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QUALITATIVE ANALYSIS OF BASIC NOTIONS
IN PARAMETRIC CONVEX PROGRAMMING, I

(Parameters in the constraints)

MoHAMED SAYED ALl OSMAN

(Received September 15, 1975)

A great deal of work has been done in the field of parametric linear programming
from the theoretical as well as from the computational point of view. From the
recent work in this direction, let us mention the book [9] “Theorie der linearen
parametrischen Optimierung” by F. NoZi¢ka, J. Guddat, H. Hollatz and B. Bank
which appeared in 1974. In [9]. the notions of the set of feasible parameters, the
solvability set, and the local stability set have been defined and analyzed qualita-
tively. The same notions have been defined and analyzed qualitatively for convex
quadratic programs by J. Guddat in [7]. Other works in parametric quadratic pro-
gramming discuss the effect of infinitesimal changes in the data of the problem on the
solution vector, such as the papers of J. W. Daniel [3] and J. C. G. Boot [2]. Recently,
some works have related the notions of stability in extremum problems to certain
directions in nonlinear duality research. For example, R. T. Rockafellar in [10] has
dealt with stability in the convex case using the conjugate function theory, and he has
attempted a further development of Fenchel’s theory in both finite — and infinite
dimensional spaces. G. B. Dantzing, J. Folkman and N. Shapiro in [4] studied
stability in terms of the behaviour of the set of minima in response to right-hand-side
perturbations. J. P. Evans and F. J. Gould in [6] established necessary and sufficient
conditions for constraint set stability requiring neither convex constraint functions
nor convex constraint set, with applications to quasiconvex functions.

In this paper, basic notions in parametric convex programming are defined and
analyzed qualitatively for the problem

fy) min F(x),
subject to
Myv) = {xeRYg(x) < v, r=12,..,1},
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where F(x); g,(x), r=1,2, ..., are convex functions, possessing continuous first
order partial derivatives on the n-dimensional vector space R" (the space of all
ordered n-tuples of real numbers) and v,, » = 1, 2, ..., I are arbitrary real numbers.
These notions are the set of feasible parameters, the solvability set, the stability set
of the first kind, and the stability set of the second kind.

I. CHARACTERIZATION OF THE SET OF FEASIBLE PARAMETERS

Definition 1.The set of feasible parameters for problem (1) denoted by U, is defined
by

(1 A = {ve RYM(¥) + 0},
where 'Rt is the I-dimensional vector space of parameters.

Remark 1. The set 9 is nonempty, unbounded [6] and moreover, if Ve,
then all v in the nonnegative orthant of the parametric vector space ‘R’ with the
origin at v = ¥ belong to the set .

Lemma 1. The set N is convex.

Proof. Assume that v!, v? are two points in ¥, then there exist points x’, x?

in R" respectively such that g,(x') < v}, 7 = 1,2, ..., land g,(x*) S v}, r = 1,2, ...
..., I. Therefore, (1 — w)g(x") + wg(x*) < (1 ~w)v, + v, r=1,2,...,1,
for all 0 < w < 1. From the convexity of the functions g(x), r = 1,2, ..., I, [8],

[11],[12]it follows that g,[(1 — @) x' + ox?] £ (1 — 0)v, + @l r = 1,2,...,1;
0<w<=1 Then Ml — @) v' + wv?] ¢, ie. (I —w)v' + wv’eW for all

0 £ w £ 1. Hence the set 2 is convex.

IA

Lemma 2. If there is ve W such that M(v) is bounded, then W is closed.

Proof. Suppose that # € ‘R is a frontier point of the set 2, then by Remark 1 and
since any neighbourhood of ¥ has nonempty intersection with 91, it follows that
7+ eeWforanye > 0,ee’R.(Bye > 0,ce'R wemeane, > 0,r = 1,2, ..., 1)
Consider the sequence M(7 + &"), "€ 'R:; ¢" > 0; "' < eme” > 0(n = 1,2, ...).
The set M(v + ¢') is compact, since it is closed [12] and bounded [8], [12] (in [12],
there is a lemma stating that “the nonvoid level sets S(o) := {x € R"/f(x) < «}
of a closed convex function are either all bounded or all unbounded”, where closed-
ness of a function is equivalent to its lower semicontinuity on R”[8], [12]). All the
sets M(V + ¢€"), n = 1,2, ... are closed in R” [12] and therefore closed with respect
to the compact set M(v + ¢') [5], [8] and it is clear that M(v + ") = M(V + &'),
n=12 ...
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Since NMF + &) =M + &%) £ 0, €7e'R, j=1,2,...,m, where i, =
j=1

= min i this holds for the intersection of any finite number of elements of the
Jjef1,2,..., m}

sequence IMM(7 -+ ¢"). Therefore, it follows from the finite intersection property
o0

of compact sets [8] that (Y M(F + &") = M(V) + 0, i.e. e A and hence the result.
n=1

2. CHARACTERIZATION OF THE SOLVABILITY SET

Definition 2. The solvability set for problem (1) denoted by B, is defined by
) B = {ve'Rimy(v) + 0},
where m,(v) is the set of all optimal points of problem (1), i.e.

) Mop(v) = {x* € RYF(x) = min Fx)}

Theorem 1. fffor one ve B it holds that the set my,(v) is bounded, then B = A
where m,(v) is given by (3).

Proof. Suppose that k = min F(x), then it follows from the assumptions that the
set M(¥, k) defined by xeIN()

M3, k) = {xeRg(x) S ¥, r=1,2, ..., 1, F(x) £k}
is bounded. Hence, the set M(v, k) given by
M(v,k) = {xeRg(x) v, r=1,2,...,1, {x) £ k, ke'R}

is bounded for all (v, k) e 'R'*" for which M(v, k) & @ (see [12] and the proof of
Lemma 2).
Let us define the set A as follows:

A= {(v, k)e 'R M(v, k) + 0} .

The set A is unbounded and from Lemma 1, Lemma 2 it follows that it is convex
and closed. Suppose that v* € 9, then M(v*) + § and the set

A* = (ke 'RIM(v*, k) + 0}

is convex, unbounded, and assumes the form [k*, o). Therefore min F(x) = k*,
which implies that v* € 8. Then U < B, and hence B = A, xeli(v)

Corollary 1. Under the same assumptions as in Theorem: 1, the set B is unbounded,
convex (see Lemma 1).
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Corollary 2. If the set B + 0, and F(x) is strictly convex on R", then B = U
(follows directly from Theorem 1).

Corollary 3. If the set B + 0, and the set M(v) is bounded for one ve A, then
B = U, and the set B is unbounded, convex (see Lemma 1) and closed (see Lemma 2).

Example 1. Consider the problem
min y,
subject to the set M(v,, v,) given by
Mvy, vy) = {(x1, x2) € R} =x; + ¥ S vy, —x; S vy}

The problem is solvable for v; = 0, v, = —2 with optimal points x; < log2, x, = 2
which means that m,, {0, —2) is unbounded. The problem is feasible at v, = 0,
v, = 0 but it is not solvable there.

Let us consider the dual problem to (I), denoted by (I), which assumes the form

[8]:
Find max ¥(x, u, v) if it exists, where
(x,u)eZ

(Dq ¥(x, u, v) = F(x) +'i u(g(x) — v,),

and
Z =

1

F
={(x,u)€R"H/aa— +Zu,.?g' =0,a=12,....mu,=20,r=1,2, ...,1}.
X, r=1 0x,

Definition 3. The solvability set for problem (1), denoted by B, is defined by

(4) B, = {ve 'Rproblem (1), is solvable} .

Lemma 3. If the functions g,(x) -~ ¥, r=1,2,...,1satisfy any one of the con-
straint qualifications [8] (for example Slater) for all ¥ € B, and ¥(x, 'u, v) is strict-
ly convex at 'x for all ve B, then B, = B, where

Y('x, u, v) = max ¥(x, u, v).
(x,u)eZ

Proof. Let v e 3, then by the assumptions and from Wolfe’s duality theorem [8],
[12] it follows that v € B, and therefore B < B,. Let v € B, then by the assumptions
and from the strict converse duality theorem [8] it follows that v € 8 and therefore
B,; < B. Hence B, = B.
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It is clear that ¥(x,u,v) is strictly convex in x, if either F(x) is strictly convex,
or g{x) is strictly convex for at least one index i e {1,2, ..., I} for which u; is posi-
tive [8].

Remark 2. If F(x) is a convex quadratic function, and g(x), r = 1,2, ..., 1 are
linear functions on R" (i.e. for quadratic convex programs), then the result that
B, = B can be obtained directly from Dorn’s duality and converse duality theo-
rems [8], [12].

Theorem 2. [f the functions g(x) — v,, r = 1,2, ..., 1 satisfy any one of the
constraint qualifications (for example Slater) [8], [12] for all ve B and F(x) is

strictly convex on R”, then the function t(v) is convex on B, where t(v) = min F(x).
xeM(v)

Proof. Suppose that 7,(v) = max ¥(x, u, v), then it follows by the assumptions
(x,w)eZ

and from Wolfe’s duality theorem [8], [12], that 7,(v) = t(v).
Assume that v!, v* are two points in B, with corresponding optimal points (x*, u'),
(x2, u?) respectively. Then

T (v') = F(x") +ri:1u,l(g,(x') -,

and
w(v?) = F) + L ur(ede?) = ).

It follows from Lemma 3, Corollary 2 and Lemma 2 that v¥ = (1 — w)v' + ev? e B,
for all 0 £ w < 1. Suppose that an optimal point for problem (1), corresponding
to v¥ is (x*, u*). Then

o) = Fet) + X ul(g )~ of) =

r=

1

(1~ ) [F) + Sur(eler) = il + o[F() + T ulle ) - 7))

Sl —o)r(v') +wrv?) forall 0w =1,

Therefore T,,(v) is convex on B,, and hence it follows from Lemma 3 that r(v) is
convex on B.

3. CHARACTERIZATION OF THE STABILITY SET OF THE FIRST KIND

Definition 4. Suppose that v € B with a corresponding optimal point X, then the
stability set of the first kind of problem (1) corresponding to X denoted by &(x) is
defined by

(%) &(x) = {ve 'R!/KX) = min F(x)} .
xeM(v)
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Lemma 4. If the functions F(x); g(x), r = 1,2, ..., [ have continuous partial
derivatives of the second order on R”, if the matrix [52 F/&x‘z 6x/,], =12 ...,n
is positive definite and the matrices [0°g,[0x, 0xg), r = 1,2, ..., La; B = 1,2, ...
..., 0 are positive semi-definite, then the matrix [0*¥[0x, 0x;], s B = 1,2, ..., n
is positive definite for all u, = 0, r = 1,2, ..., | where

: -
(6) Pl ) I Mt
0x, 0xy Ox, Oxy  r=1  0Xx, 0xy

wf=1,2,...., nu =

Proof. Let B, C,, r= 1,2, ...,1 and D denote the matrices [0°F/dx, dx,],

3 L

B =1,2,...n[0%°8)0x,0xs),r=1,2,..,La; =12, ..., nand [0*¥/dx, dx,],
I
a; f = 1,2, ..., n respectively, then (x, Dx) = (x, Bx) + Y (x, u, Cx) =
1 r=1
= (x, Bx) 4+ Y u(x, C,x), where (.,.) denotes the usual scalar product of two
r=1

vectors. Since (x, Bx) > 0and (x,C,x) = 0, r =1, 2, ..., I, it follows that (x, Dx) < 0.
Hence the matrix D is positive definite.

Assume that problem (I) is solvable for v == i with a corresponding optimal
point X, and that the functions gr(x) — v, r= 1,2, ..., 1 satisfy any one of the
constraint qualifications [1], [8] (for example Slater), then there exist i € R' such
that (X, i) solves the Kuhn-Tucker problem [1], [8], i.e.

M @rTnF -0 x-12 0,
0X,

0x, relo .

IIA

g,(.i‘) v, r=1,2,...,1,

ﬁr(gr(i) - ﬁr) -

v

u,
u

If

0,

O, relyc{1,2,...,1},

0, re{l,2, .1 ~1,.

Assume that the matrix [0>¥/0x, dx,], ; B = 1,2, ..., n which is defined by (6),

is positive definite for all u, = 0, r = 1,2, ..., I. Then it follows from the implicit
function theorem [5], [8] and from (7) that % can be expressed uniquely in the form

x = f(u),
where f is an n-dimensional vector function. Also, it follows that there exists a neigh-

bourhood V(%, i) of (X, i) in R"*! such that

a I -
F + Y u, % _ 0 forall points (x,u)e V(X @), o0 = 1,2, ..., 0.
ox, r=1 0x,

®)
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For these points, x can be expressed uniquely in the form
©) x = f(u).
If (x*, u*) € V(X, if) solves the Kuhn-Tucker problem, i.e.

1
(]0) (?E(x*)+zu:"€gi(x*):0, xa=1,2,...,n,
(3xa r=1 Ox

g(x") <y, r=1,2,..,1,
uf(gx*) — v,) =0
WE20, r=1,2...,1,

-
|
—_
)
d
—
.

then x* solves problem (1).

In order to obtain the values of the parameters v,, ¥ = 1,2, ..., for which
problem (I) is solvable with an optimal point % € R" such that there exist 4, = 0,
r=1,2,...,land (% @) e V(X, &), we consider the following cases:

i) u' 20, relc{,2,.. 01}, uf=0, re{l,2,...,1} — |
g(f(u*) =v,, rel,
gf(u*) < v, rél,

where f(u*) = x* (see (8)) and leP, where P is the set of all proper subsets
of {1,2, ..., [} with the property # =0, re)(JeP), 4. =0, r¢ ] and (f(a), ?) e
e V(X, ii). We define the sets T, W, and W, as follows:

(11) T, = {ueRY(f(u),u)eV(x, i), u, 20, relu, = 0,r¢l},
W, = {ve'Rly, = g(f(u)), rel, v, 2 g(f(u), ré¢l, ueT},
W= UW,.
leP
ii) w =0, r=1,2,...,1,

gfO) v, r=12 .1
We define the set W, by
(12) Wi = (ve RYy, 2 g(f(0)). (f(0).0)e V(%. 0)} .
iii) u¥
gf(w) =v,, r=1,2...,1I
We define the sets T, and W as follows:
(13) T, ={ueR(f(u),u)eV(x, i), u, 20, r=12,...,1},
W, = {ve'Rly, =g(f(u), r=12 .., ueT;}.

3%
o

L or=1,2,...,1,
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Let us define the set denoted by W in the form
(14) W = {v e Bthere exist (x*, u*) e V(¥, i) and (X, u*) solves (10)} .

W represents the set of all parameters for which the dual problem (1,) is solvable
in the neighbourhood V(X, i) of (X, &) in R*** [8].

It is clear that the first relation in (10) is satisfied by (8) and therefore in the cases
i), ii) and iii), the set W defined by (14) can be written in the form

3
W =UW,
i=1
where W, i = 1,2, 3 are given by (11), (12) and (13) respectively.
In order to obtain an explicit description for the set defined by (5), let us consider
the system

1
(15) 0+2 %%7—0,a=hl“qn
r=1
which represents n linear equations in [ unknowns u,, r = 1,2, ..., I. System (15)
can be solved explicitly, and depending on its solution the value of v,, r = 1, 2, .
are chosen in such a way that (%, #) solves the Kuhn-Tucker problem [17, [8], where

ii solves (15).
Let us consider the following cases.

i) >0, rejc{,2,.., 0}, 4,=0, re{l,2,..,1} —].
Let us define the set denoted by S(x) in the form
C(%) = {ve'Rlg(X) = v, rel. g5) S v,. r¢l}.

and J €9, where ¥ is the set of all proper subsets of {1,2, ..., [} such that J*e ¥
means that there exists u* which solves (15), such that u} >0, re ), uf =0, re
e{1,2, ..., 1} — J*, and let us define the set denoted by ,(¥) in the form

(16) 61()?) :Hyej(f) 5
ii) =0, r=1,2...1.

Let us define the set denoted by @2(53) in the form
(17) S,(X)={ve'RYg(X) S v, r=1,2,...,1}:
iii) >0, r=1,2,....1,

r

let us define the set denoted by €,(X) in the form
(18) Sy(X) = {veRlg(X) = v, r=12 .1},
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From the Kuhn-Tucker sufficient optimality theorem [1], [8] it follows that the sct
€(X) defined by (5) assumes the form

(19 S0 = U &(3),

where S(X), i == 1, 2,3 are given by (16), (17), (18) respectively. The set &(X) is
nonvoid, for by the assumption v € €(X) (see Definition 4).

Lemma 5. If vV is a common point of visibility for all star shaped sets T';, i =
=1,2, ...,k [12], then U I'; is a star shaped set with a common point of visibility
i=1
7. (A set L is said to be star shaped if there exists a point fie L such that for all
nel, the closed line segment [ﬁ, ,u] < L, and fi is said to be a point of common
visibility of L.)
k
Proof. Suppose that ve U T';, then v e I'; for at least one index s e {1, 2, ..., k},
i=1 k k
then the assumptions imply that [¥, v] < I'y and hence [¥, v] =€ U I';. Since ¥e U I,
k i=1 i=1

the set |J I'; is star shaped with a common point of visibility .
i=1

Lemma 6. [f the sets ©(X), i = 1,2, 3 are defined by (16), (17) and (18) respectively
then each of them is star shaped with a common point of visibility v*, where v} =
= g(x), r = 1,2, ..., (see Lemma 5), and closed.

Proof. It is clear that v* € (X), i = 1, 2, 3. The first part of the proof will be
shown for &,(X). It can be done similarly for the sets S,(X) and &;(%).

Assume that ¥ is any point in &,(X), then from (16} it follows that there exists
anindex set I, = {1,2, ..., I} such that

gX) =7, relyc{r,2, .. 01}, g7, re{l,2, ...} —1,.
The points § = (I — @) v* + wie &,(¥)forall0 £ w < 1, since
g(X)=v,, rely, g®<v, refl,2, .. 0} — .

Therefore, [v¥, 7] < &,(X) for all ¥ € &,(X), and hence the set &,(%) is star shaped
with a common point of visibility v¥. The closedness of the sets (5,-(56), i=1,2,3
follows directly from their definitions (see (16), (17) and (18)).

Theorem 3. If S(X) is defined by (5), then it is star shaped [12] and closed.

Proof. The result follows directly from (19), Lemma 5 and Lemma 6.

326



Example 2. Consider the problem

. 2
min (x; — x,),
subject to
2
—x; + xy =y,

—X; + X S v,

For vy = 2, v, = 0 an optimal point is found to be x; = 1+ = x,, and the set
(4, 1) is given by

6(%7 }) = {(vlv \'2)6 ,Rz/vl 2 _%3 Vv, = O} v {(Vl’ V2)€ ,Rz/vl = _?llfv Va g 0} .
The set €(3, 4) is star shaped, closed but not convex.

Lemma 7. If i, = 0, r = 1,2, ..., [ solves (15), then the set &(X) defined by (19)
is convex and closed.

Proof. It is clear that the set &,(X) is convex (see (17)). By the assump-
tion €,(%) #+ 0, and therefore it follows from (16), (17) and (18) that &,(X) = &,(%)
and G,(X) © S,(x). Then S(X) = €,(X) (see (19)), and hence the set S(x) is convex
and closed (Lemma 6).

Remark 3. The method used in this section to obtain the set given by (14) cannot
be applied for linear programs, since in that case the matrix [62F/(3xa ox), o, B =
= 1,2, ..., nis positive semi-defintie (see Lemma 4).

4. CHARACTERIZATION OF THE STABILITY SET OF THE SECOND KIND

Definition 3. Suppose that ve B (see (2)) with a corresponding optimal point X,
and X e 2(v. 1) where

(20) (7)) = {xeRYg(x) =v,rel c | ,2,...,1},
g(x) < 3, re{l L =1

Then the stability set of the second kind of problem (1) corresponding to (v,1)
denoted by q(v, 1), is defined by

(21) q(7, 1) = {ve B/m,, (v} n (v, 1) = 0} ,
where my,(v) is given by (3), and
(22) (v ) = {xeRYg(x) =v,rel, g(x) <v.ré¢l}.

From (20} it is clear that the index set | characteries in general more than one
side of Mi(¥) or int IMN(¥).
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Lemma 8. If the function F(x) is strictly concex on R" and v'; v? are two distinct
points in B with q(v', 1;) * q(v*,1,), then

q(v', 1)) nq(v3, 1) = 0.

Proof. From the uniqueness of optimal solutions and by the assumption it follows
that I, # 1,. Suppose that v* e q(v', I;) n q(v?, |,), then there exists x* e Z(v¥, 1,) N
n Z(v¥, 1,), where

I(v, 1) = {xeRYg(x) = v}, rely, glx) < v\, rél},
I, 1) = {xe R'g(x) = v}, rel,, glx) < v}, ré¢l,}.

Therefore, g(x*) = v}; g{(x*) < v{ for at least one se{1,2, ..., [} if I, 4 1,, and
then |, = |, which is a contradiction. Hence the result.

Remark 4. Lemma 8 gives a decomposition of the set B into nonempty stability
sets of the second kind corresponding to certain index subsets of {1, 2, ..., l.}.

In order to have more properties concerning the stability set of the second kind,
let us concentrate our attention to the problem

n

([)q min Z Jeixx;
iJj=1

subject to the restriction set M(v),
where [c;;], i;j = 1, 2, ..., nis a real symmetric positive semidefinite matrix.

Lemma 9. If problem (1) assumes the form (1), then the set q(v, 1p) is convex
where (¥, 1,) characterizes either a linear side of M(¥) or int IN(¥).

Proof. The proof will be done for the case of int (7). The proof for the case
of a linear side of 9(¥) is similar.

Suppose that (¥, I, ) characterizes int 9(7) and v', v* are two points in q(¥, 1), then
there exist x' eint M(v'), and x? € int M(v?) such that (x', 0) e R"*, (x?, 0) e R"*!
solve the following Kuhn-Tucker problems (23), (24) respectively:

n

(23) Yoex; =0, «=1,2,....n,
j=1
g(x") < v, r=1,2,...,1,
ulfg(x') = v =0, r=1,2,...,1,
ul =0, r=1,2,...,1,

and

(24) Yoexi=0, a=1,2,....n,
i=1
gr(x2)<vf) 7':1,2,...,[,
ufg(x?) —v}) =0, r=12...1,
u> =0, P12, ...
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Therefore

n

S eallt = )5} + il =0, et
gll —o)x' +ox’]<(l —w)v; + v, r =1,2..,1,
(g [(1 — @) x' + wx’]) =0, r=12 1,
uf =0, r=1,2...,1,
0fws=t.

Then (1 — w) x' + wx? € int M((1 — w) v + wv?) for all 0 < w £ 1, and
the Kuhn-Tucker sufficient optimality theorem implies that (I — w)x' + wx®e
em, ((1 — w)v' + @v?) for all 0 < w £ 1. Therefore m,((1 — @)v' + @v?) A
A Int M1 — w)v' + ov?) % 0 for all 0 £ @ < 1 and hence (1 — w)v' + wv? e
€ q(\7, IL) for all 0 £ w £ 1, i.e. the set q(ﬁ, IL) is convex. From the assumptions
of Lemma 9 it js clear that (¥, 1.) characterizes either a unique side of M(v), or
int ‘JJl(V). The uniqueness follows from the linearity of the functions g,(x), rel;.

Example 3. For the problem
Minimize
[xf + (x; — 1],
subject to
x4+ xigy,

—X; + Xy £y

Fig. a. The set 28(4, 1) .
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the following sets are obtained:
M4, 1) = {(x;, x;)eRYx] + x5 <4, —x; +x, < 1},
see Fig. a,

A = {(vi,vy) € Rv; 2 0,v, 20} U{(v,v,)e 'Ry, 20, v, £0, v < 2v,},

see Fig. b,
B=A
(0. 1) = {(viva) e Ry 2 L, vy 2 1,
see Fig. c.
N
v,
3 Y
L L
(1,1)
Vi
Fig. b. The set UA. Fig. c. The set (0, 1) .

Let us denote the stability sets of the second kind of our problem corresponding
to the index subsets I; < {1,2} by q;, i = 1,2,3,4, where |, = {1}, |, = {2},
s =0and 1, = {1,2}. Then

={ve’ Rz/v 0, (vy) < vy, \,/(Vl.) <1},
q, = {ve R2/1+v§<2v1, v, <1},
q; = {ve'R?y, > 1, v, > 1},

q, = {ve'R%V; £ 2v;, v = 2v, — 1, v, £0} U

U{ve RV S v, vi =2y — L, v, 0} .
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The decomposition of the set B into the sets q;, i = 1,2, 3, 4 is shown in Fig. d,

and it is clear that q; nq; = 0, i # j,i;j == 1,2, 3, 4. The sets q, and q; are seen
to be convex (see Fig. d).

‘Vz

9

-}I‘i‘j")‘lll!Hw’U‘H IR

’

Fig. d. The nonempty stability sets of the second kind.
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Souhrn

KVALITATIVNI ANALYZA ZAKLADNICH POJIMU
PARAMETRICKEHO KONVEXNIHO PROGRAMOVANI, I

(Parametry v omezujicich podminkdch)

MoHAMED SAYED ALl OSMAN

V ¢ldnku je poddna kvalitativni analyza zdkladnich pojma parametrického kon-
vexniho programovdni pro konvexni programy s parametry na pravé strané omezuji-
cich podminek. Jsou to pojmy mnoZiny pfipustnych parametrdi, mnoZina fesitelnosti
a mnoZiny stability prvniho a druhého druhu. Predpokldda se, Ze vySetfované funkce
maji spojité parcidlni derivace prvniho fddu v R” a Ze parametry nabyvaji libovolnych
redlnych hodnot. Vysledky mohou byt pouZity pro Sirokou tfidu konvexnich pro-
gramt.
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