
42 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000

Quadtree-Structured Variable-Size Block-Matching Motion Estimation with
Minimal Error

Injong Rhee, Graham R. Martin, S. Muthukrishnan, and Roger A. Packwood

Abstract—This paper reports two efficient quadtree-based algo-
rithms for variable-size block matching (VSBM) motion estima-
tion. The schemes allow the dimensions of blocks to adapt to local
activity within the image, and the total number of blocks in any
frame can be varied while still accurately representing true mo-
tion. This permits adaptive bit allocation between the representa-
tion of displacement and residual data, and also the variation of
the overall bit-rate on a frame-by-frame basis. The first algorithm
computes the optimal selection of variable-sized blocks to provide
the best-achievable prediction error under the fixed number of
blocks for a quadtree-based VSBM technique. The algorithm em-
ploys an efficient dynamic programming technique utilizing the
special structure of a quadtree. Although this algorithm is compu-
tationally intensive, it does provide a yardstick by which the per-
formance of other more practical VSBM techniques can be mea-
sured. The second algorithm adopts a heuristic way to select vari-
able-sized square blocks. It relies more on local motion informa-
tion than on global error optimization. Experiments suggest that
the effective use of local information contributes to minimizing the
overall error. The result is a more computationally efficient VSBM
technique than the optimal algorithm, but with a comparable pre-
diction error.

Index Terms—Dynamic programming, motion estimation,
quadtree, variable-size block matching, video compression.

I. INTRODUCTION

Many interframe coding schemes for video conferencing and
multimedia employ motion-compensation techniques to exploit
the temporal redundancy in an image sequence. Block-matching
motion estimation, originally proposed by Jain and Jain [8], pro-
vides a simple and elegant way to identify and express motion,
and hence, is commonly adopted in many video compression
standards (e.g. ITU-T H.261/H.263, and MPEG-1, 2).

Each image frame is divided into a fixed number of nonover-
lapping square blocks. For each block in the frame, a search
is made in an earlier frame of the sequence over a predefined
area of the image. The search is for the best matching block,
the position which minimizes a distortion measure between the
two sets of pixels comprising the blocks. Usually the criterion
is to minimize either the mean square error (MSE) of the cor-
responding pixels, or the mean absolute error (MAE), which is
easier to compute. The relative displacement between the two

Manuscript received May 7, 1997; revised June 5, 1999. This work was
supported by the U.K. Engineering and Physical Sciences Research Council
under Grant GR/J79997. This paper was recommended by Associate Editor H.
Gharavi.

I. Rhee is with the Department of Computer Science, North Carolina State
University, Raleigh, NC 27695-7534 USA.

G. R. Martin and R. A. Packwood are with the Department of Computer Sci-
ence, University of Warwick, Coventry CV4 7AL U.K.

S. Muthukrishnan is with the Information Sciences Center, Bell Laboratories,
Lucent Technologies, Murray Hill, NJ 07974 USA.

Publisher Item Identifier S 1051-8215(00)01632-3.

blocks is taken to be themotion vector. Typical block sizes are
of the order of 16 16 pixels, and the maximum displacement
might be ±64 pixels from the block's original position. Several
search strategies are possible, usually using some kind of sam-
pling mechanism, but the most straightforward approach is ex-
haustive search. This is computationally demanding but algo-
rithmically simple, and relatively easily implemented in hard-
ware.

The output of the motion-estimation algorithm comprises the
motion vector for each block, and the pixel value differences be-
tween the blocks in the current frame and the “matched” blocks
in the reference frame. We call this difference signal themotion
compensation error, or simplyblock error. In many codes, the
block error is transformed (e.g., discrete cosine transform) and
the transform coefficients quantized in order to maintain an ac-
ceptable bit-rate, or compression ratio. For fixed bit-rates, large
block errors result in increased information loss at this stage,
and produce lower image quality. Thus, minimizing block error
is an important goal of motion estimation.

Ideally, to achieve good video compression ratio and image
quality, both the number of blocks and the block error have to be
minimized because the motion vectors are encoded along with
the block error. Unfortunately, this is a conflicting requirement,
particularly withfixed-size block matching(FSBM), where the
size of all the blocks is the same. In FSBM, increasing the block
size is the only way to reduce the number of motion vectors. The
success of this scheme relies on each block representing an area
of single uniform motion, but as the block size is increased to
reduce the number of motion vectors, this becomes increasingly
unlikely, so a good match cannot be found.

Varying block sizes over different regions of an image based
on the actual motion present in the regions would clearly provide
a better optimization for this requirement. Invariable-size block
matching(VSBM) [2], [9], smaller blocks can be used to de-
scribe complex motion while larger blocks can be used in areas
where the image content is stationary or undergoing uniform
motion. However, its success depends on an appropriate selec-
tion of blocks. This poses an interesting optimization problem.
Given two image frames and , we wish to find blocks
that cover the entire frame and also minimize the total block
error between and . It is assumed that is chosen to en-
able a target bit-rate to be obtained. Unfortunately, we do not
have an efficient solution for this problem and conjecture that
the problem is so hard (possibly NP-hard) that its solution is im-
practical. This is because arbitrary configurations of, possibly
overlapping, blocks have to be considered.

Instead, we tackle a more practical problem, considering only
those blocks possible by acovering quadtreedecomposition.
A covering quadtree is a quadtree where each node has four

1051–8215/00$10.00 © 2000 IEEE

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000 43

Fig. 1. A simple covering quadtree.

children or none with: 1) each node in the tree corresponding to
a square block in the image; 2) four child blocks (i.e., nodes) of a
block to the four equal-sized nonoverlapping square sub-blocks
covering the block; and 3) the root node to the entire frame.1

The resulting blocks correspond to the leaves of a covering tree.
An example of a covering quadtree is shown in Fig. 1. The use
of quadtrees is ubiquitous in image coding [19], [17], [12], [2],
[9] because of the simplicity and efficiency in coding the block
configuration, requiring only 1 bit per node of the tree.

In this letter, we present an efficient algorithm that finds
the optimal covering quadtree of leaves that gives the
minimum total block error. The algorithm employs an efficient
dynamic programming technique utilizing the special struc-
ture of a quadtree. The time complexity of the algorithms is

, where is the total number of pixels in a frame,
which compares more favorably with the time complexity of
the exhaustive search FSBM algorithm than other
dynamic programming-optimal algorithms [13] whose time
complexities are more than .

Minimizing distortion for a given block number does not nec-
essarily yield the same result as minimizing distortion under a
given bit budget. The latter requires computing the actual bit
requirement of every candidate block through quantization and
entropy coding. For real-time video coding, this process would
be too time consuming. The overall bit rate can be approximated
by the number of blocks if the bit usage of each coded block is
similar (i.e., the bit rate is linear with the number of blocks). In
VSBM, this assumption seems to hold, as smaller blocks tend
to cover the areas with more distortion.

The optimal algorithm may not be suitable for a real-time
code owing to its high computational demand. However, the al-
gorithm provides a yardstick by which the performance of other
practical VSBM techniques could be measured. This is because
it gives the minimum compensation error among all quadtree al-

1For convenience, we assume a square frame with a width of a power of two.

gorithms that solve the minimization problem under a constraint
based on the number of blocks.

The high computational demand of the optimal algorithm
provides the motivation to look for more computationally
efficient VSBM algorithms exhibiting a comparable error. In
this letter, we present one such heuristic VSBM algorithm
that gives an error approximately the same as the optimal
algorithm, but with much less computation. The algorithm
relies more on local motion information than on global error
optimization. It starts by computing sets of “candidate” motion
vectors for fixed-size small blocks. Sibling blocks are then
merged in a quadtree manner if their sets of candidate vectors
contain at least one common vector. This algorithm is based on
an observation that if neighboring regions undergo the same
uniform motion, they must have at least one motion vector in
common. Our experiments suggest that the effective use of
local information contributes to minimizing the overall error.
The computation overhead of the heuristic algorithm is also
little more than that of the FSBM algorithm because most of
the block matching is performed at the lowest level of the tree
and the merging process can be implemented using efficient
machine bitwiseAND operations.

The performance of the various techniques was evaluated on
an arbitrary 28 successive frames of the two image sequences,
“Split Screen” and “Miss America,” and on 30 frames of
“Foreman,” one of the Class B MPEG-4 video test sequences.
An overall figure of merit indicates that, on average, the new
heuristic VSBM algorithm differs from the optimal by only
1.69, whereas the FSBM gives 15.44 difference from the
optimal.

Section II describes some related work on variable block-
matching motion estimation, and Sections III and IV present
the optimal algorithm and the heuristic VSBM scheme, respec-
tively. Finally, the paper is summarized in Section IV, and some
open problems are discussed.

44 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000

II. RELATED WORK

Puri et al. [15], Chanet al. [2], and Jelveh and Nandi [9]
proposed using variable-sized blocks for motion estimation so
that, where appropriate, large areas of uniform motion could
be represented by relatively few blocks, thus minimizing the
required number of motion vectors. They use a “top-down”
approach in which initially large blocks are matched, and if
for the best match of any block, the resulting error is above a
prescribed threshold, then that block is split into four smaller
blocks. This process is repeated until the maximum number
of blocks, or locally minimum errors, are obtained. Finally,
a process of re-merging small blocks to form large blocks is
performed to remove blocks that do not contribute to improving
image quality. They reported a significant improvement in
quality over FSBM techniques for relatively low bit-rate
coding.

Sullivan and Baker [18] used a variant of a Lagrange multi-
plier scheme that was previously applied to optimal bit-alloca-
tion in signal quantization [16]. A Lagrange multiplier, which
is a fixed slope on a rate-distortion curve, is used to find the op-
timal tree minimizing distortion under a given bit rate. However,
their algorithm can build the optimal treeonly if the rate-distor-
tion curve is convex. It is known that this convexity assumption
is not generally realistic in signal coding [16]. In contrast, our
optimal algorithm makes no assumption about a rate-distortion
curve.

Bi and Chan [1] applied a tree-structured bit-allocation algo-
rithm by Chouet al. [3], called ageneralized BFOS(G-BFOS)
algorithm, to motion estimation. The algorithm generates the
trees that have rate and distortion points only on the convex hull
of the rate-distortion curve. In the algorithm, a large number of
pruned trees that generate points above the convex hull of the
rate-distortion curve are ignored. Kianget al.[10] proposed an-
other approximation algorithm that improves the G-BFOS al-
gorithm by removing in each step only those tree nodes with a
common parent and no descendants. This technique identifies
additional points which are inbetween two adjacent points on
the convex hull.

For VSBM, several techniques have been proposed to reduce
the number of encoded motion vectors and improve image fi-
delity [11], [21]. Kim and Lee [11] proposed a hierarchical mo-
tion-vector encoding scheme, in which only the vectors signif-
icantly different from those of their upper-level blocks are en-
coded. The motion vectors of the upper-level blocks are encoded
as well. In general, a majority of the lower-level motion vectors
are similar to those of the upper-level blocks. Zhanget al. [21]
also developed a scheme that allows a block to have more than
one motion vector, motion boundaries within a block being ex-
pressed by straight lines. This technique is applied to VSBM
along with a similar motion vector reduction scheme as in [11].
Note that both Kim's and Zhang's schemes can be applied to
any VSBM motion-estimation technique to improve bit rate and
image quality.

III. OPTIMAL VSBM MOTION ESTIMATION

In this section, we describe an efficient algorithm that finds
the optimal covering quadtree ofvariable-sized blocks which

Fig. 2. Partitioning a node for recursive definition. Leftmost square: height =
i + 1. Rightmost square: Height = i.

results in the minimum motion compensation error. In terms
of motion estimation accuracy, it provides the best achievable
performance of a quad-tree structured VSBM technique for any
prescribed number of blocks.

Assume the size of the input image array is . Without loss
of generality, we assumeis a power of 2. Suppose that a cov-
ering quadtree has been superposed on top of this array. The root
of this quadtree represents the entire array; its four children rep-
resent the four quadrants of the array, and each quadrant is recur-
sively subdivided in the same manner and represented by corre-
sponding children at successively deeper levels of the quadtree.
Our goal is to identify the subtree with leaves in this quadtree,
such that the partitioning of the array induced by this tree gives
the minimum MSE among all subtrees withleaves. Note that
each node in a quadtree represents a square for some
integer . Each such node has two disjoint sized left-
and right-half rectangles, denotedand , respectively. Each
rectangle of that form has two disjoint top and
bottom squares, denotedand , respectively. Thus, each square

of size has four disjoint squares, which
are denoted tl, tr, bl, and br in clockwise order starting with the
top-left quadrant of (see Fig. 2). Theheightof the leaf nodes
is , their parents' height is, and so on.

Consider any node. Define to be the minimum (total)
error if the subarray corresponding tois partitioned into
blocks as per the quadtree partitioning. Then, we have

(1)

Here, is the minimum error in the left rectangle of the
square at with blocks, and likewise for with the right
rectangle. We now define these two quantities recursively

(2)

(3)

Here, is the minimum error in the top square of the rec-
tangle with blocks, and likewise for with the bottom
square of the left rectangle. A similar recursive definition holds
for the right rectangle and that defines and . Now we
observe merely that are ,
and , in that order. Finally, is simply the best mo-
tion vector for that block with respect to the previous image
(more on this below). That completes the recursive description
of . Clearly , where is the root of the quadtree gives
the minimum error possible with blocks.

Direct evaluation of the recursive definition above will re-
quire exponential time, but dynamic programming [7] applies

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000 45

here, and each of the values can be computed using others
computed at lower levels in a bottom-up fashion. That will give
an efficient algorithm based on this recursive definition. Note
that it is straightforward to modify such a dynamic program to
actually determine the quadtree which induces the partition with
minimum MSE. That completes the description of our entire al-
gorithm.

It remains for us to calculate the running time of our algo-
rithm. This has two parts.

1) The time to calculate for each node of the
quadtree.

2) Given , calculate for each value of
, for each node of the quadtree.

First we consider 2) above. Assume has
been computed for any nodeat height at most in the
quadtree. Consider the nodes at height. There are

nodes, each representing a disjoint block of size .
First, we compute and for all nodes at height
and for all . Computing for a given takes
time using (2), and likewise for using (3). Over all

, this takes time for a given . Next,
we calculate for all for node at height
. Since that takes time by (1) for each , the total

time taken for is , and the total time
for all nodes at height is . Finally,
repeating this procedure at each level of the quadtree, the total
time taken is

Thus, the total time for 2) is . A more detailed enu-
meration gives an improved analysis as shown below.

Case 1:Consider any heightwhere . At this height,
there are blocks, each of size . For each such
block , we need compute only values, namely

, since for all . (Informally,
we cannot divide a -sized block into more than blocks any
better than to divide it into at most blocks). Thus, the total
time taken for computing all the relevant values for the nodes at
height less than or equal to, for , is

which equals

The total time for this part is thus .
Case 2:Consider nodes at heightwhere . Using the

basic argument above, the time taken for this part is

We can conclude that this case, too, takes time .
Summing both parts, the total time is .

Now we turn to the task 1) above; namely, calculating
for all nodes in the quadtree. This is defined to be the minimum
block error between and a block of the same size aswith its
top-left corner in a square symmetric region of around the
top-left corner of in the previous frame. Typically is taken
to be 64 pixels, independent of, and for that reason, we will
consider in this section.

The straightforward way to compute is as follows. At
height in the quadtree, we have blocks,
each of size . For each such block, we can compare
it against each of the positions for placing its top-left corner,
and can explicitly compute the MSE for each such placement
and retain the minimum. This takes time for each block,
and time in all. Over all possible heights,
this takes time since we assumed

.
We can compute 's more efficiently in a bottom-up

manner as follows. Say has been computed for all nodes
at height of, at most, . We maintain, for each block in the

current frame, its MSE, with each block in the previous frame
with its top-left corner in one of the possible positions. Con-
sider any node at height . For each potential top-left corner
of in the previous frame, there is only one possible position
for the top-left corner for each of its four quadrant squares.
But, for each such placement, we have already calculated the
MSE of that quadrant of and its corresponding square in the
previous frame at height . Hence, in time, we can
consult all four quadrants and determine the MSE for. Thus,
the time taken for each node is only . Therefore, the
time taken for all the nodes at heightis , which
over the entire quadtree becomes , since we
have assumed . The space used is
as well. That gives the following theorem.

Theorem 3.1:There exists an algorithm that finds the
quadtree of, at most, leaves, minimizing the MSE in time

and space .
We remark that our particular manner of solving this problem,

namely, defining for a square in terms of that for its con-
stituent halves (rectangles) which in turn is defined in terms of
that for smaller squares (to complete the recursion), is particu-
larly efficient. An alternative and more straightforward way to
solve this problem would be to write the for a block in
terms of that of its four quadrants. That would lead to an algo-
rithm taking time which is prohibitive since may
be large.

IV. HEURISTIC VSBM MOTION ESTIMATION

In this section, we describe a heuristic technique that uses
only a fraction of the computational time of the optimal algo-
rithm, but gives a near-optimal selection of blocks.

Our heuristic algorithm is based on the following observa-
tion. When an object moves, the motion perceived in a local
window can be ambiguous, meaning that it is not possible to
determine the true motion using only local information. For ex-
ample, in Fig. 3, as the object moves to the top-right corner, both
of the motion vectors shown are equally probable candidates of
the true motion within that window. This problem is called the

46 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000

Fig. 3. Aperture problem.

apertureproblem [14]. The true motion can be recovered by in-
corporating more global information. In Fig. 3, the vector shown
in window represents the true motion as the motion is perpen-
dicular to the object. By choosing the common “candidate” mo-
tion vectors in windows and , the true motion of the moving
object can be recovered.

Based on this observation, our technique first computes sets
of “candidate” motion vectors for fixed-size small blocks, and
neighboring blocks are then merged in a quadtree manner if they
have at least one vector in common. Given an image sequence

the algorithm first divides the image frame into
small fixed-size blocks (we used 4 4 blocks in our experi-
ments). Motion information for each of these small blocks is
obtained by block matching. We denote each block by a tuple

where is the coordinate of the upper-leftmost
pixel of the block and is the length of a side of the square
block. Given a block and a predefined search window
of motion vectors , we calculate the MSE (or mean absolute
error) between blocks in and in

for each in . For each block in , we obtain a set
of motion vectors , called theinitial setof , whose matching
error is less than a prescribed threshold. The initial set of vectors
can be obtained using the exhaustive search technique or more
efficient subsampled search strategies (e.g. [20]).

Let us define a set of motion vectors for each block
in the tree, called theintersection setof as follows. If is a
leaf, . Otherwise,
where , and are the children of. We merge four sibling
blocks into a parent block if and only if the intersection set of
each sibling block is not empty and the intersection set of the
parent block is not empty. The reasoning behind this process is
as follows. When is empty, there is no vector that is common
to the four children of block . This means that there exists at
least one child/descendent blockthat has moved differently
from the other sub-blocks of block. Merging those blocks into

will provide an incorrect motion vector for. We repeat this
process at each level of the tree, from the bottom level to the top.
The motion vector for a block which cannot be merged into its
parent or for a block which does not have any candidate motion
vector (i.e., is chosen to be the one associated with the
minimum error of those within its intersection set.

The merging process is illustrated in Fig. 4, which shows the
initial sets of motion vectors for 16 blocks.

Each of blocks 11, 12, 15, and 16 has one common mo-
tion vector, so the intersection set of their parent block has one
member. Consequently the four blocks are merged and the re-
sulting motion vector is that contained in the intersection set.
The intersection set of the parent of blocks 1, 2, 5, and 6 has
two members. Again, the blocks are merged, and the motion

Fig. 4. Initial sets of motion vectors and merging of blocks.

vector is chosen to be the one with the smallest block error of
the two candidates in the merged block. This is simply found
by summing the residual error of the four blocks for each of
the two vectors. The remaining blocks in the example cannot be
merged as the intersection sets of their parent blocks are empty.
The motion vector for each nonmerged child is selected as the
one associated with the minimum error.

This bottom-up algorithm generally produces better pre-
diction than the top-down algorithms. The top-down VSBM
methods [15], [2], [9] suffer from the ‘majority effect’. In
top-down ‘match or split’ algorithms, a large block may be
considered matched when having an acceptable block error, but
a small area of the block may represent a feature with disparate
motion. Essentially this is ignored because the error is biased
by the majority of the pixels. This effect does not occur in
our bottom-up scheme in which regions with disparate motion
would not be merged with other areas. Bottom-up VSBM
techniques should better represent the true motion within the
image.

The technique can be efficiently implemented using machine-
level bitwise intersection operations. The initial and intersection
sets can be represented by simple bit vectors, a set cor-
responding to a 15 15 search area having 225 possible vectors
can be stored in an array of 8 32 bit) integers. Intersection of
these sets is trivial using a logical AND operation.

The threshold, which determines which vectors are included
in the initial sets, is calculated on a frame by frame basis. Essen-
tially, the threshold controls the number of blocks produced in
the quad-tree, and this allows the error performance of VSBM
to be compared with other techniques in a meaningful way.
For the experimental results detailed in the next section, the
threshold was determined using an iterative technique. How-
ever, it is found that the required threshold is proportional to the
minimum mean absolute matched error of the entire frame, and
in a practical codec it could be calculated once block matching
has been performed using the initial (44) blocks. In concept,
this is similar to the method employed by Jelveh and Nandi [9],
which allows the threshold to adapt to the degree of motion in
the image.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000 47

Fig. 5. Comparative results over 28 frames of “Miss America.”

The computational cost of this VSBM technique is little more
than that of FSBM. In fact, block matching is performed only
at the bottom level, and then the “minimal error” tree is formed
using a block merging process. This means that, computation-
ally, the technique is not only significantly less demanding than
the optimal VSBM algorithm, but also more efficient than other
VSBM methods where block matching has be to performed each
time a block is split or merged. Chanet al.[2], for instance, esti-
mated that from a large number of simulations on various image
sequences, their technique was about three times as computa-
tionally demanding as FSBM.

V. PERFORMANCEEVALUATION

We evaluate the performance using three image sequences:
“Miss America,” “Split Screen,” and “Foreman.” Each of the
sequences “Miss America” and “Split Screen” comprise 28
frames, each of 256 256 pixels. “Foreman” is one of the
(Class B) MPEG-4 video test sequences, made available in
ITU-R 601 format. We converted the sequence to CIF format (a
procedure commonly adopted in low bit rate codecs) and then
processed only a centralized window of 256256 pixels, to
achieve an image size compatible with the other two sequences.
To further reduce the computational requirement of the tests,
only 30 of the 300 available frames of the “Foreman” sequence
were used. Results are presented for FSBM (“fixed”), top-down
VSBM (“tpdn”) of Chanet al. [2], the new bottom-up VSBM
technique (“isect”) and the optimal VSBM method (“optm”).
An exhaustive search was adopted for all the tested techniques.

The performance of each method is compared in terms of
the MSE, a measure of the distortion introduced in the predic-
tion process. This was considered to be most appropriate as the
overall objective is to find a block matching motion estimation
method which provides the highest fidelity. Fig. 5 shows the
MSE over different numbers of blocks for the “Miss America”
sequence. The MSE is given as the average value over 28 frames,
which is considered more representative than presenting results
for one (typical) frame. The range of block numbers presented
is chosen to be appropriate for a low bit-rate code (e.g,. ITU-T
H.263) operating at 64-kbits/s with approximately CIF-format
data.

Fig. 6. Comparative results over 28 frames of “Split Screen.”

Fig. 7. Comparative results for 256 blocks/frame of “Split Screen.”

Fig. 8. Comparative results for 256 blocks/frame of “Foreman.”

As expected, the optimal method shows the best performance,
and the bottom-up technique is clearly better than both FSBM
and top-down VSBM. However, the advantage is only marginal
because the “Miss America” sequence contains little motion,
and all of the techniques work well.

48 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000

(a) (b)

(c)

Fig. 9. Block structures for each VSBM technique of “Split Screen” (256 blocks). (a) OPT. (b) ISECT. (c) TPDN.

(a) (b)

Fig. 10. Block structures for optimal and bottom-up VSBM techniques of “Foreman” (232 blocks). (a) OPT. (b) ISECT.

Averaged MSE results for the “Split Screen” sequence are
presented in Fig. 6. It is noticeable that the averaged errors
are much larger than for the “Miss America” sequence. In the

“Split Screen” sequence, many small regions undergo different
translational motion, providing a more rigorous test for the var-
ious techniques. Again, the optimal VSBM method shows the

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000 49

best performance, but the new bottom-up VSBM technique per-
forms extremely well, especially when compared with FSBM
and top-down VSBM.

Figs. 5 and 6 could hide aberrant behavior if, for a prescribed
number of blocks, there were large differences in MSE from
frame to frame. However, this is not the case. Fig. 7 shows
the frame-to-frame variation in MSE for the “Split Screen” se-
quence using a fixed number of blocks (256) in each frame. The
MSE does vary by a factor of two, above and below the mean
level, due to changes in the degree of motion between frames,
but the techniques approximately track each other through the
sequence with no anomalous behavior. Similar results are shown
in Fig. 8 for frames 40–70 of the “Foreman” sequence. For
both sequences, the “‘bottom-up” VSBM technique provides
near-optimal results.

Fig. 9 shows the same frame (from the “Split Screen” se-
quence) which has been motion compensated using the optimal
VSBM (OPT), bottom-up VSBM (ISECT) techniques, respec-
tively. The variable-sized block structure is superimposed on
each image. It is apparent that the new bottom-up VSBM tech-
nique has made very similar decisions to the optimal VSBM
method, whereas the top-down VSBM technique has chosen a
very different block structure, resulting in an increased error.

Fig. 10 shows the optimal (OPT) and bottom-up (ISECT)
SBM block structures for a frame of “Foreman.” Very sim-
ilar decisions to merge blocks have been made. The stationary
background on the periphery of the image has been represented
by comparatively few blocks, whereas the complex movements
of the mouth, nose, and chin are represented by much smaller
blocks, and hence, a larger number of motion vectors.

To generate overall figures of merit, using the optimal VSBM
method as a baseline, the MSE differences between each tech-
nique and the optimal were averaged across the complete frame
sequence and for all block numbers. For the “Split Screen” se-
quence, the new bottom-up VSBM technique showed a differ-
ence of only 1.69, whereas for FSBM and top-down VSBM, the
figures were 15.44 and 13.32, respectively.

VI. CONCLUSION

In this letter, we investigated VSBM motion-estimation tech-
niques. They demonstrate considerable advantages over FSBM
methods which rely on each block representing an area of uni-
form translational motion. With VSBM, the size of each block
adapts to local activity within the image, larger blocks being
used in large areas of stationary background or uniform motion,
and smaller blocks where the movement is localized or complex.
VSBM also allows the total number of blocks in any frame to
be varied while still representing true motion fairly accurately.

We described an algorithm based on a quadtree structure
which results in the optimal selection of variable-sized blocks,
and thus, the minimum total error. Although it is computation-
ally demanding, and hence, impractical for real-time codes, it
does provide a yardstick by which the performance of other
VSBM techniques can be measured. The method is based on an
exhaustive tree search, and provides the best-achievable results
for a quadtree-based VSBM scheme.

We also described a new bottom-up VSBM technique which
is as computationally efficient as FSBM, and yet provides
near-optimal results. Block matching is performed only once,
using small square blocks. Blocks are then merged in a quadtree
manner depending on whether they have candidate motion
vectors in common. This bottom-up approach has a number of
advantages over other known VSBM techniques.

The computational requirement of the bottom-up algorithm
is minimal as the search for matching blocks is no more de-
manding than for FSBM. Following an evaluation of the var-
ious techniques using real image sequences, the new bottom-up
VSBM method performs almost as well as the best possible
quadtree-based scheme. The residual error produced is signif-
icantly lower than for FSBM and also better than for top-down
VSBM techniques.

It would be of interest to see if other ways of partitioning
an image (besides that based on quadtrees) will be more desir-
able. One such method is to divide the rows and columns into
intervals independently and consider theblocks induced by
such a division. Another issue is whether “thinning” the optimal
algorithm leads to significant loss. That is, instead of consid-
ering for node for each , we may only look
at for . Note that such an algorithm
takes only time and, therefore, will be more effi-
cient than the optimal algorithm.

ACKNOWLEDGMENT

The authors thank the anonymous referees for their critical
reading of earlier versions of this paper and many helpful com-
ments.

REFERENCES

[1] H. Bi and W. Chan, “Rate-constrained hierarchical motion estima-
tionusing BFOS tree pruning,” inProc. ICASSP, 1996, pp. 2315–2317.

[2] M. Chan, Y. Yu, and A. Constantinides, “Variable size block matching
motion compensation with applications to video coding,”Proc. Inst.
Elect. Eng., pt. I, vol. 137, no. 4, pp. 205–212, Aug. 1990.

[3] P. Chou, T. Lookabaugh, and R. Gray, “Optimal pruning with applica-
tions to tree-structured source coding and modeling,”IEEE Trans. In-
form. Theory, vol. 35, pp. 299–315, Mar. 1989.

[4] Video Codec for Audiovisual Services atp kbit/s, 1990. ITU-T
(CCITT) Recommendation H.261, 1990.

[5] Video Coding for Low Bit Rate Communication. ITU-T Recommenda-
tion H.263, 1996.

[6] Information Technology—Coding of Moving Pictures and Associated
Audio for Digital Storage Media up to about 1.5 Mbit/s. ISO/IEC IS
11172, 1993.

[7] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 1990.

[8] J. R. Jain and A. K. Jain, “Displacement measurement and its application
in interframe image coding,”IEEE Trans. Commun., vol. COM-29, pp.
1799–1808, Dec. 1981.

[9] H. Jelveh and A. Nandi, “Improved variable size block matching motion
compensation for video conferencing applications,” inDigital Signal
Processing, A. Cappellini and A. Constantinides, Eds. Berlin, Ger-
many: Springer-Verlag, 1991, pp. 391–396.

[10] S. Kiang, R. Baker, G. Sullivan, and C. Chiu, “Recursive optimal
pruning with applications to tree structured vector quantizers,”IEEE
Trans. Image Processing, vol. 1, pp. 162–169, Apr. 1992.

[11] J. Kim and S. Lee, “Hierarchical variable block size motion estimation
technique for motion sequence coding,”Opt. Eng., vol. 33, no. 8, pp.
2553–2561, 1994.

[12] J. Lee, “Optimal quadtree for variable block size motion estimation,” in
Proc. IEEE Int. Conf. Image Processing (ICIP'95), Washington, DC, pp.
480–483.

50 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 1, FEBRUARY 2000

[13] G. Martin, R. Packwood, and I. Rhee, “Variable size block matching
motion estimation with minimal error,” inProc. IS&T/SPIE Symp. Elec-
tronic Imaging: Science and Technology, vol. 2668, San Jose, CA, Jan.
1996, pp. 324–333.

[14] D. Marr and S. Ullman, “Directional selectivity and its use in early visual
processing,”Proc. Royal Soc. London, vol. 211.B, pp. 151–180, 1981.

[15] A. Puri, H. Hang, and D. Schilling, “Interframe coding with variable
block size motion compensation,” inProc. GLOBECOM'87, pp. 65–69.

[16] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set
of quantizers,”IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
pp. 1445–1453, Sept. 1988.

[17] P. Strobach, “Quadtree-structured recursive plane decomposition coding
of images,”IEEE Trans. Signal Processing, vol. 39, pp. 1380–1397,
June 1991.

[18] G. Sullivan and R. Baker, “Efficient quadtree coding of images and
video,” IEEE Trans. Image Processing, vol. 3, pp. 327–331, 1994.

[19] D. Vaisey and A. Gersho, “Variable block-size image coding,”IEEE
Trans. Signal Processing, vol. 40, pp. 2040–2060, Aug. 1992.

[20] A. Zaccarin and B. Liu, “Fast algorithms for block motion estimation,”
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. III,
pp. 449–452, Mar. 1992.

[21] K. Zhang, M. Z. Bober, and J. V. Kittler, “Variable block size video
coding with motion prediction and motion segmentation,” inProc. SPIE
Conf. Digital Video Compression: Algorithms and Technologies, 1995,
pp. 62–70.

