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Abstract

Summary: MicroRNAs (miRNAs) function as master regulators of gene expression. Recent studies

demonstrate that miRNA isoforms (isomiRs) play a unique role in cancer development. Here, we

present QuagmiR, the first cloud-based tool to analyze isomiRs from next generation sequencing

data. Using a novel and flexible searching algorithm designed for the detection and annotation of

heterogeneous isomiRs, it permits extensive customization of the query process and reference

databases to meet the user ’s diverse research needs.

Availability and implementation: QuagmiR is written in Python and can be obtained freely from

GitHub (https://github.com/Gu-Lab-RBL-NCI/QuagmiR). QuagmiR can be run from the command

line on local machines, as well as on high-performance servers. A web-accessible version of the

tool has also been made available for use by academic researchers through the National Cancer

Institute-funded Seven Bridges Cancer Genomics Cloud (https://cancergenomicscloud.org).

Contact: shuo.gu@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs are a class of small non-coding RNAs (21–24 nucleoti-

des long) with important inhibitory functions (Bartel, 2018). Since

their initial discovery, thousands of miRNA genes have been identi-

fied in viral, plant, and animal genomes (Kozomara and Griffiths-

Jones, 2014). It has been estimated that miRNAs regulate the ex-

pression for more than 60% of human transcripts (Friedman et al.,

2009). Hence, it is not surprising that miRNA dysregulation con-

tributes to many diseases including cancer (Lin and Gregory, 2015;

Sayed and Abdellatif, 2011).

A single miRNA locus can generate multiple distinct isoforms

(isomiRs) that differ in length and sequence composition (Morin

et al., 2008; Neilsen et al., 2012). In the canonical miRNA biogen-

esis pathway, the ends of mature miRNAs are defined by the cleav-

age events of Drosha and Dicer (Ha and Kim, 2014). Imprecise

cleavage by Drosha or Dicer generates isomiR sequences that match

the parent gene but vary in length, a situation referred to as ‘tem-

plated’. IsomiRs also form via post-maturation editing of miRNA

sequences. Exoribonucleases take away nucleotides from the 30 end

(trimming), producing shorter templated isomiRs. Terminal nucleo-

tidyl transferases (TUTs) generate non-templated isomiRs by adding

one or more bases (tailing). These post-maturation sequence modifi-

cations happen at the 30 end rather than at the 50 end of miRNAs.

As a result, 30 isomiRs are the most frequently observed types of

isomiRs, both in terms of the number of miRNAs displaying these

variations and their overall abundance.

In terms of the effect of isomiR generation on the miRNA func-

tion, 50 isomiRs have a different seed sequence than the correspond-

ing canonical miRNAs and therefore regulate a distinct set of target

genes. Sequence modifications at the 30 end do not change the seed
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sequence but are reported to play critical roles in regulating

miRNA biogenesis and turnover (Fernandez-Valverde et al., 2010;

Rüegger andGroßhans, 2012). Interestingly, the alteration in the

isomiR profile rather than in the overall miRNA abundance corre-

lates with cancer progression, which suggests a unique role of

isomiRs in tumorigenesis (McCall et al., 2017; Telonis et al., 2015).

These observations highlight the importance of having computation-

al tools to analyze isomiR expression profiles from sequencing data

to further investigate their functions.

Many challenges in the isomiR detection are due to their heteroge-

neous origin. Various combinations of 50 and 30, templated and

non-templated, and trimmed and tailed isomiRs can exist at once, ren-

dering the development of a single algorithm capable of mapping and

efficiently processing all isomiRs nearly impossible (Ziemann et al.,

2016). Furthermore, users with specific biological questions may focus

on unique aspects of isomiR analysis. Current methods address these

challenges by simply leaving certain types of isomiRs unmapped or

requiring the user to perform additional post-run analyses, thereby

hampering their applications. Here, we aim to provide the field with a

highly customizable, cloud-based tool to comprehensively analyze

isomiRs in a high-throughput and in an automated manner.

2 Algorithm

To process large-scale data with improved efficiency and accuracy,

we developed QuagmiR, a novel algorithm for the isomiR analysis

(Fig. 1). Each miRNA sequence is divided into three regions: 50 part,

30 part and a central region. The central region is unique to each

miRNA and will be referred to as the ‘motif’. Many miRNA families

such as miR-148a and miR-148b only differ from each other by a

single nucleotide. Nonetheless, a set of 13mer motifs are able to dis-

tinguish close to 95% of miRNA sequences. With additional motifs

of longer length, we uniquely identified every miRNA reported in

miRBase (Kozomara and Griffiths-Jones, 2014) (Supplementary Fig.

S1A). Reads matching a certain motif were considered as potential

isomiRs for the corresponding miRNA.

The potential isomiR reads are further filtered according to the

nucleotides that precede and follow the motif (50 part and 30 part,

respectively). The pairwise sequence similarity between a read and

the reference miRNA is calculated using the Levenshtein distances—

the number of deletions, insertions, or substitutions required to

transform one string into the other. The penalty for any change may

be fine-tuned, although the default value is 1. The filtering parame-

ters for the 50 and 30 regions may be set independently to capture the

asymmetrical distribution of the sequence heterogeneity. By this ap-

proach, users can customize the mapping process to focus on par-

ticular types of isomiRs. For example, 30 isomiRs can be specifically

targeted by setting the 50 distance to 0 and leaving the 30 distance

open to any value (set to �1).

Finally, isomiRs passing these filters are characterized by com-

paring them again to the canonical miRNA sequence. At the 50 end,

the variation of the start position, which is termed as the ‘fidelity

index’, is calculated to infer the cleavage fidelity of Drosha (for 5p

miRNAs) or Dicer (for 3p miRNAs) (Gu et al., 2012). At the 30 end,

based on the position(s) of non-alignment between the isomiR and

the miRNA reference, the lengths of trimming (truncation) and tail-

ing are determined.

Three files are outputted with every run of QuagmiR. The sum-

mary file describes for each miRNA: the raw counts, number of

isomiRs, fidelity index of the 50 end (Supplementary Fig. S1B), per-

centages of trimming and tailing (Supplementary Fig. S1C), and

composition percentages on the non-templated tails. The isomiR se-

quence file contains all of the matched isomiR sequences with

detailed information as listed above for each corresponding miRNA.

The nucleotide composition file describes the coverage and nucleo-

tide composition of all the isomiRs captured under each motif

(Supplementary Fig. S1D). These reports can be obtained either for

individual samples or cohorts of samples analyzed in batch and

tabulated in an ‘R-friendly’ format. They are of special value for

subsequent analysis aimed at elucidating the molecular mechanism

behind isomiR biogenesis and regulation. In addition, a GFF3 file is

generated for each run, allowing the user to compare the results gen-

erated by QuagmiR to those of previously established aligners docu-

mented in the miRTOP community (Pantano, 2016). Links to the

further documentation regarding the QuagmiR installation and run

parameters as well as other resources can be found in

Supplementary Table S1.

3 Results design of QuagmiR on the cancer
Genomics Cloud

QuagmiR can run both on local machines and high-performance

computing platforms such as NIH-Biowulf. In addition, we have

deployed QuagmiR on the Seven Bridges Cancer Genomics Cloud

(CGC) (Lau et al., 2017) to promote broad availability.

Development of the CGC was funded in part by the National

Cancer Institute with the goal of enhancing the accessibility of can-

cer genomics data and facilitating reproducible and collaborative

analysis in the cloud. Deployment on the CGC allows researchers to

run QuagmiR via an intuitive graphical interface that permits simple

changes to parameters and creation of integrated workflows with

other analytical tools (Supplementary Fig. S2).

QuagmiR can be used to analyze both private datasets and the

public datasets that are available to authorized researchers through

the CGC, such as the >11 000 miRNA-seq samples from adult and

pediatric cancers that are included in The Cancer Genome Atlas

(TCGA) and Therapeutically Applicable Research to Generate

Effective Treatments (TARGET) datasets. This enables researchers

to perform big data analysis without downloading or storing

Fig. 1. Flow diagram of the QuagmiR algorithm and outputs. Step 1. Collapse

the FASTQ file and then pull reads that match the motif. Step 2. Filter reads

based on the weighted Levenshtein distance on the substrings at the 50 and 30

ends of the read compared to the reference miRNA. Based on the maximum

distance defined, reads are filtered out or in for further analysis. Step 3. Each

read is annotated relative to the reference miRNA, and three separate reports

are generated
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sensitive data locally. Deployment of QuagmiR on the CGC also

provides researchers with access to scalable and flexible computing

resources on demand.

To analyze private datasets on the CGC using QuagmiR,

researchers can upload sequencing files in the FASTQ format to the

CGC and use them as inputs. The motifs and canonical sequences

for all human miRNAs reported in miRBase v22 have been compiled

and are provided as a default reference. Motif files corresponding to

other organisms are also available, making it possible to perform

QuagmiR analysis for miRNAs from all annotated genomes in

miRBase v22 (250 in total). Alternatively, users can generate cus-

tomized motif files via a script provided with QuagmiR.

4 Discussion

QuagmiR, similar to other methods (Patel et al., 2016; Ziemann et al.,

2016), provides a robust computational pipeline for accurate mapping

and expression analysis of miRNAs (Supplementary Fig. S3).

However, QuagmiR excels at characterization and extensive analyses

of 50 and 30 isomiRs. With its default settings, QuagmiR can detect

more types of isomiRs than several other currently available tools

(Supplementary Fig. S4). The additional strength of QuagmiR comes

from its unique mapping algorithm, which provides users with the abil-

ity to customize the detection process. Furthermore, a novel aspect of

QuagmiR is its unique treatment of isomiR sequence variations in the

middle, 50 part, and 30 part, allowing it to efficiently distinguish bona

fide isomiRs from false-positive reads. A potential caveat is that

QuagmiR cannot detect isomiRs bearing sequence variations within

the motif. To mitigate this issue, multiple miRNA motifs can be

designed or the motifs can further be ‘relaxed’ by the inclusion of am-

biguous nucleotides.

There are many potential applications of QuagmiR for small RNA

analysis. For example, recent studies analyzing small RNA data with

the miRDeep2 algorithm (Friedländer et al., 2008, 2012) have identified

with high confidence hundreds or even thousands of low expression

miRNAs (Londin et al., 2015). However, the vast majority of these

miRNAs remain unannotated in reference genomes and databases.

QuagmiR provides an excellent opportunity for researchers to work on

characterizing isomiRs of these unannotated miRNAs. QuagmiR is also

of interest for researchers working directly with small RNA-seq data

from organisms where the reference genome is not available.

In addition, isomiR analysis of large-scale public datasets such as

those available through the CGC could pave the way for a better

understanding of the role of isomiRs in tumorigenesis. Lastly, from

a methodological standpoint, QuagmiR customized motifs can pro-

vide a useful tool to analyze the processing of other small RNAs.

For example, QuagmiR can be used to study shRNA maturation

and help prevent misprocessings that diminish efficacy and increase

off-target effects (Bofill-De Ros and Gu, 2016).
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