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Abstract

This paper deals with an SIR model with saturated incidence rate affected by inhibitory effect

and saturated treatment function. Two control functions have been used, one for vaccinating

the susceptible population and other for the treatment control of infected population. We have

analysed the existence and stability of equilibrium points and investigated the transcritical and

backward bifurcation. The Pontryagin’s maximum principle has been used to characterize the

optimal control whose numerical results show the positive impact of two controls mentioned

above for controlling the disease. Efficiency analysis is also done to determine the best control

strategy among vaccination and treatment.

Keywords Inhibitory factors · Transcritical bifurcation · Backward bifurcation · Optimal

control · Efficiency analysis
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Introduction

Mathematical modelling in epidemiology have become powerful and important tool to under-

stand the infectious disease dynamics and to improve control of infection in the population.

A good epidemic model is an intelligent model which is able to predict any possible outbreak

of the disease and is effective in reducing the transmission of the disease. It is a simplest

version of reality in Biology [1–3].

In mathematical epidemiology, the incidence rate as well as treatment rate plays a crucial

role while analysing the transmission of infectious diseases. The researchers in this field

consider different type of incidence rate depending on character of disease spreading. Firstly,

the bi-linear incidence rate [4] βSI , (where the parameter β is transmission rate of infection

and the variables S, I are respectively the number of susceptible and infected population) is
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based on the law of mass action which is not realistic for many infectious diseases in large

population because it does not include the crowding effect of the infected individuals due

to large number of infected individuals or some protection measure taken by the susceptible

individuals or both [8,10,18]. To include the behavioural change and crowding effect of

infected individuals, the saturated incidence rate
βSI

1+α I
was introduced by Anderson and May

in 1978 [5], where α is defined as inhibitory coefficient. Clearly, this incidence rate is an

increasing function of S as well as I and by this incidence rate the total growth of infected

population is less compared to the standard incidence. This type of infection sometimes

named as ‘incidence rate with psychological effect’ [6], because the effect of α stems from

epidemic control (taking appropriate preventive measures and awareness) and the rate of

infection decreases as the inhibitory coefficient α increases.

Again, we are aware of the fact that the treatment is an important method to control diseases.

In the classical epidemiological models, it was usually assumed that the recovery rate due to

treatment is of the form T (I ) = r I , I ≥ 0. This type of formulation is effective if there is

sufficient amount of medical resources such as vaccines, drugs, hospital beds, etc. But the

supply of those medical facilities is always limited in reality. In order to include the limited

capacity of medical resources, Wang and Ruan in [7] introduced the treatment function T (I )

in an SIR model, where T (I ) =

{

r , I > 0

0, I = 0
. Later Wang in [19] modified the constant

treatment function to the piecewise linear function T (I ) =

{

k I , 0 ≤ I ≤ I0

k I0, I > I0

. Recently,

Zhang and Liu [8] introduced a continuously differentiable treatment function T (I ) = r I
1+α I

to characterize the saturation phenomenon of the limited medical resources. Here T (I ) is

an increasing function of I and r
α

is the maximal supply of medical resources per unit time.

This treatment function is very effective for outbreak disease such as SARS, Dengue, etc [21]

because there is short of effective treatment resources at the beginning of the outbreak and the

treatment rate is increased with the improving of hospital’s treatment conditions including

effective medicines, skillful treatment techniques for the patient. As every community or

country has limited capacity for treatment, the treatment function will reach to its maximum

for very large number of infected individuals. This type of treatment function also includes

the effect of delay for the treatment of infected individuals. In this treatment function the

parameter α measures the extent of the effect of the infected being delayed for treatment [8].

Many authors in [8,10,11,20–22] have used this type of treatment rate in different epidemic

models and established many significant results in epidemiological modelling studies.

On the other hand, optimal control theory is a powerful mathematical tool that is used

extensively to control the spread of infectious diseases. It is often used in the control of the

spread of most infectious diseases for which either vaccine or treatment is available. Some

researchers considered only vaccination control to their models [9] and some of them used

only treatment control [9,10]. The author in [11] have used both the controls in their models.

The purpose of considering both vaccination and treatment in finding optimal control in

epidemiological models is to minimize the susceptible and infected individuals as well as the

cost of implementing these two controls.

In this paper, we have considered an SIR model with saturated incidence rate
βSI

1+α I
affected

by the inhibitory effect α and saturated treatment function. Both vaccination control u1 and

treatment control u2 have been used to address the question of how to optimally combine the

vaccination and treatment strategies for minimizing the susceptible and infected individuals

as well as the cost of the implementation of the two interventions. Here, we have used the
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treatment function T (I , u2) = ru2 I
1+bu2 I

, which is clearly the increasing function of I and

u2 and the maximal supply of medical resource is r
b

, where b is the delayed parameter of

treatment because T decreases as b increases and r is the cure rate. Here, we have analysed

the stability of equilibrium points using eigen analysis method. Exhibition of transcritical

and backward bifurcation have been analysed in our work. It is important to mention here that

our work is different from some of the other related works cited in this paper[10,11] because

the stability or instability of endemic equilibrium point(s) is analysed by applying different

techniques described in [12]. It should also be noted that in this paper, we shall deal with

the qualitative analysis of the model as well as the optimal control of the disease. Numerical

simulations and efficiency analysis are performed to understand the positive impact of controls

and to determine the best strategy among vaccination and treatment.

Organization of the paper is as follows. We have formulated the model in “Model Formu-

lation” section and discussed the boundedness of the solutions, existence of equilibria and

basic reproduction number R0 in “Boundedness of Solutions, Existence of the Equilibria and

the Basic Reproduction Number” section. The “Stability and Bifurcation Analysis at DFE”

section is devoted to the stability and bifurcation analysis about disease free equilibrium point

and “Backward Bifurcation and Stability Analysis of Endemic Equilibria” section is devoted

to the backward bifurcation and stability analysis of endemic equilibrium points. “Character-

ization of the Optimal Control” section gives detailed description about the characterization

of optimal control. The numerical simulations and efficiency analysis are given in “Numerical

Simulations and Efficiency Analysis” section and final section gives the conclusions.

Model Formulation

Let the total population be divided into three classes, namely susceptible population S(t),

infected population I (t) and recovered population R(t) at time t . Here, we have considered

an epidemic model in which the birth rate of susceptible class is constant, the incidence and

treatment rate are of saturated type, susceptible class is vaccinated, the normal and disease

induced death are also taken into consideration. It is also assumed that some of the infected

individuals who are physically strong enough can recover themselves without treatment.

Incorporating all the assumptions the governing differential equations of the model can be

written in the following form
⎧

⎪

⎨

⎪

⎩

d S
dt

= A −
βSI

1+α I
− d S − u1S

d I
dt

=
βSI

1+α I
− (d + δ + γ )I − ru2 I

1+bu2 I
d R
dt

= ru2 I
1+bu2 I

+ γ I + u1S − d R

(1)

with initial conditions S(0) ≥ 0, I (0) ≥ 0, R(0) ≥ 0. Parameters used in the system (1) are

non-negative and listed in Table 1.

Since the exact solution of the non linear autonomous system (1) is impossible to find,

so we are analysing the qualitative behaviour of the solutions in the neighbourhood of the

equilibrium points.
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Table 1 Model parameters and

their descriptions
Parameters Interpretations

A Recruitment rate of the population

β Transmission rate

α The parameter that measures the inhibitory

factors

d The natural mortality rate of the populations

δ Disease induced death rate

γ The natural recovery rate of the infected

individuals

r Cure rate

b Delayed parameter of treatment

u1 The control variable, be the percentage of

susceptible individuals being vaccinated

per unit of time

u2 The treatment control parameter

Boundedness of Solutions, Existence of the Equilibria and the Basic
Reproduction Number

In this section we shall discuss the boundedness of the solutions and existence of the equi-

librium points of system (1) for fixed value of control parameters u1 and u2. We shall derive

the basic reproduction number when the control parameters are taken as fixed.

Lemma 1 The region D =
{

(S, I , R) ∈ R
3
+/S + I + R ≤ A

d

}

is a positively invariant set

for the model (1).

Proof Let N = S + I + R.

So, d N
dt

= A − d N − δ I ≤ A − d N , integrating and taking limsup as t → ∞ we get

lim sup
t→∞

N (t) ≤ A
d

. Hence the lemma is proved. ⊓⊔

The system (1) has always the disease free equilibrium point (DFE) A1(S1, 0, R1) =
(

A
d+u1

, 0, u1 A
d(d+u1)

)

at which the population remains in the absence of disease. Therefore, the

model (1) has a threshold parameter R0, known as the basic reproduction number, which is

defined as the number of secondary infection produced by a single infection in a completely

susceptible population.

Lemma 2 The basic reproduction number for the model (1) is R0 =
β A

(d+u1)(d+δ+γ+ru2)
.

Proof Here is only one infected compartment, that is, the variable I and the disease free equi-

librium point is A1. The basic reproduction number R0 is defined as the spectral radius of the

next generation matrix FV −1 with small domain [13], where F =

[

(

βS

(1+α I )2

)

1×1

]

DF E

=

(

β A
d+u1

)

1×1

and V =

[

(

d + δ + γ + ru2

(1+bu2 I )2

)

1×1

]

DF E

=

(

d +δ+γ +ru2

)

1×1

. Thus,

R0 of the model is
β A

(d+u1)(d+δ+γ+ru2)
.

Hence the lemma is proved. ⊓⊔
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The existence of the endemic equilibrium point(s) can be determined by the relation

S =
ru2(1+α I )
β(1+bu2 I )

+
(d+δ+γ )(1+α I )

β
=

A(1+α I )
β I+(d+u1)(1+α I )

. Thus, the compartment I of the equi-

librium point (S, I , R) must satisfy the equation

H(I ) = 0, (2)

where H(I ) ≡ A
β I+(d+u1)(1+α I )

− ru2
β(1+bu2 I )

−
d+δ+γ

β
.

By simplifying the Eq. (2), we get

C1 I 2 + C2 I + C3 = 0, (3)

where C1 = bu2(d + δ + γ )
{

β + α(d + u1)
}

,

C2 = bu2

{

(d + u1)(d + δ + γ ) − β A
}

+ (d + δ + γ + ru2)
{

β + α(d + u1)
}

,

C3 = (d + u1)(d + δ + γ + ru2)(1 − R0).

Here, the coefficient C1 is always positive and the sign of C3 depends only on the value of

R0. Thus, we have

(1) If R0 > 1 , then only one endemic equilibrium point (S∗, I ∗, R∗) exists.

(2) If C2 > 0 and R0 < 1 , then there is no endemic equilibrium point.

(3) If C2 < 0, C2
2 − 4C1C3 > 0 and R0 < 1 , then two endemic equilibrium points

(S∗
1 , I ∗

1 , R∗
1) and (S∗

2 , I ∗
2 , R∗

2) exist with I ∗
1 < I ∗

2 .

Stability and Bifurcation Analysis at DFE

In this section we shall investigate the stability and transcritical bifurcation at the disease

free equilibrium point(DFE) for fixed vaccination and treatment control. Here, the variational

matrix corresponding to the system (1) is

J (S, I , R) =

⎛

⎜

⎝

−
β I

1+α I
− d − u1 −

βS

(1+α I )2 0
β I

1+α I
βS

(1+α I )2 − (d + δ + γ ) − ru2

(1+bu2 I )2 0

u1
ru2

(1+bu2 I )2 + γ −d

⎞

⎟

⎠
. (4)

Theorem 1 If R0 < 1 then the disease free equilibrium point A1 is asymptotically stable and

if R0 > 1 then it is unstable.

Proof The characteristic roots of the variational matrix (4) at the disease free equilibrium

point A1 are −d,−(d +u1) and (d + δ +γ + ru2)(R0 −1). Therefore, A1 is asymptotically

stable when R0 < 1 and is unstable when R0 > 1.

Hence the theorem is proved. ⊓⊔

Theorem 2 If R0 < 1 and α ≥ bu2 then the disease free equilibrium point A1 is globally

asymptotically stable.

Proof We rewrite the system (1) in (S, I ) plane as given below
{

d S
dt

= A −
βSI

1+α I
− d S − u1S ≡ F(S, I )

d I
dt

=
βSI

1+α I
− (d + δ + γ )I − ru2 I

1+bu2 I
≡ G(S, I ).

(5)

Now considering the Dulac function B(S, I ) = 1+bu2 I
S I

, we get

∂(B F)

∂S
+

∂(BG)

∂ I
= −

A(1 + bu2 I )

I S2
−

(d + δ + γ )bu2

S
−

β(α − bu2)

(1 + α I )2
.

Thus the DFE is globally asymptotically stable if α ≥ bu2 . Hence the theorem is proved. ⊓⊔
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In other words DFE is globally asymptotically stable if the inhibitory coefficient exceeds

a value that is the product of delayed parameter of treatment and the treatment control.

Theorem 3 If β A > (d + u1)(d + δ + γ ), then the system (1) experiences a transcritical

bifurcation at A1 as u2 varies through the bifurcation value u0
2 =

β A
r(d+u1)

−
d+δ+γ

r
.

Proof Let f (S, I , R; u2) =

⎛

⎜

⎝

A −
βSI

1+α I
− d S − u1S

βSI
1+α I

− (d + δ + γ )I − ru2 I
1+bu2 I

ru2 I
1+bu2 I

+ γ I + u1S − d R

⎞

⎟

⎠
, u0

2 =
β A

r(d+u1)
−

d+δ+γ
r

.

So, D f (A1, u0
2) =

⎛

⎜

⎝

−(d + u1) −
β A

d+u1
0

0 0 0

u1
β A

d+u1
− (d + δ) −d

⎞

⎟

⎠
. Clearly, f (A1, u0

2) = 0 and

D f (A1, u0
2) has a simple eigen value λ = 0. Thus, we shall use Sotomayor theorem [14]

to establish the existence of transcritical bifurcation. Now, a eigen vector of D f (A1, u0
2)

corresponding to the eigen value λ = 0 is V =

⎛

⎜

⎝

1

−
(d+u1)

2

β A
(d+δ)(d+u1)

2

β Ad
− 1

⎞

⎟

⎠
and a eigen vec-

tor of
(

D f (A1, u0
2

)

)T corresponding to the eigen value λ = 0 is W =

⎛

⎝

0

1

0

⎞

⎠. Let fu2

denote the vector of partial derivatives of the components of f with respect of u2. Thus

fu2 =

⎛

⎜

⎝

0

− r I
(1+bu2 I )2

r I
(1+bu2 I )2

⎞

⎟

⎠
and so fu2(A1, u0

2) =

⎛

⎝

0

0

0

⎞

⎠.

Therefore, W T fu2(A1, u0
2) = 0,

W T
(

D fu2(A1, u0
2)V

)

=
(

r(d+u1)
2

β A

)

�= 0 and

W T
(

D2 f (A1, u0
2)(V , V )

)

= 2(d + u1)
2
(

− 1
A

−
α(d+u1)

β A
+ b

r
+

b(d+δ+γ )2(d+u1)
2

r A2β2 −
2b(d+δ+γ )(d+u1)

r Aβ

)

�= 0.

Therefore, all the conditions for transcritical bifurcation in Sotomayor theorem are sat-

isfied. Hence, the system (1) experiences a transcritical bifurcation at the equilibrium point

A1 as the parameter u2 varies through the bifurcation value u2 = u0
2. Hence the theorem is

proved. ⊓⊔

Backward Bifurcation and Stability Analysis of Endemic Equilibria

In this section, we shall analyse the stability and the bifurcation behaviour at endemic equi-

librium point by assuming that two controls u1 and u2 are constant. We have already proved

that DFE is stable if R0 < 1 and is unstable if R0 > 1. Here, we shall establish that the bifur-

cating endemic equilibrium exists for R0 < 1, which implies that the backward bifurcation

occurs. Now, we shall obtain the necessary and sufficient condition on model parameters for

the existence of backward bifurcation.

Theorem 4 The system (1) has a backward bifurcation at R0 = 1 if and only if (ru2 + d +

δ + γ )(ru2 + d + δ + γ + αA) < bru2
2 A.
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Fig. 1 Backward bifurcation curve for the parametric values A = 11, α = 0.5, d = 0.000039, γ = 0.08, δ =

0.02, r = 0.4, b = 2.21, u1 = 0.5, u2 = 0.5

Proof In previous section, we have seen that the infected component I of endemic equi-

librium points are the roots of the Eq. (3). Again, from Lemma 2 we can express β as
R0(d+u1)(d+δ+γ+ru2)

A
. Now, we substitute β in the coefficients of Eq. (3) and rewrite Eq. (3)

as

C1 I 2 + C2 I + C3 = 0,

where C1 =
bu2(d+δ+γ )(d+u1){R0(d+δ+γ+ru2)+αA}

A
, C2 = bu2(d +u1)

{

(d +δ+γ )− R0(d +

δ + γ + ru2)
}

+
(d+δ+γ+ru2)(d+u1){R0(d+δ+γ+ru2)+αA}

A
and C3 = (d + u1)(d + δ + γ +

ru2)(1 − R0).

To obtain a necessary and sufficient condition on the model parameters such that backward

bifurcation occurs we have to compute the value of
[

∂ I
∂ R0

]

R0=1,I=0
. Now, differentiating the

Eq. (3) implicitly with respect to R0 we obtain

[

∂ I

∂ R0

]

R0=1,I=0

=
A(d + δ + γ + ru2)

(d + δ + γ + ru2)(d + δ + γ + ru2 + αA) − bru2
2 A

.

The system (1) has a backward bifurcation at R0 = 1 if and only if the value of the slope
[

∂ I
∂ R0

]

R0=1,I=0
of the curve I = I (R0) is less than zero. Hence we obtain the necessary and

sufficient condition for backward bifurcation in the form (ru2 + d + δ + γ )(ru2 + d + δ +

γ + αA) < bru2
2 A.

Hence the theorem is proved. ⊓⊔

It is clear from Theorem 4 that the study of the possibility of a backward bifurcation

depends on the parameter b in treatment rate and if b = 0 there can not be a backward

bifurcation. In our model the phenomenon of backward bifurcation has been occurred due to

the saturated treatment.

So, there is a real number R∗
0 < 1 for which two endemic equilibria exist for R∗

0 < R0 < 1

if the condition in Theorem 4 holds. Now, we shall focus on the stability analysis of the
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endemic equilibrium point(s) for different values of R0 and we shall prove in the following

theorem that the locally asymptotically stable DFE co-exists with a locally asymptotically

stable endemic equilibrium point when R0 < 1 .

Theorem 5 If R0 > 1 and β ≥ max{rbu2
2, rαu2}, then the system (1) has a unique endemic

equilibrium point (S∗, I ∗, R∗) that is locally asymptotically stable. On the other hand if

R∗
0 < R0 < 1 and (ru2 + d + δ + γ )(ru2 + d + δ + γ + αA) < bru2

2 A , then the system

(1) has two endemic equilibrium points. The one with the smaller number of infecteds,

(S∗
1 , I ∗

1 , R∗
1), is unstable, while the other , with a higher number of infecteds, (S∗

2 , I ∗
2 , R∗

2),

is locally asymptotically stable if β ≥ max{rbu2
2, rαu2}.

Proof We have the following characteristic equation of the variational matrix (4) at the

endemic equilibrium point (S, I , R).

∣

∣

∣

∣

∣

∣

∣

−
β I

1+α I
− d − u1 − λ −

βS

(1+α I )2 0
β I

1+α I
βS

(1+α I )2 − (d + δ + γ ) − ru2

(1+bu2 I )2 − λ 0

u1
ru2

(1+bu2 I )2 + γ −d − λ

∣

∣

∣

∣

∣

∣

∣

= 0,

or equivalently,

(λ + d)

∣

∣

∣

∣

∣

−
β I

1+α I
− d − u1 − λ −

βS

(1+α I )2

β I
1+α I

βS

(1+α I )2 − (d + δ + γ ) − ru2

(1+bu2 I )2 − λ

∣

∣

∣

∣

∣

= 0.

So, one of the three eigen values of the variational matrix is −d. The remaining eigen values

are the solutions of the equation G(λ) = 0,

where

G(λ) ≡

∣

∣

∣

∣

∣

−
β I

1+α I
− d − u1 − λ −

βS

(1+α I )2

β I
1+α I

βS

(1+α I )2 − (d + δ + γ ) − ru2

(1+bu2 I )2 − λ

∣

∣

∣

∣

∣

.

So,

G(0) =

∣

∣

∣

∣

∣

−
β I

1+α I
− d − u1 −

βS

(1+α I )2

β I
1+α I

βS

(1+α I )2 − (d + δ + γ ) − ru2

(1+bu2 I )2

∣

∣

∣

∣

∣

.

Again, we know from (2) that the component I of the endemic equilibrium point(s) are the

solutions of the equation H(I ) = 0 and H(0) = (
d+δ+γ+ru2

β
)(R0 − 1). Thus, R0 > 1

if and only if H(0) > 0 and R0 < 1 if and only if H(0) < 0. Now, we shall derive the

relation between G(0) and H ′(I ). Differentiating H(I ) with respect to I , we get H ′(I ) ≡
rbu2

2

β(1+bu2 I )2 −
A{β+α(d+u1)}

{β I+(1+α I )(d+u1)}
2 .

Now,

G(0) =

∣

∣

∣

∣

∣

∣

−
β I

1+α I
− d − u1 −

βS

(1+α I )2

β I
1+α I

rbu2
2 I

(1+bu2 I )2 −
αβSI

(1+α I )2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−
β I

1+α I
− d − u1 −

βS

(1+α I )2

−d − u1
rbu2

2 I

(1+bu2 I )2 −
βS

1+α I

∣

∣

∣

∣

∣

∣

=

(

−
A

S

)

∣

∣

∣

∣

∣

∣

1
β A

{β I+(d+u1)(1+α I )}2

−(d + u1)
rbu2

2 I

(1+bu2 I )2 −
βS

1+α I

∣

∣

∣

∣

∣

∣
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=

(

−
A

S

)

∣

∣

∣

∣

∣

∣

1
β A

{β I+(d+u1)(1+α I )}2

−(d + u1)
rbu2

2 I

(1+bu2 I )2 −
β A

β I+(d+u1)(1+α I )

∣

∣

∣

∣

∣

∣

= (−
β AI

S
)H ′(I ).

So, we have G(0) > 0 if and only if H ′(I ) < 0 and G(0) < 0 if and only if H ′(I ) > 0.

Now, we shall discuss two cases.

Case I: Suppose R0 > 1. Then H(0) > 0. We have already proved in previous section that

when R0 > 1 then only one endemic equilibrium point (S∗, I ∗, R∗) exists. Since H(0) > 0,

hence H(I ) should decrease in some neighbourhood of I ∗. Thus, in this case H ′(I ∗) < 0

and so G(0) > 0. Again, we know that one of the eigen values of the variational matrix is −d

and the remaining eigen values are the solutions of the equation G(λ) = 0 i.e. the equation

λ2 + K1λ + K2 = 0, where K1 = 2d + δ + γ + u1 + ru2

(1+bu2 I )2 +
β I

1+α I
−

βS

(1+α I )2 and

K2 = G(0). By using the relation S =
ru2(1+α I )
β(1+bu2 I )

+
(d+δ+γ )(1+α I )

β
, K1 is simplified as

K1 = d + u1 +
αβSI

(1 + α I )2
+

β I

1 + α I
−

rbu2
2 I

(1 + bu2 I )2
≥ d + u1

+
αβSI

(1 + α I )2
+

β I

1 + α I
−

rbu2
2 I

1 + bu2 I

= d + u1 +
αβSI

(1 + α I )2
+

I

(1 + α I )(1 + bu2 I )
{(β − rbu2

2) + (βbu2 − αrbu2
2)I }.

Thus, K1 is positive if the condition β ≥ max{rbu2
2, rαu2} holds and K2 = G(0) > 0.

Hence, all the eigen values of the variational matrix have negative real part. Therefore,

(S∗, I ∗, R∗) is asymptotically stable if β ≥ max{rbu2
2, rαu2}.

Case II: Suppose R∗
0 < R0 < 1. Then H(0) < 0. Again, we have already proved that two

endemic equilibria (S∗
1 , I ∗

1 , R∗
1) and (S∗

2 , I ∗
2 , R∗

2) (with I ∗
1 < I ∗

2 ) exist for R∗
0 < R0 < 1 if

the condition (ru2 + d + δ + γ )(ru2 + d + δ + γ + αA) < bru2
2 A holds. So, the function

H(I ) must increase in some neighbourhood of I ∗
1 and decrease in some neighbourhood of

I ∗
2 . Therefore, H ′(I ∗

1 ) > 0 and H ′(I ∗
2 ) < 0. In this case, we have reached following two

conclusions.

(1) For the equilibrium point (S∗
1 , I ∗

1 , R∗
1), we have H ′(I ∗

1 ) > 0. So, G(0) < 0. Again,

lim G(λ) = ∞ as λ → ∞. Thus, G(λi ) = 0 for some λi > 0. So, at least one eigen

value of the variational matrix is positive. Therefore, (S∗
1 , I ∗

1 , R∗
1) is unstable.

(2) For the equilibrium point (S∗
2 , I ∗

2 , R∗
2), we have H ′(I ∗

2 ) < 0 and so G(0) > 0. Thus,

we proceed same as case I and derive that (S∗
2 , I ∗

2 , R∗
2) is asymptotically stable if β ≥

max{rbu2
2, rαu2}.

Hence the theorem is proved. ⊓⊔

In Fig. 1, we have plotted backward bifurcation curve where blue and red lines represent

the lines of stable and unstable equilibrium points respectively. Therefore, Theorem 5 is

justified by Fig. 1.

Characterization of the Optimal Control

In this model, we have considered two controls, one control variable u1 is used for vaccinating

the susceptible populations and other control variable u2 is used for treatment efforts for

infected individuals. We assume that both vaccination and treatment controls are the functions
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of time t as they are applied according to the necessity. Our main objective is to minimize the

total loss occurs due to the presence of infection and the cost due to vaccination of susceptible

individuals and treatment of infected individuals. Thus, the strategy of the optimal control is

to minimize the susceptible and infected individuals as well as the cost of implementing the

two controls. Thus, we construct the objective functional to be minimized as follows :

J (u1, u2) =

∫ T

0

(

A1S + A2 I + B1u2
1 + B2u2

2

)

dt

where the constants A1 and A2 are respectively the per capita loss due to presence of

susceptible and infected population at any time instant. Also, the constants B1 and B2

respectively represent the costs associated with vaccination of susceptible and treatment

of infected individuals. We also assume that the time interval is [0, T ]. The problem is to

find optimal functions (u∗
1(t), u∗

2(t)) such that J (u∗
1, u∗

2) = min{J (u1, u2), (u1, u2) ∈ U },

where the control set is defined as U = {(u1, u2)/ui (t) is Lebesgue measurable on

[0, 1], 0 ≤ u1(t), u2(t) ≤ 1, t ∈ [0, T ]}.

Theorem 6 There are optimal controls u∗
1 and u∗

2 such that J (u∗
1, u∗

2) = min
{

J (u1, u2),

(u1, u2) ∈ U
}

.

Proof The integrand of the objective functional J (u1, u2) is a convex function of u1 and

u2. Since the solution of the system (1) is bounded, hence the system satisfies the Lipshitz

property with respect to the variables S, I and R. Therefore, there exists an optimal pair

(u∗
1, u∗

2) .

Hence the theorem is proved. ⊓⊔

The Lagrangian of the problem is given by L = A1S + A2 I + B1u2
1 + B2u2

2. Now, we

form the Hamiltonian H for the problem given by,

H(S, I , R, u1, u2, λ1, λ2, λ3) = A1S + A2 I + B1u2
1 + B2u2

2 + λ1(t)

{

A −
βSI

1 + α I

− d S − u1S

}

+λ2(t)

{

βSI

1 + α I
− (d + δ + γ )I −

ru2 I

1 + bu2 I

}

+λ3(t)

{

ru2 I

1 + bu2 I
+ γ I + u1S − d R

}

.

In order to determine the adjoint equations and transversality conditions, we use Pontryagin’s

Maximum Principle [15,16] which gives dλ1(t)
dt

= − ∂ H
∂S

,
dλ2(t)

dt
= − ∂ H

∂ I
,

dλ3(t)
dt

= − ∂ H
∂ R

, with

the transversality conditions λi (T ) = 0, i = 1, 2, 3. Thus, we have

⎧

⎪

⎨

⎪

⎩

dλ1
dt

= −A1 +
(λ1−λ2)β I

1+α I
+ dλ1 + u1(λ1 − λ3)

dλ2
dt

= −A2 +
(λ1−λ2)βS

(1+α I )2 +
(λ2−λ3)ru2

(1+bu2 I )2 + (d + δ)λ2 + γ (λ2 − λ3)

dλ3
dt

= dλ3

(6)

with the transversality conditions

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0. (7)

Now, using the optimality conditions ∂ H
∂u1

= 0 and ∂ H
∂u2

= 0 we get

u1 =
(λ1−λ3)S

2B1
and u2(1 + bu2 I )2 =

(λ2−λ3)r I
2B2

. Clearly, ∂2 H

∂u2
1

> 0, ∂2 H

∂u2
2

> 0 and ∂2 H

∂u2
1

∂2 H

∂u2
2

−

( ∂2 H
∂u1∂u2

)2 > 0.
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Table 2 Values of the parameters

Parameters A β α d δ γ r b A1 A2 B1 B2

Values 100 0.1 0.5 0.004 0.02 0.7 0.4 0.05 0.01 0.08 0.8 0.1

Therefore, the optimal problem is minimum at controls u∗
1 and u∗

2 where u∗
1 =

max
{

0, min
{ (λ∗

1−λ∗
3)S∗

2B1
, 1

}}

and u∗
2 = max

{

0, min
{

u2, 1
}}

, where u2 is the non-negative

root of the equation u2(1+bu2 I ∗)2 =
(λ∗

2−λ∗
3)r I ∗

2B2
. Here, S∗, I ∗, R∗ are respectively the opti-

mum values of S, I , R and (λ∗
1, λ

∗
2, λ

∗
3) is the solution of the system (6) with the condition

(7). Thus, we summarize the details in the following:

Theorem 7 The optimal controls u∗
1 and u∗

2 which minimize J over the region U are given

by

u∗
1 = max

{

0, min
{ (λ∗

1−λ∗
3)S∗

2B1
, 1

}}

and u∗
2 = max

{

0, min
{

u2, 1
}}

, where u2 is the non-

negative root of the equation u2(1 + bu2 I ∗)2 =
(λ∗

2−λ∗
3)r I ∗

2B2
.

Numerical Simulations and Efficiency Analysis

To justify the impact of optimal control, we have used the forward–backward sweep method

to solve the optimality system numerically. This method combines the forward application

of a fourth order Runge–Kutta method for the state system (1) with the backward application

of a fourth order Runge–Kutta method for the adjoint system (6) and the transversality

conditions (7). Here, we fixed up our problem for 20 months and assume that the vaccination

and treatment are stopped after 20 months. The simulation which we carried out by using

the parametric values given in Table 2 with the initial conditions S(0) = 50, I (0) = 4 and

R(0) = 0.01.

Figure 2a–c show the time series of the susceptible (S), infected (I ) and recovered (R)

individuals both with and without control. Figure 3a, b represent the optimal control u∗
1 and

u∗
2 respectively for the time interval [0, 20]. From Fig. 2a–c, we see that optimal controls due

to vaccination and treatment are very effective for reducing the number of susceptible and

infected individuals and so enhancing the number of recovered individuals significantly.

In this paper, we have considered two controls, one is vaccination control u1 and other is

treatment control u2. But, if we use only one control among u1 and u2 then one question may

arise ‘which control is more efficient to reduce infection ?’ To answer this question we will

perform an efficiency analysis [17] which will allow us to determine the best control strategy.

Here, we distinguish two control strategies STR-1 and STR-2 where STR-1 is the strategy

where u1 �= 0 , u2 = 0 and STR-2 is the strategy where u1 = 0 , u2 �= 0. To determine

the best control strategy among these two, we have to calculate the efficiency index (E.I.) =

(1 − A
c

Ao ) × 100, where A
c and A

o are the cumulated number of infected individuals with

and without control, respectively. The best strategy will be the one whom efficiency index

will be bigger [17]. It can be noted that the cumulated number of infected individuals during

the time interval [0, 20] is defined by A =
∫ 20

0 I (t)dt . We have used Simpson’s 1
3

rule to

evaluate the value of integration and we have A
0 = 1933.9. The values of A

c and efficiency

index (E.I.) for STR-1 and STR-2 are given in Table 3.
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Table 3 Strategies and their

efficiency indices
Strategy A

c E .I .

ST R − 1 410.2195 78.79

ST R − 2 1787.7 7.56

From Table 3, it follows that STR-1 is the best strategy among STR-1 and STR-2 which

permits to reduce the number of incident cases. Thus, vaccination is more effective than

treatment.

Conclusions

In this paper, we have analysed the qualitative behaviour and optimal control strategy of an

SIR model. We have introduced a saturated incidence rate which is affected by inhibitory

factors and considered a saturated treatment function which characterizes the effect of limited

treatment capacity on the spread of infection. Two control functions have been used, one for

vaccinating the susceptible populations and other for controlling the treatment efforts to the

infected populations. To describe the complex dynamics of the solutions for constant controls,

we have obtained the basic reproduction number R0 which plays a crucial role for the study

of stability analysis of both disease free equilibrium point and endemic equilibrium points as

well as backward bifurcation analysis. We have established that DFE is locally asymptotically

stable for R0 < 1 and in addition, if inhibitory coefficient is greater than some quantity (α ≥

bu2) then DFE is globally asymptotically stable which is very significant at the biological

point of view. We have also used Sotomayor theorem to show transcritical bifurcation at

DFE with respect to the treatment control which is very significant because DFE changes its

stability as the treatment control parameter varies. Here, an unstable endemic equilibrium

point is annihilated due to the occurrence of the transcritical bifurcation at DFE. We have

obtained a necessary and sufficient condition on the model parameters such that backward

bifurcation occurs. The stable DFE co-exists with a stable endemic equilibrium point when

R0 < 1. Epidemiologically, making the basic reproduction number below the unity is not

enough to eradicate the disease. Moreover, stability analysis of endemic equilibrium points

is discussed analytically for the different values of R0.

We have also studied and determined the optimal vaccination and treatment to minimize

the number of infective and susceptible populations as well as the cost due to vaccination

and treatment. A comparative study between the system with controls and without control

has been presented to realize the positive impact of vaccination and treatment in controlling

the infectious diseases. Finally, efficiency analysis has been performed to determine that

the vaccinating to the susceptible populations is better than treatment control to infected

populations in order to minimize the infected individuals. The entire study of this paper

is mainly based on the deterministic framework and our proposed model is valid for large

population only. The work is a theoretical modelling and it can be further justified using

experimental results.
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