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QUALITATIVE ANALYSIS AND OPTIMAL CONTROL OF AN SIR

MODEL WITH LOGISTIC GROWTH, NON-MONOTONIC

INCIDENCE AND SATURATED TREATMENT

Jayanta Kumar Ghosh1, Prahlad Majumdar2 and Uttam Ghosh2,*

Abstract. This paper describes an SIR model with logistic growth rate of susceptible population,
non-monotonic incidence rate and saturated treatment rate. The existence and stability analysis of
equilibria have been investigated. It has been shown that the disease free equilibrium point (DFE) is
globally asymptotically stable if the basic reproduction number is less than unity and the transmission
rate of infection less than some threshold. The system exhibits the transcritical bifurcation at DFE with
respect to the cure rate. We have also found the condition for occurring the backward bifurcation, which
implies the value of basic reproduction number less than unity is not enough to eradicate the disease.
Stability or instability of different endemic equilibria has been shown analytically. The system also
experiences the saddle-node and Hopf bifurcation. The existence of Bogdanov-Takens bifurcation (BT)
of co-dimension 2 has been investigated which has also been shown through numerical simulations.
Here we have used two control functions, one is vaccination control and other is treatment control.
We have solved the optimal control problem both analytically and numerically. Finally, the efficiency
analysis has been used to determine the best control strategy among vaccination and treatment.
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1. Introduction

Mathematical modelling has been increasingly recognized as an important tool for understanding the trans-
mission processes of different infectious diseases. A good mathematical model is able to evaluate the effective
control strategies for the infectious diseases. It suggests effective control and preventive measures, and provides
an estimate for the severity of the epidemic [1, 4, 15].

To formulate a compartmental model in mathematical epidemiology the researchers consider the constant
growth rate, exponential growth rate, logistic growth rate of the population. The logistic growth rate is used for
a relatively long-lasting disease or a disease with high death rate [11]. It is also considered due to limited space
capacities or sources [24]. Again, the incidence rate plays a very important role in epidemiological modelling
studies [6, 12, 13, 16, 20, 28]. Authors use the bilinear incidence rate βSI (where the parameter β is transmission
rate of infection and the variables S, I are, respectively, the number of susceptible and infected population)
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where the force of infection f(I) = βI is an increasing function of I and f(I) −→ ∞ as I −→ ∞. This is not
realistic for many infectious diseases in large population because it does not include crowding effect of infected
population and awareness factors of susceptible population [7, 26, 27]. Capasso and Serio in [2] proposed a
saturated incidence rate βSI

1+αI
, where α is defined as inhibitory or awareness factors. Here the force of infection

f(I) = βI
1+αI

is an increasing function of I and f(0) = 0. Also, f(I) −→ β
α

as I −→ ∞. Again, the force of
infection decreases as the parameter α increases. Here the effect of α stems from epidemic control (taking
awareness or protection measures) [6]. Xiao and Ruan [25] proposed a non-monotonic incidence rate with
psychological effect of the form βSI

1+αI2 , which includes the effects of psychological factors, protection measures

and intervention policies when a serious disease emerges. Here the infection force f(I) = βI
1+αI2 increases when

0 ≤ I ≤ 1√
α
and it decreases as I > 1√

α
. Also, f(0) = 0 and f(I) −→ 0 as I −→ ∞. Thus the infection force f(I)

increases when I is small while it decreases when I is large and the maximum value of f(I) is f( 1√
α
) = β

2
√
α
.

This non-monotonic incidence rate is very effective for a new disease in some countries or regions, where initially
the contact rate and the infection probability increase as people have poor knowledge about the disease but
when I becomes large, the disease becomes more serious [13, 28]. Then people are aware about the disease, so
they take appropriate preventive measures and awareness and so infection force will then decrease.

To recovery from infection, treatment of infected population is the most important method. In classical
epidemic models, the authors use the treatment function as T (I) = rI, I ≥ 0 (where r is a positive constant). If
the number of infected population is very large then it is not always possible to provide such type of treatment
which is proportional to the number of infected population. To avoid this Wang and Ruan [23] introduced a
constant treatment function of the form

T (I) =

{

r, I > 0

0, I = 0

(where r is a positive constant). Later, Wang [22] considered the piecewise linear treatment function of the form

T (I) =

{

kI, 0 ≤ I ≤ I0

kI0, I > I0,

which is non-constant and bounded above by the upper bound kI0. Recently, Zhang and Liu [27] introduced
a continuously differentiable treatment function of the form T (I) = aI

1+bI
(where a, b are positive constants),

which is clearly an increasing function of I and is bounded above by the least upper bound a
b
. This saturated

treatment function is a better alternative for outbreak disease such as SARS, Dengue, etc in a new region
or area [29], because at the beginning of the outbreak there is small of effective treatment due to negligence
or lack of knowledge about the disease or lack of awareness. But then the treatment rate is increased with
the improving of hospital’s treatment conditions including skilful treatment techniques and effective medicines
[6, 20]. Finally, the treatment rate is reached to its maximum due to boundedness of medical resources of any
country or community. Here the parameter b measures the extent of the effect of the infected being delayed for
treatment [27].

On the other hand, optimal control theory is applied to the epidemiological models to determine the control
strategies [6, 10, 19, 20]. Since economical resources of any country or community are limited, hence the main
objective for applying optimal control in epidemiological models is to minimize total loss occurs due to the
presence of infection as well as the total cost due to implementing of the control(s). Generally, researchers
use treatment or vaccination or both controls in SIR,SIRS,SEIR models [6, 20]. Optimal control theory helps
to address the question of how to optimally combine the control strategies for minimizing the infection in a
community with limited resources.

In this article, we have considered an SIR model with logistic growth rate of susceptible population, a non-
monotonic incidence rate of the form βSI

1+αI2 and a saturated treatment function of the form T (I) = au2I
1+bu2I

. We
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Table 1. Model parameters and their descriptions.

Parameters Interpretations

r Intrinsic growth rate of the susceptible class.

k Carrying capacity of the system.

β Transmission rate of infection.

α The parameter that measures the inhibitory factors.

d The natural mortality rate of the populations.

δ Disease induced death rate.

γ The natural recovery rate of the infected individuals.

a Cure rate

b Delayed parameter of treatment

u1 The control variable, be the percentage of susceptible individuals being vaccinated per unit of time

u2 The treatment control parameter

have also considered two controls, one is vaccination control u1 and other is treatment control u2. These two
controls have been used to address the question of how to optimally combine the vaccination and treatment
strategies to minimize the susceptible and infected population as well as the cost of implementation of these
two interventions. In our work, we have studied the stability and bifurcation analysis of co-dimension one
and two in the neighbourhood of equilibrium points. It is important to note that we shall deal with not only
qualitative analysis of the model but also the optimal control of the disease. Efficiency analysis shall be performed
to determine the best control strategy. It should be mentioned that the stability or instability of endemic
equilibrium points shall be analysed by applying different technique described in [14].

Let, S(t), I(t) and R(t) be, respectively, the abundance of susceptible, infected and recovered population at
time t. Incorporating all the assumptions, our proposed SIR model can be formulated as











dS
dt = rS(1− S

k
)− βSI

1+αI2 − u1S
dI
dt = βSI

1+αI2 − (d+ δ + γ)I − au2I
1+bu2I

dR
dt = au2I

1+bu2I
+ γI + u1S − dR,

(1.1)

with initial conditions S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0. Here, the intrinsic growth rate r should be greater than
u1, otherwise there is no biological sense. All the model parameters used in the system (1.1) are non-negative
and interpreted in Table 1.

The organization of this paper is as follows. Boundedness of solutions is given in Section 2. Section 3 is devoted
to the equilibria, the basic reproduction number, stability and bifurcation analysis for the model. The optimal
control problem and the efficiency analysis are discussed in Section 4. Final section gives the conclusions.

2. Boundedness of solutions

Before the investigation of boundedness of solutions of the system (1.1) first we study the positivity of the
solutions of the considered system. The positivity is important for feasibility of the solutions and boundedness
implies the finiteness of the the solutions.

From the first equation of (1.1), we have

dS

dt
≥ −S

(

βI

1 + αI2
+ u1 +

rS

k

)

.
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Integrating the above inequality and using initial conditions, we obtain

S(t) ≥ S(0)e
−

∫
t

0
( βI

1+αI2
+u1+

rS
k

)dt ≥ 0.

Similarly, from other equations of (1) we can obtain the following

I(t) ≥ I(0)e−(d+δ+γ+au2)t ≥ 0,

R(t) ≥ R(0)e−dt ≥ 0.

It is clear from the above expressions that all the solutions of the system (1.1) are feasible.
Now, we analyse the boundedness of solutions of the system (1.1). To show the boundedness of solutions of

the system (1.1), first we add all three equations of the system (1.1) and we have

d(S + I +R)

dt
= rS(1− S

k
)− δI − d(I +R),

which implies that for any real number λ

d(N)

dt
+ λN = (r + λ)S − rS2

k
− (d+ δ − λ)I − (d− λ)R,

where N = S + I +R.
Now, we choose a positive number λ in such a manner that d+ δ − λ > 0 and d− λ > 0. Then we have

dN

dt
+ λN ≤ −

{

rS2

k
− (r + λ)S

}

= −
(√

rS√
k

− (r + λ)
√
k

2
√
r

)2

+
(r + λ)2k

4r
≤ (r + λ)2k

4r
= M,

where M = (r+λ)2k
4r is a positive number. Integrating and taking limsup as t → ∞, we get lim sup

t→∞
N(t) ≤ M

λ
.

Thus, we can summarize the details in the following:

Lemma 2.1. The set W = {(S, I, R)/0 ≤ S + I +R ≤ M
λ
} is a positively invariant set for the model (1.1).

{

dS
dt = rS(1− S

k
)− βSI

1+αI2 − u1S ≡ F (S, I)
dI
dt = βSI

1+αI2 − (d+ δ + γ)I − au2I
1+bu2I

≡ G(S, I)
(2.1)

Since R does not involve in first two equations of (1.1), hence the system (1.1) is equivalent to investigate the
system (2.1). Since the exact solution of the non-linear autonomous system (2.1) is impossible to find, hence we
shall analyse the qualitative behaviour of the solutions in the neighbourhood of the equilibrium points of the
system (2.1).

3. Equilibria, basic reproduction number, stability and

bifurcation analysis

In this section, we shall investigate the existence of equilibria and basic reproduction number of the model
(2.1). The stability analysis of equilibrium points will be discussed here. Different bifurcation analysis, namely



QUALITATIVE ANALYSIS AND OPTIMAL CONTROL OF AN SIR MODEL 5

transcritical bifurcation, backward bifurcation, saddle-node bifurcation, Hopf bifurcation and Bogdanov-Takens
bifurcation will be analysed. Throughout this section we assume that two controls u1 and u2 are fixed constants.

3.1. Equilibria and basic reproduction number

The system (2.1) has always the trivial equilibrium point A0(0, 0). Since r > u1, hence the disease free

equilibrium point (DFE) A1(S1, 0), where S1 = k(r−u1)
r

always exists. Since the system (2.1) has a DFE, hence
the system has a threshold parameter R0, known as the basic reproduction number.

Lemma 3.1. The basic reproduction number R0 of the system (2.1) is βk(r−u1)
r(d+δ+γ+au2)

.

Proof. The system (2.1) has only one infected compartment, that is, the variable I and A1(S1, 0) is the disease
free equilibrium point. The basic reproduction number R0 is defined as the spectral radius of the next generation
matrix FV −1 with large domain [5, 21], where

F =

[(

βS(1− αI2)

(1 + αI2)2

)

1×1

]

atA1

=

(

βk(r − u1)

r

)

1×1

and

V =

[(

d+ δ + γ +
au2

(1 + bu2I)2

)

1×1

]

atA1

=

(

d+ δ + γ + au2

)

1×1

.

Thus, the basic reproduction number R0 of the model (2.1) is

βk(r − u1)

r(d+ δ + γ + au2)
.

Hence the lemma is proved.

The endemic equilibrium point(s) A2(S
∗, I∗) exists if and only if I∗ is the positive solution of the equation

C0I
5 + C1I

4 + C2I
3 + C3I

2 + C4I + C5 = 0, (3.1)

and

S∗ =
k{(r − u1)αI

∗2 − βI∗ + (r − u1)}
r(1 + αI∗2)

> 0,

where

C0 = r(d+ δ + γ)α2bu2,

C1 = r(d+ δ + γ)α2 + au2rα
2,

C2 = bu2αr(d+ δ + γ + au2)(1−R0) + bu2α{r(d+ δ + γ)− u2a},
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C3 = αr(d+ δ + γ + au2) + αr(d+ δ + γ + au2)(1−R0) +
bu2r

2(d+ δ + γ + au2)
2R2

0

k(r − u1)2
,

C4 = bu2r(d+ δ + γ + au2)(1−R0)− rabu2
2 +

r2(d+ δ + γ + au2)
2R2

0

k(r − u1)2
,

C5 = r(d+ δ + γ + au2)(1−R0).

Since

(r − u1)αI
∗2 − βI∗ + (r − u1) =

(

√

(r − u1)αI
∗ − β

2
√

(r − u1)α

)2

+ (r − u1)−
β2

4(r − u1)α
,

hence S∗ is positive if 4α(r − u1)
2 > β2. So, using Descartes’ rule of signs along with this result we have the

followings:

(i) For R0 < 1, the number of endemic equilibrium point is 0 or 2 if the conditions bu2r(d+ δ + γ) + β2k <
βkbu2(r − u1), r(d+ δ + γ) > u2a and 4α(r − u1)

2 > β2 hold (see Fig. 1).
(ii) For R0 > 1, the number of endemic equilibrium point is 1 or 3 if the condition 4α(r − u1)

2 > β2 holds
(see Fig. 1).

(iii) ForR0 = 1, the number of endemic equilibrium point is exactly one if the conditions bu2r(d+δ+γ)+β2k <
βkbu2(r − u1), r(d+ δ + γ) > u2a and 4α(r − u1)

2 > β2 hold (see Fig. 1).

3.2. Stability analysis of trivial and disease free equilibrium point

To investigate the stability analysis of equilibria, we use variational matrix of the system (2.1), which is

J(S, I) =

(

r − 2rS
k

− βI
1+αI2 − u1 −βS(1−αI2)

(1+αI2)2

βI
1+αI2

βS(1−αI2)
(1+αI2)2 − (d+ δ + γ)− au2

(1+bu2I)2

)

. (3.2)

Theorem 3.2. The trivial equilibrium point A0 is a saddle point.

Proof. The eigenvalues of the variational matrix J at the equilibrium pointA0 are (r−u1) and−(d+δ+γ+au2).
Since r > u1, hence the trivial equilibrium point A0 is a saddle point. Hence the theorem is proved.

Theorem 3.3. If R0 < 1 then DFE A1 is asymptotically stable and if R0 > 1 then it is unstable.

Proof. The eigenvalues of the variational matrix J at the equilibrium point A1 are −(r − u1) and (d+ δ + γ +
au2)(R0 − 1). So, DFE A1 is asymptotically stable if R0 < 1 and is saddle point if R0 > 1. Hence the theorem
is proved.

Theorem 3.4. For R0 = 1, the DFE A1 is asymptotically stable.

Proof. For R0 = 1, the eigen values of the variational matrix (3.2) at the equilibrium point A1(S1, 0) are
0,−(r − u1). So, A1 is a non-hyperbolic equilibrium point and Centre Manifold Theory [17] will be applied to
determine its stability.
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Figure 1. Size of infected component at equilibria versus R0 for the parametric values
(a) β = 2.7, b = 6, (b) β = 2.9, b = 50, (c) local amplification of lower portion of Figure (b), other
parametric values are k = 20.89, α = 1.10, d = 0.2, δ = 0.15, γ = 0.12, a = 40, u1 = 0.4, u2 =
0.91.

Putting S′ = S − S1, I
′ = I in the system (2.1) and using Taylor’s expansion we get (omitting the ‘dash’

sign)

dX

dt
= BX + F (S, I), (3.3)

where

B =

(

−(r − u1) −βk(r−u1)
r

0 0

)

, X =

(

S
I

)

, F (S, I) =

(

− rS2

k
− βSI

βSI + abu2
2I

2

)

.
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(Neglecting the terms of order ≥ 3)

Now, we construct a matrix P =

(

−βk
r

1
1 0

)

so that P−1BP = diag

(

0,−(r − u1)

)

. By using the transfor-

mation X = PY , where Y =

(

S′

I ′

)

, the system (3.3) can be transformed into the form (omitting the ‘dash’

sign)

{

dS
dt = 0 + g11(S, I)
dI
dt = −(r − u1)I + g22(S, I)

(3.4)

where g11(S, I) = βSI + abu2
2I

2, g22(S, I) = − rS2

k
+
(

β2k
r

− β
)

SI +
βkabu2

2

r
I2.

By the Centre Manifold Theory, there exists a centre manifold of the system (3.4) which can be expressed by

W c(0) =
{

(S, I)/I = h(S)forS < δ
}

,

where δ(> 0) is some number and h(0) = 0, Dh(0) = 0. To compute the centre manifold W c(0), we assume that
I = h(S) = h1S

2 + h2S
3 + . . . . So from the Local Centre Manifold Theorem we have the flow on the centre

manifold W c(0) defined by the differential equation

dS

dt
= βh1S

3 + . . . . (3.5)

Since βh1 = − βr
k(r−u1)

< 0, hence A1 is asymptotically stable.

Hence the theorem is proved.

Theorem 3.5. If R0 < 1 and β < rbu2

k(bu2+
α

bu2
) then DFE A1 is globally asymptotically stable.

Proof. Here we consider the Dulac function B(S, I) = 1+bu2I
SI

and we get

∂(BF )

∂S
+

∂(BG)

∂I
= −r(1 + bu2I)

kI
− bu2(d+ δ + γ)

S
− β(αbu2I

2 + 2αI − bu2)

(1 + αI2)2
. (3.6)

Again, αbu2I
2 + 2αI − bu2 = αbu2(I +

1
bu2

)2 − (bu2 +
α
bu2

). Thus, from (3.6) we have

∂(BF )

∂S
+

∂(BG)

∂I
≤ − r

kI
− bu2(d+ δ + γ)

S
− αβbu2

(1 + αI2)2

(

I +
1

bu2

)2

−
{

rbu2

k
− β

(

bu2 +
α

bu2

)}

< 0,

if rbu2

k
> β(bu2 +

α
bu2

) i.e. if β < rbu2

k(bu2+
α

bu2
) .

Hence the theorem is proved.

This result is biologically very significant, because DFE is globally asymptotically stable i.e. the disease will
be eliminated if the transmission rate of infection does not exceed a threshold.

3.3. Transcritical bifurcation

Theorem 3.6. If βkr > βku1 + (d + δ + γ)r, then the system (2.1) experiences a transcritical bifurcation at

DFE A1 as the cure rate a varies through the bifurcation value a0 = βkr−{βku1+(d+δ+γ)r}
ru2

.
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Proof. Let

f(S, I; a) =

(

rS(1− S
k
)− βSI

1+αI2 − u1S
βSI

1+αI2 − (d+ δ + γ)I − au2I
1+bu2I

)

, a0 =
βkr − {βku1 + (d+ δ + γ)r}

ru2
.

So,

Df(A1, a
0) =

(

−(r − u1) −βk(r−u1)
r

0 0

)

.

Clearly, f(A1, a
0) = 0 and Df(A1, a

0) has a simple eigenvalue λ = 0. Thus, we shall use Sotomayor theorem
[17] to establish the existence of transcritical bifurcation. Now, a eigenvector of Df(A1, a

0) corresponding to the

eigenvalue λ = 0 is V =

(

−βk
r

1

)

and a eigenvector of
(

Df(A1, a
0
)

)T corresponding to the eigenvalue λ = 0

is W =

(

0
1

)

. Let fa denote the vector of partial derivatives of the components of f with respect to a. Thus

fa =

(

0
− u2I

1+bu2I

)

and so fa(A1, a
0) =

(

0
0

)

.

Therefore,

WT fa(A1, a
0) = 0,

WT
(

Dfa(A1, a
0)V

)

=
(

−u2

)

6= 0

and

WT
(

D2f(A1, a
0)(V, V )

)

=
(

− 2β2k
r

+ 2a0bu2
2

)

6= 0.

Therefore, all the conditions for transcritical bifurcation in Sotomayor theorem are satisfied. Hence, the system
(2.1) experiences a transcritical bifurcation at the equilibrium point A1 as the parameter a varies through the
bifurcation value a = a0. Hence the theorem is proved.

Thus, the unstable DFE becomes stable as the cure rate crosses the bifurcation value. So, cure rate plays a
crucial role in the changing of dynamics of infectious disease.

3.4. Backward bifurcation and stability analysis of endemic equilibria

In this section, we shall establish the existence of backward bifurcation and the conditions for stability of
endemic equilibria of the system (2.1).

Theorem 3.7. The system (2.1) experiences a backward bifurcation at R0 = 1 if and only if bru2(d+ δ + γ) +
β2k < βkbu2(r − u1).

Proof. We have already established that the infected component I of any endemic equilibrium point (S, I) of
the system (2.1) satisfies the equation (3.1). Differentiating equation (3.1) implicitly with respect to R0 we get

[

∂I

∂R0

]

R0=1,I=0

=
r(d+ δ + γ + au2)

bu2r(d+ δ + γ) + β2k − βkbu2(r − u1)
.
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The system (2.1) has a backward bifurcation at R0 = 1 if and only if the slope of the curve I = I(R0) at the
point (1, 0) in R0 − I plane must be negative. Thus, we obtain a necessary and sufficient condition that the
backward bifurcation occurs in the form bru2(d+ δ + γ) + β2k < βkbu2(r − u1).

Hence the theorem is proved.

Here it is important to note that if b = 0 there can not be a backward bifurcation i.e. the phenomenon of
the backward bifurcation occurs due to the saturated treatment function. In case of backward bifurcation, there
exists a positive number R∗

0 < 1 such that a stable endemic equilibrium point arises with the stable DFE for
R∗

0 < R0 < 1 i.e. the bi-stability arises for R∗
0 < R0 < 1, which has been shown by the backward bifurcation

diagram (see Fig. 1). In Figure 1, red and blue lines denote the lines of unstable and stable equilibrium points,
respectively. Now, the stability or instability of endemic equilibria shall be analytically established by the
following theorem.

Theorem 3.8. For R0 > 1, there is(are) one or three endemic equilibrium point(s) of the system (2.1) if
4α(r − u1)

2 > β2. If there is unique endemic equilibrium point, (S∗
1 , I

∗
1 ), that point is asymptotically stable if

the condition (r− u1) ≥ max{au2 +
β

bu2
, βbu2

α
} holds. If there are three endemic equilibrium points, one with the

smallest number of infecteds, (S∗
1 , I

∗
1 ) and other with highest number of infecteds, (S∗

3 , I
∗
3 ), are asymptotically

stable if the condition (r − u1) ≥ max{au2 +
β

bu2
, βbu2

α
} holds. Other endemic equilibrium point (S∗

2 , I
∗
2 ), with

I∗1 < I∗2 < I∗3 , is an unstable equilibrium point.
On the other hand for R∗

0 < R0 < 1, there are exactly two endemic equilibria of the system (2.1) if bru2(d+
δ + γ) + β2k < βkbu2(r − u1), r(d + δ + γ) > u2a and 4α(r − u1)

2 > β2. The one with the smaller number
of infecteds, (S∗∗

1 , I∗∗1 ), is unstable, while the other , with a higher number of infecteds, (S∗∗
2 , I∗∗2 ), is locally

asymptotically stable if the condition (r − u1) ≥ max{au2 +
β

bu2
, βbu2

α
} holds.

Proof. The characteristic equation of the variational matrix J at any endemic equilibrium point (S, I) of the
system (2.1) is given by

G(λ) ≡
∣

∣

∣

∣

∣

r − 2rS
k

− βI
1+αI2 − u1 − λ −βS(1−αI2)

(1+αI2)2

βI
1+αI2

βS(1−αI2)
(1+αI2)2 − (d+ δ + γ)− au2

(1+bu2I)2
− λ

∣

∣

∣

∣

∣

= 0.

So,

G(0) =

∣

∣

∣

∣

∣

r − 2rS
k

− βI
1+αI2 − u1 −βS(1−αI2)

(1+αI2)2

βI
1+αI2

βS(1−αI2)
(1+αI2)2 − (d+ δ + γ)− au2

(1+bu2I)2

∣

∣

∣

∣

∣

.

Again, the component I of any endemic equilibrium point (S, I) satisfies the equation

H(I) ≡ k{(r − u1)αI
2 − βI + (r − u1)}

r(1 + αI2)2
− au2

β(1 + bu2I)
− d+ δ + γ

β
= 0.

So

H(0) =
d+ δ + γ + au2

β
(R0 − 1).

Thus, R0 > 1 if and only if H(0) > 0 and R0 < 1 if and only if H(0) < 0.

Again, H ′(I) ≡ abu2
2

β(1+bu2I)2
+ k{−2α2(r−u1)I

3+3αβI2−2α(r−u1)I−β}
r(1+αI2)3 . Now, a relation between G(0) and H ′(I)

will be obtained.
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Now,

G(0) =

∣

∣

∣

∣

∣

r − 2rS
k

− βI
1+αI2 − u1 −βS(1−αI2)

(1+αI2)2

βI
1+αI2

abu2
2I

(1+bu2I)2
− 2αβSI2

(1+αI2)2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r − 2rS
k

− βI
1+αI2 − u1 −βS(1−αI2)

(1+αI2)2

r − 2rS
k

− u1
abu2

2I

(1+bu2I)2
− βS

(1+αI2)

∣

∣

∣

∣

∣

= (−S)

∣

∣

∣

∣

∣

r
k

β(1−αI2)
(1+αI2)2

2βI
(1+αI2) − (r − u1)

abu2
2I

(1+bu2I)2
− βk(r−u1)

r(1+αI2) +
β2kI

r(1+αI2)2

∣

∣

∣

∣

∣

= − rβSI
k

H ′(I).

So we have
G(0) > 0 if and only if H ′(I) < 0,
G(0) = 0 if and only if H ′(I) = 0,
G(0) < 0 if and only if H ′(I) > 0.

Case I: We assume that R0 > 1. Then number of endemic equilibrium point of the system (2.1) is 1 or 3 if
4α(r − u1)

2 > β2.
Subcase I: There is only one endemic equilibrium point (S∗

1 , I
∗
1 ). Since R0 > 1, hence H(0) > 0. Thus, H ′(I∗1 ) <

0 and so G(0) > 0. Again, we know that the equilibrium point (S∗
1 , I

∗
1 ) will be stable if trace(J) < 0 and

det(J) > 0. Here det(J) = G(0) > 0 and trace(J) = r− 2rS
k

− βI
1+αI2 −u1+

βS(1−αI2)
(1+αI2)2 − (d+ δ+γ)− au2

(1+bu2I)2
=

− rS
k

− 2αβI2S
(1+αI2)2 +

au2
2bI

(1+bu2I)2
≤ − 2αβI2S

(1+αI2)2 +
{abu2

2α−(r−u1)αbu2}I3+{βbu2−(r−u1)α}I2+{abu2
2+β−(r−u1)bu2}I−(r−u1)

(1+bu2I)(1+αI2) <

0 if (r−u1) ≥ max{au2+
β

bu2
, βbu2

α
}. Therefore, the unique endemic equilibrium point (S∗

1 , I
∗
1 ) is asymptotically

stable if (r − u1) ≥ max{au2 +
β

bu2
, βbu2

α
}.

Subcase II: There are three endemic equilibrium points (S∗
1 , I

∗
1 ), (S

∗
2 , I

∗
2 ), (S

∗
3 , I

∗
3 ), where I∗1 < I∗2 < I∗3 . Since

R0 > 1, hence H(0) > 0. Thus, H ′(I∗1 ) < 0, H ′(I∗2 ) > 0 and H ′(I∗3 ) < 0. So, G(0) > 0 for (S∗
1 , I

∗
1 ), (S

∗
3 , I

∗
3 ) and

G(0) < 0 for (S∗
2 , I

∗
2 ). Thus, we proceed same as subcase I and derive that the endemic equilibrium points

(S∗
1 , I

∗
1 ) and (S∗

3 , I
∗
3 ) are asymptotically stable if the condition (r − u1) ≥ max{au2 +

β
bu2

, βbu2

α
} holds.

Now for the equilibrium point (S∗
2 , I

∗
2 ), we have G(0) < 0. Again, lim

λ→∞
G(λ) = ∞. Since G(λ) is a continuous

function of λ, hence by Bolzano theorem on continuous function we have G(λi) = 0 for some λi > 0. So one
eigenvalue of the variational matrix is positive. Hence (S∗

2 , I
∗
2 ) is unstable.

Case II:We assume that R∗
0 < R0 < 1. Then, from Section 3.1 with the backward bifurcation theorem (Theorem

6) we have concluded that the system (2.1) has exactly 2 endemic equilibrium points (S∗∗
1 , I∗∗1 ) and (S∗∗

2 , I∗∗2 ) if
bru2(d+ δ+ γ)+β2k < βkbu2(r−u1), r(d+ δ+ γ) > u2a and 4α(r−u1)

2 > β2. Since R0 < 1, hence H(0) < 0.
Thus, we have H ′(I∗∗1 ) > 0 and H ′(I∗∗2 ) < 0. So, G(0) < 0 for (S∗∗

1 , I∗∗1 ) and G(0) > 0 for (S∗∗
2 , I∗∗2 ). Now,

we proceed same as case I and derive that (S∗∗
1 , I∗∗1 ) is an unstable equilibrium point and (S∗∗

2 , I∗∗2 ) is locally
asymptotically stable if the condition (r − u1) ≥ max{au2 +

β
bu2

, βbu2

α
} holds.

Hence the theorem is proved.

The numerical verification of the above theorem has been presented in Figure 1.

3.5. Saddle-node and Hopf bifurcation

The number and nature of the equilibrium points of the system (2.1) depend on the model parameters. In next
two theorems we shall show that the system (2.1) experiences the saddle-node as well as the Hopf bifurcation
with respect to some model parameter.

Theorem 3.9. The system (2.1) experiences a saddle-node bifurcation at coincident endemic equilibrium point
A2(S

∗, I∗) with respect to the parameter α.

Proof. First we choose the critical value α[SN ] of the parameter α for which two roots of the equation (3.1) coin-
cide with det[J(S, I)]α=α[SN] = 0 and trace[J(S, I)]α=α[SN] 6= 0 at some coincident equilibrium point (S∗, I∗).
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So, for the equilibrium point (S∗, I∗) and for the parametric value α = α[SN ] one of the eigenvalues of the
variational matrix is λ = 0.
Let

f(S, I;α) =

(

rS(1− S
k
)− βSI

1+αI2 − u1S
βSI

1+αI2 − (d+ δ + γ)I − au2I
1+bu2I

)

, α0 = α[SN ].

Clearly, f(A2, α0) = 0 and Df(A2, α0) has a simple eigenvalue λ = 0. So, we can use Sotomayor theorem to
check the nature of solutions near the equilibrium point A2. Now, a eigenvector of Df(A2, α0) corresponding to

the eigenvalue λ = 0 is V =

(

v1
v2

)

and a eigenvector of
(

Df(A2, α0

)

)T corresponding to the eigenvalue λ = 0

is W =

(

w1

w2

)

, where v1 = β(1−α[SN]I∗
2
)

(1+α[SN]I∗
2 )2

, v2 = − r
k
, w1 = βI∗ and w2 = {(r − u1)α

[SN ]I∗
2 − βI∗ + (r − u1)}.

Let fα denote the vector of partial derivatives of the components of f with respect to α. Thus fα =
(

βSI3

(1+αI2)2

− βSI3

(1+αI2)2

)

and so fα(A2, α0) =
βI∗

3
k

r(1+α[SN]I∗
2 )3

{(r − u1)α
[SN ]I∗

2 − βI∗ + (r − u1)}
(

1
−1

)

.

Then,

WT fα(A2, α0) =

(

βS∗I∗
3

(1 + α[SN ]I∗2)2
[2βI∗ − (r − u1){1 + α[SN ]I∗

2}]
)

6= 0

and

WT
(

D2f(A2, α0)(V, V )
)

=







2α[SN]β2r2S∗I∗
2
(3−α[SN]I∗

2
)

k2(1+α[SN]I∗
2 )3

+ 2r2S∗(1+α[SN]I∗
2
)

k2

{

rabu2
2

k(1+bu2I∗)3

−β2(1−α[SN]I∗
2
)2

(1+α[SN]I∗
2 )4

− α[SN]βrS∗I∗(3−α[SN]I∗
2
)

k(1+α[SN]I∗
2 )3

}






6= 0.

Therefore, by Sotomayor theorem we can say that the system (2.1) experiences a saddle-node bifurcation at
the endemic equilibrium point A2(S

∗, I∗) when the parameter α passes through α = α[SN ].
Hence the theorem is proved.

Theorem 3.10. The system (2.1) exhibits a Hopf bifurcation leading to a family of periodic solutions that
bifurcates from the endemic equilibrium point A2(S

∗, I∗) for suitable values of intrinsic growth rate r in a
neighbourhood of r[HB]. In addition, if Γ < 0 then the system is said to be supercritical and if Γ > 0 then the
system is said to be subcritical, where Γ is the Liapunov number.

Proof. We know that the characteristic equation of the variational matrix of the system (2.1) at the endemic
equilibrium point A2(S

∗, I∗) is λ2 − Tλ+D = 0, where T = trace[J(S∗, I∗)] and D = det[J(S∗, I∗)]. Here, T
and D depend on the parameter r. Now, we choose the critical value r[HB] of r in such a manner that T = 0
and D > 0. Then two eigenvalues of J(S∗, I∗) are λ = ±

√
Di. Now, for r ∈ (r[HB] − ε, r[HB] + ε), the roots are,

in general, of the form y1,2(r) = α0(r)± iβ0(r).

To apply the Hopf bifurcation theorem [17], we need to verify the transversality condition Re[dyi

dr
]r=r[HB] 6=

0, i = 1, 2, which is equivalent to the condition [d{trace(J(S
∗,I∗))}

dr
]r=r[HB] 6= 0.

Now, we translate the equilibrium point A2(S
∗, I∗) to the origin. So, we put S

′

= S − S∗ and I
′

= I − I∗ in
(2.1) and we get (omitting the dash sign)

dX

dt
= BX + F (X), (3.7)
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B =

(

a11 a12
a21 a22

)

, X =

(

S
I

)

, F (X) =

(

a13S
2 + a14SI + a15I

2 + a16SI
2 + a17I

3

a23SI + a24I
2 + a25SI

2 + a26I
3

)

, where

a11 = −S∗r

k
, a12 =

S∗β(αI∗
2 − 1)

(αI∗2 + 1)2
,

a21 =
βI∗

(αI∗2 + 1)
,

a22 =
abu2

2I
∗

(bu2I∗ + 1)2
− 2αβS∗I∗

2

(αI∗2 + 1)2
.

We know that the eigenvalues of the matrix B are λ = ±
√
Di at r = r[HB]. An eigenvector of B corresponding

to λ =
√
Di is

(

α1

α2

)

+ i

(

β1

β2

)

, where α1 = a12, α2 = −a11, β1 = 0 and β2 =
√
D.

Now, by the transformation X = PY , where

P =

(

β1 α1

β2 α2

)

, Y =

(

y1
y2

)

,

the system (3.7) can be written as

(

ẏ1
ẏ2

)

=

(

0 −
√
D√

D 0

)(

y1
y2

)

+

(

f1

f2

)

, (3.8)

where

f1(y1, y2) ≡ b11y
2
1 + b12y1y2 + b13y

2
2 + b14y

3
1 + b15y

2
1y2 + b16y1y

2
2 + b17y

3
2 ,

f2(y1, y2) ≡ b21y
2
1 + b22y1y2 + b23y

2
2 + b24y

3
1 + b25y

2
1y2 + b26y1y

2
2 + b27y

3
2 .

Therefore, we can easily compute the Liapunov number Γ, which is as follows:

Γ =
1

16
(f1

y1y1y1
+ f1

y1y2y2
+ f2

y1y1y2
+ f2

y2y2y2
) +

1

16
√
D
{f1

y1y2
(f1

y1y1
+ f1

y2y2
)− f2

y1y2
(f2

y1y1
+ f2

y2y2
)− f1

y1y1
f2
y1y1

+f1
y2y2

f2
y2y2

} =
1

8
(3b14 + b16 + b25 + 3b27) +

1

8
√
D
{b12(b11 + b13)− b22(b21 + b23)− 2b11b21 + 2b13b23}.

By using Hopf bifurcation theorem, we obtain that Hopf bifurcation is supercritical if Γ < 0 and subcritical
if Γ > 0. Hence the theorem is proved.

3.6. Bogdanov-Takens bifurcation

We have already analysed the co-dimension 1 bifurcations considering α (for saddle-node bifurcation) and r
(for Hopf bifurcation) as bifurcation parameter for the system (2.1). Here, we shall analyse a co-dimension 2
bifurcation considering α and r as the bifurcation parameter for the system (2.1).
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Theorem 3.11. The system (2.1) undergoes a BT bifurcation of co-dimension 2 in the neighbourhood of the
coincident endemic equilibrium point A2(S

∗, I∗) with respect to the parameter α and r.

Proof. First we choose the value α[BT ] of the parameter α and the value r[BT ] of the parameter r for which
trace(J) = 0 and det(J) = 0 at the coincident endemic equilibrium point A2(S

∗, I∗). Then the eigenvalues of J
at A2(S

∗, I∗) for r = r[BT ] and α = α[BT ] are λ1,2 = 0.
Let us consider a small perturbation to the bifurcation parameters r and α around their BT bifurcation

values, given by r = r[BT ] + ε1 and α = α[BT ] + ε2. Then from (2.1) we have

{

dS
dt = (r[BT ] + ε1)S(1− S

k
)− βSI

1+(α[BT ]+ε2)I2 − u1S
dI
dt = βSI

1+(α[BT ]+ε2)I2 − (d+ δ + γ)I − au2I
1+bu2I

(3.9)

Making the origin (0, 0) as the bifurcation point by using the transformation x = S − S∗, y = I − I∗, we get
from (3.9)

{

dx
dt = a(ε)x+ b(ε)y + p00(ε) + p20(ε)x

2 + p11(ε)xy + p02(ε)y
2 +Q1(x, y, ε)

dy
dt = c(ε)x+ d(ε)y + q00(ε) + q11(ε)xy + q02(ε)y

2 +Q2(x, y, ε), whereε = (ε1, ε2).
(3.10)

Here

a(ε) ≡ −S∗(r[BT ] + ε1)

k
+ (r[BT ] + ε1)

(

1− S∗

k

)

− βI∗

1 + (α[BT ] + ε2)I∗
2 − u1,

b(ε) ≡
S∗
{

β − 2β(α[BT ]+ε2)I
∗
2

1+(α[BT ]+ε2)I∗
2

}

1 + I∗2(α[BT ] + ε2)
,

c(ε) ≡ βI∗

1 + (α[BT ] + ε2)I∗
2 ,

d(ε) ≡
S∗
{

β − 2β(α[BT ]+ε2)I
∗
2

1+(α[BT ]+ε2)I∗
2

}

1 + I∗2(α[BT ] + ε2)
− (d+ δ + γ)−

au2 − abu2
2I

∗

1+bu2I∗

1 + bu2I∗
,

p00(ε) ≡ S∗(r[BT ] + ε1)

(

1− S∗

k

)

− βS∗I∗

1 + (α[BT ] + ε2)I∗
2 − u1S

∗,

p20(ε) ≡ −r[BT ] + ε1
k

,

p11(ε) ≡ −
β − 2β(α[BT ]+ε2)I

∗
2

1+(α[BT ]+ε2)I∗
2

1 + (α[BT ] + ε2)I∗
2 ,

p02(ε) ≡ −
S∗
{

− βI∗(α[BT ]+ε2)

1+I∗
2 (α[BT ]+ε2)

+ 2βI∗(α[BT ]+ε2){−1+I∗
2
(α[BT ]+ε2}

{1+I∗
2 (α[BT ]+ε2)}2

}

1 + I∗2(α[BT ] + ε2)
,
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q00(ε) ≡
βS∗I∗

1 + I∗2(α[BT ] + ε2)
− (d+ δ + γ)I∗ − au2I

∗

1 + bu2I∗
,

q11(ε) ≡
β − 2β(α[BT ]+ε2)I

∗
2

1+(α[BT ]+ε2)I∗
2

1 + I∗2(α[BT ] + ε2)
,

q02(ε) ≡ −
βS∗I∗(α[BT ]+ε2)

1+I∗
2 (α[BT ]+ε2)

+ 2βS∗I∗(α[BT ]+ε2)(1−I∗
2
(α[BT ]+ε2))

{1+I∗
2 (α[BT ]+ε2)}2

1 + I∗2(α[BT ] + ε2)
+

abu2
2

{1 + bu2I∗}3
,

Q1(x, y, ε) and Q2(x, y, ε) are the expressions of x, y variables of the order 3 or more.
Thus, the system (3.10) has, at ε = 0, the endemic equilibrium (0, 0) with two zero eigenvalues. Since p00(0) =

q00(0) = 0, hence we can write (3.10) at ε = 0 in the form

dX

dt
= A0X + F (X), (3.11)

where

A0 =

(

a(0) b(0)
c(0) d(0)

)

6= 0 (BT.0),

X =

(

x
y

)

, F (X) =

(

p20(0)x
2 + p11(0)xy + p02(0)y

2 +Q1(x, y, 0)
q11(0)xy + q02(0)y

2 +Q2(x, y, 0)

)

.

Let, a(0) = a11, b(0) = a12, c(0) = a21 and d(0) = a22.
Since the matrix A0 has two zero eigenvalues, hence a11 + a22 = 0 and a11a22 = a12a21.
Let, υ0 and υ1 be, respectively, the eigenvector and generalized eigenvector of A0 corresponding to the zero

eigenvalue. Also let, ω1 and ω0 be, respectively, the eigenvector and generalized eigenvector of AT
0 corresponding

to the zero eigenvalue. Then we select four vectors υ0, υ1, ω0 and ω1 satisfying the conditions 〈υ0, ω0〉 =
〈υ1, ω1〉 = 1 and 〈υ1, ω0〉 = 〈υ0, ω1〉 = 0, (where 〈., .〉 stands for standard inner product) as

υ0 =

(

a12
−a11

)

, υ1 =

(

a12
1− a11

)

,

ω0 =

(

1−a11

a12

−1

)

, ω1 =

(

a11

a12

1

)

.

Since the vectors υ0 and υ1 are linearly independent, hence they form a basis of R
2. Thus, we make a

transformation which is as follows:

X = y1υ0 + y2υ1

i.e. x = a12(y1 + y2), y = −a11y1 + (1− a11)y2.
By this transformation, the system (3.10) takes into the following form in coordinates (y1, y2):

{

dy1

dt = y2 + g00(ε) + g10(ε)y1 + g01(ε)y2 +
1
2g20(ε)y

2
1 + g11(ε)y1y2 +

1
2g02(ε)y

2
2 + P1(y, ε)

dy2

dt = h00(ε) + h10(ε)y1 + h01(ε)y2 +
1
2h20(ε)y

2
1 + h11(ε)y1y2 +

1
2h02(ε)y

2
2 + P2(y, ε),

(3.12)

where y = (y1, y2), ε = (ε1, ε2) and P1,2(y, ε) = O(‖y‖3) are smooth functions of y1, y2.
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Here,

g00(ε) =
p00(ε)

a12
− a11

p00(ε)

a12
− q00(ε),

g10(ε) =
a(ε)a12 − b(ε)a11

a12
− a11

{

a(ε)a12 − b(ε)a11
a12

+
c(ε)a12 − d(ε)a11

a11

}

,

g01(ε) =
a(ε)a12 + b(ε)(1− a11)

a12
− a11

{

a(ε)a12 + b(ε)(1− a11)

a12
+

c(ε)a12 + d(ε)(1− a11)

a11

}

− 1,

g20(ε) = 2
p20(ε)a

2
12 − p11(ε)a12a11 + p02(ε)a

2
11

a12
− 2a11

p20(ε)a
2
12 − p11(ε)a12a11 + p02(ε)a

2
11

a12

+2q11(ε)a12a11 − 2q02(ε)a
2
11,

g11(ε) =
2p20(ε)a

2
12 − p11(ε)a12a11 + p11(ε)a12(1− a11)− 2p02(ε)a11(1− a11)

a12

−a11
2p20(ε)a

2
12 − p11(ε)a12a11 + p11(ε)a12(1− a11)− 2p02(ε)a11(1− a11)

a12

−q11(ε)a12(1− a11) + q11(ε)a11a12 + 2q02(ε)a11(1− a11),

g02(ε) = 2
p20(ε)a

2
12 + p11(ε)a12(1− a11) + p02(ε)(1− a11)

2

a12

−2a11
p20(ε)a

2
12 + p11(ε)a12(1− a11) + p02(ε)(1− a11)

2

a12
− 2q11(ε)a12(1− a11)− 2q02(ε)(1− a11)

2,

h00(ε) =
a11p00(ε)

a12
+ q00(ε),

h10(ε) = a11

{

a(ε)a12 − b(ε)a11
a12

+
c(ε)a12 − d(ε)a11

a11

}

,

h01(ε) = a11

{

a(ε)a12 + b(ε)(1− a11)

a12
+

c(ε)a12 + d(ε)(1− a11)

a11

}

,

h20(ε) = 2a11
p20(ε)a

2
12 − p11(ε)a12a11 + p02(ε)a

2
11

a12
− 2q11(ε)a12a11 + 2q02(ε)a

2
11,

h11(ε) = a11
2p20(ε)a

2
12 − p11(ε)a12a11 + p11(ε)a12(1− a11)− 2p02(ε)a11(1− a11)

a12

+q11(ε)a12(1− a11)− q11(ε)a11a12 − 2q02(ε)a11(1− a11),
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h02(ε) = 2a11
p20(ε)a

2
12 + p11(ε)a12(1− a11) + p02(ε)(1− a11)

2

a12
+ 2q11(ε)a12(1− a11) + 2q02(ε)(1− a11)

2.

From above, we have g00(0) = g10(0) = g01(0) = h00(0) = h10(0) = h01(0) = 0.
Now, we put the transformation

x1 = y1,

x2 = y2 + g00(ε) + g10(ε)y1 + g01(ε)y2 +
1

2
g20(ε)y

2
1 + g11(ε)y1y2 +

1

2
g02(ε)y

2
2 + P1(y, ε)

in (3.12) and we get

{

dx1

dt = x2

dx2

dt = l10(ε)x1 + l01(ε)x2 + l00(ε) +
1
2 l20(ε)x

2
1 + l11(ε)x1x2 +

1
2 l02(ε)x

2
2 +Q(x, ε).

(3.13)

Here, the lij ’s are defined as follows,

l00(0) = l10(0) = l01(0) = 0,

l20(0) = h20(0), l11(0) = g20(0) + h11(0),

l02(0) = h02(0) + 2g11(0), l00(ε) = h00(ε)...,

l10(ε) = h10(ε) + g11(ε)h00(ε)− h11(ε)g00(ε) + ...,

l01(ε) = h01(ε) + g10(ε) + g02(ε)h00(ε)− {g11(ε) + h02(ε)}g00(ε) + ...

and

Q(x, ε) = O(‖x‖3).

Now, we assume that, l11(0) = g20(0) + h11(0) 6= 0 (BT.1) and make a parameter-dependent shift of coor-

dinates in the x1-direction with x1 = w1 + δ(ε), x2 = w2 where δ(ε) ≈ − l01(ε)
l11(0)

then the system (3.13) reduces
to

{

dw1

dt = w2

dw2

dt = r00(ε) + r10(ε)w1 +
1
2r20(ε)w

2
1 + r11(ε)w1w2 +

1
2r02(ε)w

2
2 +R(w, ε),

(3.14)

where R(w, ε) = O(‖w‖3) and r20(0) = l20(0), r11(0) = l11(0), r02(0) = l02(0), r00(ε) = l00(ε) + ..., r10(ε) =

l10(ε)− l20(0)
l11(0)

l01(ε) + ....

Now, we introduce a new time variable τ given by dt = (1 + θw1)dτ , where θ(ε) = − r02(ε)
2 and so from (3.14)
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we have

{

γ̇1 = γ2

γ̇2 = µ1(ε) + µ2(ε)γ1 +A(ε)γ2
1 +B(ε)γ1γ2 +O(‖γ‖3),

(3.15)

where µ1(ε) = r00(ε), µ2(ε) = r10(ε)− 1
2r00(ε)r02(ε), A(ε) =

1
2{r20(ε)− r10(ε)r02(ε)}, B(ε) = r11(ε).

If the condition 2A(0) = h20(0) 6= 0 (BT.2) holds, then we introduce a new time scaling (denoted by t again)

and new variables η1 and η2, given by t = |B(ε)
A(ε) |τ , η1 = A(ε)

B2(ε)γ1, η2 = sign
(

B(ε)
A(ε)

)

A2(ε)
B3(ε)γ2 in the coordinates

(η1, η2). Thus, the system (3.15) takes the following form

{

dη1

dt = η2
dη2

dt = β1 + β2η1 + η21 + sη1η2 +O(‖η‖3),
(3.16)

where s = sign
(

g20(0)+h11(0)
h20(0)

)

= ±1, β1(ε) =
B4(ε)
A3(ε)µ1(ε), β2(ε) =

B2(ε)
A2(ε)µ2(ε).

In order to define an invertible smooth change of parameters near the origin, we also assume det(∂β
∂ε

)|ε=0 6= 0
(BT.3). Since the genericity conditions BT.0, BT.1, BT.2, BT.3 for BT bifurcation are satisfied, hence the
system (2.1) experiences a BT bifurcation of co-dimension 2 in the neighbourhood of the endemic equilibrium
point A2(S

∗, I∗) with respect to the parameter α and r [8]. The local representation of the three different
bifurcation curve (SN, H, and HL) are given below in the neighbourhood of (0, 0).

SN = {(ε1, ε2) : 4Aµ1 = µ2
2},

H = {(ε1, ε2) : µ1 = 0, µ2 < 0},

HL = {(ε1, ε2) : 25Aµ1 + 6µ2
2 = 0 +O(‖ε‖2)},

where SN , H, and HL are the saddle-node, the Hopf and the homoclinic bifurcation curve, respectively.
Hence the theorem is proved.

To interpret different bifurcations numerically, we have considered r and α as the bifurcation parameters.
In Figure 2, we have presented the schematic bifurcation diagram in r − α plane of system (2.1) with different
bifurcation curves. In this figure, the points BT and GH, respectively, denote the Bogdanov-Takens bifurcation
point and global Hopf bifurcation point. By different bifurcation curves, the feasible region of r − α plane is
divided into six sub-regions in the basis of existence and character of equilibrium points and limit cycle. First
we consider the region R1, where the trivial equilibrium point is unstable and DFE is stable and no endemic
equilibrium point exists (see Fig. 3a). This region is biologically significant because disease will not persist for
the parametric values in the region R1. Thus, if the intrinsic growth rate of the population is low then disease
will be eliminated easily. Now, we consider the parametric values on the saddle-node line. Then only one endemic
equilibrium point arises with unstable mode along with a unstable trivial equilibrium point and a stable DFE
(see Fig. 3b). Now crossing the saddle-node line, we enter the region R2 where two endemic equilibrium points
arise along with unstable trivial equilibrium point and stable DFE (see Fig. 3c). Among two endemic equilibria,
one is saddle point and other is stable focus. Thus, bi-stability arises. Now crossing the Hopf bifurcation line,
we enter the region R3 where the number of equilibrium points is same as R2. But, the stable focus becomes
unstable focus as we enter R3 from R2 and a stable limit cycle arises. Thus, here two attractors exist, one is
stable DFE and other is stable limit cycle (see Fig. 3d). The stable manifold of the saddle endemic equilibrium
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Figure 2. The schematic bifurcation diagram of the system (2.1) in r − α plane for the para-
metric values β = 0.31, u1 = 0.2, d = 0.1, δ = 0.3, γ = 0.3, u2 = 0.4, a = 4, b = 6.3, k = 10.8.
The black, blue, cyan and red lines, respectively, represent transcritical, Hopf, homoclinic and
saddle-node bifurcation curves.

point separates the basins for two attractors, so it is called the basin boundary (green line). Two trajectories
that form the stable manifold of the saddle point are also called separatrices. If the initial point is outside
the separatrices then the disease will be eradicated and if the initial point is inside the separatrices then the
number of infected population oscillates and so the disease is difficult to control. Thus, for the parametric values
in region R3, the initial values of susceptible and infected population play a crucial role to control the disease.
Now, we consider the set of values of r and α on homoclinic bifurcation line then the stable limit cycle moves
closer and closer to the saddle point and it touches the saddle point and a homoclinic loop arises (see Fig. 4a).
Now crossing the homoclinic bifurcation line, we enter the region R4 then the number and nature of equilibrium
points is same as R3 but the stable limit cycle disappears through homoclinic bifurcation and in this case the
only attractor is DFE and so it is globally asymptotically stable (see Fig. 4b). Now we move from R2 to R6

through the transcritical bifurcation line, then the saddle endemic equilibrium point disappears and the DFE
becomes unstable (see Fig. 4d). Thus for these values of parameters in R6, only a stable endemic equilibrium
point exists and other points are unstable. So the stable endemic equilibrium point is globally asymptotically
stable i.e. disease always persists. Now we enter from R6 to R5 by crossing the Hopf bifurcation line, then the
endemic equilibrium point becomes unstable focus and a stable limit cycle arises (see Fig. 4c). So, in this case
there is only one attractor which is stable limit cycle. In Figure 2, there exists values of the parameters in the
vicinity of GH point for which two limit cycles arise around the unstable endemic equilibrium point. Among
these two limit cycles the smaller one is stable and larger one is unstable. The corresponding phase portrait is
given in Figure 4e.

4. Optimal control problem and efficiency analysis

In this section, we shall investigate the optimal control of the model (1.1) on the assumption that the
vaccination control u1 and the treatment control u2 are the functions of time t. Here, we shall also perform
an efficiency analysis to determine the best control strategy between vaccination of susceptible population and
treatment of infected population.
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Figure 3. The phase portrait of the system (2.1) for values of the parameter: (a) In the region
R1 : α = 0.25, r = 0.53, (b) On SN bifurcation line: α = 0.25, r = 0.5577059349, (c) In region
R2 : α = 0.25, r = 0.61, (d) In region R3 : α = 0.25, r = 0.59 and other parametric values are
β = 0.31, u1 = 0.2, d = 0.1, δ = 0.3, γ = 0.3, u2 = 0.4, a = 4, b = 6.3, k = 10.8. The green and
magenta balls denote the stable and unstable equilibrium points, respectively. The black, green,
red, blue lines, respectively, represent the nullclines, stable manifolds, unstable manifolds and
solution curves. The magenta closed curves denote limit cycles or loops.

4.1. Optimal control problem

The system (1.1) is reformulated as an optimal control problem, where both vaccination and treatment
controls are time dependent as they are applied according to the necessity. Here, we construct the objective
functional as follows
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Figure 4. The phase portrait of the system (2.1) for values of the parameter: (a) On homoclinic
bifurcation line: α = 0.25, r = 0.57882, (b) In region R4 : α = 0.25, r = 0.57, (c) In region R5 :
α = 0.05, r = 0.7, (d) In region R6 : α = 0.2, r = 0.7, (e) Near GH point: α = 0.005422, r = 0.85,
other parametric values are β = 0.31, u1 = 0.2, d = 0.1, δ = 0.3, γ = 0.3, u2 = 0.4, a = 4, b =
6.3, k = 10.8. The colour combination is same as the previous figure.
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J(u1, u2) =
∫ T

0
(A1S +A2I +B1u

2
1 +B2u

2
2)dt,

where the constants A1 and A2 are, respectively, per capita loss due to presence of susceptible and infected
individual. The constants B1 and B2 represent the costs associated with vaccination of susceptible population
and treatment of infected population, respectively. Our goal is to minimize the total number of susceptible and
infected individuals as well as the costs associated with the implement of vaccination and treatment controls on
the time interval [0, T ]. The optimal control problem (1.1) is to find optimal functions (u∗

1(t), u
∗
2(t)) in such a

manner that J(u∗
1, u

∗
2) = min{J(u1, u2), (u1, u2) ∈ U}, where the control set is U = {(u1, u2)/ui(t) is Lebesgue

measurable on [0, 1] and 0 ≤ u1(t), u2(t) ≤ 1 for all t ∈ [0, T ]}. Now, we show the existence of an optimal control
for the system (1.1).

Theorem 4.1. There exists an optimal pair (u∗
1, u

∗
2) such that J(u∗

1, u
∗
2) = min

{

J(u1, u2), (u1, u2) ∈ U
}

.

Proof. The integrand of the objective functional J(u1, u2) is a convex function of u1 and u2, because the
constants B1 and B2 are positive. Moreover, the control space U is also closed and convex region. Hence the
optimal control is bounded and therefore there exists an optimal pair (u∗

1, u
∗
2) which minimizes J for t ∈ [0, T ]

with the help of the system of differential equation (1) [16, 20]. Hence the theorem is proved.

Now applying Pontryagin’s Maximum Principle [18], we convert (1.1) and the objective cost functional
J(u1, u2) into a problem of minimizing a Hamiltonian H, which is given by

H(S, I, R, u1, u2, λ1, λ2, λ3) = A1S +A2I +B1u
2
1 +B2u

2
2 + λ1(t){rS(1−

S

k
)− βSI

1+αI2 − u1S}+ λ2(t){ βSI
1+αI2 −

(d+ δ + γ)I − au2I
1+bu2I

}+ λ3(t){ au2I
1+bu2I

+ γI + u1S − dR},

where λ1, λ2 and λ3 satisfy the adjoint equations dλ1(t)
dt = −∂H

∂S
, dλ2(t)

dt = −∂H
∂I

, dλ3(t)
dt = −∂H

∂R
with the

transversality conditions λi(T ) = 0, i = 1, 2, 3 i.e. λi (i = 1, 2, 3) satisfy the system of equations











dλ1

dt = −A1 − λ1r(1− 2S
k
) + βI

1+αI2 (λ1 − λ2) + u1(λ1 − λ3)
dλ2

dt = −A2 +
(λ1−λ2)βS(1−αI2)

(1+αI2)2 + (λ2−λ3)au2

(1+bu2I)2
+ (d+ δ + γ)λ2 − γλ3

dλ3

dt = dλ3

(4.1)

with the transversality conditions

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0. (4.2)

Now, we differentiate the Hamiltonian H partially w.r.t. u1, u2 and we obtain the optimality conditions that

follows u1 = (λ1−λ3)S
2B1

and 2B2u2(1 + bu2I)
2 = (λ2 − λ3)aI.

From these two, we obtain the optimal pair (u∗
1, u

∗
2) as stated below u∗

1 = max
{

0,min
{ (λ∗

1−λ∗

3)S
∗

2B1
, 1
}}

and

u∗
2 = max

{

0,min
{

u2, 1
}}

, where u2 is the non-negative root of the equation 2B2u2(1+ bu2I
∗)2 = (λ∗

2 −λ∗
3)aI

∗.
Here, S∗, I∗, R∗ are, respectively, the optimum values of S, I, R and (λ∗

1, λ
∗
2, λ

∗
3) is the solution of the system

(4.1) with the condition (4.2). Thus, we summarize the details in the following:

Theorem 4.2. The optimal pair (u∗
1, u

∗
2) that minimizes J over the region U are given by u∗

1 =

max
{

0,min
{ (λ∗

1−λ∗

3)S
∗

2B1
, 1
}}

and u∗
2 = max

{

0,min
{

u2, 1
}}

, where u2 is the non-negative root of the equation

2B2u2(1 + bu2I
∗)2 = aI∗(λ∗

2 − λ∗
3).

To justify the theoretical findings of the optimal control problem (1.1), we have solved it numerically by
applying forward-backward sweep method that combines the forward application of a fourth order Runge-
Kutta method for the state system (1.1) with the backward application of a fourth order Runge-Kutta method
for the adjoint system (4.1) with the transversality conditions (4.2). Here, we assume T = 20 and so vaccination
and treatment are stopped after 20 units of time. We also assume that the parametric values and values of
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Figure 5. Time series of the populations with control and without control: (a) susceptible
individuals (b) infected individuals, (c) recovered individuals.

weight constants Ai, Bi(i = 1, 2) for simulation of optimal control problem are given in Table 2 with the initial
conditions S(0) = 50, I(0) = 4 and R(0) = 0.01.

In Figure 5a–c we can compare the susceptible (S), infected (I) and recovered (R) population at any time
t ∈ [0, 20] for no control and with controls. Figure 6a and b represents the optimal control functions u∗

1 and u∗
2.

Thus, vaccination and treatment are highly effective for reducing both susceptible and infected population and
application of these two controls gives more number of recovered population than the no control system.

4.2. Efficiency analysis

When two or more controls are used in a optimal control problem, then the efficiency analysis is applied to
compare the efficiency of different control strategies for reducing the infection of any disease. The efficiency index
(E.I.) [3] of any control strategy is defined as E.I. = (1− A

c

Ao )×100, where Ac is the cumulated number of infected
individuals when the control strategy is applied and A

o is the cumulated number of infected individuals without
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Figure 6. Time series of control variables: (a) Optimal control u∗
1, (b) Optimal control u∗

2.

Table 2. Values of the parameters.

Parameters Values Sources Parameters Values Sources

r 2.5 Assume a 0.4 [6]
k 100 Assume b 0.05 [6]
β 0.1 [6] A1 0.01 [6]
α 0.5 [6, 9] A2 0.02 [9]
d 0.004 [6] B1 0.1 Assume
δ 0.02 [6, 9] B2 0.1 [6]
γ 0.7 [6]

Table 3. Strategies and their efficiency indices.

Strategy A
c E.I.

Strategy1 89.3644 9.61

Strategy2 96.0358 2.86

use of the strategy. The best strategy will be the one whom efficiency index will be bigger. In this paper, two
control functions, namely vaccination control u1 and treatment control u2, are considered. Here, we distinguish
two control strategies Strategy1 and Strategy2 where Strategy1 is the strategy where only vaccination is used
(i .e.u1 6= 0 , u2 = 0) and Strategy2 is the strategy where only treatment is used (i .e.u1 = 0 , u2 6= 0). To
determine the best control strategy among these two, we have to calculate E.I. for each strategy. It is noted

that the cumulated number of infected individuals during the time interval [0, 20] is defined as A =
∫ 20

0
I(t)dt

and Simpson’s 1
3 rule has been applied to evaluate the value of integration. Then, we have A

0 = 98.8610. The
values of Ac and efficiency index (E.I.) for Strategy1 and Strategy2 have been given in Table 3. From Table 3,
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we can conclude that Strategy1 is better than Strategy2. Epidemiologically, for the parametric values given in
Table 2 the vaccination control is more effective than treatment to reduce infection.

5. Conclusions

This paper deals with an SIR model with logistic growth rate of susceptible population for a long-lasting
disease or a disease with high death rate and a non-monotonic saturated incidence rate has been considered which
includes psychological effects, protection measures and intervention policies when a serious disease emerges. A
saturated treatment rate has also been used to represent the boundedness of medical resources of any country
or community. The DFE is locally asymptotically stable if the basic reproduction number R0 is less than 1
and is unstable if R0 > 1. If R0 = 1, the DFE is non-hyperbolic equilibrium point and it is shown that it is
stable by using Centre Manifold Theory. It is also shown that DFE is globally asymptotically stable if R0 < 1
and the transmission rate of infection less than some quantity, which signifies that the disease will die out
for low transmission rate along with basic reproduction number R0 < 1. The system undergoes a transcritical
bifurcation at DFE w.r.t. cure rate, which indicates the cure rate plays an important role to eliminate the
infection of a disease. We have obtained a necessary and sufficient condition that the backward bifurcation
occurs and it has been proved that the backward bifurcation occurs due to saturated treatment rate. The
phenomenon of backward bifurcation is biologically important because making the basic reproduction number
less than unity is not sufficient to eradicate the disease if the condition for backward bifurcation holds. Here, it is
important to mention that we have analytically established in Theorem 3.8 the stability or instability of different
endemic equilibria as the basic reproduction number R0 varies. The system experiences saddle-node and Hopf
bifurcation of co-dimension 1 at endemic equilibrium point w.r.t. the inhibitory factor α and intrinsic growth
rate r, respectively. The system also undergoes a BT bifurcation of co-dimension 2 at endemic equilibrium point
w.r.t. α and r.

We have also made the SIR model to an optimal control problem by considering vaccination control u1

and treatment control u2. The optimal control to minimize the susceptible, infected individuals and costs for
implementation of these two controls has been obtained and numerical results show the positive impacts for
implementing vaccination to susceptible individuals and treatment for infected individuals. We have also done
an efficiency analysis, which clears that the vaccination control is more effective than the treatment control to
control the disease. This work is theoretical modelling and it can be further justified by using experimental
results.
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