

Open access • Journal Article • DOI:10.1051/JPHYSLET:019810042013027900

# Quadrupole transitions of the $1 \leftarrow 0$ band of N2 observed in a high resolution atmospheric spectrum — Source link $\square$

C. Camy-Peyret, J. M. Flaud, L. Delbouille, G. Roland ...+2 more authors

Institutions: University of Liège, Kitt Peak National Observatory

Published on: 01 Jul 1981 - Journal De Physique Lettres (Les Editions de Physique)

Topics: Quadrupole

Related papers:

- The v = 1 ← 0 quadrupole spectrum of N2
- Identification of electric quadrupole O2 and N2 lines in the infrared atmospheric absorption spectrum due to the vibration-rotation fundamentals
- The fundamental quadrupole band of 14N2: Line positions from high-resolution stratospheric solar absorption
   spectra
- The collision-induced fundamental and first overtone bands of oxygen and nitrogen
- First identification of the a1 $\Delta$ g–X3 $\Sigma$ g– electric quadrupole transitions of oxygen in solar and laboratory spectra

Share this paper: 🚯 🄰 🛅 🗠



# Quadrupole transitions of the $1 \leftarrow 0$ band of N2 observed in a high resolution atmospheric spectrum

C. Camy-Peyret, J.-M. Flaud, L. Delbouille, G. Roland, J.W. Brault, L.

Testerman

### ▶ To cite this version:

C. Camy-Peyret, J.-M. Flaud, L. Delbouille, G. Roland, J.W. Brault, et al.. Quadrupole transitions of the  $1 \leftarrow 0$  band of N2 observed in a high resolution atmospheric spectrum. Journal de Physique Lettres, Edp sciences, 1981, 42 (13), pp.279-283. 10.1051/jphyslet:019810042013027900. jpa-00231928

## HAL Id: jpa-00231928 https://hal.archives-ouvertes.fr/jpa-00231928

Submitted on 1 Jan 1981

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Classification Physics Abstracts 33.20E - 33.70 - 92.65

### Quadrupole transitions of the $1 \leftarrow 0$ band of $N_2$ observed in a high resolution atmospheric spectrum

C. Camy-Peyret, J.-M. Flaud

Laboratoire de Physique Moléculaire et d'Optique Atmosphérique, C.N.R.S., Bât. 221, Campus d'Orsay, 91405 Orsay Cedex, France

L. Delbouille, G. Roland

Institut d'Astrophysique, Université de Liège, 4200 Ougrée-Liège, Belgium

#### J. W. Brault and L. Testerman

Kitt Peak National Observatory, 950 North Cherry Avenue, P.O. Box 26732, Tucson, Arizona, 85726 U.S.A.

(Reçu le 6 avril 1981, accepté le 4 mai 1981)

**Résumé.** — Un spectre d'absorption à haute résolution de l'atmosphère terrestre enregistré à Kitt Peak à l'aide d'un spectromètre par transformation de Fourier a permis d'observer les transitions quadrupolaires S7 à S16 de la bande 1  $\leftarrow$  0 de N<sub>2</sub>. L'analyse des largeurs équivalentes et des profondeurs centrales de ces raies conduit, d'une part à la détermination de la dérivée du moment quadrupolaire  $(\partial Q/\partial r)_e = (0.94 \pm 0.05) ea_0$  et d'autre part, à une estimation du coefficient d'élargissement par l'air  $\gamma_{N_2-air}^0 = 0.06 \pm 0.02$  cm<sup>-1</sup> atm.<sup>-1</sup> à 296 K. En outre l'identification des raies telluriques observées entre 2 391,5 et 2 467 cm<sup>-1</sup> est donnée.

Abstract. — Using a high resolution atmospheric absorption spectrum recorded at Kitt Peak with the solar Fourier transform spectrometer, it has been possible to observe the quadrupole transitions S7 to S16 of the  $1 \leftarrow 0$  band of N<sub>2</sub>. The analysis of the equivalent widths and of the central depths of these lines has enabled us to determine the derivative of the quadrupole moment  $(\partial Q/\partial r)_e = (0.94 \pm 0.05) ea_0$  and to estimate the broadening coefficient by air  $\gamma_{N_2-air}^0 = 0.06 \pm 0.02$  cm<sup>-1</sup> atm.<sup>-1</sup> at 296 K. Finally the assignment of telluric lines between 2 391.5 and 2 467 cm<sup>-1</sup> is also given.

1. Introduction. — Fourier transform spectroscopy is able to produce spectra of very high resolution as well as very high signal to noise ratio. These qualities are very useful in atmospheric physics since it is now possible to detect very weak absorptions due to the most intense lines of trace gases or due to the weakest lines of more abundant constituents. The atmospheric spectrum between 2 391.5 and 2 467 cm<sup>-1</sup> studied in this work has been recorded with the solar Fourier transform spectrometer of Kitt Peak National Observatory (2 078 m) with a resolution of  $0.009 \text{ cm}^{-1}$  using the sun as a source. This spectral region which lies just above the end of the very strong  $CO_2 v_3$  band (see Fig. 1) is influenced by the  $CO_2$  continuum and to a lesser extent by the  $N_2$  continuum but is relatively free of any strong lines. These conditions are favourable to search for the quadrupole lines of the  $1 \leftarrow 0$ 

band of  $N_2$  the intensity of which is expected to be very small.

2. Analysis. — The spectrum was recorded around 11.00 AM (local time) on October 25, 1979 at an average secant of 1.475. The ground pressure was 798 mbars and the ground temperature 23 °C. A portion of the spectrum is shown in figure 1. Using the AFGL line parameter compilation [1] the CO<sub>2</sub>, N<sub>2</sub>O and CH<sub>4</sub> telluric lines were first identified but some strong enough lines were left unassigned. Among them, some lines much broader than the telluric ones (see Fig. 2) were tentatively attributed to the sun. Some others were without any doubt of telluric origin because their profile was the result of the superposition of a wide tropospheric contribution and of a narrow stratospheric one. Using the

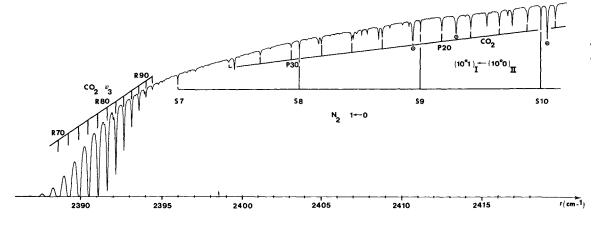



Fig. 1. — Portion of the atmospheric spectrum between 2 387 and 2 420 cm<sup>-1</sup>. The lines S7 to S10 of the  $1 \leftarrow 0$  quadrupole band of N<sub>2</sub> are easily seen superimposed on the CO<sub>2</sub> and N<sub>2</sub> continua. Some CO<sub>2</sub> and solar lines also appear.

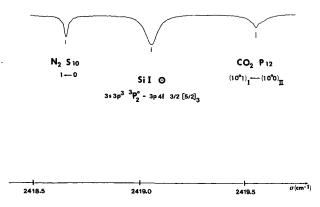



Fig. 2. — Detailed portion of the atmospheric spectrum showing the S10 quadrupole line of the  $1 \leftarrow 0$  band of N<sub>2</sub> together with a Si I solar line and a CO<sub>2</sub> telluric line. Observe the very different line profiles : The solar line is very broad; when comparing the N<sub>2</sub> and CO<sub>2</sub> lines, the stratospheric part of the N<sub>2</sub> line is more prominent because the lower state energy of the CO<sub>2</sub> transition is much higher (hot band).

results obtained by Bendtsen [2] on the Raman spectrum of N<sub>2</sub> it has been possible to assign these lines to the quadrupole transitions S7 to S16 of the  $1 \leftarrow 0$  band of the nitrogen molecule (<sup>1</sup>). We have gathered in table I the list of the lines observed in the spectrum with their position, assignment and central depth.

3. **Results.** — It is important to deduce from our atmospheric spectrum quantitative results on the intensity of the N<sub>2</sub> lines because it seems difficult to obtain in the laboratory an optical density  $P \times l$  comparable to what can be reached using the atmosphere as the absorbing medium

$$(P \times l \simeq 5 \times 10^5 \text{ atm. cm})$$
 .

Thus, we have performed a quantitative analysis based on a simplified atmospheric model (constant temperature gradient of 6 K/km in the troposphere, constant temperature of 209 K above 15 km in the stratosphere) to reproduce the observed equivalent widths W and central depths H of the N<sub>2</sub> lines. From these quantities (see columns 5 and 6 of table II) we have deduced the intensities  $k_{\sigma}^{\rm N}$  (in cm<sup>-1</sup>/molecule cm<sup>-1</sup>) at 296 K of 7 lines of the quadrupole 1  $\leftarrow$  0 band and we have estimated an average broadening coefficient  $\gamma_{\rm N_2-air}^{\rm 0} = 0.06 \pm 0.02$  cm<sup>-1</sup> atm.<sup>-1</sup> at 296 K. This calculation is based on the equations :

$$\tau(\sigma') = \int_0^\infty k_\sigma^{N}(T) N(z) \Phi(T, P, \sigma') dz$$
$$W = \int_{\substack{\text{on the} \\ \text{line}}} [1 - \exp(-\tau(\sigma'))] d\sigma'$$
$$H = \int_{\substack{\text{on the} \\ \text{line}}} f(\sigma - \sigma') [1 - \exp(-\tau(\sigma'))] d\sigma$$

where

- N(z) is the number density at altitude z (in molecule cm<sup>-3</sup>); -  $\Phi(T, P, \sigma')$  is the normalized line profile :

$$\Phi(T, P, \sigma') \,\mathrm{d}\sigma' = 1 \,;$$

-  $f(\sigma - \sigma')$  is the normalized instrumental profile :  $\int f(\sigma - \sigma') d\sigma' = 1.$ 

The line profile  $\Phi$  is a Voigt profile involving the Doppler half-width  $\gamma_D(T)$  and the Lorentz half-width  $\gamma_L(T, P) = \gamma^0(T_0) \frac{P}{P_0} \left(\frac{T_0}{T}\right)^{1/2}$ .

The intensity of a quadrupole line v',  $J' \leftarrow v$ , J [3] is given by :

$$k_{\sigma}^{N}(T) = \frac{8 \pi^{5}}{15 hc} \sigma^{3} e^{-E''/kT} g_{J} \frac{(2 J + 1)}{Z(T)} \times |\langle J 0 20 | J' 0 \rangle|^{2} |\langle v | Q | v' \rangle|^{2}$$

<sup>(&</sup>lt;sup>1</sup>) The S6 line is barely visible between the very strongly absorbing R68 and R70  $\nu_3$  lines of CO<sub>2</sub>.

Table I. — Atmospheric spectrum between 2 392 and 2 465 cm<sup>-1</sup>.

The meaning of the different columns is:  $\sigma$ : Wavenumber (in cm<sup>-1</sup>) of the line. For solar lines, because of the Doppler shift, the actual wavenumber is  $\sigma \times 1.000\ 001\ 941\ 5$ . P: Percentage of absorption at the centre of the line. The notation b in this column means that the corresponding line is blended in a stronger one; in this case the neighbouring lines are joined by a brace.

Assignment : For telluric CO<sub>2</sub> or N<sub>2</sub>O lines, except when explicitly stated, the vibrational assignment is : for CO<sub>2</sub>  $(10^{0}1)_{I} - (10^{0}0)_{II}$ : for N<sub>2</sub>O  $(12^{0}0) - (00^{0}0)$  or  $(13^{1}0) - (01^{1}0)$  when the c, d notation appears.

Telluric CH<sub>4</sub> lines belong to the P branch of the 2  $v_4$  band.  $\odot$  means a solar line, ) or ) means that the line lies respectively downward or upward of the quoted position of the blend.

| σ                      | Р                     | Assignment                                                                         | σ                      | Р                    | Ass              | ignment                           | σ                      | P                               | Assignment                                                                 |
|------------------------|-----------------------|------------------------------------------------------------------------------------|------------------------|----------------------|------------------|-----------------------------------|------------------------|---------------------------------|----------------------------------------------------------------------------|
| (cm <sup>-1</sup> )    | (%)                   |                                                                                    | (cm <sup>-1</sup> )    | (%)                  |                  | -                                 | (cm <sup>-1</sup> )    | (%)                             | Ū                                                                          |
| 2391.6520              | 94                    | $CO_2 \nu_3 R 80$                                                                  | 2431.6772              | 1.2                  | CO 2             | R 2                               | 2449.8000              | (b                              | N <sub>2</sub> O P9c                                                       |
| 2392.0050<br>2392.1740 | 4.8<br>75             | CO <sub>2</sub> V <sub>3</sub> R 82                                                | 2431.7680<br>2431.9780 | 2.3<br>0.8           | CH₄<br>N₂O       | P 29 c                            | 2449.8412<br>2450.1072 | 2.7<br>45                       | N <sub>2</sub> O P9d+CH <sub>4</sub><br>N <sub>2</sub> O P14               |
| 2392.6740              | 51                    | $CO_2 \nu_3 R 82$<br>$CO_2 \nu_3 R 84$                                             | 2432.524               | 19 0 ?               |                  | P 34 + CH <sub>4</sub>            | 2450.2112              | ( <sup>4</sup> <sub>b</sub>     | $CO_2$ R 30                                                                |
| 2393.1480              | 30                    | CO <sub>2</sub> V <sub>3</sub> R 86                                                | 2432.8980              | 0.8                  | N <sub>2</sub> O | Р 28 с                            | 2450.4484              | 1.3                             | -                                                                          |
| 2393.5976              | 18<br>3.4             | $CO_2 \nu_3 R 88$                                                                  | 2433.1760<br>2433.3840 | 4.3<br>/13           | CO2<br>N2O       | R 4<br>P 33                       | 2450.6604              | 1.0                             | N <sub>2</sub> O P 8 c                                                     |
| 2393.9208<br>2394.0196 | 8.3                   | CO <sub>2</sub> V <sub>3</sub> R 90                                                | 2433.3840              | ( <sup>13</sup><br>b | N20              | P 28 d                            | 2450.8480<br>2450.9680 | 47                              | CH <sub>4</sub><br>N <sub>2</sub> O P 13                                   |
| 2394.4176              | 4.1                   | CO <sub>2</sub> V <sub>3</sub> R 92                                                | 2433.5876              | 8.8                  | N <sub>2</sub>   | S 12                              | 2451.0732              | 6.3                             | CH4                                                                        |
| 2395.9652              | 8.3                   | N <sub>2</sub> S 7                                                                 | 2433.8120<br>2434.2840 | 0.9                  | N20<br>N20       | Р 27 с<br>Р 32                    | 2451.3400<br>2451.5192 | 2.3                             | CO <sub>2</sub> R 32<br>N <sub>2</sub> O P 7 c                             |
| 2397.0472<br>2399.0644 | 1.9<br>2.6            | CO <sub>2</sub> P 36<br>CO <sub>2</sub> P 34                                       | 2434.2840              | 16<br>5.4            |                  | F 52<br>R 6                       | 2451.5192              | 1.3<br>1.3                      | N <sub>2</sub> O P7c<br>N <sub>2</sub> O P7d                               |
| 2399.4228              | 8.7                   | 0                                                                                  | 2434.75                | 0.8                  | N <sub>2</sub> O | Р 26 с                            | 2451.8268              | 44                              | N <sub>2</sub> O P 12                                                      |
| 2401.0532              | 3.0                   | CO <sub>2</sub> P 32                                                               | 2435.1804              | 17                   | N <sub>2</sub> O | P 31                              | 2452.2816              | 8.0                             | CH4                                                                        |
| 2403.0200<br>2403.5656 | 3.6<br>12             | CO <sub>2</sub> P 30<br>N <sub>2</sub> S 8                                         | 2435.6360<br>2435.8420 | 1.0                  | N <sub>2</sub> O | Р 25 с                            | 2452.3800<br>2452.4376 | (b<br>2.3                       | N <sub>2</sub> O P6c,d<br>CO <sub>2</sub> R34                              |
| 2404.7640              | /Ъ                    | СН4                                                                                | 2436.0760              | 24                   | N20              | $P 30 + CO_2 R 8)$                | 2452.6840              | 43                              | N <sub>2</sub> O P 11                                                      |
| 2404.7896              | 4.5                   | CH4                                                                                | 2436.5412              | 1.1                  | N <sub>2</sub> O | Р 24 с                            | 2452.8456              | 7.0                             | CH4                                                                        |
| 2404.9600<br>2406.8756 | 4.5                   | CO <sub>2</sub> P 28<br>CO <sub>2</sub> P 26                                       | 2436.9676<br>2437.4484 | 22.<br>/b            | N20<br>N20       | Р 29<br>Р 23 с                    | 2453.2280<br>2453.3540 | 1.3                             | N <sub>2</sub> O P 5 c,d                                                   |
| 2406.9720              | 3.0                   | CH4                                                                                | 2437.5128              | ( 7.0                | CO2              | R 10                              | 2453.5388              | 42                              | N <sub>2</sub> O P 10 + CO <sub>2</sub> R 36                               |
| 2407.1720              | 1.3                   |                                                                                    | 2437.8588              | 28                   | $N_2O$           | P 28 + X                          | 2454.0760              | 1.1                             | N <sub>2</sub> O P 4 c,d                                                   |
| 2407.4880              | 3.4                   | CH4                                                                                | 2438.3464<br>2438.7460 | 1.1<br>26            | N 20<br>N 20     | P 22 c<br>P 27                    | 2454.3924              | 39                              | N <sub>2</sub> O P 9                                                       |
| 2407.8428<br>2408.5480 | 3.4<br>7.9            | СН 4<br>СН 4                                                                       | 2438.9040              | 6.6                  | CO 2             | R 12                              | 2454.9212<br>2455.2440 | 0.8<br>37                       | N <sub>2</sub> O P 3 c,d<br>N <sub>2</sub> O P 8                           |
| 2408.7648              | 6.6                   | CO <sub>2</sub> P 24                                                               | 2439.1372              | 0.9                  |                  |                                   | 2455.5364              | 0.8                             | N20 1 0                                                                    |
| 2409.2272              | 2.2                   | ⊙Si I                                                                              | 2439.2444              | 1.1                  | N <sub>2</sub> O | P 21 c                            | 2455.7004              | 2.1                             | N <sub>2</sub> S 15                                                        |
| 2410.0140<br>2410.4160 | 1.4                   | © 51 1<br>CH4                                                                      | 2439.6320<br>2440.1408 | 28<br>1.1            | N20<br>N20       | Р 26<br>Р 20 с                    | 2456.0944<br>2456.3684 | 34<br>1.6                       | N <sub>2</sub> O P 7                                                       |
| 2410.6320              | (b)                   | CO <sub>2</sub> P 22                                                               | 2440.2680              | 6.9                  | CO <sub>2</sub>  | R 14                              | 2456.5550              | 2.4                             |                                                                            |
| 2410.6560              | \II                   | ⊙Si I+CH4)                                                                         | 2440.4216              | 0.7                  | N <sub>2</sub> O | P 20 d                            | 2456.9428              | 31                              | N <sub>2</sub> O P 6                                                       |
| 2411.1280              | 6.7                   | N <sub>2</sub> S 9                                                                 | 2440.5160<br>2440.9976 | 30<br>4.6            | N <sub>2</sub> O | P 25<br>S 13                      | 2457.0740              | 8.9                             | $\odot$ Si I<br>N <sub>2</sub> O (13 <sup>1</sup> 0)-(01 <sup>1</sup> 0) Q |
| 2412.4660<br>2413.3610 | 7.9<br>10             | CO <sub>2</sub> P 20<br>© Si I                                                     | 2440.9970              | ( <sup>4.0</sup>     | N2<br>N20        | P 19 c                            | 2457.4488<br>2457.7888 | 1.3<br>29                       | $N_{2}O (13 O) = (01 O) Q$<br>$N_{2}O P 5 + O Si I$                        |
| 2414.2776              | 8.3                   | CO <sub>2</sub> P 18                                                               | 2441.2840              | (b                   | $N_2O$           | P 19 d                            | 2458.6344              | 22                              | N <sub>2</sub> O P 4                                                       |
| 2415.2824              | 7.2                   | ⊙ ?                                                                                | 2441.3972              | 133                  | N <sub>2</sub> O | P 24                              | 2458.7940              | 1.6                             |                                                                            |
| 2416.0628<br>2416.5760 | 8.3<br>3.3            | CO <sub>2</sub> P 16<br>© ?                                                        | 2441.4868<br>2441.5992 | 6.8<br>/11           | CH4<br>CH4       | + CO <sub>2</sub> R 16            | 2459.4776<br>2459.5744 | 18<br>8.4                       | N2O P3<br>CH4                                                              |
| 2416.8600              | 9.0                   | õ?                                                                                 | 2441.6464              | (ъ                   | CH 4             | 507 <u>1</u> 1 10                 | 2459.7740              | 8.3                             | CH4                                                                        |
| 2417.8212              | 8.1                   | CO <sub>2</sub> P 14                                                               | 2441.9216              | 1.1                  | N <sub>2</sub> O | P 18 c                            | 2460.1360              | 13                              | ⊙ ?                                                                        |
| 2418.6520              | 13                    | N₂ S 10<br>@SiI                                                                    | 2442.1460<br>2442.2772 | 1.1<br>34            | N20<br>N20       | P 18 d<br>P 23                    | 2460.3192<br>2461.1588 | 11<br>5.8                       | N <sub>2</sub> O P 2<br>N <sub>2</sub> O P 1                               |
| 2419.0576<br>2419.5524 | 18<br>7.8             | CO <sub>2</sub> P 12                                                               | 2442.8100              | 1.1                  | N <sub>2</sub> 0 | P 17 c                            | 2462.8332              | 5.3                             | N <sub>2</sub> O R O                                                       |
| 2421.2572              | 7.0                   | CO <sub>2</sub> P 10                                                               | 2442.9152              | 8.8                  | CO <sub>2</sub>  | R 18                              | 2462.9936              | 3.6                             | N <sub>2</sub> S 16                                                        |
| 2421.4640              | 1.4                   | N <sub>2</sub> O P 46                                                              | 2443.0048              | 1.1<br>37            | N <sub>2</sub> O | P 17 d<br>P 22                    | 2463.2360              | ( <sup>15</sup> <sup>⊚</sup> ?+ | N <sub>2</sub> O R 6 c                                                     |
| 2422.3996<br>2422.7372 | 1.5                   | N <sub>2</sub> O P 45                                                              | 2443.1552<br>2443.6920 | 1.0                  | N20<br>N20       | P 16 c                            | 2463.2848<br>2463.6680 | 11                              | N <sub>2</sub> O R 6 d<br>N <sub>2</sub> O R 1                             |
| 2422.9356              | 5.6                   | CO2 P8                                                                             | 2443.8664              | 1.0                  | N20              | P 16 d                            | 2463.8472              | 11                              | 0?                                                                         |
| 2423.2560              | 2.5                   | CH4                                                                                | 2444.0308              | 38                   | N20              | P 21                              | 2464.1172              | 1.6                             | N <sub>2</sub> O R 7 d                                                     |
| 2423.3132<br>2424.2560 | 5.1<br>2.1            | X? + CH <sub>4</sub> + N <sub>2</sub> O P 44 <sup>)</sup><br>N <sub>2</sub> O P 43 | 2444.1976<br>2444.5724 | 5.3<br>1.0           | CO2<br>N2O       | R 20<br>Р 15 с                    | 2464.5004<br>2464.6848 | 17<br>0.7                       | N2O R 2<br>CH4                                                             |
| 2424.2360              | 4.5                   | CO <sub>2</sub> P 6                                                                | 2444.7240              | 1.0                  | N20              | P 15 d                            | 2464.8632              | 1.2                             | N <sub>2</sub> O R 8 c                                                     |
| 2424.8780              | 3.6                   | ⊙ Si I                                                                             | 2444.9040              | 40                   | $N_2O$           | P 20                              | 2464.9496              | 1.6                             | $N_2O$ R 8 d + CH <sub>4</sub>                                             |
| 2425.1800              | 3.2                   | N <sub>2</sub> O P 42<br>N <sub>2</sub> O P 41                                     | 2445.4536<br>2445.7760 | 8.0<br>42            | CO2<br>N2O       | R 22+N <sub>2</sub> 0P14 c<br>P19 | 2465.3320<br>2465.6744 | 22                              | N <sub>2</sub> O R 3<br>N <sub>2</sub> O R 9 c                             |
| 2426.1028<br>2426.1392 | ( <sup>в</sup><br>7.1 | N <sub>2</sub> O P 41<br>N <sub>2</sub> S 11                                       | 2445.9724              | 9.5                  | οs               |                                   | 2465.7164              | (b<br>3.5                       | CH4                                                                        |
| 2426.2080              | 1.2                   | CO <sub>2</sub> P 4                                                                | 2446.3252              | 1.4                  | $N_2O$           | P 13 c                            | 2465.7768              | ∖ь                              | N <sub>2</sub> O R 9 d                                                     |
| 2427.0212              | 4.3                   | N <sub>2</sub> O P 40                                                              | 2446.4340<br>2446.6460 | 1.4<br>44            | N20<br>N20       | P 13 d<br>P 18 + $CO_2R 24^3$     | 2466.1608              | 28<br>1.0                       | N <sub>2</sub> O R 4<br>N <sub>2</sub> O R 10 c                            |
| 2427.3180<br>2427.8052 | 1.1                   | CO <sub>2</sub> P 2                                                                | 2447.1988              | 1.4                  | N20              | P 12 c                            | 2466.6092              | 11                              | © ? + R 10 d + CH                                                          |
| 2427.9380              | 5.1                   | N <sub>2</sub> O P 39                                                              | 2447.2880              | 1.4                  | N <sub>2</sub> O | P 12 d                            | 2466.9884              | 34                              | N <sub>2</sub> O R 5                                                       |
| 2428,8200              | $\binom{13}{3}$       | CH4                                                                                | 2447.5140              | 43                   | N <sub>2</sub> 0 | P 17<br>R 26                      |                        |                                 |                                                                            |
| 2428.8480<br>2429.1568 | \ь<br>5.9             | N <sub>2</sub> O P 38<br>CH <sub>4</sub>                                           | 2447.8876<br>2448.0688 | 4.8<br>1.4           | CO2<br>N2O       | P 11 c                            |                        |                                 |                                                                            |
| 2429.1508              | 5.7                   | CH4                                                                                | 2448.1404              | 1.4                  | N20              | Plld                              |                        |                                 |                                                                            |
| 2429.7640              | 7.6                   | N <sub>2</sub> O P 37                                                              | 2448.3800              | 46                   | N20              | P 16+N <sub>2</sub> S 14          |                        |                                 |                                                                            |
| 2429.9360              | 1.2                   | N <sub>2</sub> O P 36                                                              | 2448.9348<br>2448.9960 | 1.4                  | N20<br>N20       | P 10 c + CH                       |                        |                                 |                                                                            |
| 2430.6720<br>2431.0680 | 8.5<br>9.2            | N <sub>2</sub> O P 36<br>CH <sub>4</sub>                                           | 2449.0856              | 9.1                  |                  | i 1+CO <sub>2</sub> R 28          |                        |                                 |                                                                            |
| 2431.5796              | 13                    | N <sub>2</sub> O P 35 + CH <sub>4</sub>                                            | 2449.2444              | 45                   | $N_2O$           | P 15                              |                        |                                 |                                                                            |
|                        |                       |                                                                                    |                        |                      |                  |                                   |                        |                                 |                                                                            |

| Assign-<br>ment | $\sigma_{obs.}$ (cm <sup>-1</sup> ) | $\sigma_{calc.}$ $(cm^{-1})^{(a)}$ | E''<br>(cm <sup>-1</sup> ) ( <sup><i>a</i></sup> ) | W (10 <sup>-3</sup> cm <sup>-1</sup> ) | P<br>(%) | $k_{\sigma}^{\mu}(\text{obs.})$ $k_{\sigma}^{\nu}(\text{calc.})$ (°)<br>( $10^{-28} \text{ cm}^{-1}/\text{molecule}^{-2}$<br>at 296 K) |      | $\left(\frac{\partial Q}{\partial r}\right)_{e}/ea_{0}(b)$ |
|-----------------|-------------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------|
| —               |                                     |                                    |                                                    | —                                      |          |                                                                                                                                        | —    | _                                                          |
| S7              | 2 395.965 2                         | .969 1                             | 111.398                                            | 3.43                                   | 8.3      | 1.78                                                                                                                                   | 1.57 | 1.00                                                       |
| S8              | 2 403.565 6                         | .568 5                             | 143.219                                            | 5.58                                   | 11.7     | 2.97                                                                                                                                   | 3.04 | 0.93                                                       |
| S9              | 2 411.128 0                         | .130 5                             | 179.015                                            | 2.23                                   | 6.7      | 1.22                                                                                                                                   | 1.42 | 0.87                                                       |
| S10             | 2 418.652 0                         | .654 8                             | 218.783                                            | 4.84                                   | 12.6     | 2.76                                                                                                                                   | 2.60 | 0.97                                                       |
| S11             | 2 426.139 2                         | .141 1                             | 262.523                                            |                                        |          |                                                                                                                                        | 1.15 |                                                            |
| S12             | 2 433.587 6                         | .589 3                             | 310.233                                            | 3.24                                   | 8.8      | 2.03                                                                                                                                   | 1.99 | 0.95                                                       |
| S13             | 2 440.9 976                         | .998 9                             | 361.912                                            |                                        |          |                                                                                                                                        | 0.84 |                                                            |
| S14             | ( <sup>b</sup> )                    | 2 448.369 8                        | 417.557                                            |                                        |          |                                                                                                                                        | 1.38 |                                                            |
| S15             | 2 455.700 4                         | .701 6                             | 477.166                                            | 0.682                                  | 2.1      | 0.49                                                                                                                                   | 0.56 | 0.88                                                       |
| S16             | 2 462.993 6                         | .994 1                             | 540.738                                            | 1.30                                   | 3.6      | 0.98                                                                                                                                   | 0.88 | 1.00                                                       |
|                 |                                     |                                    |                                                    |                                        |          |                                                                                                                                        |      | 0.94 ± 0.05                                                |

Table II. —  $N_2$  quadrupole vibration-rotation lines (1-0 band).

(a) Calculated from J. Bendtsen [2].

(<sup>b</sup>) See text.

where

Z(T) is the total partition function (for N<sub>2</sub> Z(296) = 465).

 $g_J$  is the nuclear spin statistical weight (3 or 6 for J odd or even).

• N < 1 >

 $\langle j_1 m_1 j_2 m_2 | jm \rangle$  is a Clebsch-Gordan coefficient and we have :

$$|\langle J 0 20 | J' 0 \rangle|^{2} = \begin{cases} \frac{3 J(J-1)}{2(2 J-1) (2 J+1)} & \text{for O lines } (J' = J-2) \\ \frac{J(J+1)}{(2 J-1) (2 J+3)} & \text{for Q lines } (J' = J) \\ \frac{3(J+1) (J+2)}{2(2 J+1) (2 J+3)} & \text{for S lines } (J' = J+2) \end{cases}$$

If one writes

$$Q = Q_{e} + \left(\frac{\partial Q}{\partial r}\right)_{e} \Delta r + \cdots$$

one has to first order

$$\langle v | Q | v + 1 \rangle = \left(\frac{\partial Q}{\partial r}\right)_{\rm e} r_{\rm e} \left(\frac{B_{\rm e}}{\omega_{\rm e}}\right)^{1/2} \sqrt{v+1}.$$

Using the following spectroscopic data [4] :

$$r_{\rm e} = 1.097\ 685\ {\rm \AA}\ , \ \ B_{\rm e} = 1.998\ 24\ {\rm cm}^{-1}\ ,$$
  
 $\omega_{\rm e} = 2\ 358.57\ {\rm cm}^{-1}$ 

for each line, we have determined from the observed intensity  $k_{\sigma}^{N}(obs.)$  a value of  $(\partial Q/\partial r)_{e}/ea_{0}$  which is given in the last column of table II. The average value with its statistical errors is :

$$\left(\frac{\partial Q}{\partial r}\right)_{\rm e} = (0.94 \pm 0.05) \ ea_0$$

which is in good agreement with the values  $0.95 ea_0$  [5] and  $0.97 ea_0$  [6] deduced from collision-induced fundamental transitions. Finally using our value of  $(\partial Q/\partial r)_e$  we have computed the intensities  $k_{\sigma}^{N}(\text{calc.})$ quoted in table II. In addition to its atmospheric interest, this work shows that, when measuring the continuum in the laboratory, it is necessary to take into account the contribution of the quadrupole lines which have not been observed in such experiments because of a higher pressure and a lower resolution.

Note. — After this manuscript was ready, we have been aware of a paper by Goldman *et al.* [A. Goldman, J. Reid and L. S. Rothman, *Geophys. Res. Lett.* **8** (1981) 77] reporting the observation of O<sub>2</sub> quadrupole lines in the 1 600 cm<sup>-1</sup> region and mentioning the existence of N<sub>2</sub> quadrupole lines in the 2 400 cm<sup>-1</sup> region.

#### References

- [1] ROTHMAN, L. S., Appl. Opt. 17 (1978) 3517.

- [1] KOHMARI, E. S., App. Opt. 17 (1976) 517.
   [2] BENDTSEN, J., J. Raman Spectrosc. 2 (1974) 133.
   [3] KARL, G. and POLL, J. D., J. Chem. Phys. 46 (1967) 2944.
   [4] HUBER, K. P. and HERZBERG, G., Molecular spectra and molecular structure, IV Constants of diatomic molecules, (Van Nostrand Reinhold Company) 1979.

•

[5] REDDY, S. P. and CHO, C. W., Can. J. Phys. 43 (1965) 2331.
[6] SHAPIRO, M. M. and GUSH, H. P., Can. J. Phys. 44 (1966) 949.