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Qualitative and Quantitative Aspets ofa Model for Proesses Inspired bythe Funtioning of the Living CellAndrzej Ehrenfeuht1, Jetty Kleijn2,Maiej Koutny3, and Grzegorz Rozenberg1,2
1 Department of Computer Siene, University of Colorado at Boulder430 UCB Boulder, CO 80309-0430, U.S.A.andrzej�s.olorado.edu

2 LIACS, Leiden University, 2300 RA, The Netherlands{kleijn,rozenber}�lias.nl
3 Shool of Computing Siene, Newastle University, NE1 7RU, UKmaiej.koutny�nl.a.ukAbstrat. Reation systems are a formal model for proesses inspiredby the funtioning of the living ell. The underlying idea of this modelis that the funtioning of the living ell is determined by the intera-tions of biohemial reations, and these interations are based on themehanisms of failitation and inhibition. In this paper we �rst review themain notions of the basi model of reation systems whih is a qualitativemodel. Then we disuss various ways of taking into aount quantitativeproperties.Keywords: reation system, generalised reation system, living ell, nat-ural omputing, geneti regulatory network, transition system, measure-ment funtion, approximation, simulation.1 IntrodutionNatural omputing is onerned with human-designed omputing inspired bynature and with omputing taking plae in nature (see, e.g., [1℄ and [2℄). Theformer strand investigates models and omputational tehniques inspired by na-ture, while the latter investigates, in terms of information proessing, phenomenataking plae in nature. The former strand inludes researh areas suh as evolu-tionary omputation, neural omputation, quantum omputation, and moleularomputation. The latter strand inludes investigations into the omputationalnature of self-assembly, the omputational nature of developmental proesses,the omputational nature of brain proesses, the system biology approah tobionetworks, and the omputational nature of biohemial reations. Clearly,the two researh strands are not disjoint.Biomoleular omputation is a topi of intense researh in natural omputing.Within the former strand this researh fouses on onstruting, either in vitroor in vivo, various building bloks of omputing devies (suh as swithes, gates



2and biosensors). Within the latter strand this researh is more onerned withestablishing how bioomputations drive natural proesses � the essene of thisresearh is niely aptured by the following statement by Rihard Dawkins, aworld leading expert in evolutionary biology (see [3℄): `If you want to understandlife, don't think about vibrant throbbing gels and oozes, think about informationtehnology'.This paper falls into this seond strand of researh. It disusses reation sys-tems whih is a formal model for the investigation of the funtioning of the livingell. The funtioning is viewed in terms of formal proesses resulting from inter-ations between biohemial reations taking plae in the living ell. Moreover,we assume that these interations are driven by two mehanisms, failitation andinhibition: the (produts of the) reations may failitate or inhibit eah other.The basi model of reation systems abstrats from various (tehnial) featuresof biohemial reations to suh extent that it beomes a qualitative rather thanquantitative model. However, it takes into aount the basi bioenergetis (�owof energy) of the living ell, and it also takes into aount that the living ell isan open system and its behaviour is in�uened by its environment. The broaderframework of reation systems is formed by the entral model of reation sys-tems and its various extensions. The main fous of researh is on understandingproesses that take plae in these models.The paper an be seen as onsisting of two parts. The �rst part (Setions 2,3 and 4) reviews the main notions (together with underlying motivation) ofreation systems. As already mentioned, the basi model of reation systems isqualitative. However, there are various situations in biology/biohemistry whereone needs to onsider quantities assigned to the states of a biohemial system.To aount for this, the broad framework of reation systems inludes the notionof reation systems with measurements � they are realled in Setion 6. Then,Setions 7, 8 and 9 disuss various ways of dealing with quantitative parametersin reation systems. These setions present new material (the theorem presentedin Setion 6 is also new). The disussion in Setion 10 onludes this paper.2 ReationsThe formal notion of a reation (introdued in [4℄) formalises the basi intuitionof a biohemial reation � it will take plae if all its reatants are presentand none of its inhibitor is present; when a reation takes plae it reates itsproduts.De�nition 1. A reation is a triplet b = (R, I, P ) suh that R, I, P are �nitenonempty sets with R ∩ I = ∅.The sets R, I, P are alled the reatant set of b, the inhibitor set of b, andthe produt set of b, respetively � they are also denoted as Rb, Ib and Pb,respetively. If R, I, P ⊆ Z for a �nite set Z, then we say that b is a reation in
Z. We use rac(Z) to denote the set of all reations in Z � note that rac(Z) is�nite.



3To de�ne the e�et of a set of reations on a urrent state of the living ellwe �rst de�ne the e�et of a single reation.De�nition 2. Let Z be a �nite set and let T ⊆ Z. Let b ∈ rac(Z). Then b isenabled by T , denoted by enb(T ), if Rb ⊆ T and Ib ∩ T = ∅. The result of b on
T , denoted by resb(T ), is de�ned by resb(T ) = Pb if enb(T ), and resb(T ) = ∅otherwise.Here a �nite set T formalises a state of the ell, i.e., the set of biohemialentities urrently present in the ell. Then b is enabled by T if T separates Rbfrom Ib meaning that all reatants from Rb are present in T and none of theinhibitors from Ib is present in T . When b is enabled by T it ontributes itsprodut Pb to the suessor state; otherwise it does not ontribute anything tothe suessor state.The e�et of a set of reations on a urrent state of the ell is umulative,whih is formally de�ned as follows.De�nition 3. Let Z be a �nite set, let T ⊆ Z and let B ⊆ rac(Z). The resultof B on T , denoted by resB(T ), is de�ned by resB(T ) =

⋃
{resb(T ) : b ∈ B}.Note that if the transition from a urrent state to its suessor is determinedonly by the reations (i.e., there is no in�uene of the environment), then thesuessor state onsists only of entities produed by the reations enabled inthe urrent state. This implies that in the transition from a urrent state toits suessor state an entity from T vanishes unless it is sustained/produedby a reation. This is the non-permaneny property and it re�ets the basibioenergetis of the living ell: without the �ow/supply of energy the living elldisintegrates, but the use/absorption of energy by the living ell is realised throughbiohemial reations (see, e.g., [5℄).Although this basi de�nition implies `instant non-permaneny' (an entityvanishes within one state transition unless it is produed by a reation), we alsoonsider a �nite duration of entities (orresponding to their presene in severalonseutive states) whih takes into aount the deay time (see, e.g., [6℄).There is another notable aspet of De�nition 3. If a, b are two reations from

B enabled by T , then both of them will take plae even if Ra ∩Rb 6= ∅. Henewe do not have here the notion of on�it between reations even if they need toshare reatants. This is the property of the threshold nature of resoures: eitheran entity is available and then there is enough of it, or it is not available. Thisproperty re�ets the level of abstration we have adopted for the formulation ofour basi model: we do not ount onentrations of entities/moleules to inferfrom these whih reations an/will be applied. We operate on a higher levelof abstration: we assume that the ell is running/funtioning and we want tounderstand the ongoing proesses.This level of abstration an be ompared with the level of abstration of thestandard models of omputation in omputer siene, suh as Turing mahinesand �nite automata. These standard models turned out to be very suessfulin understanding omputational proesses running on eletroni omputers, and



4yet nothing in these models takes into aount the eletroni/quantitative prop-erties of the underlying hardware. It is simply assumed that the underlying ele-tronis/hardware funtions `well' and then the goal is to understand proessesrunning on (implemented by) this hardware. Similarly, we want to understandthe proesses arried out in the funtioning living ell. At this stage we are notinterested in the underlying `hardware properties' of the living ell, but ratherin the resulting proesses.Thus: our basi model is qualitative rather than quantitative � in partiular,there is no ounting here.3 Reation SystemsNow that the formal notion of a reation and its e�et on states have beenestablished, we an proeed to de�ne reation systems (introdued in [4℄), ourabstrat model of the funtioning of the living ell.De�nition 4. A reation system, abbreviated rs, is an ordered pair A = (S,A),where S is a �nite nonempty set and A is a �nite subset of rac(S).The set S is alled the bakground set of A, and its elements are alled theentities of A � they represent moleular entities (e.g., atoms, ions, moleules)that may be present in the states of the biohemial system (e.g., the living ell).The set A is alled the set of reations of A; learly A is �nite (as S is �nite).The subsets of S are alled the states of A. Given a state T ⊆ S, the resultof A on T , denoted by resA(T ), is de�ned by resA(T ) = resA(T ).Thus a reation system is essentially a set of reations. We also speify thebakground set whih onsists of entities needed for de�ning the reations and forreasoning about the system (see the de�nition of an interative proess below).There are no `strutures' involved in reation systems (suh as, e.g., the tape ofa Turing mahine). Finally, note that this is a stritly �nite model � its size isrestrited by the size of the bakground set.We note here that the non-permaneny property is a major di�erene betweenreation systems and the models onsidered in theory of omputation (see, e.g.,[7℄ and [8℄). Also, the threshold nature of resoures (no on�it) property isa major di�erene with strutural models of onurreny, suh as, e.g., Petrinets [9℄.The model of reation systems formalises the `stati struture' of the livingell as the set of all reations of the ell (together with the set of underlying enti-ties). What we are really interested in are proesses instigated by the funtioningof the living ell. They are formalised as follows.De�nition 5. Let A = (S,A) be an rs. An interative proess in A is a pair
π = (γ, δ) of �nite sequenes suh that, for some n ≥ 1, γ = C0, . . . , Cn and δ =
D0, . . . , Dn, where C0, . . . , Cn, D0, . . . , Dn ⊆ S, D0 = ∅, and Di = resA(Di−1 ∪
Ci−1), for all i ∈ {1, . . . , n}.



5The sequene γ is the ontext sequene of π, the sequene δ is the resultsequene of π, and the sequene τ = W0, . . . ,Wn, where, for all i ∈ {1, . . . , n},
Wi = Ci ∪ Di, is the state sequene of π, with W0 = C0 alled the initialstate. Thus the dynami proess formalised by an interative proess π beginsin the initial state W0. The reations of A enabled by W0 produe then theresult set D1, whih together with the ontext set C1 forms the suessor state
W1 = resA(W0) ∪ C1. This formation of the suessor state is iterated, Wi =
resA(Wi−1) ∪ Ci, resulting in the state sequene τ =W0, . . . ,Wn.An interative proess may be visualised by a three-row representation, wherethe �rst row represents the ontext sets and is labelled by `C', the seond rowrepresents result sets and is labelled by `D', and the third row represents statesand is labelled by `W '. Thus suh a representation looks as follows:

C :
D :

W :

C0

∅

C0

C1

D1

W1

. . .

. . .

. . .

Cn−1

Dn−1

Wn−1

Cn

Dn

WnNote that an interative proess π is determined by its ontext sequene γ(through the result funtion resA). The ontext sequene formalises the fatthat the living ell is an open system in the sense that it is in�uened by itsenvironment (the `rest' of a bigger system).If, for all i ∈ {1, . . . , n}, Ci ⊆ Di, then we say that π is ontext-independent :whatever Ci adds to the state Wi has already been produed by the system (in-luded in the result Di) or perhaps Ci adds nothing. If π is ontext-independent,then (in its analysis) we may as well assume that Ci adds nothing, i.e., for eah
1 ≤ i ≤ n, Ci = ∅. Clearly, if π is ontext-independent, then the initial state
W0 = C0 determines π by the repeated appliation of resA.4 ExamplesIn this setion we provide two examples of use of reation systems. The �rstone omes from biology � we demonstrate how to model/implement a simplegeneri geneti regulatory network. The seond omes from theory of omputa-tion � we demonstrate how to model/implement �nite transition systems (�niteautomata).Example 1. We will onsider geneti regulatory networks (see, e.g., [10℄) whihare among the most essential ingredients of the living ell. Sine we give a for-mal/abstrat model for a very omplex omponent of the living ell, we provide�rst an extremely simpli�ed (but su�ient for our purpose) desription of geneexpression � it is this simpli�ed/abstrat version that we will model.Hene, for the purpose of this example, a gene g is a segment of a DNAmoleule, and it onsists of the promoter �eld followed by the oding region.The promoter plays the role of a `landing site' for RNA polymerase. If this siteis not `oupied', then RNA polymerase an land there and then move/slidethrough the oding region produing its transript in the form of a moleule



6
gene y gene z

gene x

Y Z

X

Q

U
X U

Fig. 1. A geneti regulatory network.alled messenger RNA. This messenger RNA will leave the nuleus (where DNAresides), and it will then be proessed outside the nuleus, eventually yieldingthe protein spei�ed by the oding region of g.If the ell wants to interrupt the prodution of this protein, then it `sends'an inhibitor moleule whih lands on the promoter �eld. Consequently, RNApolymerase annot land there and thus the transription phase of the expres-sion proess annot begin, and the protein spei�ed by g annot be produedanymore.With this in mind, onsider the simple generi regulatory network given inan informal graphial form in Figure 1. The network onsists of three genes x, y,
z expressing proteins X , Y , Z, respetively. Moreover protein X interats withprotein U (if it is present in a given state of the network) to form a proteinomplex Q. There are a lot of interations going on in the network: protein Xinhibits (as explained above) the expression of gene z, the presene of either ofthe proteins Y or Z inhibits the expression of gene x, and the protein omplex
Q inhibits the expression of gene y.To implement this network by a reation system we will need four sets ofreations: Ax, Ay, Az implementing the expression of genes x, y, z, respetively,and AQ implementing the formation of Q:

Ax =
{
({x}, Ix, {x}), ({x}, {Y, Z}, {x

′}), ({x, x′}, Iex, {X})
}

Ay =
{
({y}, Iy, {y}), ({y}, {Q}, {y′}), ({y, y′}, Iey, {Y })

}

Az =
{
({z}, Iz, {z}), ({z}, {X}, {z′}), ({z, z′}, Iez , {Z})

}

AQ =
{
({U,X}, IQ, {Q})

}The set of reations Ax implements/formalises the funtioning of gene x asfollows:� ({x}, Ix, {x}) ensures that if x is available/funtional in the urrent state,then it is also available in the suessor state unless `something bad' happens



7to x as expressed by Ix (we did not speify Ix as it is irrelevant for ouronsiderations here, but `something bad' may be e.g., a high level of radiation� disrete levels of radiation are easily spei�able by Ix).� ({x}, {Y, Z}, {x′}) formalises the role of the promoter: if x is available/fun-tional in the urrent state and proteins Y , Z are not present in this state,then RNA polymerase x′ will land on the promoter of x.� ({x, x′}, Iex, {X}) formalises the role of the oding region: if x is avail-able/funtional and x′ sits on the promoter in the urrent state, then, unlessinhibited by Iex, X will be expressed and hene present in the suessorstate.We note here that this reation formalises the expression of X in a very`ompat way'. However, if needed, it ould be expanded to a set of reationswhih formalise various details of this proess.An analogous explanation/intuition holds for the reations in Ay and Az . Thereation ({U,X}, IQ, {Q}) ensures that if U and X are present in the urrentstate, then Q will be present in the suessor state.Now, if we ombine all these reations for G forming AG = Ax∪Ay∪Az∪AQ,then the rs AG = (SG, AG), with SG onsisting of all the entities ourring in re-ations from AG, implements/formalises the struture of G. The reasoning aboutthe funtioning of G is formalized through the reasoning about the proesses of
AG.It is important to notie that in fat AG is the `union' of the reation systems
Ax = (Sx, Ax), Ay = (Sy, Ay), Az = (Sz , Az), and AQ = (SQ, AQ), where Sx,
Sy, Sz, and SQ are all the entities ourring in reations from Ax, Ay, Az, and
AQ, respetively. The operation of union on reation systems is easily de�ned(as sets are our basi data struture): for reation systems B1 = (S1, B1) and
B2 = (S2, B2), their union is the rs (S1 ∪ S2, B1 ∪B2).As a matter of fat, the union of reation systems is the basi mehanismfor omposing reation systems. It expresses our assumption about bottom-upombination of loal desriptions into a global piture. This ombination hap-pens `automatially': the sheer fat that all `ingredients' are present in the samebiohemial medium (moleular soup) makes interations possible. There is noneed for providing additional interfaes here. This is a fundamental di�erenewith models of omputation in omputer siene; see, e.g., [7℄ and [8℄.Example 2. This example relates reation systems to the lassial model of om-putation, viz., �nite transition systems (whih beome �nite automata one theinitial and terminal states are hosen) � see, e.g., [7, 8℄. In partiular, we willdemonstrate how transition system behaviour an be implemented by reationsystems.We brie�y reall that a deterministi transition system is a triplet F =
(Q,Σ, δ), where Q is a nonempty �nite set of states, Σ is a �nite set of haraters(the input alphabet) and δ : Q × Σ → Q is a transition funtion. Then, thebehaviour of F is given by �nite transition sequenes of the form q0

x1→ q1
x2→

q2
x3→ · · ·

xn→ qn, for some n ≥ 0, suh that δ(qi, xi+1) = qi+1, for eah i ∈
{0, 1, . . . , n− 1}.



8 For the explanation of the implementation of F by a reation system it isonvenient to assume that Q ∩Σ = ∅ and |Q ∪Σ| > 2.The aim of the implementation is to onstrut a reation system AF =
(SF , AF ) suh that q0 x1→ q1

x2→ q2
x3→ · · ·

xn→ qn is a behaviour of F if and only if
C :
D :

W :

x1
q0

q0, x1

x2
q1

q1, x2

x3
q2

q2, x3

... xn
qn−1

qn−1, xn

∅

qnis an interative proess of the reation system AF , i.e., resAF
({qi, xi+1}) = qi+1,for eah i ∈ {0, 1, . . . , n− 1}. Note that here D0 = {q0}, while the formal de�ni-tion of an interative proess requires D0 = ∅. This is done to ease explanations;to get D0 = ∅ one an set C0 = {q0, x1} and D0 = ∅.Let, for all states p, q ∈ Q and haraters x ∈ Σ, ap,q,x be the reationde�ned by ({p, x}, SF \ {p, x}, {q}). Then AF = (SF , AF ), where SF = Q ∪ Σand AF = {ap,x,q : δ(p, x) = q}. Sine we require that Ia 6= ∅, for eah reation

a in a reation system, we assumed that |Q ∪ Σ| > 2 (so SF \ {p, x} 6= ∅ asrequired).The following is a deterministi transition system F (given by the graph of
δ) and the list of the reations of AF (note that SF = {q0, q1, q2, x, y}):

q0 q1 q2x y

y x

y x

AF =





({q0, x}, {q1, q2, y}, {q0}) ({q0, y}, {q1, q2, x}, {q1})
({q1, x}, {q0, q2, y}, {q2}) ({q1, y}, {q0, q2, x}, {q0})
({q2, x}, {q0, q1, y}, {q1}) ({q2, y}, {q0, q1, x}, {q2})



Then, e.g., the transition sequene q1 x

→ q2
y
→ q2

y
→ q2

x
→ q1

y
→ q0 in Forresponds to the following interative proess in AF :

C :
D :

W :

x
q1

q1, x

y
q2

q2, y

y
q2

q2, y

x
q2

q2, x

y
q1

q1, y

q0The implementation of non-deterministi �nite transition systems providesan instrutive insight into the role of ontext in interative proesses � it isdone as follows. Assume that in our example transition system F the tran-sition from q0 on y is non-deterministi: δ(q0, y) = {q0, q1}. We mark thesetwo transitions by symbols `1' and `2', and aordingly have two reations:
({q0, y, 1}, {q1, q2, x, 2}, {q0}) and ({q0, y, 2}, {q1, q2, x, 1}, {q1}). Then the imple-menting reation system will follow the transition from q0 by y to q0 if the ontextof the urrent state ontains the symbol 1, and it will follow the transition from
q0 by y to q1 if the ontext ontains the symbol 2.Thus, e.g., the transition sequene

q0
x
→ q0

y
→ q0

y
→ q1

x
→ q2



9in this modi�ed F will orrespond in the aordingly modi�ed AF to the follow-ing interative proess:
C :
D :

W :

x
q0

q0, x

y, 1
q0

q2, y, 1

y, 2
q0

q0, y, 2

x
q1

q1, x

q2Context in interative proesses an be also used to implement stohastiity.5 Reation Systems with MeasurementsAs it was already mentioned, the model of reation systems is qualitative, e.g.,it does not inlude ounting. However, there are many situations in biologywhere one needs to assign quantitative parameters to states. To aount for this,reation systems are extended to reation systems with measurements, wherenumerial values are assigned to the states of a reation system.Our main assumption here is that a numerial value an be assigned to astate T of a reation system if there is a measurement of T yielding this value(whih is a real number). Sine states of a reation system are subsets of itsbakground set, the informal notion of a measurement is formalised through theformal notion of a measurement funtion whih assigns reals to the subsets ofthe bakground set. Beause we deal with abstrat sets (in the model of reationsystems we have no knowledge of the nature of entities of the bakground set), thevalue of a measurement funtion for a state must be omposed from the valuesof the measurement funtion for its elements (here, for simpliity of explanation,we identify a singleton set {x} with its element x). Therefore we assume thatmeasurements funtions are additive.This leads to the following de�nition:De�nition 6.(1) Let A = (S,A) be a reation system. A measurement funtion for A is anadditive funtion f : 2S → R.(2) A reation system with measurements, abbreviated rsm, is a triplet B =
(S,A, F ) suh that (S,A) is a reation system and F is a �nite set of mea-surement funtions.Reall that a funtion f : 2S → R is additive if, for all disjoint X,Y ∈ 2S ,

f(X ∪ Y ) = f(X) + f(Y ); this learly implies that f(∅) = 0.The dynamis of a rsm B = (S,A, F ) is determined by its underlying reationsystem A = (S,A). Hene, in partiular, the result funtion of B, resB, is equalto resA, and the interative proesses of B are the interative proesses of A. Theadditional omponent F of B provides various global properties (measurements)for the states of B. Sine resA = resB, these measurements do not in�uene thedynami behaviour of B whih is idential to the dynami behaviour of A.All the notation and terminology of reation systems arries over to reationsystems with measurements (through their underlying reation systems).



10 We will now prove that eah reation system with measurements an bereplaed by an `equivalent' (in a well-de�ned sense) reation system.Theorem 1. For every reation system with measurements B = (Z,B, F ) thereexists a reation system A = (S,A) suh that(i) S = Z∪K, where K = {(f, r) : f ∈ F and r ∈ range(f)}, and Z ∩K = ∅,(ii) for eah a ∈ A, Ra ∪ Ia ⊆ Z,(iii) for eah T ∈ 2Z \ {∅, Z},
resA(T ) = resB(T ) ∪ {(f, r) : f ∈ F and f(resB(T )) = r} .Proof. Let B = (Z,B, F ) be a reation system with measurements.Let A = (S,A) be a reation system suh that S = Z∪K and A = B∪L, where:

K = {(f, r) : f ∈ F and r ∈ range(f)}
L = {(T, Z \ T, {(f, r)}) : T ∈ 2Z \ {∅, Z}, f ∈ F and f(resB(T )) = r}- Clearly, without loss of generality, we may assume that Z ∩ K = ∅. Thus
(i) holds.- It follows diretly from the de�nition of the reations in A that, for eah
a ∈ A, Ra ∪ Ia ⊆ Z. Thus (ii) holds.- Note that sine B ⊆ A, for eah T ∈ 2Z , resB(T ) ⊆ resA(T ). Also, sine
A \B = L, for eah T ∈ 2Z \ {∅, Z},

resA(T ) \ resB(T ) = {(f, r) : f ∈ F and f(resB(T )) = r} .Therefore (iii) holds.Thus the theorem holds. ⊓⊔Note that ondition (iii) from the statement of the theorem says that foreah state T ∈ 2Z \ {∅, Z}, A omputes the same suessor state as B does, butadditionally, A also omputes the values of eah measurement funtion of B forthe suessor state (these omputed values are now a part of the orrespondingsuessor state of A).The restrition in ondition (iii) that T ∈ 2Z \ {∅, Z} (rather than simply
T ∈ 2Z) is of a tehnial nature. It assures that, for eah reation a ∈ L, both
Ra and Ia are nonempty as required by our de�nition of a reation. It is not thatessential in the sense that by using simple standard tehnial triks one ould`skip' this assumption (adjusting somewhat the statement of the theorem).Condition (ii) says that the values of measurement funtions (hene entitiesfrom K) do not in�uene the appliability (enabling) of reations in A, whihindeed orresponds to the situation in reation systems with measurement.We also note that ondition (iii) is stated for subsets of Z rather than forsubsets of S. This is su�ient, beause ondition (ii) implies that, for all T ⊆ S,
resA(T ) = resA(T ∩ Z).In a nutshell, the theorem states that adding measurement funtions to areation system is a mere `onveniene'. For every reation system with mea-surements B one an onstrut a reation system A whih from `inside' (throughits reations) will ompute the values of all measurement funtions of B for eahstate of B derived by B during prodution/onstrution of its proesses.



116 Generalised ReationsIn a reation system with measurements, the measurements of a urrent state(determined by the measurement funtions) do not in�uene the suessor statein the sense that they neither determine the enabling of reations in the urrentstate nor in�uene the produts of enabled reations.We will onsider now the situation where measurement funtions in�uene(drive) the omputation of the suessor state. As a matter of fat, we willapproah this problem by onsidering �rst a generalisation of the notion of areation � a speial ase of this generalisation will yield reations driven bymeasurement funtions.De�nition 7. Let S be a �nite nonempty set.(1) A generalised reation in S is an ordered pair d = (∆,P ), where ∆ (theondition of d) is a unary relation over 2S and P (the produt of d) is asubset of S.(2) Let d = (∆,P ) be a generalised reation in S and T ⊆ S. Then d is enabledby T if ∆(T ).(3) The result of d, denoted resd, is the funtion resd : 2S → 2S, for every
T ⊆ S de�ned by:

resd(T ) =

{
P if d is enabled by T
∅ otherwise .It is easily seen that a generalised reation is indeed a generalisation of thenotion of reation as onsidered in reation systems. Given a reation b in a �niteset S, the orresponding generalised reation is (∆,Pb), where, for eah T ⊆ S,

∆(T ) if and only if b is enabled by T (i.e., Ra ⊆ T and Ia ∩ T = ∅).For a �nite set B of generalised reations in S, we de�ne the result funtion
resB analogously to the way it was de�ned for sets of ordinary reations.De�nition 8. A generalised reation system is an ordered pair B = (S,B),where S is a �nite set and B is a �nite nonempty set of generalised reationsin S.Then, as was the ase with ordinary reation systems, for a state T ⊆ S, theresult of B on T is de�ned by resB(T ) = resB(T ).The goal of the framework of reation systems is to disover phenomena(desribed by theorems) that take plae within these models (the WHAT? ques-tions) and then provide explanations/mehanisms behind them (the WHY? ques-tions). The explanatory mehanism is given in the form of reations. Aordingto this methodology, we do not aept/onsider arbitrary generalised reationsbut rather only those that an be explained by reations (as onsidered in re-ation systems). This leads to the following de�nition, where `aeptable' reallymeans `aeptable in the framework of reation systems'.De�nition 9. A generalised reation d in S is aeptable if there exists a re-ation system A = (S,A) suh that resd = resA.



12 We now give a haraterisation of all aeptable generalised reations.Theorem 2. Let S be a �nite nonempty set. A generalised reation d = (∆,P )in S is aeptable if and only if P 6= ∅, there exists T ⊆ S suh that ∆(T ) holds,and neither ∆(∅) nor ∆(S) holds.Proof. We proeed as follows.(1) Assume that d is aeptable. Hene, there exists a reation system A =
(S,A) suh that resd = resA.(i) Sine A 6= ∅, there exists T ⊆ S suh that resA(T ) 6= ∅, and so(beause resd = resA) we get resd(T ) 6= ∅.(ii) Sine, for eah a ∈ A, Pa 6= ∅, we get P 6= ∅.(iii) Sine resA(∅) = resA(S) = ∅, it follows from (ii) that neither ∆(∅)nor ∆(S) holds.(2) Assume that: P 6= ∅, there exists T ⊆ S suh that ∆(T ) holds, and neither
∆(∅) nor ∆(S) holds. Let A = (S,A) be the reation system suh that
A = {(T, S \ T, P ) : T ⊆ S and ∆(T ) holds}.Sine there exists T ⊆ S suh that ∆(T ) holds, we get A 6= ∅. Moreover,sine P 6= ∅, and neither ∆(∅) nor ∆(S) holds, we get, for eah a ∈ A, Ra 6= ∅,

Ia 6= ∅ and Pa 6= ∅. Thus A is indeed a reation system.It follows diretly from the de�nition of A that resd = resA. ⊓⊔We now an formalise a notion of a reation driven by a measurement funtion� it will be a speial ase of a generalised reation.Let A = (S,A) be a reation system and let f : 2S → R be a measurementfuntion for A. Then, for eah Y ⊆ range(f), let ∆f,Y be the unary relation over
2S , for eah T ⊆ S de�ned by: ∆f,Y (T ) if and only if f(T ) ∈ Y .Now, for a nonempty P ⊆ S and Y ⊆ range(f), d = (∆f,Y , P ) is a generalisedreation in S. Note that for T ⊆ S, d is enabled by T if the value of f(T ) belongsto a predesribed set Y of `good' values for f � therefore d is an example of ageneralised reation driven by (the values of) a measurement funtion.Again, we are interested in aeptable generalised reations (hene gener-alised reations that are implementable/explainable by reation systems). Itfollows diretly from Theorem 2 that d = (∆f,Y , P ) is aeptable if and onlyif

P 6= ∅, Y 6= ∅, 0 /∈ Y and f(S) /∈ Y .Hene, d is aeptable if and only if
P 6= ∅ and ∅ ⊂ Y ⊆ range(f) \ {0, f(S)} ,whih says in fat that `almost all' generalised reations (∆f,Y , P ) are aeptable.Example 3.



13(1) Let A = (S,A) be a reation system suh that S = {x, y, z, u, 2}, and
A =





({x, y}, {z, u}, {2}) ({x, z}, {y, u}, {2})
({x, u}, {y, z}, {2}) ({y, z}, {x, u}, {2})
({y, u}, {x, z}, {2}) ({z, u}, {x, y}, {2})



We note that, for eah T ⊆ S, resA(T ) = {2} if and only if |T ∩{x, y, z, u}| =

2.(2) Let f be a measurement funtion for A suh that
f(x) = f(y) = f(z) = f(u) = 1 and f(2) = 0 .We note that, for eah T ⊆ S, f(T ) = 2 if and only if |T ∩ {x, y, z, u}| = 2.Hene f globally omputes (predits) the results of A.(3) Consider now the generalised reation b = (∆f,{2}, {2}), and the generalisedreation system B with {x, y, z, u, 2} as its bakground set, and b as its only(generalised) reation.Hene B with one (generalised) reation does the same job as A does with sixreations. Clearly, if rather than onsidering the four element set {x, y, z, u}we onsidered a larger set (and modi�ed A aordingly), the di�erene wouldbe even more dramati.The above example illustrates how the use of measurement funtions (gen-eralised reations) allows for a more e�ient/suint spei�ation of a set ofproesses.7 A Generi Quantitative ModelWe will now demonstrate the �exibility of reation systems with measurements indealing with quantitative parameters assigned to states. Rather than developinga `heavy' general formal framework for demonstrating this �exibility, we willonsider a generi quantitative model and then disuss how to deal with it usingreation systems with measurements.In our onsiderations we do not disuss various ways of dealing with quan-tities in reation systems, but instead we disuss simulations of other modelsby reation systems. The quantitative model that we will onsider is a generimodel in the sense that we do not disuss one spei� mehanism but rather ageneral sheme of mehanisms. This generi model is a model of DNA expressionwhih uses a quantitative desription of expression produts.In this model, we have a set G of genes, a set V of their produts, and a set Qof states. Eah state is an ordered pair q = (H,φ) with H ⊆ G and φ : V → R0(we use R0 to denote the set of nonnegative reals); φ is alled the quantitativeomponent of q, and we assume that φ is not the zero funtion (with φ(v) = 0for eah v ∈ V ). The intuition behind a urrent state q = (H,φ) is that H is theset of genes that are urrently expressed, and φ is a quantitative desription of`the amount' of eah produt v ∈ V urrently present (the `amount' an be thenumber of partiles, mass, volume, onentration, et.).



14 Sine we deal with disrete time, we have a transition funtion Γ : Q → Qwhih to any given state assigns its suessor state: Γ ((H,φ)) = (K,ψ). Thistransition funtion may be seen as onsisting of two omponents Γ = (ΓG, ΓV ),where:
ΓG((H,φ)) = K and ΓV ((H,φ)) = ψ .Moreover, ΓV is given by the family of funtions {γv : v ∈ V }, where for eah

v ∈ V , γv : Q → R0. Then, for eah (H,φ) ∈ Q, ΓV ((H,φ)) = ψ where, foreah v ∈ V , ψ(v) = γv((H,φ)). Thus knowing the urrent state q, γv gives theamount of v present in the suessor state of q.As a matter of fat, for eah state q = (H,φ), the quantitative ompo-nent φ an be seen as the vetor (φ(v1), . . . , φ(vk)), where we assume that
V = {v1, . . . vk} and V is ordered, yielding the sequene v1, . . . , vk. Aord-ingly, we assume that eah state (H,φ) ∈ Q is of the form (H, (φ(v1), . . . φ(vk))),and the transition funtion Γ transforms a urrent state (H, (φ(v1), . . . , φ(vk)))into the suessor state (K, (ψ(v1), . . . , ψ(vk))).Now we an de�ne a gene expression system as a 4-tuple E = (G, V,Q, Γ )with the omponents G, V , Q, and Γ as disussed above.Finally, a (gene expression) proess in E is a �nite sequene of states

π = (H1, Q1), (H2, Q2), . . . , (Ht, Qt)with t ≥ 2, suh that, for eah i ∈ {2, . . . , t},
Γ ((Hi−1, Qi−1)) = (Hi, Qi) .8 Approximations of Gene Expression SystemsWhen a gene expression system E (whih is an abstrat model of gene expression)is implemented, the basi step of suh an implementation is an approximationof nonnegative real numbers. Assume that this implementation is done throughbinary numbers, where the numbers to be implemented are bounded by 2n1 andtheir frational part is determined with preision 2−n2 . For this implementation

n-bits binary numbers are used, where n = n1 + n2.These numbers have the positional binary representation of the form:
2n1−1 . . . 2120.2−12−2 . . . 2−n2and we refer to them as (n1, n2)-binary numbers. Thus, e.g., for n1 = 5 and

n2 = 4, the 9-bit (5,4)-binary number 100101001 represents 18 + 9
16 = 18.53125in the deimal notation.Let B(n1,n2) be the subset of R0 represented by (n1, n2)-binary numbers.Now, for eah real r ∈ R0, we onsider numbers b from B(n1,n2) whih yieldthe minimal di�erene |r−b|. Clearly, either there is one suh number b, or thereare two suh numbers b1, b2; in the latter ase we hoose the smaller of the two.In this way, for eah r ∈ R0, we obtain a unique number from B(n1,n2) whihis the (n1, n2)-binary approximation of r, denoted b(r).



15Aordingly, for eah funtion φ : V → R0 represented/de�ned by the vetor
(φ(v1), . . . , φ(vk)), we obtain the (n1, n2)-binary approximation of φ, b(φ) : V →
B(n1,n2) represented/de�ned by the vetor (b(φ(v1)), . . . , b(φ(vk))). Finally, foreah state (H,φ) ∈ Q we de�ne the (n1, n2)-binary approximation of (H,φ) tobe (H, b(φ)).In order to simplify the terminology we will use the phrase `approximation'rather than `(n1, n2)-binary approximation' assuming that the parameters n1, n2of binary numbers are �xed for our onsiderations.By representing nonnegative reals through their approximations, a gene ex-pression system E = (G, V,Q, Γ ) an be transformed into a gene expressionsystem Ê = (G, V, Q̂, Γ̂ ) operating on B(n1,n2) rather than R0. Here eah state
q̂ ∈ Q̂ is of the form q̂ = (H, φ̂) where H ⊆ G, and φ̂ : V → B(n1,n2) is repre-sented by the vetor (φ̂(v1), . . . , φ̂(vk)).Here is one possible straightforward way of de�ning the transition funtion
Γ̂ � it is given by the following ommuting diagram

(H, φ̂) (K, b(ψ))✲

(K,ψ)

❅
❅❅❘ �

��✒

Γ̂

Γ bThe transition funtion Γ applied to a state (H, φ̂) from Q̂ yields the intermediatesuessor state (K,ψ) whih does not have to be in Q̂. However, taking theapproximation b(ψ) yields the state (K, b(ψ)) whih is then the suessor stateof (H, φ̂) in Ê . Hene for this way of approximating E , the transition funtion
Γ̂ = (Γ̂G, Γ̂V ) is de�ned by:

Γ̂G((H, φ̂)) = ΓG((H, φ̂)) and Γ̂V ((H, φ̂)) = b(ΓV ((H, φ̂))) .Now, eah proess
π = (H1, φ1), (H2, φ2), . . . , (Ht, φt)in E is approximated in Ê by the proess
π̂ = (H1, δ̂1), (H

′
2, δ̂2), . . . , (H

′
t, δ̂t)suh that δ̂1 = b(φ1), i.e., we begin in Ê with the approximation (H1, δ̂1) of

(H1, φ1) and then proeed in Ê through its transition funtion Γ̂ .Clearly there may be many ways of evaluating the quality of suh an approx-imation π̂ of π. For example, π̂ ould be lassi�ed as a good approximation if
H2 = H ′

2, . . . , Ht = H ′
t. Consequently, the quality of the approximation Ê ouldbe determined by the overall quality of approximations by π̂ of π in the lass ofall proesses π of E .If the quality of approximation turns out to be `not good enough' one mayeither `adjust' or `totally rede�ne' the transition funtion Γ̂ . Suh modi�ations



16will in general depend on the knowledge of the nature of the atual funtions φinvolved in the states of  and on the nature of the transition funtion Γ .Judging spei� approximation strategies is not our onern in this paper.Our goal is to demonstrate that, given an approximation Ê, it an be simulatedby a reation system (with measurements).Anyhow, whatever is the exat proedure for obtaining right approximations,we end up with a system Ê = (G, V, Q̂, Γ̂ ) whih beomes an approximation of E .In this way we move from a system (E) with an in�nite state spae to a systemwith a �nite state spae (Ê).9 Simulating Approximations by Reation SystemsOne an approximation Ê of a gene expression system E has been established, wewill simulate (proesses in) Ê by (proesses in) a reation system A(Ê). Beforede�ning A(Ê), we introdue additional notations.First, we establish a set representation for all numbers in B(n1,n2) as follows.For eah x ∈ B(n1,n2), set(x) is the set of all numbers
ℓ ∈ {n1 − 1, . . . , 0,−1, . . . ,−n2}suh that the (n1, n2)-binary number representing x ontains 1 in the position

2ℓ. For example, for the x represented by the (5, 4)-binary number 100101001(that we onsidered before), set(x) = {4, 1,−1,−4}, while for the y representedby the (5, 4)-binary number 101000110, set(y) = {4, 2,−2,−3}.Then, for eah produt v ∈ V and eah state q̂ = (H, φ̂) ∈ Q̂,
bits(q̂, v) = {〈v, ℓ〉 : ℓ ∈ set(φ̂(v))} .Intuitively, bits(q̂, v) gives all the bits used in the set representation of φ̂(v),whih is the amount of v in the state q̂. Then, for eah state q̂ = (H, φ̂) ∈ Q̂,
bits(q̂) =

⋃
{bits(q̂, v) : v ∈ V } .Intuitively, bits(q̂) gives all the bits used in the set representations of the amountsof v in the state q̂, for all v ∈ V .Finally, for eah state q̂ = (H, φ̂) of Ê , we de�ne the simulation state of q̂,denoted sim(q̂), by sim(q̂) = H ∪ bits(q̂).We also make a tehnial (and easy to implement) assumption about thestates of Ê :For eah q̂ = (H, φ̂) ∈ Q̂, {φ̂(v) : v ∈ V } ⊂ B(n1,n2) . (†)We are ready now to de�ne the reation system A(Ê) simulating Ê .Let A(Ê) = (S,A) be a reation system, where:

S = G ∪ {〈v, ℓ〉 : v ∈ V and ℓ ∈ {n1 − 1, . . . , 1, 0,−1, . . . ,−n2}} ,and A onsists of all reations a = (R, I, P ) ∈ rac(S) suh that there exists astate q̂ = (H, φ̂) ∈ Q̂ satisfying:



17(i) R = sim(q̂),(ii) I = S \R, and(iii) P = sim(Γ̂ (q̂)).Note that sine we assumed that for eah state of E its quantitative omponent isnot the zero funtion, both R 6= ∅ and P 6= ∅. Also, beause of the assumption
(†) above, we have I 6= ∅.It follows diretly from the de�nition of A(Ê) that resA(Ê)(T1) = T2 fornonempty T1, T2 ⊆ S if and only if there exist states q̂1, q̂2 of Ê suh that

Γ̂ (q̂1) = q̂2, T1 = sim(q̂1) and T2 = sim(q̂2) .This implies that state sequenes of A(Ê) (onsisting of nonempty states) indeedsimulate gene expression proesses of Ê , meaning that(1) If π̂ = q̂1, q̂2, . . . , q̂n is a proess in Ê and τ = T1, T2, . . . , Tn is the statesequene of a ontext-independent interative proess in A(Ê) suh that
T1 = sim(q̂1), then, for all i ∈ {2, . . . , n}, Ti = sim(q̂i), and(2) If τ = T1, T2, . . . , Tn is the state sequene of a ontext-independent intera-tive proess in A(Ê), then, for eah i ∈ {1, . . . , n}, there exists a state q̂i in
Ê suh that Ti = sim(q̂i), and q̂1, q̂2, . . . , q̂n is a proess in Ê .Now, for eah v ∈ V , we de�ne a measurement funtion fv : 2S → R0 for

A(Ê) by de�ning it on the bakground set S as follows:
fv(x) =





0 if x ∈ G
0 if x = 〈u, j〉 and u 6= v
2j if x = 〈v, j〉 .Thus eah fv gives the amount of v present in states of Ê , meaning that if

q̂ = (H, φ̂) ∈ Q̂, then fv(sim(q̂)) = φ̂(v).Let then B(Ê) = (S,A, F ) be the reation system with measurements suhthat F = {fv : v ∈ V }.Hene A(Ê) is a reation system simulating proesses in Ê in suh a way thatwhen it produes the state sim(q̂), whih simulates/represents a state q̂ = (H, φ̂)in A(Ê), then it provides the (set) representation of φ̂ as a part of sim(q̂) � thisrepresentation is omputed `from inside' of A(Ê) by its reations. Then the re-ation system with measurements B(Ê) is equipped with measurement funtions
fv for eah v ∈ V . For eah state sim(q̂), eah funtion fv gives expliitly theamount of v present in q̂ (hene the value φ̂(v), where q̂ = (H, φ̂)).10 DisussionWe begin with a summary of the material presented in this paper.We have onsidered (reation systems whih are) a formal framework forinvestigating proesses inspired by the funtioning of the living ell. The basi



18onstrut of this framework, reation systems, are a qualitative model � thereis no ounting here. However, this framework ontains various extensions ofthe basi model whih equip reation systems with additional omponents oftenmotivated by spei� researh themes. Hene, e.g., it is lear that there are manysituations in biology where one needs to assign quantitative parameters to states,and to aount for this one onsiders reation systems with measurements.In Setions 2 and 3 we realled the basi onepts of reation systems, andillustrated them in Setion 4, where we gave two examples, one from biology andone from theory of omputation.Then in Setion 5 we onsidered reation systems with measurements, wherewe proved that adding measurement funtions is just a onveniene (a usefulspei�ation maro), as for eah reation system with measurements there existsan equivalent (in a well de�ned sense) ordinary reation system. Sine measure-ment funtions do not in�uene transitions of interative proesses (they merelystate the global numerial properties of states), it is natural to onsider reationsdependent on the values of measurements. We do this in Setion 6 by introduinggeneralised reations whih allow to de�ne the notion of a `measurement drivenreation'. It turns our that `almost always' suh a reation an be simulated bya set of ordinary reations; however, again, using generalised reations providesa onvenient, often suint, spei�ation tool.In Setions 7, 8 and 9 we argued that if a quantitative model is implemented(in a �nite preision arithmetis), then suh an implementation an be naturallysimulated by reation systems (with measurements).Based on the material presented in Setions 5�9 we an then laim thatreation systems are quite �exible in dealing with numerial parameters assignedto states.The framework of reation systems is quite rih and varied. We now move todisussing a number of researh topis from this framework� they are motivatedeither by biologial onsiderations or by the need to understand the underlyingomputations.One of the key features of reation systems is no permaneny : an entityis not retained in a transition of an interative proess unless it is either sus-tained/produed by some reation or introdued through ontext. This no per-maneny is quite immediate � an entity that is not sustained disappears withinone transition step. However, a deay of entities in a biohemial environmentrequires some time (deay time) to be realised. In order to aount for deaytime one onsiders in [6℄ reation systems with durations.Reation systems with measurements were introdued in [11℄ where they wereused for assigning time moments to states. In fat [11℄ deals with fundamentalquestions suh as `What is time in (models of) biohemial systems?'. `How anone apture/formalise time in the framework of reation systems?', and `Whihmeasurement funtions an be used to measure time?'Formation of modules is an important researh area in biology and biohem-istry, see, e.g., [12℄. The formal notion of a module and its formation (by dynamievents) is disussed in [13℄, where it is demonstrated that interative proesses
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