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The Einstein’s field equations of Friedmann—Robertson—Walker universes filled
with a dissipative fluid described by both tleincatedand non-truncatedcausal
transport equations are analyzed using techniques from dynamical systems theory.
The equations of state, as well as the phase space, are different from those used in
the recent literature. In the de Sitter expansion both the hydrodynamic approxima-
tion and the non-thermalizing condition can be fulfilled simultaneously. For

A =0 these expansions turn out to be stable provided a certain parameter of the
fluid is lower than 1/2. The more general case-0 is studied in detail as well.

© 1996 American Institute of Physids$0022-24886)03205-9

I. INTRODUCTION

Recently, isotropic spatially homogeneous viscous cosmological models have been investi-
gated using the causélruncated and nontruncatetsrael-Stewart theory of irreversible pro-
cesses, to modelize the bulk viscous transpottt is known that dissipative processes may play
a crucial role in the evolution of relativistic fluids both in cosmology and in high-energy astro-
physical phenomena. The most oftenly used theory to describe such irreversible processes has
been long since the first-order non-causal Eckart’s tHeatyich however suffers from serious
pathologies and drawbacks, i.e., superluminal velocities and instabilftigs.the late sixties
Mller’” proposed a second order theory in which the entropy flow depended on the dissipative
variables besides the equilibrium ones. Israel and StéWartd Pava et al° developed a fully
relativistic formulation on that basis, the so-calledendedr transientthermodynamicgsee Ref.

11 for a recent and comprehensive review of the state of the art

Shortly after Israel’s paper appeared, Belingkiial > applied it to a viscous cosmological
fluid using the so-calledruncated version, in which some divergence terms in the transport
equations were neglected. Most of the papers dealing with viscous and/or heat conducting cos-
mological models make use of such a truncated transport equation without stating clearly what the
implications of such a simplification may be. Recently, some effort has been invested in analyzing
to what extent the neglecting of the divergence terms can be justified from a physical point of
view>!3 As far as we know, Hiscock and Salmonsbmere the first to raise this point in the
cosmological context. These authors stressed the key importance of the usually neglected diver-
gence terms when obtaining viscosity-driven inflationary solutions. However, it is now clear that
to get realistic solutions to the Einstein’s field equations, the role played by the equations of state
relating the different thermodynamic quantities is crucial. Hence the claim in Ref. 14 applies only
to a Boltzmann ga¥ In fact, the difficulty in using the extended transport equations lies mainly
in the occurrence of some additional unknown coefficients, whose explicit expressions must be
obtained from techniques other than those coming from thermodynamics, either kinetic or fluc-
tuation theory:® more than in their intrinsic complexity.

Few exact solutions have been found to the Einstein’s field equations with a non-perfect fluid
described by extended thermodynamic§ (ET for shorl. However, they were obtained under
severe restrictions on the values for the free parameters in the transport equations. Obviously, any
further attempt to get a deeper insight on the possible behavior of the solutions must rely on an
approximate analysis of the equations. In this paper, we apply qualitative analysis techniques to
the study of causal viscous Friedmann—Robertson—W4dlkBiW) models with and without a
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positive cosmological constant. It is organized as follows. In section Il we state the basic equations
governing the models and discuss the equations of state to be used. In section Ill we apply the
truncated version of ET whereas in section IV a corresponding analysis is carried out udinfy the
version. In both cases a null and a positive cosmological constant are considered in turn. In section
V we explore their dynamical consequences, and finally in section VI we summarize the main
conclusions of the paper.

Il. BASIC EQUATIONS

We restrict ourselves to a FRW space-time filled with a bulk viscous fluid and a positive
cosmological constamt. The stress-energy tensor is

Tap=(p+p+IDuup+(p+11—-A)gyp, N

whereu, is the four velocity p the energy densityy the equilibrium pressuré] the bulk viscous
pressure. Einstein’s field equations for the spatially flat ¢dmeonly one we adress in this paper
are

, K A . ) K
H2=Zp+3, 3(H+HY)=—Z(p+3Per)+ A, @

where H=R/R is the Hubble factorR(t) the cosmic scale factor of the Robertson—Walker
metric, Poss=p+1I and k=87G/c*. An overdot denotes differentiation respect to timeéNe
assume the fluid obeys equations of state of the form

{=ap™ p=(y=1p, ng, ©)

whereq is a positive constant, angthe adiabatic index lying in the rangety<<2 as the sound
velocity vg/c=y—1 in the fluid must be lower than the speed of light=0) is the relaxation

time for transient bulk viscous effects, i.e., the time the system takes in going back to equilibrium
once the divergence of the four-velocity has been switched off. The causal evolution equation for
bulk viscous pressure can be cast into the form

T 'g)

. b
I+ TH=—3§H—§7'H

whereb=0 for the truncated theory arlu=1 for the full one. Since a dissipative expansion is
non-thermalizing, the relaxation time must exceed the expansiorHrate This leads to

7 1<H, (5)

which is a condition that reduces the interval of valuesydbr which the model holds. As we

shall see this restriction may be violated in the truncated theory as well as in the full theory when
an ideal gas equation of state is assumed. This conflict can be circumvented by resorting to the
expression for the speed of the viscous sigmeasy?/c2~ ¢/ 7p, which roughly implied*®

{

=—, 0<a<l, (6)
ap

T

and using(6) instead of(3c).
Most of the stability analysis below will be carried out for the de Sitter solutibins, const.
As the universe undergoes a de Sitter expansion it could be argued that the hydrodynamic de-
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scription(absolutely needed in our study if the results are to holdjht break down. In order for
the fluid approach remains valid the mean collision tigye must be lesg$in fact much lessthan
the expansion rate, i.e,,<H 1. From kinetic theory one has, = 1/no wheren is the particle
number density and the cross section for collisions. In geneddIT) is an increasing function of
the temperature whereas, for a FRW universe;, 1/R3(=e3Ho! for a de Sitter universe From
equations(2a), (3a and (6) the non-thermalizing conditiof6) and the condition for the hydro-
dynamic approximation imply

e3Hot

__af3 m 2m-2
n00<H0 <a(;<) Hg" <, (7)
whereng is a positive but otherwise arbitrary integration constant. Later it will be shown that the
second inequality in7) can be fulfiled when suitable values for the arbitrary parameters are
chosen. Moreover, the first inequality may hold for sufficiently early tifedsen the inflation era
supposedly took plageAs the temperature remains constant during this period the cross section
o can be taken approximately constaht.

Recently in performing the qualitative analysis of imperfect fluid cosmological mddets
for instance Refs. 1,2,20,2Himensionless equations of state were used in terms of the dimen-
sionless variableg andy, defined as

x=3p/0?, y=9I1/02, (8)
The equations of stafdeq. (3.4a, (3.4b in Ref. 20]
p/®2=poX, 410 ={ox™, 9

with ® (=3H) the expansion factor, coincide wiBa), (3b) only for | =m= 1/2. Furthermore, for

the spatially flat FRW metric withtA=0, the case we are interested in, we hawel. Then the

bulk viscous coefficient varies as® irrespective ofm, which restricts(9) to just one case:
m=1/2 in (3a). In this paper we shall consider only tepatially flatcase k=0) which allows us

to take H,H) as suitable dynamical variables in the phase space. In this case it appears to be more
natural, especially when the above comments are taking into account, to adopt the oftenly used
equations of staté3) rather than(9) in order to be able to compare our results with those in the
literature form=1/2. Consequently, all the fixed points to be analyzed will correspond to either de
Sitter or static spacetimeX&H=0) the former being physically relevant in inflationary models.

If one is interested in studying non-flat FRW models, the variablédH() become no longer
appropriate and an approach similar to that of C8lehould by adopted.

Ill. QUALITATIVE ANALYSIS USING THE TRUNCATED THEORY

From equation$2), (3) and the expressiof®) for = we find for the Hubble factor the equation

B+ 3yHH + H2—£>l_m[—|+w 7 H2- é)1_m—3H =0, (10)
1) 3 2 1) 3
where 6= «(3/k)™ 1. Equation(10) can be recast into the form
H=P(H,X), X=Q(H,X), (11)
where
P(H,X)=X, (12
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Y

t=m  (3H*-A)a
T2 s

Q(H,X)=—3«ny—3(H2—é - (13
5 3 2

H? A 3H
3

The qualitative analysis begins by linearizing the systéd) for small perturbations—where the
linear theory holds. Then the Jacobian matrix

L (PH PX) ith Pu=" et (14)
= , Wi = ,» elc.,
Qu Qx HoH

can be constructed. The elements of this matrix must be evaluated at the equilibrium points
(h;,X;) (de Sitter and static solutionswhich are found by solving the system
P(h; ,X;)=Q(h;,X;)=0. After diagonalizind- and obtaining its eigenvalues we can decide about
the type of fixed points and their stability.

The analysis of the systefi2), (13) for the two cases withh =0 and A >0 will be carried
out in turn.

i. A=0
® m=1/2

We have the trivial fixed point,
(0,0,

which corresponds to an unstable static model. However, this case does not make sense as, by
Einstein’s equatiori2a), p=0. If y and & fulfill the restriction

vl 5=3, (15

there exists an infinity of fixed point$1§,0), whereh, denotes an arbitrary positive real constant.
In this case the fixed points are parallel stable straight lines.
® m+1/2

In the intervals B=m<1/2, 1/2<m<2 there are two fixed points,
(0,0, (ho,0), (16)

with
368 1/(1—2m)
ho= (—) , (17
Y
whereas fom=2 there is only one fixed poinhg,0). The discussion for the point (0,0) mimics
that form=1/2.
Let us define the auxiliar parameter,

1 2

“4a

a

r+t-
Y

21

Form< 3— 3 the equilibrium point fiy,0) is an asymptotically stable focus, fo=3—3., it is an
asymptotically stable degenerate node, whereasnforz—3.; two cases arise. §—3,<m<3,
then the equilibrium point is an asymptotically stable node, whereas>ifl/2 it is a unstable
saddle point.
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In the paper by Pavoet al?? slightly different techniques were used to analyze the case

m=1/2 anda= 1. Their relevant parameter was dty with a= 1. Our results agree with those of
the mentioned referendsee Sec. 3.1 of Ref. 2providing a more accurate classification of the
stability points.
i. A>0

As we shall see, there are two fixed pointa}(0) and f},0). From(10) it follows the
equation for the fixed points,

(3h?-A)

y A 1-m
5(h?— 5) —3hi}=0, (18)

which must be solved for different values wf However,(18) has an obvious solution indepen-
dent ofm, h{)‘: VA /3, which can be shown to correspond to a saddle point. This solution will be
ruled out however since it would imply that the energy density vanishes identically. The other
solution h’f will be analyzed fom=0,3,1, in turn.

® m=0

Setting to zero the big square parenthesigli®) and solving the resulting equation, one obtains

30 1 /962+4A
172y 2V 2" 37

We define
L 2-23, 2782 1+3
=58y 1 A== <nz-
1 221_1 Y (21)

For A<Ag the fixed point hf,O) is an asymptotically stable node.Af= A, the fixed point is an
asymptotically stable degenerate node whereas\forA q it is an asymptotically stable focus.
® m=1/2

Now h} is given by

Al3

h=\——c2z =2
L 1—96%1y?

For 0<96%/y?<1, (h} ,0) is an asymptotically stable node whereas f6¢/9°>1 the fixed point
is an asymptotically stable focus for ay>0.

® m=1
Now h}=y/35. For A<y?35> we have a saddle fixed point, whereas f#/35°<A<Aj,
where
2 2
_ Y sa ith sA— [, 8
A1—35222>0, with Ez—za 'y+ y +1,

the fixed point is an asymptotically stable node. BRor A 1, it is an asymptotically stable degen-
erate node whereas far>A ¢, it is an asymptotically stable focus.

IV. QUALITATIVE ANALYSIS USING THE FULL THEORY

Actually, a proper study of viscous phenomena in the frame of ET requires the use of the full
equation(4) (i.e.,b=1). The physical implications of neglecting the second terr@phave been
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analyzed in detail in Refs. 3,13. The use(4f requires an explicit expression for the temperature
T in terms of other variables such asand/orn. So far (with the exception of Ref. J4the
expression adopted far has been a power-law

T=pp", (19

wherer=0 and 8>0 are constants, which is the simplest way to guarantee a positive heat
capacity’> However, we shall see that standard thermodynamic relations restrict the range of
Cdvao et al?* found a general equation for the evolution of temperature when two equations of
state,

p=p(T,n), p=p(T,n), (20

are given. However, their equation was obtained in the context of matter creation WWhisre
reinterpreted as a non-equilibrium pressure associated to particle production. The same equation
has been carefully analyzed in Ref. 13, it reads as

T o/ (P/Dn, T -
T (9pldT),  T(apldT),| (21)

Obviously, when the equations of std0) are known the evolution of is no longer free but
fixed by (21). However, only in very few cases these equations are explicitly known, as for
instance in the case of a radiation gas or an ideafyBsguation(19) generalizes in a simple way
the Stefan—BoltzmannR=1/4) equation which holds for a radiation-dominated fluid in equilib-
rium. Thus, in that case we get that both equations of gtatedp (when ay-law is used have

T as the only independent variable, i.ep(p)/dT=dp(p)/dT. A useful and interesting relation
follows from considering the standard thermodynamic rel&fion

dp\ ptp T[dp
(%) “Thh ﬁ) ' (22
T n
which, by virtue of(3b) and(19), yields
_ YT L par<t 2
r—T = <I’<§ , ( 3)

i.e.,r is no longer an independent parametee are indebted to Roy Maartens for pointing us out
this restriction. It has been arguédhat the inequality <1 is reasonable from a physical point of
view, since ultrarelativistic and cold non-relativistic matter hawel/4 andr ~2/3, respectively.

However, an alternative equation can be usedTfanstead of(19). It is well-known that a
relativistic ideal monoatomic gas is described by the two equations of gtateT and
p=3nT+m?M, wherem is the mass of the particles ald the zeroth-order moment of the
Maxwell-Boltzmann distribution functiofwe use unitkz= 1, kg being the Boltzmann constant
We see that the-law (y constankis not compatible with the equations of state of a monoatomic
gas inequilibriumexcept for radiationi=0). In that case we hawex= T2 and the two equations
of state forp andp reduce to the Stefan—Boltzmann equation andytHaw with y=4/3.

In the remainder of this section the full viscous transport equation will be analyzed resorting
to the two expressions for the temperature mentioned above: a power-law gi@8)lgnd an
ideal gas equation fop together with they-law definingp, i.e.

nT
p=nT,  p=——=. (24)
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Note that now botfT andn are independent variables and only in the equilibrium limit the particle
number density depends exclusively on the temperatural(T) (see comments aboydt must

be stressed that the Stefan—Boltzmann equation together with an ideal gas equation(ofitstate

n o« T3) impliesIT=0. So we conclude that out of equilibrium we are forced to adopt one of the
two possibilities:(i) a power-law forT with no dependence om at all; (ii) an ideal gas equation

of state for the pressure togetherdaw, with n an independent variable on the same footing as
T. Both approaches will be considered in turn.

A. Potential law for the temperature

Using equation$2), (3), (6), (19) and(23) the equation governing the evolution of the Hubble
factor reduces to

Bt 211t 1) HA+ 2| 12 AlimH (3H*-A)a
FollrydmnIART S5 A
O VL S PN P 4 Y 1HH2—0 25
EiRT A A v 9
i. A=0
® m=1/2

As in Section Il only the case witly and ¢ fulfilling the restriction

y 3
5—5(2—7), (26)

is physically meaningful. In such instance there exists an infinity of stable fixed pdip)(
with h; an arbitrary positive real number. The phase portrait are parallel stable straight lines.
® m+*1/2

There are two fixed points, (0,0) antd,(0), in the intervam e [0,3)U(3,2), where

35(2_ ')’) 1/(1—-2m)
hl:(—) .

> @7)

Form=2 only the f,0) fixed point occurs, which we analyze next as nothing new arises about
the point (0,0).
Let us define the parameter

s _[v(2-a)+2a)?
2 8ayl(2-y)
For m<3—3,, the equilibrium point is an attractor in the phase sp@symptotically stable

focus. For 3— 3 ,<m< 3 we have asymptotically stable nodes instead. Finalyif1/2, the fixed
point is a saddle.

i. A>0
From Eq.(25) it follows the equation for the fixed points,
) Y ) A 1-m Y
(3h| —A) (—s hi —§ -3 1—5 hi :O, (28)
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where, as in the truncated case, only the solutions vanishing the big square parentheses make sense
from a physical point of view. Equatio(28) will be solved only for three different values of
m. In this case we must take into account the constr&@Bak.

® m=0

The fixed point is b5,0) with

36 y 1\/952 y\? 4A
A_T7 _ - - _ -
=g 1 2)+2 <A PR

Defining the two new parameters,

N 2(1— y/2)
23 = 2 —1.
1/a[1— al2+aly]*—2(1—y/2)
and
218 y\21+34
2 ’)’2 2 (233()2 1

we see that foA < A, the fixed point is an asymptotically stable node, whereadforA, it is an
asymptotically stable focus.
® m=1/2

The fixed point is

A \/ A/3
2 N1—(98%y*)(1—yI2)*>
SO

2y
S<——.
3(2—7)

Let us introduce

2y
So=55——(1-3)"2

For 6> 6y, (hA,O) is found to be an asymptotically stable node, howeves=ifs, it is an
asymptotically stable degenerate node, whereassfop, the fixed point is an asymptotically
stable focus. In the radiation case—iye= 4/3- §,<0 and the fixed point is a stable node.

® m=1
In this case
e
38(1— v/2)
Let us define the parameter
Y4 (1+23,)

373521 22
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For A> A 5 the fixed point is an asymptotically stable focus, andXet A 3 an asymptotically
stable degenerate node.
Finally, whenA <A ; we can distinguish two subcases. Defining

[
2321 22

we have a saddle point for
A<AY,
and an asymptotically stable node for
AF<A<A;.

B. Ideal gas equation for the temperature

In this section we shall study the specific behavior of the equilibrium points, making use of
the state equation®4). As neither particle production nor annilation occurggbeys the conser-
vation equation

n+3Hn=0, (29

which leads t; = R™3. The expression for the temperature,

3y=1 . ., A
T= e R(H -3/ (30)
whereny>0 is a constant, follows easily. Usin@), (3a), (3b), (4), (6) and (30) we get the
equation
. a AVIT™. (BH%—A)aly AN y HH?
_ 2_ A A 2_ _ _ A
H+<|H 3) H+ 5 5| H 3) 3(1 Z)H 6321 0.
(31)
i. A=0

We have the same fixed points as in the truncated thiesay equatioril7)].
In the caseam=1/2 the discussion runs along the same lines as that of the truncated theory.
After linearizing the system and introducing the parameter

a
23:4_72’

the following will be discussed. Fan< 3— 3.5 the eigenvalues are complex and the equilibrium
point is an attractofasymptotically stable foclisFor m= 3— 3 5 there is a bifurcation point which
is an asymptotically stable degenerate node. For1/2 one has a saddle point. Finally, if
3—33<m<1/2 the fixed point results an asymptotically stable node.
ii. A>0

Now the fixed points|fy,0) are again the same as in the full theory using a power law for the
temperature.

® m=0

For anyA >0 the fixed point is an asymptotically stable focus.
J. Math. Phys., Vol. 37, No. 6, June 1996
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® m=1/2

Defining

v 1
51=§ 1—2—’)/2,

we note that ifé lies in the interval 6< §< §; the fixed point is an asymptotically stable focus. If
o= 6, it is an asymptotically stable degenerate node, ant] # 6<y/3 an asymptotically stable
node for anyA >0.

® m=1

Let us define

,yZ
A4=§(1+ 223).

If A<y/36° then the fixed point is a saddle point, butyif3s°<A <A, it is an asymptotically
stable node. FoA = A, it is an asymptotically stable degenerate node, and\forA , an asymp-
totically stable focus.

1. Non-thermalizing condition for dissipative de Sitter expansion

i. A=0
From (5) and(2) one finds

Hi2m< s/a. (32

For the truncated and full theory using an ideal gas equatiof fitris condition reduces to
v>3a by virtue of (17). On the other hand, as the velocity of the viscous pulses, as well as the
speed of sound, cannot exceed the speed of light¥£2) we obtain the restrictions op and
a. If a lies in the range &a< 3, the two mentioned conditions amount tec<2; whereas if
1 <a<}these restrictions imply 8< y< 2. Finally, if 5<a<1, noy can fulfill both conditions.

For the full theory with a power law for temperature one obtains the restrigtiory, where

_ 6a
YeT3a12"

Two conditions must be fulfilled simultaneously by 1<y<2 andy>v,.. For 0<a<3, these
restrictions imply K y<2 (since y.<1); whereas fors<a<1 one has ¥ y.<y<2. So for
a<1 the full theory with a power law for temperature always holds.
i. A>0

Instead of(32) we now have

<H, (33

when a positive cosmological constant is present.

For the fixed point k',0) (that of the truncated theoryhe restrictions fory are the same that
in the truncated case with =0, whereas for the full theory the restricti¢d3), when applied to
the point mQ,O), coincides with that of the full theory using a power law for the temperature with
vanishingA.
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V. DYNAMICAL CONSEQUENCES

In this section we study the dynamical implications of linearizing the equatioi forhis
linearization allows one to obtain an analytical solutionR§t) near the equilibrium points. The
matrix L is given by(14) and the system of differential equations to solve is

X/ \Qu Qx
whereh=H—h; and X_EX—Xi=X being (;,X; = 0) the fixed points. EquatiofB84) can be
written as

h
x| (39

h—Qxh-Quh=0, (35
where in our modeP,=0 andPyx=1. The corresponding characteristic equation reads as

Qx* Q% +4Qy

+ =
A 2

which coincides with the equation for the eigenvalued ofWe perturb the system around the
de Sitter solution fot=0, i.e.,H(t=0)=h;+ €(0) and takeH(t=0)=¢€(0) as initial condition.
A. Saddle points and nodes

In the neighborhood of these points the discriminans positive and the eigenvaluas. are
real and different. Fodet(L)<0 one has a saddle point, and fbet(L)>0 a node. The solution

of (35) is
h=c,eM'+ce*-t,
with
€(0)—e(0)N _ €(0)—€e(0)\
N S U Ve

Upon integration, one has for the scale factor

R(t)=eMtexp : (36)

C1 ity L2 0
X, ettt N €
which shows superinflationary expansion if initial conditions are taken suctcihet are posi-

tive. This type of evolution foR(t) on time has been obtained previously in a different corftext.

In this case the fluid when submitted to a small perturbation, goes away from the equilibrium point
expanding much more rapidly than the de Sitter's. In the case of nodes, and when
N4 +A_=Qy is positive(negative, the node will be unstabléstable.

B. Attractors and repellors

We study here the behavior of the scale factor near a(sinkasymptotically stable attracjor
and a sourcéan asympoatically unstable repelloiThe solutions of the characteristic equation are
complex,

)

:Qxii\/m
—
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whereA=Q%+4Qy. Then the solution of35) is

Qx VIA
h=c,e72 'sin %(H Cy).

The integration constants can be determined through the initial conditions. They read as

Co= 2 tan ! «(0)VIa]
2 1Al 2€(0)— €(0)Qy
and
€(0)

Cl=—————.
Y sin (V[A]/2)c,

Integrating the equation fdr, one follows that

VIA[ JIAT

2c
! Q,sin > (t+c2)—\/|A|cosT(t+cz)

R(t)<eMtexp SN
X

. (37)

For Qx<0 we have an attract@the scale factor undergoes an oscillatory approach to the de Sitter
solution and forQx>0 it is a source, i.e., the scale factor deviates from the de Sitter solution.

C. Degenerate nodes
In this caseA =0 and\ , =X\_=\=Qy/2. The solution of(35) is
h=c,e+ c,teM.
Because of the initial conditions the integration constants are
c;=€(0), andc,=e(0)—\e(0).

Integration of the expression fdr leads to

eM 1
R(t)~ehitexp[T( 6(0)+(é(0)—)\e)(t— Km (39)

henceR(t) approaches to or separates from the de Sitter solution depending on the sighhef
rate of evolution is faster than in the de Sitter case.

D. Energy conditions

The weak energy conditiofWEC) states thatT,,,WWP=0, where T,, is the energy-
momentum tensor given bil) and W? a generic timelike vector. In our model this condition
reduces to

p+A=0. (39

The dominant energy conditidiDEC) imposesT ,,WAWP=0 and— T3°W, to be a non-spacelike
vector which is equivalent t&,,=|T,,|.2% This conditions is fulfilled in our case solely if

—psp+II<p+2A. (40
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Finally, the strong energy conditit$EQ requires thafl ,,WAWP+ 3T2=0 which amounts to
p—2A+3p+3I1=0. 47
These conditions can be rewritten in terms-bfandH as

WEC: H2=0,
SEC: H2+H=0,
DEC: H<0 and H2+H=0.

As occurs in the standard inflationary scenarios the de Sitter solutions\v#th satisfy the
WEC and DEC but not SEC.

VI. CONCLUSIONS

We have carried out a detailed analysis on the stability of de Sitter and static cosmological
models, both in the truncated and full theory for the viscous transport equatittnand without
a cosmological constantWe have shown that the conditions for the hydrodynamic approach and
the nonthermalizing condition in a de Sitter expansion can be fulfilled simultaneously for suffi-
ciently early times. Whemo cosmological constant is considered the stability analysis for the de
Sitter solutions leads to similar results in all the cases, i.e., the modelanatableonly for
m>1/2. It is remarkable that this result holds for both the truncated and the full version of ET. On
the other hand, when positivecosmological constant is included we see that the models can be
stable form=1 if A is bounded from below. It remains to be proved that this result holds for a
genericm>1/2 other than 1.

We have stressed the fact that for a radiation gas a different thermodynamic approach exists,
depending on whether the particle number density is taken as an independent variable or not. In
the case of a power-law for the temperature it exists a relationship betweedr.
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