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1. Introduction and description of main results. We are interested in the effects
of diffusivity and chemotaxis on the competition of several species for a limited resource.
Dilfusivity of cells is also called motility in some engineering literature. Chemotaxis is
the oriented movement of cells in response to the concentration gradient of chemical
substances in their environment. It is "anti-diffusion". It was observed experimentally
and numerically (see [LAK, LC] and the references therein) that motility and chemotaxis
of cells play a dominant role in the cell growth: when several species of cells compete
for a limited resource, the species with smaller diffusion rate and larger chemotaxis rate
enjoys better growth, even when the other species have superior growth kinetics.

To elucidate this effect of cell motility and chemotaxis on population growth, Lauf-
fenburger, Aris and Keller [LAK] proposed a model of a single bacterial population in a
1-dimensional medium of finite length with growth limited by a nutrient diffusing from
an adjacent phase not accessible to the bacteria. Their model is (in the dimensionless
form):

(1.1)

Ut = Uxx - f(u)v, 0 < x < 1, t > 0,
Vt = (Aur - xvc/>'(u)ux)x + (fc/(w) - 9)v, 0 < X < 1, t > 0,

ux(0,t) = 0, ux(l,t) = h(l - u(l,t)), t > 0,
^ \vx — \v(j)'{u)ux =0, x = 0,1, t > 0.

Here u is the concentration of the nutrient and v the density of the bacteria, /(it) is
the consumption rate of the nutrient per cell; the term (kf(u) — 9)v in the v-equation
represents that the bacteria have a Malthusian growth with kf(u) and 9 measuring
the respective birth and death rates. — ux and — \vx are the random flux of u and v
respectively, while xv(t>'(u)ux is the chemotactic flux of v, where A > 0 and x > 0 are
constants; the total flux of v at the boundary points x = 0 and 1 is zero; this is true for
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u at x = 0, but at x = 1, u is diffused into the medium. In the adjacent phase (which is
the interval (1, oo)), u = 1, which must also be an upper bound for u inside the medium,
and therefore we are interested only in solutions with 0 < u < 1.

Prom biological and technical considerations, we require / and 0 satisfying

/(0) = 0, f'(u) > 0 and 4>'(u) >0 on [0,oo),

/ £ C3([0,oo)) and (j> e C5([0, oo)).

In [LAK], 4>{u) is taken to be u. Numerical calculations on steady states of (1.1) (with
4>(u) = u, x proportional to A) led the authors of [LAK] to the following observations:
(i) random motility A leads to decreased cell population f0 v(x)dx. (ii) chemotaxis

coefficient \ acts to increase J* v(x)dx.
Zeng [Z] studied the existence of positive steady states of (1.1), proving that they exist

if and only if 0 < 9 < kf( 1). Wang [W] (i) investigated the effects of large or small A or
X on these positive steady states, supporting and adding to the observations in [LAK];
(ii) did so when the bacteria have a logistic growth type (which was not considered in
[LAK]), discovering that large x drives the population to extinction; (iii) studied the
stability of steady states and boundedness of global solutions.

In this paper, we consider the situation of two species of bacteria competing for the
same nutrient, where the growth kinetics of both species are identical but their motility
and chemotaxis coefficients are different. The interest is in the possibility of "competition
exclusion" and stable coexistence, attributable solely to motility and chemotaxis. Let the
competing species have density function w, and to focus solely on the effect of motility
and chemotaxis, we assume that both species have the same consumption rate of the
substrate, and the same birth and death rates. The model is

ut = uxx - f{u)(v + w), 0 < x < 1, t > 0,
vt = (AiUr - Xiv<t>'(u)ux)x + (kf(u) - 9)v, 0 < x < 1, t > 0,

wt = (A2wx - X2w4>'{u)ux)x + (kf(u) - 9)w, 0 < x < 1, t > 0, (1.3)
«x((M)=0> ux(l,t) = h(l-u(l,t)), t> 0,
Aifx - Xiv4>'{u)ux = 0 = X2wx - X2Wfp'(u)uX) x = 0,1, t > 0.

The existence, uniqueness, and boundedness of global-in-time solutions of (1.3) can
be established as in the case of (1.1). This is also true for the stability/instability of
the trivial steady state (1,0,0): it is globally asymptotically stable if 9 > kf( 1), and
unstable if 0 < 9 < kf( 1). In particular, if 9 > kf( 1), the only nonnegative steady state
of (1.3) is the trivial one. See Theorems 2.1 and 2.2 for the precise statements.

Now fix 9 £ (0, fc/(l)). Then the existence result [Z] yields two semitrivial steady
states (u(x), 0, w(x)) and (u(x), v(x), 0). Our next set of results aims at giving the ranges
for the motility and chemotaxis parameters Ai,A2,Xi> and X2 so that one species can
wipe out the other, or they coexist in a stable equilibrium. In loose terms, they may be
summarized as follows:

Let Ai > 0 and xi > 0 be fixed.
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(Ri) For (A2j X2) in Regions A and B (including the boundaries but excluding the
point (Ai,Xi) and the X2~axis), there exist no positive steady states of (1.3). This is also
true if X2 is large enough (with respect to A2). See Theorems 3.1 and 3.3.

(R2) For (A2,X2) in Region A, {u{x),0,w(x)) is unstable, and if (u(x),w(x)) is locally
asymptotically stable with respect to the single species dynamics (that is, (1.3) with
v = 0), which is proved to be true for 9 close to kf( 1), then for (A2,X2) in Region B,
{u(x),0,w(x)) is locally asymptotically stable. See Theorem 4.1.

(R3) There exists an increasing curve — x(A2), Ao < A2 < 00 as shown such
that (i) for (A2,X2) above the curve, or 0 < A2 < A0, or A2 = Ao and X2 > 0,
(■u(a:),u(:r),0) is unstable; (ii) if 0 is less than but close to kf( 1), then for (A2,X2)
below the curve, (u(x), v(x), 0) is stable; moreover, for each fixed A2 > Ao, there exists a
continuum C of positive steady states (A2, (u, v, w)), joining two semitrivial steady states
((x(A2); (w, v, 0)) and (x2°, (u, 0,w)). See Theorems 4.6 and 5.6.

(R4) The positive steady states (x2, (u,v,w)) near (x(A2), (u, v,0)) are locally asymp-
totically stable and satisfy x(A2) < X2 if # is close to kf{ 1) and A2 ̂  Ai. See Theorem
6.13.

When the semitrivial or positive steady states are stable, we suspect that they are
actually globally stable. These results indicate that (i) for (A2, X2) below the curve
X2 — x(A2)i the coexistence of the competing species is impossible and the w-species
survives and the w-species gets wiped out; (ii) the stable coexistence is possible if X2
is larger (slightly, but not too much) than x(A2); (iii) if X2 is too large, the w-species
prevails against the w-species by wiping it out.

Our study in (1.3) is motivated by [LC], where (i) both xi and X2 are taken to be
zero, (ii) the boundary condition of u at x = 1 is of Dirichlet type, (iii) and different
consumption and birth rates, with f(u) being a step function, are also assumed. Since
f(u) is assumed to be a step function, explicit formulas for the steady states are obtained.
No stability analysis of steady states (trivial or nontrivial) was given.

To our knowledge, the global stability of steady states, due solely to the effect of
diffusion, is established only in [DHMP] (for the Lotka-Voltera competition model with
nonhomogeneous habitat). The story is that when the comparison principle applies (so
the system is monotone), then it is possible to establish the global stability of semitriv-
ial steady states; when the system is not monotone (such as in our case) or a small
perturbation of such, the global stability still remains an open problem.
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2. Global solutions in time and stability of the trivial steady state.

Theorem 2.1 (Global Existence and Boundedness). For any uo, vq, and wo in H1(0,1)
satisfying 1 > uq > 0, vq > 0, ^0, wq > 0, ^0 on [0,1], (1.3) with the initial condition
(u,v,w)\t=o = (uo, vo, wo) has a unique positive global-in-time solution (u,v,w) such
that

(i) (u(;t),v(;t),w(;t)) 6 C([0, oo), H1 (0, 1) X ̂ (0,1) X
(«,»,»)eC1+£([o.i] x (°'°°));

(ii) 0 < it < 1, v > 0 and w > 0 are bounded on [0,1] x (0, oo).

Theorem 2.2 (Stability of Trivial Steady State), (i) Suppose kf( 1) < 9. Then in the
L°°-topology, (u,v,w) = (1,0,0) attracts every positive solution of (1.3) with the initial
value satisfying the condition in Theorem 2.1. Moreover, if kf( 1) < 9, then

K-,t)||oo + |m-,t)||oo < Cexp((/c/(l) - 0)t), t > 0,
||1 - u(-,i)||oo < Cexp(— min(a, 9 - t > 0,

where a is any number less than the first eigenvalue of —d2/dx2 with the boundary
condition u'(0) = 0 = u'{ 1) + hu( 1).

(ii) Suppose kf( 1) > 9. Then (u,v,w) = (1,0,0) is unstable in the L°°-topology.

These two theorems can be proved by slightly modifying the proofs for the single
species case (see Theorems 4.8 and 5.1 in [W]).

3. The nonexistence of positive steady states. The nonnegative steady states
of (1.3) satisfy

u" = f(u)(v + w), x £ (0,1),
(Ai</ - xi ft(u)u'v)' + (kf(u) -9)v = 0, x e (0,1),
(\2w' - X2<P'(u)u'w)' + {kf(u) - 0)w = 0, 16(0,1),
m'(0) = 0, u'( 1) = h( 1 — w(l)),

-^l^' - X\4>'{u)u'v — 0 = A2w' - X2<f>'(u)u'w, x = 0,1,
u > 0, v > 0, w > 0, x € [0,1].

Theorem 2.1 implies that the only solution of (3.1) is the trivial one (u, v,w) = (1,0,0)
if 0 > kf(l).

From now on, we assume 0 < 9 < kf( 1).

Theorem 3.1. Let Ai > 0 and xi > 0 be fixed. For (A2,X2) in the Regions A and B
(including the boundaries except the point (Ai,xi) and X2-axis), (1.3) has no positive
steady states.

Proof. We argue by contradiction. Suppose (u,v,w) is a positive solution of (3.1).
Then 0 < u < 1 on [0,1], u' > 0, v' > 0, w' > 0 on (0,1).

Let

Zl =t,e-xi*(«)Mi, and Z2 = we~X2,t'{u)IX2. (3.2)
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Then

+ {kf(u) - 0)z\eXi^u^Xl =0, 16 (0,1),

A2(z2eX20(u)A2)' + (kf{u) - d)z2e^u^X2 =0, x € (0,1), (3.3)

k2,1(0) = 2i(l) =0 = 4(0) = 4(1).

Since (kf(u) - 9)zieXl^u^Xl dx = 0, and f(u(x)) is increasing, z[ > 0 on (0,1).
Similarly, z'2 > 0 on (0,1).

Multiplying the zi-equation in (3.3) by z2 and integrating by parts, we have

fJ o
[—AieXl^(")/Al44 + (kf(u) - d)eXi*^Xlzlz2] dx = 0. (3.4)

Multiplying the z2-equation by z\e^~^^u\ we have
f> 1 XX

/ [-A2ex^(")/A24(^e(^_^)<A(u))' + (kf(u) - 9)eXl<Ku)/XlzlZ2]dx = 0. (3.5)
J 0

Subtracting (3.5) from (3.4), we obtain

(A2-A1 )J z[z'2ex^u^^ dx + A2 ̂  J z'2Zl<t>'{u)u'ex^uVXldx = 0. (3.6)

But for (A2, X2) in Regions A and B, both terms in (3.6) either have the same sign, or
one is zero while the other is not. This completes the proof of Theorem 3.1. □

Remark 3.2. If (Ai,xi) = (A2,X2); (3-1) has infinitely many positive solutions
(u, av, (1 — a)v), where a is an arbitrary constant in (0,1).

Theorem 3.3. For fixed Ai > 0, A2 > 0, and xi > 0, (1.3) has no positive steady states
for x2 large.

Proof. Suppose there exists a sequence of \2 —> 00 such that (3.1) has a positive
solution (u,v,w). Since 0 < u < 1 and u' > 0 is bounded on [0,1], there exists a
subsequence of \2 —1• such that u —> some u00 in C°[0,1].

Adding the f-equation and w-equation in (3.1), we have

9 / (1> + w)dx — k / f(u)(v + w)dx
Jo Jo (3.7)

= ku'(l) = kh{ 1 — w(l)) < kh.

From this and the fact that v' > 0, w' > 0 in (0,1), it follows that v and w are bounded
on any [0,1 — <5], 6 > 0 small. In fact, by Lemma 2.2 of [W], v is bounded on [0,1] as
X2 —> 00. Thus u'(x) = fQ f(u)(v + w)dx is equi-continuous on [0,1 — 5] and hence

u > Uqq in C*ioC[0,1) fl C°[0,1]. (3.8)

Since

Ait/(x) = xiu'(x)<j>'(u(x))v(x) + [ (kf(u) - 9)vdy, (3.9)
Jo

by (3.8), we have

v —> some Voo in C/^O, 1) n C°[0,1], (3.10)
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By the fact that w is increasing and bounded on [0,1 — <$] and by Helly's Theorem, we
have that after passing to a subsequence,

w —> some Woe pointwise on [0,1). (3-11)

Now we see that uac and satisfy

u'oo(X) = fo f(uoo)(Voc + Woo)dx, x G (0,1),
<4>(0) = 0, u'00{l) = h(l-u00{l)),

i^iv'oo - Xl"'oo0/(uoo)VooY + (kfiUoo) - 9)vx = 0, X E (0, 1),

^lV,oo-Xlu'oo<f>'(uoc)Voc=0, X = 0, 1.

(3.12)

Here ^(1) and u^(l) are defined by the left-hand limits at x = 1. Integrating the
w-equation in (3.1) twice, we have

\2(w(x) — w(0)) — xi / u'(x)(f>'(u(x))w(x)dx
Jo

+ f f (kf(u(r)) - 9)w(r)dT dy = 0. (3.13)
Jo Jo

Dividing this by X2 and then sending it to infinity, we see that

u'oc(y)<P'{uoc{y))wxl{y)dy = 0
/J 0

and hence

u'^x)^ (u0c(x))ii»oo(£) = o, for X e (0,1). (3.14)

Note that Uooi^oo, and are nondecreasing on [0, 1]. We claim that to00 = 0 on [0, 1).

Otherwise, there exists xo £ [0,1) such that u>oo > 0 on (xq, 1). Then (3.14) implies that
u'qq = 0 on (xo, 1) and hence on [0,1). On the other hand, w^(l) = h( 1 — w^l)). So
Woo e 1 on [0,1]. This contradicts (3.8) and the assumption 9 < kf( 1) and the fact

1.1

(kf(u) — 9)vdx = 0. (3.15)
/Jo

We now claim that Voo > 0 on [0,1]. If not, by the strong maximum principle and the
Hopf boundary point lemma, we see that vx = 0 on [0,1]. Therefore, e 1 on [0,1],
which is again impossible.

Using the notation in the proof of Theorem 3.1, we are going to show a contradiction
to (3.6) for \2 large. By (3.3), we have

0 < AieXl,Ku{x))/Xlz[(x) = - f (kf(u) - 0)zleXl4>(u)/Xl dy
Jo

< Ox Zl{x)ex^u{x)),Xl,

and hence

0 < z[(x) < — x z\(x), x£ (0,1). (3.16)Ai
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Since > 0 and Voo > 0 on [0,1], we see that

px nx

u'(x)= / f{u)(v + w)dy> / f(u)vdy > C\x, x G (0,1), (3.17)
Jo Jo

where C\ is a positive constant independent of \'i-
Inequalities (3.16) and (3.17) contradict (3.6) for \2 large. This completes the proof

of Theorem 3.3. □

4. Stability and instability of semitrivial steady states. As mentioned before,
by the existence result of [Z] in the single species case, (1.3) has semitrivial steady states
(u,v,0) and (u, 0,w). If 9 is close to fc/( 1), by [W], (u,v) is unique and is locally
exponentially asymptotically stable in the H1(0, l)-topology with respect to the single
species dynamics (that is, with respect to (1.3) with w = 0). The same is true for (u,w).
For 9 not close to kf( 1), the uniqueness and the stability of (u,v) and (u,w) are not
known.

In the sequel, we use (u, w,0) (and (u,0,w)) to denote any semitrivial steady state of

(1.3).

Theorem 4.1. For in Region A (including the boundary except point (Ai,xi)),
the semitrivial steady state (u,0,w) is unstable in the H1(0, l)-topology, and if (u,v) is
locally exponentially asymptotically stable with respect to the single species dynamics,
then so is (u, v,0). The same is true in Region B if we exchange (u, 0,w) and (u,v, 0).

Proof. Linearize (3.1) at (u, 0, w). By the principle of linearized stability [S, Theo-
rem 5.3], to show the instability of (u, 0,w), we only need to show the existence of an
eigenvalue, with positive real part, of the following eigenvalue problem:

u" - f'(u)uw - f(u)(v + w) = ryu, x e (0,1),
u'(0) = 0 = u'(l) + hu( 1),

(Ait;' - xi4>'{u)y!v)' + {kf(u) - 9)v = rjv, x e (0,1),
Ai«' - (u)u'v = 0, x = 0,1, (4.1)
(X2w' - xi4>'(u)u'w - X2<f>'(u)u'w — X2<A"(m)m'wu)'

+{kf{u) — 9)w + kf'(u)uw = r]w, x € (0,1),
A2w/ - X2(f>'(u)u'w — X24>'{u)u'w - X2(j)"(u)u'wu = 0, X = 0, 1.

If (4.1) with v = 0 has an eigenvalue with positive real part, then we are done. So we
assume that all the eigenvalues of (4.1) with v = 0 have real parts no bigger than 0.

Consider the ^-eigenvalue problem embedded in (4.1).
Let z = ve~Xl<p^/Xl. Then this eigenvalue problem is equivalent to the following:

JAi(z'e*1^)/*1)' + (kf(u) - 9)zex^^lXi = Z) x e (0, i)j

\2'(0) = 0 = ■z'(l). (4'2)
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The eigenvalues are real and can be characterized by the standard minmax procedure.
In particular, the largest eigenvalue is given by

f(UXi(z')2 - (kf(u) - 0)z2)e*^/Xl dx
rji = - inf — = ,

zetf^o.i) f1 z2exi0(«)/Ai dx
z=£ 0 J0

and the associated eigenfunction z\ must be of one sign, which we take to be positive.
As before, it is easy to see that z[ > 0 in (0,1).

If r]i < 0, we reach a contradiction as follows. In (3.2), replace w by w. Then we have
(3.6) with "=" replaced by "<", which is impossible for (Ag, X2) in Region A, including
the boundary, except point (Ai, Xi)• Thus r/1 > 0.

Now let v\ = z\eXl^-^Xl. Since the real part of all the eigenvalues of (4.1) with v = 0
is assumed to be nonpositive, by the Fredholm alternatives, (4.1) with r) = rji and v — v\
has a unique solution {u\, V\, Wi). This means 771 > 0 is an eigenvalue of (4.1) and hence
(u,0,w) is unstable.

We now proceed to show the stability of (u,v, 0) for (^2^X2) hi Region A. Linearize
(3.1) at (u,v, 0) to obtain the following eigenvalue problem:

u" — f'(u)uv — f(u)(v + w) = T]U, x £ (0,1),
u'( 0) = 0 = «'(1) + hu( 1),
(Ai^' — xi u'(j)'{u)v — xi <j)'{u)u'v — X\<t>" {u)u' vu)'

+kf'(u)vu + [kf{u) — 9)v = r)v, 16 (0,1), (4.3)
(A2U/ — X2u'<t>'(u)w)' + (kf(u) — 9)u> = T]W, x £ (0,1),

Xiv' — xi u'<t>'(u)v — xx'P' {u)u' v — xi 4>"{u)u'vu = 0, x = 0,1,
A2II)' — X2 u'4>'(u)w = 0, X = 0,1.

Since (u, v) is assumed to be exponentially stable with respect to single species dy-
namics, the real part of all eigenvalues of (4.3) with w = 0 is negative. We need only to
show that the largest eigenvalue of the w-eigenvalue problem in (4.3) is negative. Denote
this eigenvalue by rj* and let z = we~X2^u^^2. Then z satisfies

J A 2(z'ex^(fi)/^)' + (kf(u) - d)ze^n^X2 = rfzeX^W/*2, x e (0,1),
|z'(0) = 0 — z'{l).

As in the case of r)\, we can show if* < 0 for (A2, X2) in Region A, including the boundary
except the point (A;, xi)■ Theorem 4.1 is proved. □

We shall show that there exists a curve that divides the first quadrant of the (A2, X2)-
plane into two parts such that for (A2,X2) in one part, (u,v,0) is stable; while in the
other, it is unstable. To this end, we need to study the dependence of 77* on (A2,X2)• V*
is given by

fni^iz')2 — (kf(u) - 6)z2)eX2^u^x'2 dx
v* = - inf JoV A ; 1  — • (4-5)

zEH1 (0,1) r z2eX2<t>(u)/X2 dx
z=£ 0 JU

Lemma 4.2. rj* is a continuous function of (A2,X2) £ (0,00) x [0,00); it is increasing in
X2 and decreasing in A2.
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Proof. The continuity of i)* is easy to prove by using a standard argument. Let
V{1) = and rf2) = x^)-

Let Zi and z2 be the positive eigenfunctions of (4.4) corresponding to f/1' and rf*\
respectively. Then z[ > 0 and z'2 > 0 on (0,1) and the following analog of (3.6) holds:

(42) - A*1') £ dx + X? ^ ^

x f z'2z\u'cj)'(u)eX2 >(^(u)/a2 1 dx = (7/1) — rf2)) f dx. (4.6)
Jo J 0

From this, the desired monotonicity of r/* follows. □

Lemma 4.3. For fixed Ai, A2 > 0 and xi > 0, if > 0 if X2 is large.

Proof. Let V = ve~Xl^u^'Xl and z2 be a positive eigenfunction of (4.4) with rj = rf.
Then we have the following analog of (3.6):

rf f Vz2ex^'Xi dx = \2 (^ [ z2Vu'(f>'(u)eXl^a^Xl dx
Jo \*2 J Jo

+ (Ai-A2) f V'z'2ex^'^dx. (4.7)
Jo

On the other hand, we have the analogs of (3.16) and (3.17), which combined with (4.7),
lead to rf > 0 for \2 large. The proof of Lemma 4.3 is complete. □

By the proof of Theorem 4.1, rj*(\2,X2) < 0 for (A2,X2) in Region A, including the
boundary, except the point (Ai,xi); in particular, if xi > 0, 77*(A2,0) < 0 for A2 > Ai,
and if xi = 0, 77*(A2,0) < 0 for A2 > Ai and 77*(Ai, 0) = 0.

Define

A0 = inf{A2 > 0 | 77*(A2,0) < 0}. (4.8)

Lemma 4.4. A0 > 0.

Proof. Suppose xi = 0. Then Ao = Ai because 77* (Ai, 0) = 0 and rf is decreasing with
respect to A2.

Now suppose Xi > 0. Observe that {V as given in the proof of Lemma 4.3)

♦ f foMz')2 ~ (kf(u)-6)z2)dxV (A2,0) = — inf -y -j—— ,
z£H\0,1) Lz2dx

0 J0

> - Jo h[(Vex^W/2Aiy]2 dx + fg(kf(u) - e)V2ex^^'x^ dx
f^(Vex^)/2X^2 ^

The second integral in the numerator is equal to fg Ai(V')2eXl^^u^Xl dx (see (3.3)).
Thus if A2 is small, 77* (A2,0) > 0, Ao > 0. The proof of Lemma 4.4 is complete. □

Lemma 4.5. There exists a continuous increasing function = x(^2), Ao < A2 < 00
such that (i) 77* (A2,x(A2)) = 0, (ii) the graph of \2 — x(A2) is strictly above Region A
if A2 > Ai and strictly below Region B for Aq < A2 < Ai.
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Proof. By Lemmas 4.2-4.4, for any A2 > Ao, there exists a unique x(A2) such that
??*(A2>x(-^2)) = 0. By the continuity of 77* on (A2,X2)> x(^2) is a continuous function of
A2 > A0. Since ?7*(A2,X2) is negative for (A2,X2) in Region A (including the boundary
except (Ai,Xi)) and positive for (A2, X2) in Region B, we have (ii). The proof of Lemma
4.5 is complete. □

Theorem 4.6. For (A2,X2) above the graph of \2 — x(A2), or 0 < A2 < Ao, or A2 = Ao
and X2 > 0, 0) is unstable in H1(0,1). For (A2,X2) below the graph, (u, v,0) is
stable in i?1(0,1), provided (u,v) is stable with respect to the single species dynamics
(i.e., (1.3) with w = 0).

Proof. As in the proof of Theorem 4.1, to show the instability and stability, all we need
to show are (i) r?*(A2, X2) > 0 for (A2, x2) above the graph of X2 = x(^2)> or 0 < A2 < Ao,
or A2 = A0 and X2 > 0; (ii) rf{A2,X2) < 0 for (A2,X2) below the graph of X2 = x(^)-
These follow from the definitions of x(A2) and Aq and from Lemma 4.2. □

5. Bifurcation of positive steady states. In this section, we prove the existence
of positive solutions of (3.1) that bifurcate from the semitrivial solution (u,v, 0); X2
will be the bifurcation parameter. We shall show first that local bifurcation occurs at
X2 = x(^2) for each fixed A2 > A0. We substitute u and v in (3.1) by u + u and v + v,
respectively. The resulting system can be written as

u" = F°(u, v, w) — u", x G (0,1),
(^41(u,i;))' + Fx(m, u) = 0, x G (0,1),

(A2(u,w))' + F2(u, w) = 0, x G (0,1), (5.1)
u'( 0) = 0 = u'{ 1) + hu( 1),
Ax(u, v) = 0 = A2(u, w), £ = 0,1,

where F°(u, v, w) = f(u + u)(v + v + w), FJ(u, v) = (kf(u + u) — d)(v + v), F2(u, w) =
(kf(u + u) — 0)w, Al(u, v) = Xi(v + v)' — Xi(" + u)'<f>'(u + u)(v + v) and A2(u, w) =
A2W' - X2(w + u)'<f>'(u + u)w.

For the time being, we extend / and (f) so that they have the same regularity over
(—00,00) as mentioned in (1.2). We now convert (5.1) to "integral" equations.

Note u" = F°(0,0,0) and F°(u, v, w) = F°(0,0,0)+VF°(0,0,0)-(u, v, w)+Ri(u, v, w),
where R\ is a "higher-order term". Let K\ be the inverse of —d2/dx2 with the u-boundary
condition in (5.1).

Let X = C1+Q[0,1]. Then K\ : Ca[0,1] —> X is linear and compact. The u-equation
in (5.1) is equivalent to

u + Ki[f(u)(v + w) + f'(u)vu] + KiR\(u, v, w) = 0, (5.2)

where (u, v, w) G X3 = X x X x X and K1R1 : X3 —> X is C2 smooth and compact with

WKxRxiu^,™)]]* = 0(||(it,v,w)||x3), as ||(w,w, w)||X3 -> 0.
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Now we convert the ^'-equation in (5.1). Linearize both A1 and F1 at (u, v) = (0,0):

A1 (u, v) = A1 (0,0) + [^(„jt)) (0,0)] (u, v) + S1 {u, v)

= A^O, 0) + (Aii;' - xiu'4>'{u)v - Xi<t>'(u)u'v - xi<p"(u)u'vu) + S1(u, v),

F1(u, v) = F1(0,0) + V-F^O, 0) • {u,v) + T1{u,v).

When we differentiate /I1 (it, v) with respect to x, we have some terms with u" as their
factors. In such a scenario, we use the u-equation in (5.1) to replace u" by F°(u, v, w) —
F°(0,0,0). Now the u-equation in (5.1) can be rewritten as

(AiV — \i u' 4>'(u)v)' — x\ [(u'v<fr" (u)u)' + (v4>'(u))'u' + v<p' (u)(f(u)(v + w)

+ f'{u)vu)] + [kf'(u)uv + (kf(u) — 9)v] — R2(u, v, w) = 0, (5.3)

where

||ft2(w,u,w)||c«(o,i] = 0(||(u,v,u;)||x3) as ||(u, v, w)||X3 -> 0.

For any jgX, let K2g be the unique solution of

U-Xiv' + xiu'(p'{u)vy + v = g, x6(0,l),
| — Ait/ -I- xiu'<t>'(u)v = 0, x = 0,1.

Then K2 : Ca[0,1] —> X is linear and compact. For any (it, v) € X x X, let B\(u) be the
unique solution of

+ xiu'<t>'{u)z)'+ z = 0, 16(0,1), ^
Aiz' + Xi u'cp'(u)z = xi <i>'(u)vu! + Xi <p"(u)u'vu, x = 0,1;

let B2 (u, v) be the unique solution of

((-Mz' + xiu'<j)'(u)zy + z = 0, are (0,1),
Xiz' + xi u'4>'(u)z = — S1(u, v), x = 0,1.

Then B\ : X —» X is linear and compact, and B2 : X x X —> X is C2 smooth and
compact and \\B2(u, i>)||x == 0(||(tt, i>)||x2) as ||(it, f)||x2 —► 0. Now the ^-equation and
the w-boundary condition in (5.1) can be written as

v — K2v + xi K2[{v<t>'(u))'u' + (u'v<p"(u)u)' + v<j>'(u)(f(u)(v + w) + f'(u)vu)]

- K2[kf'(u)vu + (kf(u) - 9)v] + K2R2{u,v,w) + Bi(u) + B2{u,v) = 0, (5.7)

where (u, v, w) € X3 and the only nonlinear terms in (5.7) are B2(u, v) and K2R2(u, v, w).
We now convert the u'-equation in (5.1). Observe

A2(u, w) = X2W' — X2u'4>'(u)w — X2[(" + u)'<j)'(u + u) — u'cf)'(u)\w

= A2w' - X2u'4>'(u)w - X2s2{u,w),

F2(u, w) = (kf(u) — 6)w + T2(u, w),
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where S2 and T2 are higher-order terms. Now the w-equation can be written as

(X2w' - x(A2)u'<j>'{u)wy + (x(A2) - X2)(u'4>'{u)w)'

+ (kf(u) - Q)w + T2(u,w) - X2(S2(u,w))' = 0.

Again, when differentiating S2 with respect to x, we have some terms with u" as their
factors, which we replace by F°(u,v,w) — -F°(0,0,0). Then

||(52(w,w))'||Ca[0,i] = 0(||(w, W)llx2), as ll(w,w)||X2 -> o.

Obviously, ||T2(m, w)||c«[o,i] = °(ll(u> w)||^2).
Define K3g by replacing in (5.4) Ai and xi by A2 and x(A2), respectively; define B3(w)

by replacing in (5.5) Ai by A2, Xi by x(A2), and the right-hand side of the boundary
condition by u'<f>'(u)w; define B±{u,w) by replacing Ai, xi> and — S1 by A2, x(^2) and
S2(u,w), respectively. Then K3 : Ca[0,1] —> X and B3 : Ca[0,1] —* X are linear and
compact; B4 : XxX —> X is C2 smooth and compact, with ||i?4(tt, u>)||x = 0(||(u, w)||^2)-

Now the u>-equation can be converted to

w - K3[(kf(u) - 0)w + w] + (X2 - x(^))K3[{u'4>'(u)w)'] - K3T2(u, w)

+ X2K3[(S2(u, w))'] + (x2 - x(^))B3(w) + X2B4(u, w) = 0, (5.8)

where (u, v, w) € X3.
Let F(\2, (u,v,w)) be the vector in X3, defined by the left-hand sides of (5.2), (5.3),

and (5.8). Then (5.1) is equivalent to

F(\2, (it,v,w)) = 0, (w, v, w) € X3. (5-9)

Observe F(x2, (0, 0, 0)) =0 and, by the regularity assumption on / and 0, F : R+ x
X —» X is C2 smooth.

We want to show, by using the Crandal-Rabinowitz Theorem, that a local bifurcation
of solutions of (5.9) occurs at (x2, (u, v, w)) = (x(A2), (0, 0,0)).

To this end, we have to show
(i) dimiV(F(U)t,(W)(x(A2), (0,0,0))) = 1 = codimR(F(Ui„iU))(x(A2), (0,0,0))).
(ii) FX2{UtV^w)(x{^2),{0,0,0)){uo,vo,w0) £ R(F(U)tMU)(x(A2), (0,0,0))),

where (u0,v0,w0) spans A^(i?(U)ViU,)(x(A2), (0,0,0))).
Since Jr,(ti,t),li,)(x(A2), (0,0,0))(u, v, w) is the linear parts of (5.2), (5.7), and (5.8),

(uo,vo, wo) satisfies (4.3) with 7/ = 0 and X2 = x(A2)-
From now on, we assume that (u,v) is locally asymptotically stable in H1(0,1). Then

since f?*(A2,x(A2)) = 0, a nonzero (uo,vo,Wo) exists and the set of such is one dimen-
sional, with w0 being the first eigenfunction of the ^-eigenvalue problem in (4.3) with
X2 = x(A2). Since .F(u,ujU,)(x(A2), (0, 0, 0)) is a Fredholm operator with 0 index, (i) is
verified.

Now we verify (ii). Observe that

FX2(u,v,w){x{^2), (0,0,0))(m0, vq, wo) = (0,0, K3[(u'<j>'{u)w0)'] + B3(w0)).
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If this is equal to F(UjVitu)(x(A2), (0,0,0))(w, v, w), then w — K^[{kf[u) — 9)w + w>] =
K3[(u'(f)'(u)wo)'} + Bz(wo), and hence

(A2u/ - x(^2)u'<p'(u)w)' + (kf(u) - 6)w
= -(u'4>'(u)w0y, x e (0,1), (5.10)

A2 w' — x{\2)u'4>'{u)w = —u'4>'{u)wq, X = 0, 1.

Let z2 — we-x(A2)0(M)/A2j _ u,oe-x(A2)0(«)/A2i Then they satisfy

(A2z'2ex^^/^)' + (kf{u) - 0)^2e^(A2)0(«)/A2

= -(u'<p'(u)w0y, i€(0,l), (5.11)
A24ex(A2)^(")/A2 = —u'<f>'( u)wq, x = 0,1.

(5.12)
j(AiW&exM+W/*')' + (kf(u) - 0)Woex(A2)0(")/A2, = 0, x G (0,1),

Wq = 0, x = 0,1.

Multiplying (5.11) by W0 and (5.12) by Z2 and integrating by parts, we obtain

- [ {u'<fr'(u)w0yW0dx = \2z'2ex^WX2Wo\l
Jo

[ u'4)'(u)w0Wo dx - u'(f>'(u)w0Wo\l = -u'<j>'(u)w0Wo\o,
Jo

j u'<j>(u)wqWq dx — 0.
Jo

This is impossible because w0 and Wq are of one sign; thus (ii) is verified.
Now the following theorem follows from [CR].

Theorem 5.1. Suppose (u, v) is locally exponentially asymptotically stable with respect
to single species dynamics. For each A2 > Ao, there exists an e > 0 and C1 smooth
functions \2 '■ (—£i,£i) —> R, (^>1,1P2, ̂3) : (—£i,£i) —> Z, where Z is a complement of
span (u0,v0,w0) in X3, such that X2(0) = x(A2), ^i(0) = 0 = ^2(0) = ^3(0) and such
that for r G (—£1, £1), u(r) = r(u0+ipi(r)),v(r) = r(v0+ip2(r)), and w(r) = r(w0+ip3(r))
satisfy (5.9). Moreover, all solutions of (5.9) near (x(A2), (0,0, 0)) are either on the curve
(X2{?) 1 (u{r),v(r),w(r)) or on (u,v,w) = 0.

Remark 5.2. By taking a positive wo (which we do from now on) and a small £j, we
see w(r) > 0 on [0,1] for all 0 < r < £4. Thus (u + u(r), v + v(r),w(r)) is a positive
steady state of (1.3) with X2 = X2(f) if 0 < r < £\.

We now want to extend the local bifurcation curve to a global one. Let C be the
maximum subcontinuum of the closure of the set of solutions of (5.9) with (u,v,w) 7^
(0,0,0), passing through (x(A2), (0,0,0)). Let C+ be the maximum subcontinuum of
the closure of C\{(x2(»"), (u(r), v(r), u)(r))| - £1 < r < 0}. Then by combining the
reflection arguments in [R, Theorem 1.27] and [BB, Theorem 3.2], we have that C+
either meets "infinity" or meets (x, (0,0,0)), where \ / x(^) and F(u,v,w){Xi (0>0,0)) is
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not invertible, or C+ contains a pair of points (x, (u, v, w,)) and (x, — (u, v, w)), provided
the following condition is met: there exists a small S > 0 such that

index (F(x(A2) - S, (u, v, w)), (0,0,0))
^ index (F(\{A2) + 6, (u, v, w)), (0,0,0)). (5.13)

To prove this, we observe that F(UiV<w)(x2, (0,0,0)) = I — T, where T is a linear compact
operator, and hence

index (F(x2, (u, v, w)), (0,0,0)) = (-l)p,

where p is the sum of the algebraic multiplicities of the real eigenvalues of T that are
greater than 1.

Lemma 5.3. There exists a small So > 0 such that if kf(l) — So < 9 < kf(l), then p — 0
for any 0 < X2 < x(A2), A0 < A2.

Proof. Let r/ > 1 be an eigenvalue of T in X3 and (u, v, its) be a corresponding eigen-
vector. Then

-Ki[f(u) + (V + w) + f'(u)vu] = T)U,
K2V - X1K2[(,v<p'(u))'u' + (u'v<p"(u)u)' + v<j>'(u)(f(u)(v + w)

+f'(u)vu)] + K2[kf'(u)vii + (kf(u) — 9)v] — Bi(u) = rjv, (5-14)
k3[{kf{u) - 9)w + w] - (X2 - x(A2))K3[(u'<p'(u)w)']

-(X2-x(^2))B3(w) = rjw.

In particular,

(r?A2w' - (X2 + (V- 1)x(A2))u'ft(u)w)'
+(kf(u) — 9)w + (1 — rf)w = 0, x £ (0,1) (5.15)

ri\2w' - (X2 + {V~ 1)x(A2))u'(t)'{u)w = 0, x = 0,1.

Let a = X2+(^-i)x(a2); £ = e-a<p(u)/a2?£,_ Then

f A2r?(f'ea^(s)/A2)' + (kf{u) -9+1- tj)zea<t>W/x* =0, x € (0,1),

jz'(0) = 0 = z'(l).

Multiplying both sides by z and integrating by parts, we obtain

0= [ [rj\2{z')2 - {kf{u) -9+1 -r,)z2]ea^n^X2dx
Jo

> [ \\2(z')2-(kf{u)-9)z1]ea^)/x*dx
J 0

> -77*(A2,a) [ £2ea0(u)/A2 dx > 0)
Jo

because a < x(A2) and hence by Lemmas 4.2 and 4.5, r;*(A2,a) < 0. Thus z = 0. Now
(■u,v) 7^ (0,0). But by the proof of Theorem 5.2 in [W], r) < 1 if 9 is close to kf{ 1)
(the closeness is independent of X2 and A2). This contradiction completes the proof of
Lemma 5.3. □

(5.16)
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Lemma 5.4. For each 9 € (fc/( 1) - <5o, kf( 1)), p = 1 if \2 is bigger and close to x(^2)-

Proof. As mentioned in the proof of Lemma 5.3, (5.14) has no solution with 77 > 1
and w = 0. Thus to show p = 1, we only need to show that the third component of
T, denoted by T3, has only one eigenvalue bigger than 1, which is also simple. T3 :
X —* X is linear and compact, depending continuously on \2- rl = 1 is an eigenvalue
of T3|X2=X(A2) with the corresponding eigenspace spanned by wq > 0. This eigenvalue
of T3|X2 =x(a2) is simple, as can be proved as follows. Suppose there exists w such that
(T Ix2=x(*2) — I)w = wq. Then we have

(A2w' - x(A2)u'ft (u)w)' + (kf(u) - 9)w
= (-X2w'0+x(X2)u'4>'(u)w0y+ w0, x € (0,1), (5.17)

A2w' - x(^2)u'<t>'{u)w = 0, x = 0,1.

Define z = we~x^2)<l>(u)/\2 _ Then

'+ (kf{u) - d)ze^X2^u^X2

= -Aa^e*^)^)/*2)' + x G (0,1), (5.18)

/(0) = 0 = z'(l);
where Wq is as defined above (5.11).

Multiplying (5.18) by Wo and (5.12) by z, we obtain Wo = 0, which is impossible.
Therefore, 77 = 1 is a simple eigenvalue of T3|X2=x(a2)-

By Lemma 1.3 of [CR], for close to x(-^2), in a small disk Dr( 1) on the complex
plane centered at 1 with radius r, T3 has only one eigenvalue rft which must also be
simple. Since T3 is real, r/i must also be real (otherwise, the conjugate of r/j is also an
eigenvalue in Z)r (1)). We now show 771 > 1. Let w be a corresponding eigenfunction
of T3, normalized by ||«)||l2(o,1) = IIu,o||l2(o,i)- Then it is easy to see that w —> ±u;o
in C1 [0,1] as \2 * x(^2)- So we may assume, without loss of generality, that w > 0.
Define z as in the proof of Lemma 5.3 (with 77 = 771). Then by (5.16), (5.12), and the
proof of Theorem 3.1, we have 771 > 1. Since T3|X2=x(a2) has no real eigenvalue bigger
than 14-7" (see the argument below (5.16)), the same is true for T3 if \2 is close to x(A2)-
This proves p = 1.

Now (5.13) follows from Lemmas 5.3 and 5.4.
For any (\2, (", v, w)) £ C+, let u = u + u, v = v + v. Then (u,v,u>) satisfies (3.1),

except that we do not know at this point that it is nonnegative. Define

S+ = {(x2,(w,^w))|(x2,(m,6,w)) <E C+}\{(x(A2), (w, v, 0))}.

Then S+ is a continuum in R x X3, either meeting "infinity", or (x, (w,w,0)) with x
x(A2), or containing a pair of points {\2, {u + u,v + v, w)) and (x2, {u — u, v — v, —w))-

Define

P+ = {(x2, (w, v, w)) £ R x X3|x2 > 0,1 > u > 0, v > 0, w > 0}.

Lemma 5.5. S+ is not entirely contained in P+ (but of course the part of S+ near
(x(A2), (w,v,0)) is).
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Proof. Otherwise, S+ meets infinity and any (X2, (u, v, w)) in S+ is a positive solution
of (3.1). It is easy to show that ||(u, v, u>)||x3 is bounded for bounded \2 > 0. This forces
the projection of S+ on the X2-axis to cover the interval (x(A2),oo), which means (3.1)
has a positive solution for every \2 > x(^2), contradicting Theorem 3.3. This proves
Lemma 5.5. □

By this result, S+ DdP+ is nonempty. For any (x2, (w, v, w)) £ S+ CidP+, there exists
a sequence (x£ > (u"> ""i wn)) in S+ C\P+ which converges to it as n —» oo. We claim that

1 > m > 0, v = 0 and w > 0 on [0,1], for (\2, (u, v, w)) E S+ D dP+. (5.19)

First we show 1 > u > 0. Otherwise, 1 > u > 0 and u = 0 or 1 somewhere on [0,1].
Then the strong maximum principle and Hopf boundary point lemma imply u = 1 or 0.
u = 0 is impossible because of the boundary condition at x = 1. u = 1 is also impossible
because J^(kf(un) — 6)wn dx, which is 0, would be positive for large n.

Now we show w > 0 on [0,1]. Otherwise, w = 0 on [0,1]. Then v must be posi-
tive on [0,1], for if not, v = 0. Then u" = 0 and by the boundary condition, u = 1
which is again impossible. Now by the uniqueness of the positive solution of (3.1) with
w = 0 for 9 close to kf( 1) (see [W]), u = u,v = v and hence u — 0 = v. Then
(un, vn, wn) = (un — u,vn — v, wn) ->0as n —» oo. Now in (5.9), substitute (%2> (u, v, w))
by (x?) (un,vn,wn)), then divide it by ||(un,i;n,u)n)||x3. After passing to a subse-
quence, (un,vn,wn)/\\(un,vn,wn)\\X3 -+ {uoo,Voo,Woc), where IKuqo, vx, Woo)||x3 = 1,

Woo > 0 on [0,1] and i?(u^iu,)(x2, (0, 0, 0))(uoo, Voc, Woo) = 0. If = 0, then as before,
(woo^oo) = (0,0), which is impossible. Thus > 0 on [0,1]. This is only possible
if X2 = x(^2)> which is impossible by the definition of S+. Now v = 0 on [0,1]. This
completes the proof of (5.19). □

Combining Theorem 5.1, Lemmas 5.3-5.5, and (5.19), we have

Theorem 5.6. There exists a small do > 0 such that if fc/( 1) — <5o < 6 < kf{ 1), then
for every A2 > Ao, (3.1) has a continuum of positive solutions (%2, (u,v,w)), joining the
semitrivial solutions (x(A2), (w, v, 0)) and (x2°i (w, 0, w)).

Remark 5.7. If x(A2) = Xi> then by Theorem 3.1 and Remark 3.2, the continuum of
positive solutions of (3.1) mentioned above is just (xi, (u,av, (1 —a)i;)), where 0 < a < 1.

6. Stability of bifurcating solutions. In this section, we prove the local stability
of the bifurcating positive steady states (u,v,w) = (u + u,v + v,w) of (1.3) (see Theorem
5.1 for notation), for 6 close to fc/( 1) and Ai ^ A2. To this end, we first need to show
that the bifurcation curve is "tilted to the right", i.e., dx^' ^ |r=o > 0.

Lemma 6.1.
d\2(r)

r=0

Jo1 u0e^x^y^[-kf(u)W^ + x(A2)MV(w) - 2^1 (kf(u) - 9)Wqcf)'(u)]dx
f(f u'c/>'(u)woWq dx

where Wq is as defined above (5.11).
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Proof. Define 22 as in (3.2) with \2 = X2(r)- Multiplying the ^-equation in (3.3) by
Wo exp((x(A2)</>(u) - X20(w))/A2), and (5.12) by z2, we obtain

[ W0ex{X2)<l,{u)/X2[k(f(u) - f{u))z2 + z'2(x2(t>'{u)u' - x(A2)u'(p'(u))]dx = 0.
Jo

Dividing this by r2 and sending it to zero, by Theorem 5.1, we have

[ kf(u)u0W^ex(X2)(t'^/X2dx+ ^(0) [ W^W0u'<p'{u)exiX2Wii)/^ dx
J 0 "r Jo

+ x(A2) [ W^Wo{<t>\u)u'0+u,<t>"{u)uo)e*^'l'W/x*dx = 0. (6.1)
Jo

Multiplying (5.12) by <fi'(u)uoWo, integrating by parts and combining the resulting equa-
tion with (6.1), we conclude the proof of Lemma 6.1. □

The bulk of the rest of this section is to show that dx^ [r=o > 0 for fixed Ai,Xi and
A2 > Ao if 9 is close enough to fc/(l). Recall from [Z] and [W] that there exists a positive
<5i > 0 and C1 smooth functions /i : s G [—<5i,<5i] —> R, (0i,02) : s G [—<5i,<5i] —> Y such
that fi(0) = 0,/z'(0) > 0, </>i(0) = 02(0) = 0 and (u,v) = (1 + s(u* + </>i(s)), s(l + </>2(s))),
s G (0,<5i], is the unique positive solution of (3.1) with w = 0 and 9 = kf( 1) — n(s),
where Y is any complement of span (u*, 1) in X x X, which is taken to be Y = {(m, v) G
X x X | fg u*udx = 0 = fgvdxj, u* = — A'i/(1) = |/(l)(x2 — 1) — £/( 1). Recall also
that

m'(0) = —fc/'(l) f u* dx{— fc/'(l)/(l)(l/3 + 1/h)). (6.2)
Jo

Lemma 6.2. (i) lim5_0+ A0 = 2kf'li)+2ix!<i>'(i) (denote this by Ao)-
(ii) For bounded A2 > A§, x(A2) remains bounded as s —> 0+.

Proof. By the definition of A0 (see (4.8)), ry*(Ao,0) = 0, i.e.,

L1 [A0(z')2 — (kf{u) — 9)z2]dx0 = inf JoL uv ; ,  —— (6.3)
zeH^o.i) fn z2 dx

z^o J0

and hence

In particular,

\}(kf(u) — 9)z2 dxA0 > sup JoK J) '   . (6.4)
zeH^o.i) f0(z')2dx

z^O

fn(kf(u) - 9)V2ex^W/xi dx
Ao > 1 Z -2 , (6.5)

f0 (V'+^-u'cf>'(u)VJ eXl^(u)/Al dx

where V = ve xi<A(«)/Ai, which satisfies

f Ai^'e*1^^1)' + (kf{u) - 9)VeXl^u^Xl =0, x G (0,1),

\V'{0) = 0 = V'(l).
(6.6)
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Since

AiV'e*1**)/*1 = - fX(kf(u) - 8)v(y) dy, (6.7)
Jo

we have that uniformly for x G [0,1],

YL ~ -1
s—*o+ s2 Ai

where

lim — = e"Xl^1)/AlFi(x), (6.8)

Fi(x) = [ fi(y)dy,
Jo

= kf'(l)u*(x) + //(0).fiix) = _ 6)
(6.9)

s—0
3Notice that F\(x) = fc/'(l)/(l)(x3 — x)/6. Multiplying (6.6) by V and integrating by

parts, we see that the numerator on the right-hand side of (6.5) is just
Ai f^(V')2ex^u^Xl dx. Now using (6.8), we have

Ai In F?(x)dx
liminf Ao > —,    > 0. (6.10)
s^0+ Jo (~Fi(x) + x±<j>'(l)(u*)')2 dx

Observe that Ao < Ai. So for any sequence s —> 0+, there exists a subsequence such
that along this subsequence, Ao —> A®, which is positive according to (6.10). Let z be the
(positive) minimizer of (6.3), normalized by fQ zdx = 1. Then it satisfies

f A0z" + (kf(u) - 0)z = 0, x G (0,1),
\z'(0) = 0 = z'(l).

It is easy to see that z(x) —* 1 in C°[0,1] and that
z'(x) -1

s AS

(6.11)

if [ fi(y)dy, in C°[0,1] as s -> 0+. (6.12)
o Jo

By (6.11) and (6.6), we have

A0 f z'(VeXl(t,WXiy dx = Ai [ v'z'eXl+WXl dx.
Jo Jo

Dividing this by s3 and sending s —> 0+, using (6.8) and (6.11), we obtain

Ao [ Fi(x)(Fi(x) - xi(u*)'<f)'{l))dx = \i [ F?(x)dx.
Jo Jo

Prom this and direct computations, (i) follows.
We now prove (ii). For Ao < A2 < Ai, we have x(A2) < Xi- So we only need to

consider bounded A2 > Ai. By (6.6) and (5.12), we have the following analog of (3.6):

fQ A2 - §■) WW - (A2 - Ai)V'
Thus somewhere on (0,1), it follows that

Wf>exiHu)/x1 dx = 0 (6 13^

A2 Vu'4>'{u) < (A2 - Ai)?'. (6.14)
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By (6.6), we have

AiF'ex^(fl)/Al < [ (kf(u) - 0)V(y)ePll^Xl dy
Jo

< kf(l)sxV(x)eXl<Kii)/Xl.

On the other hand,

u'(x)=[ f{u(y))v{y)dy = [ f{u(y))s(l + fa(s))dy
Jo Jo (o.lo)

> C\sx,

where C\ is a positive constant, independent of small s > 0.
Combining (6.14)-(6.16), we have

X(A2) Xi < A2 - Ai kf{ 1)
A2 Ai - AiA2 C\ ' 1 ' '

This proves (ii). □
We now study the limiting behavior of (uo,vo,wo) as s —» 0+. Recall that it satisfies

(4.3) with ri — 0, X2 = x(^2)- We normalize it by wo > 0 on [0,1] and

IIuo||l2(o,i) + lko||L2(o,i) + IIwo||l2(o,i) = 2. (6.18)

Lemma 6.3. For each fixed A2 > A®, (uo,vo,wq) —> (0, —1,1) in C2[0,1] as s —> 0+.

Proof. By (4.3) (with r] = 0 and xi = x(^2))> we easily see that the C2+Q[0,1]
norms of uq,vq, and wq are bounded as s —> 0+. So after passing to a subsequence,
(uo,vo,wo) —> (uq,Vq,Wq) in C2[0,1], as s —> 0+, where the limiting functions satisfy
(6.18), Wg > 0 on [0,1] and

(«o)" = fWCvfi + Wo), xe(0,l),
(«o)'(0) = 0 = (ttg)'(l) + ftug(l).
(vgy = o = (wgy, x g(o,i),

IK)'(0) = K)'(1) = 0 = K)'(0) = K)'(i).
Thus v$ = k\ (const.), w[j = fc2(const.) > 0.

By the w-equation in (4.3), we have

f kf'(u)vuodx+ f (kf(u) — 9)vodx = 0.
Jo Jo

Dividing this by s and sending s —> 0+, we have

(6.19)

kf'( 1) f Uqdx + ki f fi(x)dx = 0
Jo Jo

and thus Uq dx = 0. If k\ + fc2 > 0, then 0 < (wq)'^) < (uo)'(l) f°r x e (0> !)• Then
by (6.19), Uq(1) < 0 and hence f^u^dx < 0, a contradiction. Similarly, k\ + fc2 <0
is impossible. These, (6.18) and (6.19) imply Uq =0, fci = — l, fc2 = l. The proof of
Lemma 6.3 is complete. □
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Lemma 6.4. For each fixed A2 > Ajj, lims_,0+ x(^2) = X21 where

A2(^"S)^(1)/ Fl W(u*y dx + 1 !?{*)*» = 0. (6.20)

Proof. By Lemma 6.2, for any sequence s —> 0+, there exists a subsequence s —> 0+
such that x(^2) ~> X2-

By (5.12), we have the following analog of (6.8):

lim = _-j-e~X2^(1)/A2F1(a:), uniformly for x G [0, ll. (6-21)
s—>0+ S X2

Now dividing (6.13) by s3 and using (6.8) and (6.21), we have (6.20). This completes
the proof of Lemma 6.4. □

Lemma 6.5. For each fixed A2 > A[j,

■»» - _ rog| inC2(o,I|as»-,o+,
s s

where

(«o)'(4 = t~fi(x) - Y-<P'(l)(u*)'{x)> /
M A1 JO

(wg)'(x) = —-F^x) + ^0'(1)(m*)'(x), f w°0{x)dx = 0.
*2 *2 JO

Proof. Let

Vo - fn v0 dx w0 - L1 w0 dx
vs =  - , ws -    .

5 S

Then vs and ws satisfy

- XI y<^'(")^o - Xi I0'(«)uo - Xi(t>"{u)u'
+k(j)'(u)-suq + (fc/(")~e)^o = 0, x £ (0,1),

xiv's - Xi (7)' <j>'(u)v0 - Xi 7<P'{u)u'0 - X\4>"(u)u'lu0 = 0, x = 0,1,

(a2Ws - x(A2)</>'(m)^Wo) + (fc/("}~g)w0 = 0i x € (0,1),

^2w's - x(^2)(/>'(u)^w0 = 0, x = 0,1,

X vs(x)dx — 0 = /J ws(x)dx.

It is easy to see that ||ws||C2+a[01] and ||ifs||c2+<*[o,i] are bounded as s —> 0+. Therefore,
after passing to a subsequence, vs —» v$ and ws —> «Jq in C2[0,1] as s —» 0+, where the
limiting functions satisfy

*i(vfi)"(x) + Xi(u*)"(x)<p'(l) - f:(x) = 0, x e (0,1),
Ai (vq)'(x) + xi(u*)'(x)0'(l) = 0, x = 0,1,
*2(w°)"(x) - X°(u*)"(x)<l>'(l) + fi(x) = 0, x € (0,1),
A2(u$)'(x) - xl(u*)'(x)^'(!) = x = 0,1,

Jo vg(x)dx = 0 = fg Wo(x)dx.
From this we conclude the proof of Lemma 6.5. □
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Similarly, we can use (5.12) and Lemma 6.3 to prove

Lemma 6.6. For any A2 > A®,

W0— W0(x)dx n ,r ,
lim ——^V ' = Wn° in C2 0,1 ,

s—*0+ S

where

{W^)'(x) = -e-&+Wlx*Fr{x)/A2

and

[ Wq(x)cL
Jo

Lemma 6.7. For every A2 > 0'

x = 0.

lim !lu°Mdl = 0,
s—>0+

Proof. Define fzix) by

kf(u(z:)) - 0

IJ 0

s

By (4.3) with 77 = 0 and \2 = x(^2), we have

= fi(x) + sf2{x) + o(s). (6.22)

= - fMWzl.vo + vo J,.
Jo s s Jo S s

Lemma 6.5 _ J ^ + + ^ J ^ + WQ)dx + (v" + W°) + o(l)^ dx

= — f fidx I (v0 + w0)dx~ I f2dx f {v0 + wQ)dx- f fi(v° + w°)dx + o(l)
s Jo Jo Jo Jo Jo

— [ fi(v% + w%)dx= [ Fi(w" + WqY dx
Jo Jo

-/'■Jo
= / Fi

^0

Now we have

i ~ £) F>+(I - f,) dx "i0' o.

lim [ kf'(l)—dx= lim I (kf'(l) — kf'(u)-\ — dx + lim [ kf'(u)^~-dx
s-»0+ Jq s s—>0+ Jo V s/ s s^o+ J0 s2

rl Jo ^(fc//(1+^M*+^i(<))))(1+</,2(0)^
= — lim

s—>0+ ,

r o ft(kr(i+t{u*+Mm(i+Mt))dt , n
/ — uo(x)aa; = 0,

Jo s
because of Lemma 6.3. □

Lemma 6.8. For every A2 > Ag,

lim — = Uq in C2 [0,1],
S—,0+ S

where Mq is the unique solution of (6.24) below.
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Proof. Let us = u$/s. By (4.3) with rj = 0 and \2 — x(^2), we have

0 z*1-hu0(l) = - J (t>0 + w0)dx,

fus = f'(u)vua + f(u)(vs + ws) - !£us(l)f(u), x G (0,1),

l<(0) = 0 = Ug(l) + hus(l).
Multiplying (6.23) by us and using Lemmas 6.5 and 6.7, we have

f (u's)2 dx + hu2s( 1) = f u2f'(u)vdx - f /(u)(vq + Wq + o(l))us dx
Jo " Jo Jo

s(l) J - f(l))us dx + hkUs^f^ J Usdx

< £ I I u2 dx + hu2s(l) ) + C/e,

hk
+ -7rUs

u:
for all small s > 0. Thus, by the fact that the Hx(0, l)-norm of us is equivalent to the
square root of the left-hand side of the above inequality, we have that the Hx(0, l)-norm
of us is bounded uniformly for all small s > 0. It follows that this is also true for the
C2+q[0, l]-norm of us. Now, after passing to a subsequence, we have us —> some Uq in
C2{0,1], where Uq satisfies

(uo(x))" + ^o(!) = f(l)(vo(x) + w°(x)), x G (0,1),

K)'(0)=0 = K)'(1) + K(1). (6-24)
fouo(x)dx = 0.

Since the solution (6.24) is unique, us —> ufj, without passing to a subsequence. This
completes the proof of Lemma 6.8. □

Lemma 6.9. For every A2 > Aq,

lim ^2^ = —v{], in C2[0,1].
s—►()+ S

Proof. Recall that we have chosen fcis) such that

L1
(j>2(s)dx = 0. (6.25)

Observe that

^ (^f) - Xi0'(u)i"(i + ^2)^ + kf^uJ 61 (1 + <h) — 0; £ G (0,1),

(^)'-Xi0/(S)^(l + ^2)=O, a: = 0,1.
(6.26)

Then the C2+Q-norm of ^ is bounded uniformly for small s > 0 and hence, after passing
to a subsequence, ^ —> some <f>2 in C2[0,1].

From the limiting equations that 0° satisfies, it follows that

(</>2)'(a;) = ^v^K)'(^) - t~fi(x) = ~(vo)'(x) and [ <t>°(x)dx =
^1 M Jo
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Thus (^(x) = —Ug(a;). □

Lemma 6.10. For every A2 > Ag,

lim [ kf'(u)^vuoWo dx = 2fc/'(l)e_X2<^1^A2 / Un(vo + wfydx
s-o+Jo sJ Jo

_ Xl£(l)e-Xo0(i)/A2 f1 uofi dx
^2 Jo

Proof. We start by studying lims^0+ Jo kf'{u)^dx.
Let Vq = v0e~Xl^^!Al. Then

Ai Vg)' — xi {vft {u)u'0 + (t>"(u)u'vuoY
+kf'{u)vu0 + (kf{u) - flJV&e*1*®)/*1 =0, X G (0,1), (6.27)

_ x\(v(j)'(u)u'Q + 4>"(u)u'vuo) =0, x = 0,1.

Multiplying (6.27) by V and (6.6) by Vo, and then integrating by parts, we have

[ [Xi(^'(u)u'o + <f>"(u)u'vuq)V' + kf'(u)vuoV]dx = 0.
Jo

This, Lemmas 6.8 and 6.9 imply that as s —► 0+,

f1 kf'(u)^( 1 + 02(s))2e-Xl^/Al dx
Jo s

= ~ [ Xi<t>"(u)-(l+<l)2(s)) — — dx-xi [ (1 + 02(s))0'(u) — ̂ dx
Jo s s s J0 s

- f (/)'(l)(uQYFi{x)e~Xl't'l-1^Xldx;
1 Jo

lim / kf'(u)^ dx = lim [ kf'(u)^(l + ^(s))^-*1^")-^1^*1 dx
-»o+ J 0 s s—>o+ J q s

f1 kf\u)— • -[(1 + </.2(s))2e-XlWfi)-^(1))/Al - 1 ]dx
Jo s s

^'(1) J {uoyFi(x)dx + kf'(l) J Uq ̂2v$ + dx.

By this, Lemmas 6.3, 6.5, and 6.8, we have that as s —> 0+,

[ kf'(u)^w0W0dx
Jo s

= J kf'{u)^(^J w0 dx + WqS + o(s)^ W0 dx + W® s + ois^j dx

= J kf\u)^dx(^j w0 dx^j W0dxSj+ J kf'(u)^j (wq J w0dy

+w° J WodySjdx + o( 1)

Xi
Ai

— lim
s—»o+.

Xi
Ai
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f-1 /*1

+ e

= e-xl<t>W/^2 r

J (uo)'Fi(x)dx + kf'(l) J Uq ̂2vq + dx

+ / kf'{l)u°0(W$ + w%e-x*'l,w/X2)dx
Jo

= P-x02<t>{ 1)/A2 _^(1) I uOfl{x)dx + kf'(l) I (^2v$ + dx

x°<t>(D/a2 ^ jfe/'(l)ug ^2wg - da;

2kf'(l) f u%(v[j + w$)dx - f u^)f1dx
Jo a2 jo

g-X2^>(1)/A2

where at the last step, we used the facts that /i = kf'(l)u* + //(0) and J* u[j dx = 0. □

Lemma 6.11. For every A2 > A°,

rl x(a2)
lim [ ^^u0ex(A2W(")/A2^(u)(^)2dx = 0,

s—>0+ J 0 5

lim [ ^^u0ex{X2Wa)/X2(l)\u){kf{u)-d)W2dx
s-> 0+ „/0 A2s2

= 2Ml)e-x^(D/A2 f1 uofi ^
^2 Jo

lim / dx = — —~—e-*2^1^*2 [ (u*)'FAx)d.
S^0+ JO s ^2 JO

x > 0-

Proof. By Lemmas 6.3 and 6.6, the first limit is equal to zero.
The second identity follows from Lemmas 6.3 and 6.8, the third from Lemmas 6.3 and

6.6. □

Proposition 6.12. For every A2 > Ag, A2 7^ Ai, there exists a positive constant S > 0
such that dXj^ > S for all small s > 0, and hence for all 9 £ (0, kf(l)) close to

r=0
kf{ 1).

Proof. By Lemmas 6.1, 6.10, and 6.11, we have

_ 2fc/'(l)A2 Jo + ̂ )dxlim d»<r)
+0+ dr -=o </>'(!) fg{u*)'F1(x)dx

Notice that (u*)'(x) > 0, F\(x) < 0, for x € (0,1).
By (6.24), we have

I "oK+fo)dx = "(/ ((uoY)2 dx + ///(1)<°.

unless Uq = 0. If itg = 0, then (6.24) implies that Vq + wf} = 0 and hence
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This is impossible because u* is a quadratic polynomial while F\(x) is a cubic one. This
completes the proof of Proposition 6.12. □

Now we are ready to prove the main result of this section.

Theorem 6.13. For fixed Ai > 0, xi 0 and A2 ̂  \\ with A2 > A§(= 2\\kf {1)/
(2fc/'(l) + 210'(l)xi)), there exists a small $o > 0 such that for each fixed 9 satisfying
kf(l)—So < 0 < kf{ 1), there exists a small £0 > 0 so that if ^(^2) < X2 < x(^2)+£o, then
the unique positive steady state of (1.3) bifurcating from (u, v, 0) is locally asymptotically
stable in the H1(0, l)-topology.

Proof. We choose ^0 small enough so that if kf( 1) — <5o < 9 < kf( 1), then s is small
enough so that Prop. 6.12 holds (recall fj,(s) = kf( 1) - 9 and fi'(0) > 0). Furthermore,
choose £0 > 0 small enough so that \2 and (u,v,w) mentioned above are given by
X2 = X2(r), (ur,vr,wr) = (u + tt(r), v + v(r), w{r)), 0 < r < £\ (see Theorem 5.1). To
show the stability of the steady state, we linearize (3.1) at (ur,vr,wr) and study the
following eigenvalue problem:

u" — f'(ur)(vr + wr)u — f(ur)(v + w) = rju, x € (0,1),

u'(0) = 0 = u'(l) + hu( 1),
(Bl(u, v))' + kf'(ur)vru + (kf(ur) — 9)v = r)v, x e (0,1),
Bl(u, v) = 0, x = 0,1,

(B2(u,w))' + kf'{ur)wru + (kf(ur) — 9)w = rjw, x e (0,1),
B2(u,w) = 0, x = 0,1.

(6.28)

where

B1(m, v) = Ait/ - xiu'r(j)'(ur)v - xi<t>'(ur)vru' - xi<i>"{ur)u'rvru,

B2(u, w) = A2w' - X2u'r4>'{ur)w - X2<t>'(ur)wru' - X24>"{ur)u'rwru.

Let r](r) be the eigenvalue with the largest real part, and (u,v,w) the corresponding
eigenfunction normalized by ||u||l2(01) + |M|l2(o,i) + IMIl2(o,i) — 2. By the Principle of
the Linearized Stability ([S, D]), the desired stability of (ur,vr,wr) will follow if we can
show that Rery(r) < 0 for small r > 0. Suppose there exists a sequence of r —> 0+ such
that Rer](r) > 0. It is easy to show that as r —► 0+, (a) ry(r) is bounded, (b) (u,v,w)
is bounded in C2+a[0,1]. Then after passing to a subsequence, we have r) —> some rj0
with Re?7o > 0, and (u,v,w) —> (u°,v0,w°) in C2[0,1], where (uo,v0,wo) satisfies (4.3)
with t] = rj0 and X2 = X2(0)(= x(^2))- If = 0, then (u°,v°) ^ (0,0) and since 9 is
close to kf(l), we have the stability of (u, v) with respect to the single species dynamics
which implies Re770 < 0. So w° ^ 0. But since r]*(\2,x{^2)) = 0, t/q = 0. Thus
(■u°,v°,w°) = ±(uo, vo, wo). Now multiplying (u,v,w) by ±1, we have that

(u, v, w) —> (uo, vq, wo) in C2[0,1] as r —> 0. (6.29)

Differentiating with respect to r the ^-equation in (3.1) (with (u,v,w) = (ur,vr,wr)),
we obtain

((B3(ur,wr)Y + kf'(ur)urwr + (kf(ur) - 9)wr = 0, xe(0,1),
< „ (6.30)
[B3(ur,wr) = 0, x = 0,1,
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where ur = j^ur = u0 + o(l), wr = wr — wq + o(l), and

B3(ur,wr) = A2w'r - ~|~(<P'{ur)u'rwr) - X2(r)4>"{ur)uTu'rwr

- X2{r)4>'(ur)u'rwr - X2(r)ct>'(ur)u'rwT.

Define Wr = wre~^r^u^'x\ Then

B3(ur,wr) = A2ex*W+W"W'r - %^V(u»r)
ar

- X2{r)(4>" (ur)uru'rwr + <j>'(ur)u'rwr).

Let W = we~X2^^Ur^X2. Then

B2{u,w) = \2eX2^^Ur^x,2W' — X2(4>'(ur)wru' + <f>" (ur)u'rwru).

Now, multiplying the w-equation in (6.28) by Wr and (6.30) by W, and integrating by
parts, we have

rj(r) [ wWrdx= f kf (ur)wr{uWr — urW)dx f (j>'(ur)u'wrW' dx
Jo Jo "r Jo

+ X2(r) f 4>'(ur)(wru'W'r - u'rwrW')dx + x2W [ <fi"(ur)(u'rwruW'r
Jo Jo

- uru'rwrW')dx = Ii - I2 + h + h-

From (6.29) and Prop. 6.12, it follows that as r —» 0,

h = o(r);

h- + °(1)^ J (^'(w) + o(l))(w/ + o(l))r(wo + o(l))H/oc;a;

Sr f1 _= — / u (p (u)wqWq dx + o(r) = (positive const.)r + o(r)
2 Jo

(recall that wo is close to 1 when 8 is close to kf( 1)—see Lemma 6.3);

h = °(r); I4 = o(r);

/ wWrdx= / (wo + °(l))(Wo + o(l))da; = positive const. + o(r).
Jo Jo

Thus Rer](r) < 0 for small r > 0, a contradiction!
This completes the proof of Theorem 6.13. □
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