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The quadrupole array for the lowest energy of quadrupole interaction in crystals is 

obtained by generalizing Luttinger and Tisza's theory of dipole interaction. The theory is 

presented for the two kinds of problems: the simplest case of quadrupole pertaining to a 

.doubly degenerate orbital eg and the other general cases both for the cubic crystals. In the 

former case, the quadrupole interaction is written in terms of fictitious spins, whence we can 

get the solution of lowest energy classically, serving to obtain some informations of the 

orbital ordering in compounds with Mn3+, Cu2+ and Cr2+. In the latter cases, the five com­

ponents of the quadrupole are totally effective, leading to a rather complicated problem. 

The classical solution is, however, easily obtained, though somewhat complicated. The quadru­

pole array of lowest energy in face-centered cubic lattice proves to be realized in molecular 

.crystals N2, N 20, CO2 and CO, which is accompanied with large quadrupole but without or 

with small dipole moment. 

§ 1. Introduction 

In this paper, we shall look for the quadrupole array in a cubic crystal 

which brings about the lowest energy of quadrupole interactions. There are some 

interesting applications of the results obtained. 

Firstly, the crystal structures and the configuration of molecular orientation 

for many molecular crystals have been found by the X-ray analysis. It is known 

that molecular crystals composed of linear molecules N 2, N 20, CO2 and CO show 

the same type of ordering of molecular orientation at low temperatures, being 

,crystallized in F.C.C. lattice. ** Between two molecules, there are three or more 

kinds of anisotropic interactions in general, that is, the valence, van der Waals 

;and multipole interactions. We shall consider here the non-polar molecule with 

'Considerable magnitude of quadrupole moment. Therefore the quadrupole-quadru­

pole interaction will be much effective. It is known that between two hydrogen 

molecules the directional dependence of both the van der Vol aals and valence forces 

are considerably smaller than that of the quadrupole interactions, which proves to 

be predominantly effective in causing the orientational ordering of ortho-hydrogen.1
) 

Due to this situation, we are inclined to think that the orientational ordering of 

molecules in the crystals mentioned will mainly come from the molecular quadru-

. . 
* Present address: Department of Physics, Osaka University, Osaka. 

** Hereafter S.C., B.C.C. and F.C.C. lattices mean simple cubic, body-centered cubic and face­

centered cubic lattices respectively. 
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Quadrupole Interaction in" Crystal 433 

pole interaction. In fact, we shall see later that the molecules N2 , N 20, CO2 and 

CO have such magnitude of quadrupole moment that the orientational ordering of 

molecule in crystal is explained satisfactorily from its quadrupole interaction. 

Moreover, our predicted array proves to be just in the actual situation. 

Secondly, there have appeared a theory of magnetic anisotropy related to the 

cobaltous and ferrous oxides, where Co2
+ and Fe2

+ in cubic field have a large 

orbital momentum unquenched, hence a large multipble interaction results.2
) The 

,study of preferential array of quadrupole may give some informations about such 

problem. Now the magnetic property associated with the d-electron states in the 

metal ions of perovskite type compound LaMn03 and deformed perovskite type 

MnF3 has been one of the recent interesting problems.3) Their magnetic structure 

is said to be the "A "-type structure in which spins in a c-plane are coupled 

ferromagnetically and spins of two adjacent planes are coupled antiferromagnetically. 

The magnetic ordering of these compounds should be explained by assuming 

appropriate ordering of eg-orbitals. It is well-known that a five-fold degenerate 

d-level in cubic crystalline field splits into a doubly degenerate eg-level and a 

triply degenerate t2g-level. Since the level splitting is of the order of magnitude 

of 104 cm-I, we have only to take up the interaction within the lowest manifold. 

In the case of Mn3
+ ion, eg-Ievel is lower, because the electron configuration of 

Mn3 +, (3d) \ is equivalent to the ion with a d-hole in the Hund lowest state, hence 

the level order is reversed. In the above compounds, the orbital ordering will be 

caused at first by the interaction between the displacernent of anion and eg-electron 

but the effect of quadrupole interaction of eg-electron which will be treated in 

Sections 3 and 4 is not so small. Therefore it seems to be worthwhile to find 

the ordering of eg-orbitals with the lowest energy. 

In the present paper, we shall look for the quadrupole array with the lowest 

energy in cubic crystal, following Luttinger and Tisza's theory of dipole interaction.4
) 

They divided the lattice into 8p simple cubic sublattices (p= 1 for S.C. lattice, 

p=2 for B.C.C. lattice and p=4 for F.C.C. lattice), where in each sublattice all 

dipoles are parallel, hence any state of dipole array should be, represented by a 

point in 24p dimensional vector space. Under the condition that a vector re­

presenting any dipole array should be confined to the constant dipole surface 
8p z 

~ :8 p~1'I. = const, they reduced the problem of obtaining the dipole array with 
,;=11'1.=.c 

minimum energy to an eigen-value problem. That is, they looked for the array 

vector which is parallel to the dipolar field vector generated from the original 
z 

array, and obtained the lowest array consistent with the condition :8 p;I'I.=~' 
1'1.=-" 

i=l, "',8. Here Pa denotes the a-th component of dipole whose magnitude is 

equal to p. 

The quadrupole interaction takes a form (7) bilinear with respect to the five 

components of quadrupoles belonging to two interacting atoms (or molecules). A 

quadrupole localized at lattice point is considered as a vector whose components 

are given by 
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434 O. Nagai and T. Nakamura 

Zl=~3 (~2-7l), Z2= ~ (2(2_~2_'12), 

zs=V3 '1(, z4=V3 (¢, Z5 =V3¢7). 
(1) 

Here ¢, '1 and ( are Cartesian coordinates whose origin is at each lattice point. 

If we assume the vector (¢, 7), () to be confined to the surface of the sphere with 

unit radius, the condition 

(2) 

leads to the condition 

5 

~ Zi
2
=1. (3) 

i=l 

However, not all of z/s are independent, because the components of a real quadru­

pole (1) are subjected only to two independent variables. Therefore a five­

dimensional vector Z (Zb '" ,Z5) subjected to (3) but free from (2) does not always 

correspond to a real quadrupole. But, in order to seek the quadrupole array 

of the lowest energy, we shall first solve our problem within a rather extended 

manifold of the fictitious quadrupole just mentioned. The procedure to be followed 

is in complete parallel with Luttinger and Tisza's method. 

If the eigen-vector belonging to the lowest eigen-value represents a real quadru­

pole or if a linear combination of vectors which are degenerate to the lowest value 

represents a real quadrupole, that is all right. As we shall see later, however, 

in S.C. and B.C.C. lattices this is not the case and only in the F.C.C. lattice 

in which the actual problem is included we shall see such a situation to be 

realized. 

There is a case in which the problem is greatly simplified. It appears in 

the quadrupole interaction between d-electrons in the eg-state. Actually, if we re­

present the five components of a quadrupole by eg-orbital: 

(4) 

we have 

(5) 

but the matrix components of Zs, Z4 and Z5 vanish identically, where ? denotes 

averaged square of radius of electron coordinate. Using the Pauli spin matrix 

we may write them as 

. 2-2 
zl=--r (J" 

7 .1" 
(6) 

In this formalism, the procedure is very similar to that for the dipole array and 
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Quadrupole Interaction in Crystal 435 

the exact classical solution is straightforwardly obtained for the three lattices 

-considered. 

§ 2. Quadrupole interaction 

The quadrupole interaction between two quadrupoles IS written In a usual 

form: 

V - 3e
2 

2 2f(0 . 0 ) 
q-q - 4R5 r1 r2 1, 'P1, 2, 'P2 , (7) 

f(Ol, 'P1 ; O2 , 'P2) = 8P2 (cos ( 1) P2 (cos ( 2) 

-16 sin01 cos 01 sin02 cos O2 cos ('P1-'P2) +sin201 sin202 cos 2 ('P1-'P2)' (8) 

Here (ri, 0i, 'Pi) denote the polar coordinates of the position vector of electron 

whose origin is at the center of gravity of charge distribution localized around the 

i-th quadrupole, and the polar axis is taken" to be a line connecting two centers 

of quadrupoles whose distance is equal to R (see Fig. 1). 

~, 

Y----L------------7-----'-----,8-S" S 2 

R rp"rp, 

1], '7, 

Fig. 1. The definitions of (ri' (h, ((!i) and R. 

If we take our coordinates system so as to coincide with three principal axes 

.af cubic crystal, the quadrupole interaction (7) is transformed into 

3 I) 

V q _Cj= __ e2 ~ zp(l) V plJ (R)zv(2) 
4 p,v=l 

(9) 

where z'" (i) denotes the p-th component of the i-th quadrupole and V",v (R) 's are 

listed in Table 1. 

The next step is to construct a matrix of V q_q with respect to the lowest 

,degenerate states. The simplest case is concerned with doubly degenerate eg-orbital 

(ra manifold in Bethe's notation), where (6) may be substituted for z. 

In general cases, the matrix representation can be constructed with the help 

of operator equivalence method,5) that is, 

~3(J2 J 2)' 
Zl=CJ-- x - y , 

2 
Z2=CJ~' (2J 2-J 2-J 2.) ... 2 ~ x y" 

(10) 
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436 o. Nagai and T ... Nal?amura 

Table I. Expressions for V[.ty(R) XR5. (e, (1» denote the polar angles of the direction R. 

Pl'(cose) P44(cose) 
P40(COSe) /J. Ii 

I I 
cos 2(1) sin 2(1) cos4@ sin4@ 

I 

1 1 2/3 1/36 

1 2 1/3v3 

1 5 1/36 

2 2 4 

2 5 

I 

1/3V3 

3 3 -8/3 -2/9 

3 4 -2/9 

4 4 -8/3 2/9 
I 

5 5 2/3 I -1/36 

P 41 (cos e) Pi (cos e) 

/J. Ii 

I I 
cos@ sin@ cos3@ sin3@ 

1 3 1/3 1/18 

1 4 -1/3 1/18 

2 3 2jV3 

I 

2 4 2/V3 

3 5 -1/3 -1/18 

4 5 
I 

1/3 1/18 

where CJ is dependent only on quantum number J of degenerate manifold. In 

these cases, the classical treatment of quadrupole interaction is to consider the 

energy (9) with quadrupole normalized in the sense of (3). 

In such a way, the energy of the quadrupole interaction in crystal is written 

as 

W= ~ ~ z/ F"v(Rj-Rk)z"k (11) 
j>k 1'." 

in general cases, where Fp,v(R,j-R!c) is equal to V"v(R) X (3e
2 p(V4) and z" is 

now the component of normalized quadrupole. In the following, we shall measure 

the quadrupole energy W in the units of (3e2f1(V 4a5
) where a denotes the lattice 

constant. F,.v(Rj-R!c) are symmetric with respect to suffices p. and J..i. 

The physical meaning of F,.v(Rj-Rk) is given by stating that the p-th com­

ponent of quadrupole field at the j-th lattice point is equal to Fav (Rj-Rk ) if we 

put a unit fictitious quadrupole Zv = 1 at the k-th lattice point. 

§ 3. The ey-orhital array in the S.C. lattice 

Let us first study the array of fictitious spin associated with eg-orbital In the 

s.c. lattice. The quadrupole energy (9) is then written as 
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Quadrupole Interaction in Crystals 437 

W= 2j Uj.F(Rj-Rk ) ·Uk 

J>k 

(12) 

by substitution of (6) In (9), where the components of a dyadic F(R) are gIven 

by 

Fx.r(R) =Fn(R) , Fzx(R) =F22 (R) , 

FJ,,:(R) =Fzx(R) =F12(R) , 

and the other components vanish identically. 

(13) 

We shall classically look for the lowest array of spin vector which is doubly 

periodic. Then we shall divide S.C. lattice into eight S.C. sublattices generated 

from eight lattice points: 

(0 0 0), (1 0 0), (0 1 0)', (0 0 1), 

(0 1 1), (1 0 1), (1 1 0) and (1 1 1), 
(14) 

in which all spins are parallel within each sublattice. Thus we have only to 

assign the spin orientation on the eight lattice points mentioned above in order 

to designate spin array in the crystal. If we assume a tentative array, it causes 

a field at, say, the k-th lattice point. Further, if the spin at this lattice point 

is parallel to the field generated there and the situation is the same in the 

whole lattice, the system will have a certain amount of efficient gain or loss of 

quadrupole energy. Following Luttinger and Tisza, we shall refer below to such array 

as characteristic array. The spin array with maximum gain or loss of quadrupole 

energy should naturally be included in the whole assembly of characteristic arrays. 

Let us then find characteristic array ~, which is designated by 2 X 8 components 

inclusive of eight spins because the y-component of U disappears throughout eight 

sublattices. The characteristic array is thus obtained from an eigen-value problem: 

(15) 

Here the field operator F is a square matrix of sixteen dimension, whose component 

F :,?, p, q= 1, 2, "., 8; /,-, ].1= 1, 2 gives the /,--th component of the quadrupole field 

acting on a lattice point belonging to the p-th sublattice when we put spin along 

. the ].I-th direction on the q-th sublattice. Since the magnitude of ~ is given by 

8 

(~, ~) = 2j (Ui' Ui) = 8, (16) 
i=l 

the eigen-value of (15), f, just corresponds to twice as much as the quadrupole 

energy per atom, 1/16· (~, F·~). Here the classical magnitude of fictitious spin 

is assumed to be equal to unity. 

To obtain characteristic vector ~, it is necessary to see the structure of field 

operator. It is a cyclic matrix with respect to p and q, whose component can be 

obtained with the help of Table 1. Components F:::'s, /,-, v=l, 2, are simply 

wri tten as follows: 
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438 o. Nagai and T. Nakamura 

Fff==G12 (000) =5/64V3 . iJ (112-I22) (6Il-I1
2-I2

2)/IY, (17) 
1112 la 
=-00 

co 

F~f==G22(000) =1/64· 2J [3 (l14+ I24) +8I34-24I32 (112+122) +6I1
2

I2
2J/lY, 

lll,>- la 
=-00 

where I2=112+I22+I32. The other components F}:u'l, p~q, are also obtained from re­

placing 11,12 and I3 in (17) by Il- (ut-u/)/2, I2- (Ul-U2Q)/2 and 13- (Ul-U3Q)/2 

respectively, in which (UIP, ut, ul) denotes the lattice point generating the p-th 

s.c. sublattice as given by (14). According to this definition, we may put 

FPQ=G __ ~ __ 1_ 2 2 
( 

U P-uQ uP-uQ 

p,u "'u 2 ' 2 ' 
(18) 

whose numerical values are tabulated in Table II (see the Appendix). 

Table II. The numerical values of G p,u (u1 U2 u3). 

U1 U2 U3 Gll (u) G22 (u) G12 (u) 

0 0 0 0.39 0.39 0 

1/2 0 0 6.32 3.12 -2.77 

0 1/2 0 6.32 3.12 2.77 

0 0 1/2 1.52 7.91 0 

0 1/2 1/2 0.29 -1.16 -1.26 

1/2 0 1/2 0.29 -1.16 1.26 

1/2 1/2 0 -1.88 1.02 0 

1/2 1/2 1/2 -0.78 -0.78 0 

The solution of an eigen-value equation (15) is much simplified if we make 

use of the cyclic nature of F:uq
• Without inquiring into the mathematical details, 

we see that the quadrupole field has the same translational symmetry as that of 

the spin array, hence the spin arrays of different symmetry cannot combine with 

each other. Taking this situation into account, let us construct a vector ~'" (A) by' 

~'" (A) = 2J exp (iA· uP) e/ (19) 
uP 

where eJ: refers to a unit vector which represents the p-th spm along the p-th 

direction in which the other spins have zero component. Since there are 8 X 2 in­

dependent vectors eJ:, there are 8 X 2 independent ~'" (A), which we choose as 

A= (0 0 0), (n 0 0), (0 nO), (00 n), 

(0 n n), (n 0 n), (n n 0) and (n n n). (20) 

The basic arrays thus generated are shown in Fig. 2. 
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Quadrupole Interaction in Crystals 439 

~ = (000) (1tOO) (0,,0) (Oon-) 

Fig. 2. Basic arrays for ~ z 0). 

In such away, the eigen-value equation (15) becomes 

F(A) . ~ (A) f~ (A). (21) 

Here ~ (A) = (~.I: (A), ~z (A» and the components of F(A) are gIven by 

F,w(A) = 2J G,.v ~, ~,~- exp(iA 0 uP) , 
( 

p p P)' 
P 2 2 2 

(22) 

whose numerical values are obtained by the aid of Table II and gIven in Table 

III. 

Due to the cubic symmetry of the lattice, it will be sufficient to search for 

the characteristic arrays with A= (0 0 0), (00 n), (n nO) and (n n n), which are 

just given by ~,. (A)'S because ~~, and ~z with those A'S do not combine with each 

other as can be seen in Table III. The lowest energy states can be realized by 

~x(n7Z'O), ~z(7Z'7Z'n) and ~.I:(7Z'n7Z'). The other arrays give essentially the same 

pattern. 

A (AI A2 A3) l 
000 

o ° re 

re re 0 

rerere 

Table III. The numerical values of F,.v (A). 

Fn (A) F22 (A) 

12.45 12.45 (:==.1~) 

9.81 (-13) 2.83 (===};) 

-13.97 (- f5) 4.62 (:==.14) 

-14.28 -14.28 (=f6) 

o 

o 

o 
o 

In order to derive the orbital array of eg from the array of spin orientation, 

we may use the well-known spinor transformation. When the fictitious spin points 

the direction at angle t} from z-axis, the parallel and antiparallel states of spin 

along this direction are respectively transformed into 
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440 o. Nagai and T. Nakamura 

(23) 

in which ¢1 and ¢2 are doubly degenerate orbitals of eg as given by (4). We 

shall discuss below the orbital array for respective cases mentioned above. 

( i) A= (0 0 0) 

This ferromagnetic solution corresponds to the uniform orbital array in which 

¢I (or ¢2) is put on the whole lattice. Both solutions are degenerate with a high 

field value f=12.45. 

(ii) A= (00 n-) 

We have the spin array in which spins are parallel among lattice points on 

the xy-plane but antiparallel between two adjacent xy-planes. An array with spin 

along the z-axis gives f=2.83, while another array with spin along the x-axis 

gives a higher value f=9.87. Both arrays have high energy. 

(iii) A= (n- n- 0) 

The field value is given by f = 4.62 or -13.97 according as spins are along 

the z- or x-axis. The spin array is such that the neighbouring spins along the 

z-axis are parallel but those along the x-axis and y-axis antiparallel. The orbital 

array with lower energy is obtained by putting 

¢/= 2~2 [(11'3 -1)~2- (v:r +1)1
2
+ 2(2J, 

¢/= 2~2[(V3 +1)~2- (11'3 -1)l-2(2J, 

on the lattice, as can be seen in Fig. 3. 

(a) 

(24) 

(b) Fig. 3. Orbital array with 

f=-13.97. Fig. 4. Orbital arrays being degenerate with f= -14.28. 

(iv) A=(n-n-n-) 

Spins along the x- or z-aXIS are surrounded by antiparallel spms along the 
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Quadrupole Interaction in Crystals 441 

same axIS. Both arrays are degenerate with 1=-14.28, whose orbital analogues 

are illustrated in Fig. 4. 

§ 4. The ey·orbital array in the B.C.C. and F.C.C. lattices 

(A) The eo-orbital array in the B.C.C. lattice 

Dividing this lattice into S.C. sublattices, for eaeh S.C. lattice we have the 

-characteristic array, which are respectively designated by l;;(A). and l;}t2(~), in 

cases of A= (000), (00 n), (n nO) and (n n n). In these cases, which are all 

w"orth knowing, characteristic arrays will be obtained within a subspace subtended 

by l;1 (A) and l;2 (~) . In order to obtain these arrays, it will be necessary to 

know the quadrupole field on the 1st S.C. lattice coming from l;2 (A). The /l-th 

-component of the field is given by 

F 12 (A) == "" G (_l~_ + ~U:J~_ ~-~~ + ~~ -!- + -ul -) exp (iA . uP) (25) 
}t" ~ #" 4 2' 4 2' 4 2 ' 

which proves to vanish identically except a particular array with A= (0 0 0) because 

we have 

(26) 

for p, V= 1, 2. We can therefore see that there is no coupling between l;1 (A) and 

~2 (A) in the case with A~O, in which the quadrupole energy per atom takes the 

same value as given in § 3. 

Let us then consider the particular case ~ = (0 0 0) . Using the following 

relations 

G12 (-~-, 1 ~-)=o 
4 4 ' 

G
n 

(_1_ 1 
-~ )=G22 (+, 1 

-~-) = -3.10, , - , 
4 ' 4 4 

(27) 

we have a field matrix 

l;/ (0) [11 In] 
l;}'2 (0) /n /1 ' 

(28) 

where 11 = 12.45 and In = 8Gn (-i,-i,l) = - 24.80. Eigenvalues of the matrix are easily 

obtained as 11 ±/n equal to 37.25 or -12.35, which are higher in energy than 

f-values found in the array with A= (n nO) or (n n n). From this analysis we 

find that in the lowest array of eo-orbital there is no correlation between comer 

lattice and body-centered one in B.C.C. lattice. 

(B) The eo-orbital array in the F.C.C. lattice 

The lattice is decomposed into four S.C. lattices, characterized by the following: 
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generating point 

label 

characteristic array 

o. Nagai and T. Nakamura, 

corner 

(0 0 0) 

1 

2]l(A) 

yz-face 

(0 1/2 1/2) 

2 

2]2 (A) 

zx-face 

(1/2 0 1/2) 

3 

2]S(A) 

xy-face 

(1/2 1/2 0) 

4 

lJ4(A) 

In parallel with (25), we construct the field matrix. For example, 

"" G (ut 1 + ul 1 + Ul) (., P) j; ,"v 2' 4 ~2-' 4 ~2-· exp -z",·u (29) 

gives the matrix component between ~~ (A) and ~} (A), which IS 

F~~ (A). 

denoted by 

A symmetric property, 

FI2 (A) = [;'S4 (A) FI3 (A) =F 24 (A) 
}LV /-1,1), PJ) }LV' 

F~~ (A) =F~~ (A), 
(30) 

will be easily seen. The numerical values of Gp,v(UIU2US) necessary for our pro­

blem are tabulated in Table IV. 

Table IV. Numerical values of G p,v (u1 U 2 us) necessary for the F. C. C. problem. 

(u l U2 us) 

0 1/4 1/4 

1/2 1/4 1/4 

1/4 1/4 0 

1/4 1/4 1/2 

Gll (u) 

2.96 

-0.65 

-14.85 

-0.30 

G22 (U) 

-8.93 

-0.42 

8.90 

-0.76 

-10.30 

0.20 

o 

o 

We shall now discuss the characteristic arrays with respective A. 

( i) A= (000) 

The field matrix IS written III the following form: 

~} f a a b 0 e -e 0 

~} a f b a e 0 0 -e 

~} a b f a -e 0 0 e 

~./ b a a f 0 -e e 0 

~zl 0 e -e Q f c c d 

~z2 e 0 0 -e c f d C 

~z3 0 0 e c d f C 

~z4 0 -e e 0 d c c f 

(31) 

In order to construct the characteristic array, we shall introduce the following 

four arrays: 
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Quadrupole Interaction in Crystals 443 

"'!O' 4J =8 1 
-'I", _ - "" 

(32) 

[l;",\ l;",2, _l;",3, -l;/I ==8",4. 

Basing on these arrays, we may largely factorize the field matrix. We have 

S}[f1-b -2eJ S·/rf1 - b 2e -. 

8 z
3_-2e fl-d' 8/L 2e j;-dJ 

and the other St's give characteristic array, whose 

eigenvalue is found to be fl +2a+b for 8./, fl +2c+d 

for 8",1, j;-2a+b for 8} and fl- 2c+d for 8",4. If 

we use the numerical values a=9.25, b= -60.60, c=--

37.40, d=32.56, e= -40.40 and f fl=12.45, which 

are calculated with the help of Table IV and later refer­

red to a, b, c, d and e as gn, (jJ1l, g22, <[J22 and <[J12 in the 

order, the lowest array proves to be given by S} with 

energy fl-2a+b= -66.65. This lowest energy is 

three-fold degenerate, in which the other two arrays are 

included in 8 3 and 8 4 but these are crystallographically 

(33) 

Fig. 5. The lowest orbital 

array in F. C. C. lattice. 

equivalent to 8;. The orbital analogue of array S} can be seen in Fig. 5. 

(ii) A=(OOn) 

The field matrix bringing the lowest energy is given by 

(34) 

and another similar matrix concerned. wi th 1;; and l;2. The lowest characteristic 

array is then given by a doubly degenerate set of [~:, ~}, l;~q, l;':J, and [l;;, -l;;, 

-l;;, l;':] whose eigenvalue is equal to f3+<P~I= -48.36, since <[J~1= -58.17. In 

the other words, an xy-plane inclusive of lattice point of two sublattices 1 and 4 sit 

down cannot be correlated with adjacent xy-planes inclusive of those of sublattices 2 

and 3 sit down. 

(iii) A= (71' 71' 0), (71' 71' 71') 

In these cases, there is no coupling between different sublattices. The lowest 

value is given by f6= -14.28. 

The characteristic array with the lowest energy is then included in A= (0 0 0). 

It may be concluded that in F.C.C. lattice an energy gain due to the interaction 

between sublattices is much larger than a loss due to the self-energy. On the 

other hand, in B.C.C. lattice it is not the case. 

§ 5. The quadrupole array in the S.C. lattice 

If we consider a quadrupole as a fictitious vector of five dimensions, Z, nor-
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444 O. Nagai and T. Nakamura 

malized in the sense of (3), the procedure for obtaining the quadrupole array is 

straightforward. 

Let us now generalize the matrix component of field operator, F;}, given by 

(18), to the general quadrupole with p, 1-'= 1, "', 5. The new components of F;} 

are also defined by G",v((u1)-ufJ)/2). These are obtained with the help of Table r. 
Writing them formally in a simple case, we have 

=-co 

(35) 

General expression for G",v (u) is derived from the above expression by substituting 

Il-U1, 12-u2 and Is-us for II, 12 and Is respectively. 

The other GI'V (u) 's are the following: 

G14 (U1 U2 U3) = G13 (U2 Ul U3) , 

G24 (U1 U2 U3) = G23 (U2 U1 U3) , 

G33 (UI U2 U 3) =G44 (U2 U 1 U3) =G55 (U3 U 2 U1) , (36) 

In S.C. lattice, z; (p= 3, 4, 5), designating the array of fictitious quadrupole 

of Zl' put on the p-th sublattice, does not couple with the other components of 

quadrupole, as can easily be seen from inspection of (35). Characteristic array is 

therefore obtained as 

Z", (A) = 2:J exp (iA' uP) z",P ; 
uP 

(37) 
p=3, 4,5, 

where zJ: denotes a vector analogous to eJ: in (19). The corresponding eigenvalue 

of the field is given by F",I' C>..,) of (22), which in turn is obtained from G",,,, (u). 

The value for GI'I'(u) for p=3, 4, 5 can be derived from Gl'v(u) for p, 1-'=1,2 

(Appendix), and FI'I' (A) 's thus estimated are tabulated in Table V. The ,other 

components of field matrix are essentially given by those in Table III. 
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Quadrupole Interaction in Crystals 445 

Thus, the lowest energy of fictitious quadrupole proves to be given by Zl (n n n) 

and Z2(n n n) or almost by Zl (n 'TC 0), whose eigenvalue f6= -14.28 or f5= -13.97 

is considerably lower than - 8.87 associated with Z5(0 0 n). But, these characteristic 

arrays are all fictitious, because they are not consistent with (1) on the surface 

of unit sphere. 

Although we treat the quadrupole as a fictitious vector, whole assembly of 

characteristic arrays obtained forms a complete set, whence any array of real 

quadrupole with double periodicity can be constructed by a linear combination. Let 

an array of real quadrupole be Z: 

Z= ::8 aj" Zj (A.) , (38) 
j, ). 

where l'jap"j2=1. The energy, 1/2 'f, associated with this array is then obtained by 

where jj (A.) denotes the eigenvalue of F belonging to Zj (A.). This relation can 

be easily proved with the help of 

f= (1/8) (Z, FZ). 

Table V. The numerical values of Fpp().) for ",=3, 4 and 5. The other values omitted 

can be obtained from appropriate cyclic permutation. 

000 

o 0 7r 

7r 7r 0 

7r 7r 7r 

F33 ().) 

-8.30 

-1.88 

-3.08 

9.52 

F 44 (A) 

-8.30 

-1.88 

-3.08 

9.52 

---'-----------

-8.30 

-8.87 

15.51 

9.52 

Due to the cubic symmetry, a real quadrupole will probably be parallel to 

one of (00 1), (11 0), (11 1) and the other cubically equivalent directions in the 

lowest state. The real quadrupole parallel to (001) is simply represented by Z2= 1 

and Zl=Z3=Z4=Z5=0, which proves to correspond to (=1 and ~=~=O if we 

use (1). It may be noted that Z2= -1 with Zl =Z3=Z4=Z5=0 is a fictitious 

quadrupole. If we take new coordinate system (e, ~', (') whose (,-axis is parallel 

to (11 0), the real quadrupole with z/ -1 and z/ =Z3' =z/ =Z5' =0 is also parallel 

to (110), where z"s denote the quadrupole components in the new coordinate 

system. U sing the transformation formula (' = 1/ V2 . (~+ ~), we have 

In the same way, the real quadrupole parallel to (111) proves to be represented 

by the state in which 
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446 O. Nagai and T. Nakamura 

z2"=1/V3. (Z3+Z4+Z5) =1 

and all of the other z;"s are equal to zero where z;"s denote the quadrupole com­

ponents in the coordinate system with ("'-axis parallel to (111). The real quadru­

pole parallel to one of the other three equivalent directions: (-111), (1 -11) 

and (11 -1) is represented by the state in which one of 

and 

is equal to unity where the other four independent components of quadrupole can 

always make zero. 

In such manner, we construct array of real quadrupole and examine the field 

value associated. Some results with lower energy are given in Table VI, whose 

patterns can be seen in Fig. 6. 

Table VI. Some arrays of real quadrupole in S. C. lattice. 

array 

(1/V3)[Z3(000)+Z4(OOO)+Z5(000)] ; 

(1/V-3) rZ3 (nO 0) +Z4(nO 0) +Z5(0 0 0)] ; 

- [(1/2) ,Z2(0 0 0) + (V3/2) ,Z5(0 0 n)] ; 

- [(V3/2) ,Zl (nn 0) + (1/2) ·Z2(0 0 0)] ; 

(a) (b) 

field value 

-8.30 

-6.35 

-3.56 

-7.37 

(c) 

Fig. 6. Quadrupole arrays given in Table VI. 

figure 6 

(a) 

(b) 

(c) 

(d) 

(d) 

The lowest array will be (1/V3)' (Z3+Z4+Z5) with A= (000), an array Ill. 

which all quadrupoles are directed along a trigonal axis of S.C. crystal. Of course~ 

there are four arrays of such type, corresponding to four trigonal axes of cubic 

crystal. 

§ 6. The quadrupole array in the B.C.C. and F.C.C. lattices 

The procedure is somewhat similar to that in S.C. lattice, and we may de-­

compose B.C.C. or F.C.C. lattice into two or four S.C. sublattices and construct 
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the field matrix with respect to S.C. characteristic arrays of fictitious quadrupole, 

as can be seen in Table VIII. The numerical values are obtained from GU " (u) '8 

whose independent quantities are tabulated in Table VII. The other Cp," (u) 's can 

be derived from relations given in the Appendix. 

We shall below discuss the quadrupole array in B.C.C. and F.C.C. lattices 

separately by use of the field matrix given in Table VIII. 

(A) Quadrupole array in B.C.C. lattice 

As can be seen in Table VII, two S.C. characteristic arrays with X= (0 0 n) 

Table VII. Numerical values of Gp"(u). 

_____ U_l_
U
2_

U
_3 ___ ._~._I_~ _____ G_33_(~ ______ L ______ G_13_(_U) ____ _ 

1/4 1/4 1/4 

1/4 1/4 0 

1/4 1/4 1/2 

o 1/4 1/4 

1/2 1/4 1/4 

2.07 

-5.93 

0.51 

17.84 

0.05 

2.36 

o 
o 

-6.00 

0.87 

Table VIn A. Quadrupole field at body-, yz face-, zx face- and xy face-centered points. 

coming from a characteristic array on the corner lattice. 

array 

(0 0 0) 

(0 0 TC) 

(TC TC 0) 

(TC TC TC) 

field at 
B.C. pt. 

.In Z1 

.I22 Z 2 

133 Zg 

.I44 Z 4 

.I55 Z5 

j~5Zo 

134 Z 4 

j~3Zg 

.152 Z2 

-I---·-~~--~-~fi-;i~d~;-F.-C~- Pt.-- ~-~-. 

I-~-·----~· ... - .. ~- ..... 

i yz-face zx-face xy-face 

911 Zl + 912 Z2 

922 Z2 + 921 Zl 

93S ZS 

944 Z 4 

955 Z0 

91S Z 3 

92S Zg 

931 Zl + 932 Z2 

945 Z5 

954 Z 4 

hu Zl + h12 Z2 

h22 Z2 + h21 Zl 

hggZs 

h44 Z 4 

h55 Z 5 

h14 Z 4 

h24 Z 4 

h35 Z 5 

h41 Zl + h42 Z2 

h53 Z 3 

¥?nZ1 

¥?22 Z 2 

¥?33 Zg 

¥?44 Z 4 

¥?55 Z5 

¥?11' Zl 

¥?2l Z2 

¥?3/ Z3 

¥?4/ Zq 

¥?55! ZfJ, 

¥?25 Z5 

¥?34 Z4 

¥?43 Z3 

¥?52 Z2 

¥?2/ Z5 

¥?3/ Z4 

¥?4l Zs 

¢>5l Z2 
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448 O. Nagai and T. Nakamura 

component 

fn' j~2 

f33' f44' f55 

f25 

f34 

Table VIII B. 

911, h11 

922, h22 

912, -h12 

933, h44' <P55 

944, h33' <P33 J 
955, h55' <P44 

Numerical values for the matrix component. 

value component 

-24.81 <Pn 
/ 

16.54 <P22 
/ 

-21.82 <P33/' <P44 
/ 

25.19 <P55 
/ 

9.25 <P25 

-37.40 <P34 

-40.40 

72.19 913, -h14 

923, h24' 1/2· <P25 
/ 

-21.70 
945, h35' <P31 

-60.60 

32.56 

value 

-58.17 

38.66 

-25.78 

70.56 

24.02 

-27.70 

-27.36 

15.79 

-36.40 

and (n n: n:) do not couple with each other, hence the energy value is given by a 

self-energy of S.C. characteristic array. It will be sufficient to look into the arrays 

with X= (0 0 0) and (n: n: 0). 

(i) X= (0 0 0) 

Field matrix is very similar to (28). The characteristic arrays and their 

field values are as follows: 

[ZI' ~ZIJ, [Z2' -Z2J: 

[Z3' ZsJ, [Z4' Z4J, [Z5' Z5]: 

[Z3' - Z3J, [Z4' - Z4J, [Z5' - Z5J : 

37.25, 

8.23, 

-24.8. 

(40) 

[Z2' Z2] gives real quadrupole (Fig. 7a), but the other characteristic arrays are 

fictitious. By use of their linear combination, we shall look for the array of real 

quadrupole. 

(41) 

is a real quadrupole, which has field value equal to - 21.7 and will be the lowest 

in B.C.C. lattice (Fig. 7b). 

Another real quadrupole array which gives rather low field value -13.8 is 

constructed as 

which can be seen in Fig. 7c. 

(ii) X=(7rn:O) 

Fictitious arrays of lower field value are 

(42) 
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Quadrupole Interaction m Crystals 

[Zl, ZlJ, [Zl' -ZlJ: 

[Zs, -Z4J, [Z4' -ZsJ: 

f=-14.2, 

-28.3. 

A real quadrupole array constructed from them IS 

1/v3 ([Zs, -Z4J+[Z4' -ZsJ) (nnO) 

+ 1/V3[Z5' Z5J (000), 

449 

(43) 

(44) 

whose field value is found to be -16.1. This array IS illustrated In Fig. 7d. 

(a) (b) (c) 

Fig. 7. Quadrupole arrays in B. C. C. lattice 

(B) Quadrupole array in F.C.C. lattice 

(i) A.= (000) 

(d) 

\Vhile Zl and Z2 couple with each other, each of Zs, Z4 and Z5 does not 

couple with any different type of Zj respectively. The characteristic arrays have 

a similar form to (32). For example, 

[Zs, Zs, Zs, Zs] , f=20.5, 

[Zs, -Zs, -Zs, Zs] , -80.5, 
(45) 

[Zs, -Zs, Zs, -Zs] , -80.5, 

[Zs, Zs, -Zs, -Zs] , 107.3. 

In such a way, we may find the lowest array of two-fold degeneracy from respec­

tive Zi) i=l, 2 and 3. Then we designate them by 

X1 =[Zs, -Zs, -Zs, Zs] , 

X2=[Z4' :Z4, -Z4' -Z4J, (46) 

XS=[Z5' -Z5' Z5, -Z5] , 

Y1=[Zs, -Zs, Zs, -ZsJ, 

Y2=[Z4' -Z4' -Z4' Z4J, (47) 

YS=[Z5' Z5, -Z5' -Z5]' 
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450 O. Nagai and T. Nakamura 

Vv' e can construct real quadrupole arrays by using this degenerate set. They are 

,designated by 

I/V3 (Xl +X2 +XS), I/V3(YI + Y2 + Ys), 

whose field value is of course equal to - 80.5. This array 

can be seen in Fig. 8. On the other hand, the lowest 

characteristic array constructed by Zl and Z2 has been 

obtained in § 4 (B). This array, being now fictitious, 

has brought a field value equal to - 66.65, but any real 

quadrupole array constructed by using it is of higher 

energy. 

(ii) ~= (0 0 IT) 

The lowest arrays are 

[Z5' -Z5' -Z5' Z5], [Z5' -Z5' Z5, -Z5] , 

(48) 

Fig. 8. The lowest 

quadrupole array III 

F. C. C. lattice. 

whose field value is found to be -79.4. Each of them should be combined with 

the other characteri,stic array with higher energy in order to construct any real 

array, resulting in a promotion of energy. Some field values of array are given 

by -48.4, -37.4, -27.7, etc. 

(iii) ~= (IT IT 0), (IT IT IT) 

Field values are given by (-60.7, -50.3, -14.0, 25.2, 66.5) for (IT IT 0) and 

(-37.6, -12.8,3.6,26.2,27.7) for (IT IT IT), which are of no interest. 

We may finally conclude that the array (48) leads to the exact lowest field 

value in F.C.C. lattice, which is considerably lower than the corresponding value 

in § 4 (B). 

§ 7. Quadrupole interaction in magnetic compounds 

and molecular crystals 

(A) The orbital ordering of localized magnetic electron 

Although the quadrupole interaction is not very effective, our result seems to 

give some insights into the preferential ordering of d-orbitals which are two-fold 

(eg ) or three-fold (t2g ) degenerate under a crystalline field of cubic symmetry. 

Let us first look into the stabilizing character of t2g-orbital in S.C., B.C.C. and 

F.C.C. lattices. Since we have done the corresponding study about eg-orbital in 

§§ 3 and 4, we may then compare the results for both types of orbital. Three 

orbitals of t 2g are written as 

(49) 

By using them, the quadrupole components are represented by (10) with cJ = -~.?, 
where J"" J y and Jz should be understood to be the components of orbital angular 

momentum with quantum number equal to unity. An oriented quadrupole cor­

responds to a state in which Z2 has the maximum magnitude along the orientation 
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;:axis, say, the z-axis, hence a state with the eigenvalue of Jz equal to zero. Since 

22 equals -1 in this state, the classical treatment of the t 2g-problem is just gIven 

by that in §§ 5 and 6 with the same magnitude of quadrupole moment, 

.J1Q( = -~.?), as in the eg-problem. 

In such a way, we shall compare the ordering energy of t2g-orbital, which the 

Tesults obtained in §§ 5 and 6 give, with that of eg-orbital obtained in §§ 3 and 4. 

We shall recapitulate the results for respective lattice in Table IX. As can be 

"seen in this table, the quadrupole energy associated with eg is much stabilized in 

S.C. lattice than that with t 2g, but the situation is reversed in B.C.C. and F.C.C. 

lattices. 

As mentioned in § 1, the ordering of eg-orbital plays the important role in 

'order to understand the magnetic structure of LaMnOs and MnFs. In these com­

pounds, the magnetic lattice is essentially S.C., where an orbital pattern Fig. 4 (b) 

Table IX. The lowest array for eg - and t 2g-orbitals. 

orbital S.C. B.C.C. F.C.C. 

eg array Fig. 4 Fig. 4 Fig. 5 

field value -14.28 -14.28 -66.5 

t 2g array Fig. 6 (a) Fig. 7 (b) Fig. 8 

field value -8.30 -21.7 -80.5 

seems to be realized. The reason why the pattern which the compounds mentioned 

choose is not the type of Fig. 4 (a) but that of Fig. 4 (b) should be interpreted 

in terms of a certain kind of the Jahn-Teller distortion. In actuality, the field 

value for LaMnOs proves to be about 2000K in unit of the Boltzmann constant, 

"hence the excitation energy necessary to reverse a fictitious spin is estimated to 

"be about 400oK. It is rather small compared with the observed transition tem­

perature ,.......780oK, where the eg-orbital ordering is considered to melt. But we 

will not further inquire into this problem in the present paper. 

We shall here note another point. Any pattern which is not constructed by 

,one of the lowest patterns or linear combination of them will always be higher in 

quadrupole energy. For example, we shall discuss the energy associated with an 

,orbital array as shown in Fig. 9 (a), where two non-orthogonal orbitals, 

(50) 

"are mounted on lattice points as shown. These orbitals will be written as 

(51) 

'Comparing. (51) with (23), we shall obtain the spin pattern III which two kinds 

·of spins, pointing the directions at angles -n/3 and n/3 from the z-axis in the 

.zx-plane, align alternatively in lattice (Fig. 9 (b)). This array may be con-
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452 O. Nagai and T. Nakamura 

sidered as a superposition of two arrays, in which 

. one is an array with ferromagnetic spin along the 

z-axis and another with antiferromagnetic array, 

A=(1l' 1l' 1l'), of spin along the x-axis. The coefficients 

of linear combination proves to be 1/2 and V3/2 

for respective array. Therefore we obtain the cor­

responding field value as 

[(V3/2)2(-14.28) + (1/2)2. (12·45)J=-7.60 

with the help of (39) and Table III. 

CB) The orientational ordering in molecular 

crystal 

We shall discuss some aspects of crystal struc­

ture observed in molecular crystal. Although our 

results are to be applied to molecular crystals com­

posed of molecules with large quadrupole moment 

in cubic crystal, we shall also refer further to 

crystals of the other types. 6
) 

( i) B.C.C. lattice 

The lowest pattern is of the type Fig. 7 (b), 

which will be supposed to be distorted tetragonally. 

Such crystal structure is found in fluorides and 

oxides of metals, which is ionic crystal and is well­

known as rutile or Sn02-type structure. 

Another pattern of the type Fig. 7 (a), being 

rather low in energy, is found in hydrogen cyanide 

HCN, which is distorted tetragonally.7) Since this 

(a) 

x 

(b) 

Fig. 9. An orbital array (a) 

and its spin analogue (b). 

z 

molecule has large electrical dipole moment (p=2.65 X 10-18 e.s.u.) ,8) our prediction 

of crystal structur'e fails naturally. But quadrupole moment of HCN is also large 

(p(.), = 0.775 X 10-16 cm2
) .9) 

(ii) F.C.C. lattice 

Some molecular crystals composed of non-polar molecules with appreciable 

magnitude of quadrupole moment are known and are listed in Table X. The 

quadrupole energy per molecule, W Q, is estimated as one half of the field value, 

- 80.5, multiplied by 3e2 p(V 4a5
• In these crystals listed, crystal lattice is of the 

same structure at low temperatures, which is just the lowest pattern predicted in 

Fig. 8. We shall note some features observed for respective crystals. 

Nitrogen (N2) .10) The orientational ordering breaks down at transition point 

34.5°K, which is comparable with the quadrupole energy per molecule in unit of 

the Boltzmann constant k. 

Nitric oxide CN20). N 20 molecule is of the formN-N-O, hence probably 

has very small dipole moment. Due to its large quadrupole moment, the quadru-
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Quadrupole Interaction in Crystals 

Table X. Lattice constant (a), transition temperature (7';..), melting point (Tll1)' quadrupole 

moment (/lQ) and quadrupole energy per molecule (WQ) of molecular crystals of solid 

nitrogen type crystallized in F. C. C. lattice.1S} ,14) 

5.56 

5.66 

5.58 

5.63 

34.5 

64.55 

63.08 

182.3 

190 

68.1 

0.155 

0.455 

0.32 

0.165 

20 

127 

94 

24 

453 

pole energy IS comparable with kT of melting temperature. We suppose that 

this will be one of the reasons why the orientational order persists up to the 

melting point in this crystal. 

Carbon dioxide (C02) .11) CO2 molecule is of the form O-C-O, hence without 

dipole moment. The situation will be similar to that in nitric oxide. 

Carbon monoxide (CO).12) CO molecule has small dipole moment /J.=O.1 X 10-18 

e.s.u.8
) and therefore we suppose that quadrupole effect is much more effective than 

dipole effect in solid state. The transition point of CO crystal is" however, higher 

than that of N2 crystal. This will probably be due to dipole-quadrupole interaction 

between CO molecules. 

Another interesting feature observed for N 20 and CO crystals is that there 

remains a further disorder concerned with such direction as N-N-O or C-O within 

the pattern of nitrogen type at very low temperatures. This is supposed to be 

due to the situation that their directions are determined by small dipolar effect. 
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Appendix 

SOIne relations between Gpv(u) 's 

The following symmetries can be easily established by inspecting (17): 

G",,(UIU2U S)'S are symmetric with respect to permutation between UI and U2, while 

GI2(UIU2US) is antisymmetric with respect to the same permutation. And we can 

see further relations: 

Gll (UI U2 us) + Gll (U2 Ul us) + Gll (us UI U2) 

=G22 (u l U2 U S) + G 22 (U2 USUI) + G22 (us Ul U2), 

GIl (UI U2 U3) - Gll (U3 U2 Ul) =G22 (USU2UI) - G 22 (UI U2US) , 

(A· 1) 

G12 ('vuu) = V3/4· [G22 (uuv) - Gll (uuv)]. 

U sing these relations, we can derive G I2 and G22 from Gll , for example, 
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454 O. Nagai and T. Nakamura 

G22 (uuv) = 1/3· [4Gn (vuu) - Gn (uuv)], 

G22 (VUU) =1/3· tGn (vuu) +2Gn (uuv)]. 

We shall note some useful relations for G",v's, p, v=l, ",,5. 

(A·2) 

If we compare 

G33 , of (35) with G",v of (17), a relation 

2 2 
G33 (UI U2 us) = - -- G22 (UI U2 U3) - - / G12 (UI U 2 U3) 

3 V 3 
(A·3) 

IS established, hence G33 , G44 and G55 , can be derived from Gll , Gn and G12 with 

the help of (36). Other relations are as follows: 

G23 ('VUU) =1/2· G25 (UUV) = -1/V3 . G13 (VUU) , 

G34 (uuv) = 4/3· G21 (vuu) , 

G33 (UUV) = G33 (uvu) = -2/3· Gll (UUV) , 

which are obtained in the same way. 

References 

1) T. Nakamura, Prog. Theor. Phys. 14 (1955), 135. 

2) J. Kanamori, Prog. Theor. Phys. 17 (1957), 177. 

3) E. O. Wollan and W. C. Koehler, Phys. Rev. 100 (1955), 545. 

(A·4) 

E. O. Wollan, H. R. Child, W. C. Koehler and M. K. Wilkinson, Phys. Rev. 112 (1958), 

1132. 

J. B. Goodenough, Phys. Rev. 100 (1955), 564. 

4) J. M. Luttinger and L. Tisza, Phys. Rev. 70 (1946), 954. 

5) K. W. H. Stevens, Proc. Phys. Soc. A 65 (1952), 209. 

6) R. W. G. Wyckoff, Crystal Structure (Inter Science Publishers, Inc., New York, 1948). 

7) W. J. Dumage and W. N. Lipscomb, Acta Cryst. 4 (1951), 330. 

8) P. Debye, Polar Molecules (Chemical Catalog Co., New York, 1929). 

9) J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular Theory of Gases and Liquids 

(John Wiley & Sons, Inc., New York, 1954). 

10) L. Vegard, Z. Physik 58 (1929), 497. 

11) J. de Smedt and W. H. Keesom, Proc. Acad. Sci. Amsterdam 27 (1924), 839. 

12) L. Vegard, Z. Physik 61 (1930), 185. 

13) K. Clusius, Z. physik. Chern. B 3 (1929), 41. 

14) J. O. Cloy ton and W. F. Giauque, J. Am. Chern. Soc. 54 (1942), 2610. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

4
/2

/4
3
2
/1

8
3
2
7
3
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


