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The Einstein’s field equations of Friedmann–Robertson–Walker universes filled
with a dissipative fluid described by both thetruncatedandnon-truncatedcausal
transport equations are analyzed using techniques from dynamical systems theory.
The equations of state, as well as the phase space, are different from those used in
the recent literature. In the de Sitter expansion both the hydrodynamic approxima-
tion and the non-thermalizing condition can be fulfilled simultaneously. For
L50 these expansions turn out to be stable provided a certain parameter of the
fluid is lower than 1/2. The more general caseL.0 is studied in detail as well.
© 1996 American Institute of Physics.@S0022-2488~96!03205-6#

I. INTRODUCTION

Recently, isotropic spatially homogeneous viscous cosmological models have been investi-
gated using the causal~truncated and nontruncated! Israel–Stewart theory of irreversible pro-
cesses, to modelize the bulk viscous transport.1–3 It is known that dissipative processes may play
a crucial role in the evolution of relativistic fluids both in cosmology and in high-energy astro-
physical phenomena. The most oftenly used theory to describe such irreversible processes has
been long since the first-order non-causal Eckart’s theory4 which however suffers from serious
pathologies and drawbacks, i.e., superluminal velocities and instabilities.5,6 In the late sixties
Müller7 proposed a second order theory in which the entropy flow depended on the dissipative
variables besides the equilibrium ones. Israel and Stewart8,9 and Pavo´n et al.10 developed a fully
relativistic formulation on that basis, the so-calledextendedor transientthermodynamics~see Ref.
11 for a recent and comprehensive review of the state of the art!.

Shortly after Israel’s paper appeared, Belinskiiet al.12 applied it to a viscous cosmological
fluid using the so-calledtruncatedversion, in which some divergence terms in the transport
equations were neglected. Most of the papers dealing with viscous and/or heat conducting cos-
mological models make use of such a truncated transport equation without stating clearly what the
implications of such a simplification may be. Recently, some effort has been invested in analyzing
to what extent the neglecting of the divergence terms can be justified from a physical point of
view.3,13 As far as we know, Hiscock and Salmonson14 were the first to raise this point in the
cosmological context. These authors stressed the key importance of the usually neglected diver-
gence terms when obtaining viscosity-driven inflationary solutions. However, it is now clear that
to get realistic solutions to the Einstein’s field equations, the role played by the equations of state
relating the different thermodynamic quantities is crucial. Hence the claim in Ref. 14 applies only
to a Boltzmann gas.15 In fact, the difficulty in using the extended transport equations lies mainly
in the occurrence of some additional unknown coefficients, whose explicit expressions must be
obtained from techniques other than those coming from thermodynamics, either kinetic or fluc-
tuation theory,16 more than in their intrinsic complexity.

Few exact solutions have been found to the Einstein’s field equations with a non-perfect fluid
described by extended thermodynamics17,18 ~ET for short!. However, they were obtained under
severe restrictions on the values for the free parameters in the transport equations. Obviously, any
further attempt to get a deeper insight on the possible behavior of the solutions must rely on an
approximate analysis of the equations. In this paper, we apply qualitative analysis techniques to
the study of causal viscous Friedmann–Robertson–Walker~FRW! models with and without a
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positive cosmological constant. It is organized as follows. In section II we state the basic equations
governing the models and discuss the equations of state to be used. In section III we apply the
truncated version of ET whereas in section IV a corresponding analysis is carried out using thefull
version. In both cases a null and a positive cosmological constant are considered in turn. In section
V we explore their dynamical consequences, and finally in section VI we summarize the main
conclusions of the paper.

II. BASIC EQUATIONS

We restrict ourselves to a FRW space-time filled with a bulk viscous fluid and a positive
cosmological constantL. The stress-energy tensor is

Tab5~r1p1P!uaub1~p1P2L!gab , ~1!

whereua is the four velocity,r the energy density,p the equilibrium pressure,P the bulk viscous
pressure. Einstein’s field equations for the spatially flat case~the only one we adress in this paper!
are

H25
k

3
r1

L

3
, 3~Ḣ1H2!52

k

2
~r13Pef f!1L, ~2!

whereH[Ṙ/R is the Hubble factor,R(t) the cosmic scale factor of the Robertson–Walker
metric, Pef f5p1P andk58pG/c4. An overdot denotes differentiation respect to timet. We
assume the fluid obeys equations of state of the form

z5arm, p5~g21!r, t5
z

r
, ~3!

wherea is a positive constant, andg the adiabatic index lying in the range 1,g,2 as the sound
velocity vs /c5g21 in the fluid must be lower than the speed of light.t(>0) is the relaxation
time for transient bulk viscous effects, i.e., the time the system takes in going back to equilibrium
once the divergence of the four-velocity has been switched off. The causal evolution equation for
bulk viscous pressure can be cast into the form3

P1tṖ523zH2
b

2
tPS 3H1

ṫ

t
2
Ṫ

T
2

ż

z D , ~4!

whereb50 for the truncated theory andb51 for the full one. Since a dissipative expansion is
non-thermalizing, the relaxation time must exceed the expansion rateH21. This leads to

t21,H, ~5!

which is a condition that reduces the interval of values ofg for which the model holds. As we
shall see this restriction may be violated in the truncated theory as well as in the full theory when
an ideal gas equation of state is assumed. This conflict can be circumvented by resorting to the
expression for the speed of the viscous signalsa[v2/c2;z/tr, which roughly implies3,13

t5
z

ar
, 0,a,1, ~6!

and using~6! instead of~3c!.
Most of the stability analysis below will be carried out for the de Sitter solutions,H5 const.

As the universe undergoes a de Sitter expansion it could be argued that the hydrodynamic de-
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scription~absolutely needed in our study if the results are to hold! might break down. In order for
the fluid approach remains valid the mean collision timetcol must be less~in fact much less! than
the expansion rate, i.e.,tcol,H21. From kinetic theory one hastcol51/ns wheren is the particle
number density ands the cross section for collisions. In generals(T) is an increasing function of
the temperature whereas, for a FRW universe,n } 1/R3(5e23H0t for a de Sitter universe!. From
equations~2a!, ~3a! and ~6! the non-thermalizing condition~5! and the condition for the hydro-
dynamic approximation imply

e3H0t

n0s
,H0

21,
a

a S 3k Dm21

H0
2m22 , ~7!

wheren0 is a positive but otherwise arbitrary integration constant. Later it will be shown that the
second inequality in~7! can be fulfilled when suitable values for the arbitrary parameters are
chosen. Moreover, the first inequality may hold for sufficiently early times~when the inflation era
supposedly took place!. As the temperature remains constant during this period the cross section
s can be taken approximately constant.19

Recently in performing the qualitative analysis of imperfect fluid cosmological models~see
for instance Refs. 1,2,20,21! dimensionless equations of state were used in terms of the dimen-
sionless variablesx andy, defined as

x[3r/Q2, y[9P/Q2. ~8!

The equations of state@Eq. ~3.4a!, ~3.4b! in Ref. 20!#

p/Q25p0x
l , z/Q5z0x

m, ~9!

with Q([3H) the expansion factor, coincide with~3a!, ~3b! only for l5m51/2. Furthermore, for
the spatially flat FRW metric withL50, the case we are interested in, we havex51. Then the
bulk viscous coefficientz varies asQ irrespective ofm, which restricts~9! to just one case:
m51/2 in ~3a!. In this paper we shall consider only thespatially flatcase (k50) which allows us
to take (Ḣ,H) as suitable dynamical variables in the phase space. In this case it appears to be more
natural, especially when the above comments are taking into account, to adopt the oftenly used
equations of state~3! rather than~9! in order to be able to compare our results with those in the
literature form51/2. Consequently, all the fixed points to be analyzed will correspond to either de
Sitter or static spacetimes (X[Ḣ50) the former being physically relevant in inflationary models.
If one is interested in studying non-flat FRW models, the variables (Ḣ,H) become no longer
appropriate and an approach similar to that of Coley20 should by adopted.

III. QUALITATIVE ANALYSIS USING THE TRUNCATED THEORY

From equations~2!, ~3! and the expression~6! for t we find for the Hubble factor the equation

Ḧ13gHḢ1
a

d SH22
L

3 D 12m

Ḣ1
~3H22L!a

2 Fgd SH22
L

3 D 12m

23H G50, ~10!

whered5a(3/k)m21. Equation~10! can be recast into the form

Ḣ5P~H,X!, Ẋ5Q~H,X!, ~11!

where

P~H,X!5X, ~12!
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Q~H,X!523gHX2
a

d SH22
L

3 D 12m

X2
~3H22L!a

2 Fgd SH22
L

3 D 12m

23H G . ~13!

The qualitative analysis begins by linearizing the system~11! for small perturbations–where the
linear theory holds. Then the Jacobian matrix

L5S PH PX

QH QX
D , with PH[

]P

]H
, etc., ~14!

can be constructed. The elements of this matrix must be evaluated at the equilibrium points
(hi ,Xi) ~de Sitter and static solutions! which are found by solving the system
P(hi ,Xi)5Q(hi ,Xi)50. After diagonalizingL and obtaining its eigenvalues we can decide about
the type of fixed points and their stability.

The analysis of the system~12!, ~13! for the two cases withL50 andL.0 will be carried
out in turn.

i. L50
d m51/2

We have the trivial fixed point,

~0,0!,

which corresponds to an unstable static model. However, this case does not make sense as, by
Einstein’s equation~2a!, r50. If g andd fulfill the restriction

g/d53, ~15!

there exists an infinity of fixed points (h0,0), whereh0 denotes an arbitrary positive real constant.
In this case the fixed points are parallel stable straight lines.

d mÞ1/2

In the intervals 0<m,1/2, 1/2,m,2 there are two fixed points,

~0,0!, ~h0 ,0!, ~16!

with

h05S 3d

g D 1/~122m!

, ~17!

whereas form>2 there is only one fixed point (h0,0). The discussion for the point (0,0) mimics
that form51/2.

Let us define the auxiliar parameter,

S15
1

4a S g1
a

g D 2.
Form, 1

22S1 the equilibrium point (h0,0) is an asymptotically stable focus, form5 1
22S1 it is an

asymptotically stable degenerate node, whereas form. 1
22S1 two cases arise. If122S1,m, 1

2,
then the equilibrium point is an asymptotically stable node, whereas ifm.1/2 it is a unstable
saddle point.
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In the paper by Pavo´n et al.22 slightly different techniques were used to analyze the case
m51/2 anda51. Their relevant parameter was ourS1 with a51. Our results agree with those of
the mentioned reference~see Sec. 3.1 of Ref. 22! providing a more accurate classification of the
stability points.

ii. L.0
As we shall see, there are two fixed points: (h0

L,0) and (h1
L,0). From ~10! it follows the

equation for the fixed points,

~3hi
22L!Fgd S hi22 L

3 D 12m

23hi G50, ~18!

which must be solved for different values ofm. However,~18! has an obvious solution indepen-
dent ofm, h0

L5AL/3, which can be shown to correspond to a saddle point. This solution will be
ruled out however since it would imply that the energy density vanishes identically. The other
solutionh1

L will be analyzed form50,12,1, in turn.
d m50

Setting to zero the big square parenthesis in~18! and solving the resulting equation, one obtains

h1
L5

3d

2g
1
1

2
A9d2

g2 1
4L

3
.

We define

S1
L5

222S1

2S121
, L05

27d2

g2

11S1
L

~S1
L!2

.

ForL,L0 the fixed point (h1
L,0) is an asymptotically stable node. IfL5L0 the fixed point is an

asymptotically stable degenerate node whereas forL.L0 it is an asymptotically stable focus.
d m51/2

Now h1
L is given by

h1
L5A L/3

12 9d2/g2.

For 0,9d2/g2,1, (h1
L ,0) is an asymptotically stable node whereas for 9d2/g2.1 the fixed point

is an asymptotically stable focus for anyL.0.
d m51

Now h1
L5g/3d. For L,g2/3d2 we have a saddle fixed point, whereas forg2/3d2,L,L1 ,

where

L15
g2

3d2
S2

L.0, with S2
L5

1

2a S g1
a

g D 211,

the fixed point is an asymptotically stable node. ForL5L1 , it is an asymptotically stable degen-
erate node whereas forL.L1 , it is an asymptotically stable focus.

IV. QUALITATIVE ANALYSIS USING THE FULL THEORY

Actually, a proper study of viscous phenomena in the frame of ET requires the use of the full
equation~4! ~i.e.,b51). The physical implications of neglecting the second term of~4! have been
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analyzed in detail in Refs. 3,13. The use of~4! requires an explicit expression for the temperature
T in terms of other variables such asr and/orn. So far ~with the exception of Ref. 14! the
expression adopted forT has been a power-law

T5br r , ~19!

where r>0 and b.0 are constants, which is the simplest way to guarantee a positive heat
capacity.23 However, we shall see that standard thermodynamic relations restrict the range ofr .
Cãlvao et al.24 found a general equation for the evolution of temperature when two equations of
state,

r5r~T,n!, p5p~T,n!, ~20!

are given. However, their equation was obtained in the context of matter creation whereP is
reinterpreted as a non-equilibrium pressure associated to particle production. The same equation
has been carefully analyzed in Ref. 13, it reads as

Ṫ

T
52QF ~]p/]T!n

~]r/]T!n
1

P

T~]r/]T!n
G . ~21!

Obviously, when the equations of state~20! are known the evolution ofT is no longer free but
fixed by ~21!. However, only in very few cases these equations are explicitly known, as for
instance in the case of a radiation gas or an ideal gas.25 Equation~19! generalizes in a simple way
the Stefan–Boltzmann (R51/4) equation which holds for a radiation-dominated fluid in equilib-
rium. Thus, in that case we get that both equations of stater andp ~when ag-law is used! have
T as the only independent variable, i.e.,]r(p)/]T5dr(p)/dT. A useful and interesting relation
follows from considering the standard thermodynamic relation26

S ]r

]nD
T

5
r1p

n
2
T

n S ]p

]TD
n

, ~22!

which, by virtue of~3b! and ~19!, yields

r5
g21

g S ⇒0,r,
1

2D , ~23!

i.e., r is no longer an independent parameter~we are indebted to Roy Maartens for pointing us out
this restriction!. It has been argued2 that the inequalityr,1 is reasonable from a physical point of
view, since ultrarelativistic and cold non-relativistic matter haver51/4 andr;2/3, respectively.

However, an alternative equation can be used forT instead of~19!. It is well-known that a
relativistic ideal monoatomic gas is described by the two equations of statep5nT and
r53nT1m2M , wherem is the mass of the particles andM the zeroth-order moment of the
Maxwell–Boltzmann distribution function~we use unitskB51, kB being the Boltzmann constant!.
We see that theg-law (g constant! is not compatible with the equations of state of a monoatomic
gas inequilibriumexcept for radiation (m50). In that case we haven } T3 and the two equations
of state forp andr reduce to the Stefan–Boltzmann equation and theg-law with g54/3.

In the remainder of this section the full viscous transport equation will be analyzed resorting
to the two expressions for the temperature mentioned above: a power-law given by~19! and an
ideal gas equation forp together with theg-law definingr, i.e.

p5nT, r5
nT

g21
. ~24!
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Note that now bothT andn are independent variables and only in the equilibrium limit the particle
number density depends exclusively on the temperature,n5n(T) ~see comments above!. It must
be stressed that the Stefan–Boltzmann equation together with an ideal gas equation of state~with
n } T3) impliesP50. So we conclude that out of equilibrium we are forced to adopt one of the
two possibilities:~i! a power-law forT with no dependence onn at all; ~ii ! an ideal gas equation
of state for the pressure together ag-law, with n an independent variable on the same footing as
T. Both approaches will be considered in turn.

A. Potential law for the temperature

Using equations~2!, ~3!, ~6!, ~19! and~23! the equation governing the evolution of the Hubble
factor reduces to

Ḧ1
3

2
@11g~12r !#HḢ1

a

d SH22
L

3 D 12m

Ḣ1
~3H22L!a

2

3Fgd SH22
L

3 D 12m

23S 12
g

2DHG23~r11!
HḢ2

3H22L
50. ~25!

i. L50
d m51/2

As in Section III only the case withg andd fulfilling the restriction

g

d
5
3

2
~22g!, ~26!

is physically meaningful. In such instance there exists an infinity of stable fixed points (h1,0),
with h1 an arbitrary positive real number. The phase portrait are parallel stable straight lines.

d mÞ1/2

There are two fixed points, (0,0) and (h1,0), in the intervalm P @0,12!ø~12,2), where

h15S 3d~22g!

2g D 1/~122m!

. ~27!

Form>2 only the (h1,0) fixed point occurs, which we analyze next as nothing new arises about
the point (0,0).

Let us define the parameter

S25
@g~22a!12a#2

8ag2~22g!
.0.

Form, 1
22S2 the equilibrium point is an attractor in the phase space~asymptotically stable

focus!. For 122S2<m, 1
2 we have asymptotically stable nodes instead. Finally ifm.1/2, the fixed

point is a saddle.

ii. L.0
From Eq.~25! it follows the equation for the fixed points,

~3hi
22L!Fgd S hi22 L

3 D 12m

23S 12
g

2Dhi G50, ~28!
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where, as in the truncated case, only the solutions vanishing the big square parentheses make sense
from a physical point of view. Equation~28! will be solved only for three different values of
m. In this case we must take into account the constraint~23!.

d m50

The fixed point is (h2
L,0) with

h2
L5

3d

2g S 12
g

2D1
1

2
A9d2

g2 S 12
g

2D 21 4L

3
.

Defining the two new parameters,

S3
L5

2~12 g/2!

1/a@12 a/21a/g#222~12g/2!
21.

and

L25
27d2

g2 S 12
g

2D 2 11S3
L

~S3
L!2

,

we see that forL<L2 the fixed point is an asymptotically stable node, whereas forL.L2 it is an
asymptotically stable focus.

d m51/2

The fixed point is

h2
L5A L/3

12 ~9d2/g2!~12g/2!2
,

so

d,
2g

3~22g!
.

Let us introduce

d05
2g

3~22g!
~12S2!

1/2.

For d.d0 , (h2
L,0) is found to be an asymptotically stable node, however ifd5d0 it is an

asymptotically stable degenerate node, whereas ford,d0 the fixed point is an asymptotically
stable focus. In the radiation case—i.e.g54/3- d0,0 and the fixed point is a stable node.

d m51

In this case

h2
L5

g

3d~12 g/2!
.

Let us define the parameter

L35
g2~112S2!

3d2~12 g/2!2
.0.
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ForL.L3 the fixed point is an asymptotically stable focus, and forL5L3 an asymptotically
stable degenerate node.

Finally, whenL,L3 we can distinguish two subcases. Defining

L3*5
g2

3d2~12 g/2!2
,

we have a saddle point for

L,L3* ,

and an asymptotically stable node for

L3*,L,L3 .

B. Ideal gas equation for the temperature

In this section we shall study the specific behavior of the equilibrium points, making use of
the state equations~24!. As neither particle production nor annilation occurs,n obeys the conser-
vation equation

ṅ13Hn50, ~29!

which leads ton } R23. The expression for the temperature,

T5
3

k

g21

n0
R3SH22

L

3 D , ~30!

wheren0.0 is a constant, follows easily. Using~2!, ~3a!, ~3b!, ~4!, ~6! and ~30! we get the
equation

Ḧ1
a

d SH22
L

3 D 12m

Ḣ1
~3H22L!a

2 Fgd SH22
L

3 D 12m

23S 12
g

2DHG26
HḢ2

3H22L
50,

(31)

i. L50
We have the same fixed points as in the truncated theory@see equation~17!#.
In the casem51/2 the discussion runs along the same lines as that of the truncated theory.

After linearizing the system and introducing the parameter

S35
a

4g2 ,

the following will be discussed. Form, 1
22S3 the eigenvalues are complex and the equilibrium

point is an attractor~asymptotically stable focus!. Form5 1
22S3 there is a bifurcation point which

is an asymptotically stable degenerate node. Form.1/2 one has a saddle point. Finally, if
1
22S3,m,1/2 the fixed point results an asymptotically stable node.

ii. L.0
Now the fixed points (h2

L,0) are again the same as in the full theory using a power law for the
temperature.

d m50

For anyL.0 the fixed point is an asymptotically stable focus.
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d m51/2

Defining

d15
g

3
A12

1

2g2,

we note that ifd lies in the interval 0,d,d1 the fixed point is an asymptotically stable focus. If
d5d1 it is an asymptotically stable degenerate node, and ifd1,d,g/3 an asymptotically stable
node for anyL.0.

d m51

Let us define

L45
g2

3d2
~112S3!.

If L,g/3d2 then the fixed point is a saddle point, but ifg/3d2,L,L4 it is an asymptotically
stable node. ForL5L4 it is an asymptotically stable degenerate node, and forL.L4 an asymp-
totically stable focus.

1. Non-thermalizing condition for dissipative de Sitter expansion

i. L50
From ~5! and ~2! one finds

H122m,d/a . ~32!

For the truncated and full theory using an ideal gas equation forT this condition reduces to
g.3a by virtue of ~17!. On the other hand, as the velocity of the viscous pulses, as well as the
speed of sound, cannot exceed the speed of light (1,g,2) we obtain the restrictions ong and
a. If a lies in the range 0,a, 1

3, the two mentioned conditions amount to 1,g,2; whereas if
1
3 ,a, 2

3 these restrictions imply 3a,g,2. Finally, if 2
3,a,1, nog can fulfill both conditions.

For the full theory with a power law for temperature one obtains the restrictiong.gc where

gc5
6a

3a12
.

Two conditions must be fulfilled simultaneously byg : 1,g,2 andg.gc . For 0,a, 2
3, these

restrictions imply 1,g,2 ~sincegc,1); whereas for23,a,1 one has 1,gc,g,2. So for
a,1 the full theory with a power law for temperature always holds.

ii. L.0
Instead of~32! we now have

a

d SH22
L

3 D 12m

,H, ~33!

when a positive cosmological constant is present.
For the fixed point (h1

L,0) ~that of the truncated theory! the restrictions forg are the same that
in the truncated case withL50, whereas for the full theory the restriction~33!, when applied to
the point (h2

L,0), coincides with that of the full theory using a power law for the temperature with
vanishingL.
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V. DYNAMICAL CONSEQUENCES

In this section we study the dynamical implications of linearizing the equation forH. This
linearization allows one to obtain an analytical solution forR(t) near the equilibrium points. The
matrix L is given by~14! and the system of differential equations to solve is

S ḣ
Ẋ
D 5S PH PX

QH QX
D S hXD , ~34!

whereh[H2hi and X̄[X2Xi5X being (hi ,Xi 5 0) the fixed points. Equation~34! can be
written as

ḧ2QXḣ2QHh50, ~35!

where in our modelPH50 andPX51. The corresponding characteristic equation reads as

l65
QX6AQX

214QH

2
,

which coincides with the equation for the eigenvalues ofL . We perturb the system around the
de Sitter solution fort50, i.e.,H(t50)5hi1e(0) and takeḢ(t50)5 ė(0) as initial condition.

A. Saddle points and nodes

In the neighborhood of these points the discriminantD is positive and the eigenvaluesl6 are
real and different. Fordet(L ),0 one has a saddle point, and fordet(L ).0 a node. The solution
of ~35! is

h5c1e
l1t1c2e

l2t,

with

c152
ė~0!2e~0!l2

l22l1
, c25

ė~0!2e~0!l1

l22l1
.

Upon integration, one has for the scale factor

R~ t !}ehi texp F c1l1
el1t1

c2
l2

el2tG , ~36!

which shows superinflationary expansion if initial conditions are taken such thatc1 ,c2 are posi-
tive. This type of evolution forR(t) on time has been obtained previously in a different context.27

In this case the fluid when submitted to a small perturbation, goes away from the equilibrium point
expanding much more rapidly than the de Sitter’s. In the case of nodes, and when
l11l25QX is positive~negative!, the node will be unstable~stable!.

B. Attractors and repellors

We study here the behavior of the scale factor near a sink~an asymptotically stable attractor!
and a source~an asympotically unstable repellor!. The solutions of the characteristic equation are
complex,

l65
QX6 iAuDu

2
,
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whereD5QX
214QH . Then the solution of~35! is

h5c1e
QX

2 tsin
AuDu
2

~ t1c2!.

The integration constants can be determined through the initial conditions. They read as

c25
2

AuDu
tan21F e~0!AuDu

2ė~0!2e~0!Qx
G

and

c15
e~0!

sin ~AuDu/2!c2
.

Integrating the equation forh, one follows that

R~ t !}ehi texp F 2c1
Qx
21uDu SQxsin

AuDu
2

~ t1c2!2AuDucos
AuDu
2

~ t1c2! D G . ~37!

ForQX,0 we have an attractor~the scale factor undergoes an oscillatory approach to the de Sitter
solution! and forQX.0 it is a source, i.e., the scale factor deviates from the de Sitter solution.

C. Degenerate nodes

In this caseD50 andl15l25l5QX/2. The solution of~35! is

h5c1e
lt1c2te

lt.

Because of the initial conditions the integration constants are

c15e~0!, and c25 ė~0!2le~0!.

Integration of the expression forh leads to

R~ t !;ehi texpFelt

l S e~0!1„ė~0!2le…S t2 1

l D D G , ~38!

henceR(t) approaches to or separates from the de Sitter solution depending on the sign ofl. The
rate of evolution is faster than in the de Sitter case.

D. Energy conditions

The weak energy condition~WEC! states thatTabW
aWb>0, whereTab is the energy-

momentum tensor given by~1! andWa a generic timelike vector. In our model this condition
reduces to

r1L>0. ~39!

The dominant energy condition~DEC! imposesTabW
aWb>0 and2TabWa to be a non-spacelike

vector which is equivalent toT00>uTabu.
28 This conditions is fulfilled in our case solely if

2r<p1P<r12L. ~40!
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Finally, the strong energy condition~SEC! requires thatTabW
aWb1 1

2Ta
a>0 which amounts to

r22L13p13P>0. ~41!

These conditions can be rewritten in terms ofH and Ḣ as

WEC: H2>0,

SEC: H21Ḣ<0,

DEC: Ḣ<0 and 3H21Ḣ>0.

As occurs in the standard inflationary scenarios the de Sitter solutions withL>0 satisfy the
WEC and DEC but not SEC.

VI. CONCLUSIONS

We have carried out a detailed analysis on the stability of de Sitter and static cosmological
models, both in the truncated and full theory for the viscous transport equation~with and without
a cosmological constant!. We have shown that the conditions for the hydrodynamic approach and
the nonthermalizing condition in a de Sitter expansion can be fulfilled simultaneously for suffi-
ciently early times. Whenno cosmological constant is considered the stability analysis for the de
Sitter solutions leads to similar results in all the cases, i.e., the models areunstableonly for
m.1/2. It is remarkable that this result holds for both the truncated and the full version of ET. On
the other hand, when apositivecosmological constant is included we see that the models can be
stable form51 if L is bounded from below. It remains to be proved that this result holds for a
genericm.1/2 other than 1.

We have stressed the fact that for a radiation gas a different thermodynamic approach exists,
depending on whether the particle number density is taken as an independent variable or not. In
the case of a power-law for the temperature it exists a relationship betweeng and r .
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