
rameters by measuring the frequency interval over which
the locked laser must be tuned during a temperature scan
over subsequent double resonances. The predicted value
[Eq. (8)] for AV1/vFsR is 0.34; the measured value for
the 1-cm ring-length MOTIRR is 4.1/12.7 GHz = 0.32, in
good agreement.

I P2 [au.]

AT, 1 K -

/

Temperature
Fig. 3. Temperature scan over two adjacent double resonances.
At low subharmonic powers the ratio of splitting to FWHM yields
the harmonic finesse.

-
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-20 -10 0 10 20

Ak Lrt / 21t

Fig. 4. MOTIRR phase-matching curve. The variations in
focusing factor G are due, in part, to the interference effects
between the harmonic waves generated on the four legs.

Conversion Coefficient

Before we measured the conversion coefficient YSHGGLrt,
we varied the temperature distribution within the
MOTIRR by changing the current to the coupling prism
heater until we observed maximum harmonic intracavity
power at one of the double resonances. This procedure
does not guarantee a homogeneous temperature distribu-
tion within the resonator; therefore a detailed comparison
with the theoretical prediction of Eq. (17) was not possible.

Figure 4 shows the phase-matching curve for DR SHG,

consisting of the relative values of intracavity harmonic
power P2 (AkLrt) at the double-resonance-wave-vector
mismatch values defined by Eq. (5). The measurement is
performed at very low power levels so that the conversion
loss is small compared with the loss of the cold cavity.
The harmonic detector signal is then proportional to the
focusing factor.

In principle, one can derive the absolute value of single-
pass conversion efficiency YSHG G of the strongest double
resonance by measuring the harmonic power p2ext ex-

tracted from the MOTIRR through the coupling prism.
When the coupling coefficient of the harmonic wave is de-
fined by analogy with Eq. (23), the gap dependence of the
harmonic power is, from Eq. (13),

P 2 't(X) = T2(X)P2(x) - Y2HG LrtGC2 (X)Pl
2
(X). (38)

Because of the difference in wavelength and loss, the har-
monic coupling c2(x) varies exponentially at gap distances
for which the subharmonic coupling is close to impedance
match.3 Since a determination of c2 or of the harmonic
transmission coefficient is difficult, the conversion effi-
ciency is more accurately measured indirectly rather than
through the extracted harmonic power.

The indirect measurement technique consists of mea-
suring the increase in reflected subharmonic power Pr
during the transition from SR SHG to DR SHG. The cou-
pling of the subharmonic on double resonance is a func-
tion of all internal resonator losses, including losses that
are due to conversion to the harmonic':

PI - 1 - r (N)12 (riconvr1tot)
2

PinCR (1-riconvrtot)
2 L (r(N)l

2

Off double resonance the conversion losses 1 - rl" are
essentially zero, and this expression reduces to Eq. (23).
Figure 5(a) schematically shows the effect of increased
losses experienced by the subharmonic wave on double
resonance. When one expresses CDR in terms of the
subharmonic circulating power by use of Eqs. (9), (15),
and (16),

CDR(X) 9 9(X) Pi 1 P -2= 1I + 1 1 +i (40)

it can be seen that, if 9j(c)/9;j(x) < 2 (i.e., if the resona-
tor is undercoupled or inpedance matched at single reso-
nance), the DR coupling is reduced compared with single
resonance. Also, for a given input power, the decrease
in DR coupling is stronger for smaller SR coupling.
Figure 5(b) shows the experimental temperature depen-
dence of the intracavity harmonic power and the concomi-
tant increase in reflected subharmonic power at double
resonance. We performed a series of such scans, using a
range of input powers. Figure 6 shows the experimental
results for two gap settings together with a fit based on
Eq. (40). The single fit parameter in Fig. 6 is the
effectively phase-matched length LrtG (SHG = 0.22/Wm
is used). For both values of c, we found the effective
lengths to be Lrt G = 1.4 cm within experimental accuracy.
The data increasingly scatter at input powers greater than
1 mW because optical parametric oscillation occurs, and
the resonance lines become distorted (see Fig. 8 below).

U CDR ------- ~~SR -coupling

to0.

.0 0 0.2 0.4 0.6 0.8 1

gap distance x [jim]

(1-c, )Pin- PI

P 2 [a.u.]

Temperature
Fig. 5. Coupling reduction on double resonance. (a) The higher
internal conversion losses effectively shift the coupling curve to
smaller gaps; the coupling at fixed gap x > Xm,,SR is therefore re-
duced. (b) Reflected subharmonic power Pr and circulating har-
monic power P 2 during temperature scan over double resonance.
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Fig. 6. Power dependence of coupling reduction for two values of

single-resonance coupling. Circles, data; curves, theory, with
leff = Lt G as the fit parameter. Plotting the coupling reduction
versus the in-coupled power cPi 0 rather than versus Pin compen-
sates for small deviations of the manually maintained SR cou-
pling cl from its nominal value.

Knowledge of the conversion efficiency allows one to

calibrate the measurement of harmonic power scattered
into the external detector in order to calculate the inter-
nally circulating harmonic power. Figure 7 shows the in-
tracavity harmonic power as a function of subharmonic
input power.

C. Parametric Oscillation
One can calculate the thresholds for quadruply resonant
parametric oscillation in the square MOTIRR by using
Eqs. (13), (20), and (21). Under impedance match off
double resonance [c, = 1, 9;1 = 9;1(o)/2], internal thresh-
olds P, = 21 mW at 1.06 A±m and P2 = 5.7 mW at 532 nm

and an external threshold Pinth = 0.36 mW at 1.06 Aum are

predicted for the square MOTIRR. Experimentally, the
OPO threshold occurred at an input power Pinth = 0.4 mW,

in good agreement with the above prediction. The
onset of oscillation occurred with nondegenerate sig-
nal and idler modes and was observed with the grating

spectrometer.
Figure 8 shows a typical temperature scan over a double

resonance far above threshold. As the double resonance is
approached, one observes a succession of different signal-

idler mode pairs on the Fabry-Perot spectrum analyzer.

These mode jumps can be jumps between longitudinal
(Mis,) and/or transverse modes. We did not perform sig-
nal-idler mode discrimination because of their spatial
overlap with the laser beam reflected from the cavity. As

verified by the grating spectrometer, the mode jumps usu-
ally did not lead to appreciable wavelength jumps, indi-

cating that the signal-idler pairs occurred near the same
Ak curve. We also observed simultaneous stable oscil-

lation of two pairs. The absence of competition implies
that the two pairs corresponded to different transverse
resonator modes.

One can achieve stable operation with a single signal-
idler mode pair by stopping the temperature scan at par-
ticular temperatures (Fig. 9). We observed as much as
15 min of continuous mode-hop-free operation under laser-
frequency lock and MOTIRR temperature control.

L.0

Q.

.
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0.6
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input power c, Pin [W]

2

Qo

0.

.0C.,

*Z 0.5 1 1.5 2 2.5

input power c Pi,, [mW]

Fig. 7. Circulating harmonic power in DR SHG for two values of

the subharmonic coupling. Curve, theory; circles, data scaled by
a constant factor, since one can infer only the relative circulating
powers from scattered powers. The arrows indicate the onset of
parametric oscillation.

P2 [a.u.]

QRO

Temperature

Fig. 8. Intracavity harmonic power at a subharmonic-harmonic
double resonance as a function of temperature. Input power is
several orders of magnitude larger than in Fig. 3, and thermal ef-

fects resulting from absorption of the circulating harmonic power
cause the double resonance to widen significantly. Parametric
oscillation occurs in the region between the lines, with a signal-
idler mode jump at the arrow's position. Scan direction is from
right to left.
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Fig. 9. Stable single-mode quadruply resonant parametric oscil-
lation with small detuning of the harmonic from resonance.
Spectral analysis of the infrared output from the resonator by
(a) scanning the Fabry-Perot spectrum (300-MHz free spectral
range). The phase-modulation sidebands required for frequency
locking appear on either side of the subharmonic (laser).
(b) Spectrum recorded by a grating spectrometer (resolution
0.1 nm). The subharmonic power at 1.06 Am is Pin 1 2 mW. The
power in the signal and idler is -0.3 mW each.
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Fig. 10. Tuning of QRO. The subharmonic pump power is
Pin - 15 mW The dashed lines represent the cluster curves cal-
culated from Eq. (34). The curves represent loci of constant
wave-vector mismatch AkLrt calculated from Eq. (41). The
circles represent the experimental wavelengths. The tuning fine
structure governed by the resonance condition for the subhar-
monic is not shown.

A full tuning spectrum of the QRO is shown in Fig. 10.
We did not measure the temperature values of the double
resonances; we calculated their spacing with the index-
of-refraction expression appropriate to MgO:LiNbO3
(Ref. 21) and chose a temperature offset to center the

AkLrt = 0 phase-matching curve with respect to the data
above 107 C. Treating the sum of phase shifts on the
right-hand side of the cluster equation [Eq. (32)] as a free
parameter, we obtain a good overall fit to the wavelength
data by using the value 21 - CF8 - (Di - 0, indicating
that most of the data correspond to signal and idler modes
identical to the harmonic, TEMoo, mode. Deviations from
the fit can be explained by oscillation on higher-order
transverse modes and deviations from the simple behavior
of Eq. (34) when signal and idler are sufficiently far from
degeneracy.

Oscillation occurs on the cluster curve where the wave-
vector mismatch gives maximum parametric gain
YHGLrtG(AkLrt). One can measure the parametric gain

independently of any observation of parametric oscillation
by measuring the conversion efficiency in SHG (Fig. 4).
G is obtained easily only for discrete values of wave-vector
mismatch, those corresponding to subharmonic-harmonic
double resonances. Since the focusing factor exhibits
local maxima at discrete values Aklm, the output wave-
lengths of an OPO tend to lie as close as possible to the

curves Ak(T As) = Ak m. To find these curves it is useful
to expand the wave-vector mismatch function near the
degeneracy point (TdA, = Ai =: Ad), where Ak(Td,Ad) =

0. Using the index-of-refraction expression for 5%
MgO:LiNbO3, we find that

Ak = [7.49(T - Td) K' - 8666(1 - Ad/A )
2
] cm-, (41)

where Ad = 1064 nm and Td = 107.05 'C. Curves of con-
stant A kLrt are parabolas open toward increasing tempera-
ture, with apexes at A, = Ad. According to Eqs. (34) and
(41), at a fixed temperature the wave-vector mismatch
AkLrt changes by -6.1 from one cluster curve to the next.

Returning to the QRO spectrum, we found that for tem-
peratures above the phase-matching temperature (107 'C)
most oscillation frequencies occur near two constant
wave-vector-mismatch curves that are spaced apart by
5(AkLrt) = 17. This is a consequence of the interference
taking place in the MOTIRR. The SHG conversion effi-
ciency (Fig. 4) indeed reveals that G(AkLrt) exhibits a
double-peaked structure with a spacing consistent with
the above value of S(AkLrt). Off-degeneracy oscillation
below the phase-matching temperature occurs because
along the degeneracy line (T As = Ad) the focusing factor

G varies as a function of temperature, exhibiting minima.
This effect occurs for any type of resonator and does not
require interference effects. However, the presence of in-
terference effects determines the particular shape of the
parametric-gain (here, the focusing factor) curve and the
OPO tuning curve. In this case, for example, we can infer
that off-degeneracy operation at 106.60C is due to the very
small parametric gain at the value of AkLrt, correspond-
ing to quasi-degenerate operation (the data point to the
left of maximum in Fig. 4). For a similar reason oscilla-
tion did not occur (at the given subharmonic power) at the
105.30C double resonance.

5. CONCLUSION

In this study we have demonstrated what is, to our knowl-
edge, the first quadruply resonant parametric oscillator.
The external threshold at 1.06 ,um (0.4 mW) is the lowest
threshold demonstrated for optical parametric oscillators
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to date. The internal threshold at 532 nm (6 mW) is the
lowest value demonstrated in LiNbO3 . We obtained this
result by using a MOTIRR that exhibited losses that were
significantly lower than those of any previously described
multiply resonant device (harmonic finesse =200, sub-
harmonic finesse 750 at impedance match). The thresh-
old is limited by the bulk losses of the MOTIRR, and one
can further reduce it by reducing its size, as indicated by
the lower losses exhibited by a 1-cm ring-length MOTIRR.

The QRO was operated with stable and single-frequency
output. We tuned the output wavelengths between 1000
and 1140 nm, although a much wider tuning range could
easily be achieved, thanks to the absence of narrow-band
dielectric multilayer coatings. The QRO threshold will,
however, rise because of the reduced harmonic generation
efficiency. We explained the structure of the output spec-
trum below and above the degeneracy temperature with
the help of the measured phase-matching (focusing-factor)
curve.

A QRO is a useful device when the harmonic (pump)
radiation is not available directly from a laser, since in
this case a separate frequency-doubling device is required.
A QRO requires significantly less power to reach threshold
than does a doubling-stage-DRO combination. This is
also the case for a doubling stage-TRO combination, unless
the doubling stage's efficiency is greater than 50%.

The inherently low loss of MOTIRR's and the impedance
matchability make nonlinear devices with high efficiency
possible. Low oscillation thresholds can be exploited for
cw frequency conversion of low-power single-frequency
lasers, such as external-cavity diode lasers, or when low-
nonlinearity materials are used. Particularly attractive
is the possibility of extending OPO tunability far beyond
that possible with resonators that employ multilayer mir-
rors by use of temperature-tuned noncritical phase match-
ing or tunable pump sources. This also holds for SHG,
where lithium triborate, with a tuning range from at least
0.95 to 1.65 Am

30 and low bulk loss,'9 is an excellent candi-
date material.

An extension of the MOTIRR design to biaxial crystals
such as KTP is possible in conjunction with a recently de-
veloped highly symmetric resonator geometry.3 ' A little-
studied device, the cw SR032 can also be realized with

MOTIRR's, and the ensuing loss reduction promises to re-
duce the threshold below 1 W for a LiNbO 3 SRO pumped

at 532 nm.
MOTIRR's are also attractive for the study of dynamic

instabilities. In the present study, we observed pulsation
of the subharmonic wave reflected from the resonator on
double resonance at high subharmonic power levels, with
frequencies in the 12-16-MHz range and amplitude at
-40% of the dc level. This effect is now under study.
One can analyze such effects theoretically by examining
the stability of the steady-state solution of the four coupled
amplitude equations in the presence of detuning, extend-
ing the treatment of the dynamics of the degenerate
TRO3 3 to the QRO.

The demonstration of self-pulsing in DR SHG in the ab-
sence of parametric oscillation is an important next step.

The self-pulsing threshold depends strongly on the losses
at the harmonic frequency as well as the input transmis-
sion of the subharmonic and could easily be minimized in
a MOTIRR through gap control.

Another application that could benefit from optimizable
input-output couplings in MOTIRR's is the generation of
nonclassical radiation.'0

Finally, a MOTIRR could also provide an alternative to
calorimetry and integrating sphere measurements for the
determination of total bulk losses of materials. One can
use finesse measurements of a MOTIRR with well-polished
TIR surfaces to obtain upper limits for the bulk loss at
any wavelength.
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